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Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA 

 

Summary

1.

 

In a population with Allee effects a positive relationship exists between fitness and
population size or density. Allee effects may result in extinction thresholds and are
therefore crucial in conservation and management. It has been shown theoretically that
Allee effects can be driven by predation; however, there are few empirical data. Previous
empirical work on Allee effects has emphasized that taxa with life-history characteristics
such as co-operative breeding may be prone to such effects. Because predation is a general
ecological mechanism, Allee effects may be more widespread than previously thought.

 

2.

 

We used a series of simple heuristic models to develop a theoretical framework for
understanding predation-driven Allee effects as a function of predator functional and
aggregative responses.

 

3.

 

Predators can create an Allee effect if  they have a type I (linear) or type II (saturating)
functional response without a type III (sigmoid) aggregative response, or vice versa. In
addition, predation must be the main driver of prey dynamics, and prey must have little
spatial or temporal refuge from predation.

 

4.

 

We highlighted several, mainly unrecognized, examples of predation-driven Allee
effects from the literature, the majority of  which came from systems that had been
perturbed by exploitation or introduced predators.

 

5.

 

Synthesis and applications

 

. Allee effects can arise from a general ecological process
under a variety of different combinations of functional and aggregative responses. Allee
effects may thus be present in a broad spectrum of different taxa with different types of
life history, not only those taxa, such as broadcast spawners and co-operative breeders,
on which empirical work has focused thus far. Conservation biologists and managers
working with heavily exploited or threatened populations, or attempting reintroductions,
should be aware of the possibility of a threshold population size or density below which
extinction is likely. These thresholds can occur regardless of species life history, if  pre-
dation is a major source of mortality and spatial and temporal predation refuges are limited.
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Introduction

 

Allee effects (a positive relationship between fitness and
population density or size) can create critical thresholds
below which the population growth rate is negative
and populations crash to extinction (Allee 1931; see
reviews in Dennis 1989; Courchamp, Clutton-Brock &
Grenfell 1999; Stephens & Sutherland 1999). Allee
effects are critical for the management of endangered
and exploited populations and for reintroductions

(Dennis 1989; Sinclair 

 

et al

 

. 1998; Courchamp, Clutton-
Brock & Grenfell 1999). Most empirical work on Allee
effects has focused on species with a specific life-history
trait that will reduce a component of fitness below a
certain density. A well-known example is broadcast
spawning in marine invertebrates with low adult dis-
persal, where there is a strong exponential relationship
between local density or nearest neighbour distance and
fertilization efficiency (Denny & Shibata 1989; Levitan,
Sewell & Chia 1992; Levitan & Young 1995; Gascoigne
& Lipcius 2004). Pollination in plants is to some extent
an analogous system, where Allee effects have also been
demonstrated (Lamont, Klinkhammer & Witkowski 1993;
Groom 1998; Hackney & McGraw 2001). Reproductive
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Allee effects have also been shown empirically in co-
operative breeders such as African wild dogs 

 

Lycaon
pictus

 

, where a critical pack size is required for success-
ful reproduction (Courchamp & Macdonald 2001).

Empirical work on Allee effects has thus been mainly
confined to taxa with a limited range of life-history
characteristics. In this study we laid out a theoretical
framework for Allee effects driven not by the specifics
of species life history, but by a general ecological mech-
anism (predation). This means that Allee effects may
occur in a wider range of taxa than has been considered
by applied ecologists and conservation biologists to date.

Studies of Allee effects have also tended to focus on
a given component of fitness (usually reproduction, as
discussed above, but also survival; Calvert, Hedrick &
Brower 1979; Clutton-Brock 

 

et al

 

. 1999). Overall fitness
is the net outcome of several density-dependent and
density-independent components (fecundity, fertiliza-
tion efficiency, larval or juvenile survival, growth rates,
time to maturity, longevity, etc.) so overall fitness, and
hence population growth rate, may not always react
predictably to density-dependent changes in one com-
ponent of fitness, such as fertilization efficiency. Hence,
any particular component Allee effect (positive density
dependence in one component of fitness, such as repro-
ductive output) will not inevitably produce a demo-
graphic Allee effect (positive density dependence in the
population growth rate; 

 

sensu

 

 Stephens, Sutherland
& Freckleton 1999; for an example see Levitan 1991).
Whether a component Allee effect creates a demographic
Allee effect depends on the trade-offs between positive
and negative density dependence due to various
component effects. A component Allee effect will cre-
ate a demographic Allee effect and drive a population
to extinction only if  that component of  fitness has
predominant control over population dynamics at the
relevant population density. A demographic Allee effect
is sometimes referred to as ‘depensation’, particularly in
the fisheries literature.

Empirical studies of Allee effects have largely
focused on positive density dependence in reproductive
output, with mechanisms such as co-operative breed-
ing, fertilization efficiency and mate finding (reviewed
in Gascoigne & Lipcius 2004), and in some cases repro-
duction has become part of the definition of an Allee
effect (Pulliam & Dunning 1997). The focus on specific
reproductive traits that are likely to provide mecha-
nisms for Allee effects has left many conservation biol-
ogists with the idea that Allee effects are generally
confined to species with a limited range of life histories.
However, although this is less well known, Allee effects
in survival probability may also be caused by preda-
tion (Dennis & Patil 1984; Dennis 1989; Courchamp,
Clutton-Brock & Grenfell 1999; Frank & Brickman
2001; Schreiber 2003). This is a more general ecological
mechanism that may be applicable over a range of spe-
cies with different life-history traits.

In a predator–prey relationship, predators react to
prey density in three interrelated ways: (i) individual

predators change their feeding rates in response to
changes in prey density (the functional response);
(ii) predators aggregate at patches of high prey density
(the aggregative response); (iii) predator population
size varies as a function of prey availability (the numer-
ical response).

The first two act over shorter time scales (individual
predator response time) than the third (predator
population response time).

The predator functional response has been seen
by modellers as a mechanism for creating an Allee
effect, although it may not be identified as such (May
1977; Dennis & Patil 1984; Dennis 1989; Courchamp,
Clutton-Brock & Grenfell 1999; Frank & Brickman
2001; Schreiber 2003). Conversely, it is usually overlooked
as a mechanism by empiricists and conservation biolo-
gists (Pulliam & Dunning 1997). This is important because
it means that applied ecologists, conservation biolo-
gists and managers generally have a narrow focus on Allee
effects, as something relevant to a small range of taxa
with specific life-history characteristics. Predation-driven
Allee effects, however, are created by a general ecological
mechanism and might therefore be relevant to any taxa
that has been reduced to low population size or density.

In this study, we explored a theoretical framework
for Allee effects driven by short time scale predator
responses to prey (functional and aggregative responses).
We addressed the following specific questions. (i) What
combinations of functional and aggregative response
types can create an Allee effect? (ii) Can certain types
of functional or aggregative response mitigate Allee
effects? (iii) What is the evidence for predation-driven
Allee effects in the empirical literature? (iv) Can we pre-
dict the type of populations for which predation-driven
Allee effects are likely to be a major conservation or
management issue?

 

Methods

 

  

 

The functional response defines the rate of prey con-
sumption, by a given number or density of predators,
as a function of prey density (Holling 1959). The per
capita functional response can be interpreted (given
appropriate parameterization) as the probability of a
prey individual being consumed by a predator as a
function of prey density. A prey individual’s probability
of not being consumed (prey survival probability), for
a given predator number or density, is thus (1 – the per
capita functional response).

Predator–prey theory traditionally defines three types
of functional response: linear (type I or Lotka–Volterra),
hyperbolic (type II) and sigmoid (type III). Other types
of  functional response are possible; these characte-
ristically alter predator–prey dynamics only at high density
(Arditi 1982) or they combine aggregative and numer-
ical responses (ratio-dependent functional responses;
Arditi & Ginzburg 1989; Hanski 1991). The functional
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response may also be defined in terms of the overall or
mean functional response of a predator guild, which
can also be measured and defined as type I, type II, type
III, etc. (Seitz 

 

et al

 

. 2001). For the purposes of  this
heuristic model it does not make any difference whether
we regard the predators as one species or several, as long
as their overall responses can be defined.

 

Type I (linear) functional response

 

In a type I functional response, prey consumption rate
per predator initially increases linearly with prey den-
sity, before reaching a maximum. The type I functional
response is considered a realistic model mainly for passive
predators such as filter feeders and web-spinning spiders,
although it may be more widespread (Arditi 1982).

We model a type I functional response as follows:
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eqn 1

where 

 

y

 

 

 

=

 

 rate of prey consumption per predator, 

 

N

 

 

 

=

 

prey density, 

 

N

 

crit

 

 

 

=

 

 prey density where predator
consumption rate reaches a maximum, 

 

α

 

 

 

=

 

 rate of con-
sumption per unit prey density (Fig. 1a).

Corresponding prey survival probability for a given
density of predators, as a result of predation with a type
I functional response:

 

p

 

 

 

=

 

 1 

 

− γ

 

for 

 

N

 

 

 

≤ 

 

N

 

crit

 

eqn 2

The coefficient above has been changed from 

 

α

 

 to 

 

γ

 

 to
make it clear that this reinterpretation of the per capita
functional response in terms of probabilities requires a
parameterization of the equation such that such that
0 

 

<

 

 

 

p

 

 

 

<

 

 1. This arrives naturally from the definition
of  the functional response: the functional response
is usually defined as the rate of  prey consumption
per predator (Holling 1959). Therefore the per capita
functional response is the prey consumption rate per
predator per prey, which must be between 0 and 1.
Because we are interested in the qualitative rather than
the quantitative form of  the relationships, we have
subsumed all coefficients in the final equation into 

 

γ

 

,
which bounds the equation in the appropriate way.

 

Type II (hyperbolic) functional response

 

In a type II functional response, predator feeding rate
rises hyperbolically to an asymptote as prey density
increases. We model a type II functional response as
follows (simplified from Holling 1959):

eqn 3

Corresponding prey survival probability for a given
density of predators, as a result of predation with a type II
functional response (with appropriate parameterization):

eqn 4

 

Type III (sigmoid) functional response

 

A type III functional response is similar to a type II at
high prey densities. At medium and low prey densities,
however, the relationship between predator consump-
tion rate and prey density is different. For a type III
response, the slope of the curve is at a maximum at
intermediate prey density, rather than low prey density
as in a type II response. A type III response can arise
from ‘prey switching’, whereby at low density of prey
species A, predators switch to feeding on prey species B.

We model a type III functional response as follows:

eqn 5

Corresponding prey survival probability for a given
density of predators, as a result of predation with a type
III functional response:

eqn 6

 

    


 

The functional response model above assumes a linear
aggregative response, i.e. that predator numbers per
prey are constant across the full range of prey density.

   
p

N
N

N N      = − >1
γ crit

critfor (Fig. 1b)

   
y

N
N

  
  

    =
+
α

β1
(Fig. 1c)

Fig. 1. The three major types of functional response, and the
corresponding prey survival probability curve: type I
functional response (a, b), type II functional response (c, d)
and type III functional response (e, f ). Graphs on the left are
functional response curves, and show prey consumption rate
per predator per unit time (y-axis) as a function of prey
density (x-axis). Graphs on the right show probability of
prey individuals escaping predation (y-axis) as a function of prey
density (x-axis).
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(Fig. 1d)
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(Fig. 1e)
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However, we can incorporate other aggregative responses
into the model in an exactly analogous way to the
functional response: (i) constant predator numbers
(no aggregative response); (ii) constant predator to
prey ratio, i.e. a linear (type I) aggregative response;
(iii) asymptotic (type II) aggregative response; and
(iv) sigmoid (type III) aggregative response. The total
probability that a prey individual will be killed by a
predator is the per capita functional response (the prob-
ability that an individual predator will kill that prey
individual as a function of  prey density) multiplied
by the per capita aggregative response (the number of
predators encountered by that prey individual as a
function of prey density).

We focus on a type II functional response, which is
typically the most common (Arditi 1982; Begon, Harper
& Townsend 1996; Johnstone & Norris 2000; Seitz 

 

et al

 

.
2001), and examine prey survival probability (

 

p

 

) with
the various aggregative responses. We use 

 

δ

 

 as the co-
efficient for the aggregative response in the same way that
we use 

 

γ

 

 as the coefficient of the functional response.
This leads to the following responses.

Constant predator numbers (no aggregative response):

eqn 7

Linear aggregative response:

eqn 8

‘type II’ aggregative response:

eqn 9

‘type III’ aggregative response: 

eqn 10

 

     
  

 

We can extend the functional response model to look at
prey survival probability as a function of both prey and
predator density. Prey encounter probability (

 

p

 

(enc))
as a function of predator density can be modelled as a
simple hyperbolic curve:

eqn 11

where 

 

P

 

 

 

=

 

 predator density.
The per capita functional response (in this case a

type II functional response) is the probability that an
individual prey will be consumed if  it encounters a
predator as a function of prey density (

 

p

 

(con | enc)):

eqn 12

where 

 

N

 

 

 

=

 

 prey density.
The total probability of a prey individual being con-

sumed by a predator is the product of the probability

that the prey individual will encounter a predator and
the probability that the prey will be consumed if  it is
encountered:

 

p

 

(con) 

 

=

 

 

 

p

 

(con | enc) 

 

×

 

 

 

p

 

(enc) eqn 13

With corresponding prey survival probability:

eqn 14

 

Results

 

  

 

To create an Allee effect, prey survival probability must
be positively related to density at the lower end of the
prey density scale, which is indicated by a positive slope
in the relationship between prey survival probability and
prey density. The type I functional response is positively
density dependent above 

 

N

 

crit

 

 but density independent
below 

 

N

 

crit

 

 (equation 2; Fig. 1b). A type I functional
response could cause an Allee effect under these circum-
stances if the reduction in fitness at intermediate density
is sufficient to create a negative population growth rate in
the density independent part of the curve at lower density.

For a type II functional response, the slope of the
curve is positive across the entire range of prey density,
and the slope is steepest close to the origin. Hence (all
else being equal), prey fitness due to predation is always
positively density dependent with a type II functional
response. Furthermore, fitness declines most strongly
with density when density is low. Hence the type II
functional response has the potential to create an Allee
effect in prey population dynamics, and this Allee effect
is likely to be stronger than that created by a type I
functional response (equation 4; Fig. 1d).

A type III functional response, like a type I func-
tional response, results in positive density dependence
in prey fitness at high prey density but not at low prey
density; in fact, the slope is negative at lower densities.
A type III response can keep prey at a low stable equi-
librium, corresponding to the minimum in the graph
above (sometimes called a ‘predator pit’). This functional
response does not have the potential to create an Allee
effect, and could potentially counteract an Allee effect
in some other component of fitness (equation 6; Fig. 1f ).

 

    


 

The Allee effect generated by a type II functional response
is eliminated by a type III aggregative response (equa-
tion 10; Fig. 2). However, with other types of functional
response, or with constant predator density, the Allee
effect is maintained  (equations 7–9; Fig. 2). This also
applies in reverse; a type II aggregative response can
create an Allee effect that is mitigated by a type III
functional response but maintained by other types of
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functional response. A type II functional response with
constant predator numbers creates the strongest Allee
effect, followed by a type II response with a type I
aggregative response, followed by two type II responses.
The effect of each combination of functional and
aggregative response is shown in Table 1.

 

     
  

 

When the functional response is of type II, prey sur-
vival probability depends mainly on predator density
(

 

P

 

) at low prey density, and mainly on prey density (

 

N

 

)
at high predator density (Fig. 3). The true relative
importance of prey and predator density depends to
some extent on the coefficients (here set to be equal),
but this model implies that dynamics at low prey den-
sity will be dominated by changes in predator numbers
rather than prey numbers, i.e. the aggregative rather than
the functional response. Thus the shape and strength of
the aggregative response is likely to be important in
determining the strength of the predator-driven Allee
effect.

 

 

 

Predator-driven Allee effects are difficult to demon-
strate in the field because clear evidence requires data
on predation rates and prey dynamics across a range of
prey population size; however, we did find several clear
examples (Table 2). It is striking that Table 2 contains
examples from a range of taxa, from different habitats
and with different life histories, including mammals
(marsupial and placental), birds, fish (marine, freshwa-
ter and anadramous), molluscs and echinoderms. It
includes species that reproduce only once (migratory
Pacific salmonids) vs. over many years (seabirds, cod

 

Gadus morhua

 

, many mammals), species that produce
thousands or millions of eggs (fish, invertebrates) vs.
one offspring per year (seabirds, quokka 

 

Setonix brach-
yurus

 

, rock wallabies 

 

Petrogale lateralis

 

), species with
prolonged parental care (quokka, up to 40 weeks) vs.
species with none (most fish, invertebrates), species
with complex social structures (quokka, meerkat 

 

Suri-
catta suricatta

 

) vs. species with none (invertebrates) and

Fig. 2. Different types of aggregative response (agg. resp.)
(constant predators = no aggregative response, or type I, type
II or type III aggregative responses) combined with a type II
functional response (δ = γ = 1).

Table 1. Summary of modelling results: outcome of combinations of functional and aggregative responses and circumstances in
which they might occur
 

Functional 
response

Aggregative 
response Allee effect? Circumstances

Type I Not type III Yes: weak Passive predators (filter feeders, web-spinning spiders)
Type II Not type III Yes Predators aggregate to high prey density but do not avoid 

patches of low prey density or switch to alternative prey
Type III Any No Predators switch to alternative prey at low prey density
Not type III None Yes: strong Predators do not switch to alternative prey and do not alter their 

density in response to prey density (generalist or sessile predators)
Not type III Type I Yes: weak ??No information about type I aggregative response; 

probably not very likely
Not type III Type II Yes Predators aggregate to high prey density but do not avoid 

patches of low prey density or switch to alternative prey
Any Type III No Predators aggregate to high prey density and avoid patches 

of low prey density; less likely for territorial or agonistic predators

Fig. 3. Contours of equal prey survival probability as a
function of prey numbers (N ) and predator numbers (P ), with
a type II functional response and no aggregative response
(δ = γ = 1).
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Table 2.

 

Empirical evidence for a predator-driven Allee effect. Our criteria were (i) that prey in small /sparse populations have higher mortality than those in large/dense populations due to predation (component
Allee effect), or (ii) that predation causes a lower population growth rate or higher extinction risk for small /sparse populations than for large/dense ones (demographic Allee effect)

 

 

 

 

Prey species Predator species Outcome and type of  Allee effect (demographic vs. component) Reference

Quokka 

 

Setonix brachyurus

 

Introduced foxes 

 

Vulpes vulpes

 

 and cats 

 

Felis catus

 

Critical population size of 100–150 animals below which 
population goes extinct (demographic Allee effect)

Sinclair 

 

et al.

 

 (1998)

Black footed rock wallabies 

 

Petrogale lateralis

 

Introduced foxes Critical population size of 5–10 animals below which 
population goes extinct (demographic Allee effect)

Sinclair et al. (1998)

Eastern barred bandicoot Perameles gunnii Introduced foxes and cats Accelerating population decline due to predation 
(demographic Allee effect)

Sinclair et al. (1998)

Hutton’s and sooty shearwaters Puffinus huttoni, 
Puffinus griseus

Introduced pigs Sus scrofa and stoats 
Mustela erminea

Small colonies in decline due to predation; large colonies 
stable. Critical threshold of c. 600 pairs (demographic Allee effect)

Cuthbert (2002)

Thick-billed murre Uria lomvia Gulls Small and/or sparse colonies declining due to gull predation; 
large dense colonies stable (demographic Allee effect)

Gilchrist (1999)

Migrating salmonids Mergansers Mergus merganser Higher proportion of  salmon lost to predation when population 
is smaller (component Allee effect in survival).

Wood (1987)

Cod Gadus morhua Commercial fishing Stock collapse because higher proportion of  the population 
caught per unit effort as population declined (demographic Allee effect)

Rose & Kulka (1999)

Rainbow trout Oncorhynchus mykiss, walleye Stizostedion 
vitreum, pike Esox lucius, lake trout Salvelinus namycush

Recreational fishing Sequential stock collapse because higher proportion of  the population 
caught per unit effort as population declined (demographic Allee effect)

Post et al. (2002)

Soft-shelled clam Mya arenaria Blue crab Callinectes sapidus Type II functional response in mud habitats leads to seasonal local 
extinction, while type III functional response in sand allows persistence 
(demographic Allee effect)

Eggleston, Lipcius & 
Hines (1992), 
Seitz et al. (2001)

Crown-of-thorns starfish Acanthaster planci Coral reef  fishes Balistidae, Labridae, 
Lethrinidae

Starfish have negative population growth rate at low population size 
and positive population growth rate at high population size; threshold 
c. 250 km−2 of  reef. Population size negatively correlated to density of  
predatory fish (demographic Allee effect)

Dulvy, Freckleton & 
Polunin (2004)

Meerkat Suricata suricatta Jackal Canis mesomelas, eagles Polemaetus 
bellicosus and Aquila rapax and others

Juvenile survival lower in small groups than large groups in areas 
with high predator densities but lower in large groups than small 
groups in areas with low predator densities (component Allee effect 
in juvenile survival).

Clutton-Brock et al. 
(1999)
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grazers/detritivores (quokka, rock wallaby, clam) vs. top
predators (cod, most of the lake fish species, seabirds).

From an applied standpoint it is extremely signifi-
cant that human intervention has played a dominant
role in the ecosystem, such that prey population size
has been reduced and the stabilizing effect of high prey
density has been removed. In the first three examples
(endangered Australian marsupials; Sinclair et al. 1998),
hunting pressure has driven prey populations to such
low levels that they can easily be driven to local extinc-
tion by introduced predators, and there is a critical
population size threshold for successful reintroduction.
Hunting also reduced the size and density of thick-billed
murre Uria lomvia colonies (Gilchrist 1999), rendering
them vulnerable to gull predation. Many shearwater
(Puffinus huttoni, Puffinus griseus) colonies in New
Zealand were reduced in size by feral pigs Sus scrofa, such
that the smaller and sparser colonies are now vulnerable
to predation by stoats Mustela erminea (Cuthbert 2002).
In two other examples, cod Gadus morhua and Canadian
lake fish (rainbow trout Oncorhynchus mykiss, walleye
Stizostedion vitreum, pike Esox lucius and lake trout Sal-
velinus namycush), humans are the predators creating
the Allee effect (Rose & Kulka 1999; Post et al. 2002).
In two other examples, it is predator numbers that have
been depleted by humans. Crown-of-thorns starfish
Acanthaster planci are maintained at constant low pop-
ulation density in the presence of fish predators but can
outbreak to high population densities where predators
have been depleted by humans (Dulvy, Freckleton &
Polunin 2004). Juvenile survival of the meerkat Suricata
suricatta is lower in small groups than in large groups in
a national park, but lower in large groups than in small
groups in nearby ranchland where predators are less
dense (Clutton-Brock et al. 1999). Finally, in the two
examples where human intervention is not important
(migrating salmonids, soft-shelled clam Mya arenaria),
the overall system is stable despite Allee effects.

Discussion

    
   

The strongest Allee effect arises from a type II func-
tional response with either no or a type II aggregative
response (Table 1). Predator–prey models incorporat-
ing a type II functional response have unstable prey
dynamics (May 1974; Hassell 1978) and can cause critical
population size effects in prey (Dennis & Patil 1984;
Sinclair et al. 1998; Cantrell, Cosner & Fagan 2001).
Fisheries scientists have also considered the ‘functional’
responses of fishermen in terms of changes in effort
with changes in fish stock size, and shown that a type II
‘functional response’ of fishing effort with declining
stock size can result in critical thresholds for stock
collapse (Hilborn & Walters 1992).

The association between functional response and
Allee effects in prey has not been made to date in empir-

ical studies, the predator–prey literature and general
ecological texts. From a management and conservation
perspective, it is critical to realize that predation has the
potential to create an Allee effect in prey dynamics,
without recourse to specific traits in the prey life history
such as co-operative breeding or broadcast spawning.

Given the importance of predator density at low prey
density (Fig. 3), the form of the aggregative response is
likely to be very important in determining the presence
and strength of a predator-driven Allee effect. Unfor-
tunately, it is rarely quantified in empirical studies. A
type III aggregative response, which would mitigate the
Allee effect, would result when predators actively avoid
areas of low prey density as well as actively seeking out
areas of high prey density, and would be less likely
where predators interfere with each other, are territo-
rial or are agonistic (Roger & Hassell 1974; Rohner &
Krebs 1998; Clark et al. 1999).

 

Our model is simplified in that it does not incorporate
a numerical response for predators separate from the
aggregative response, since it acts over a longer time
period and would thus require a more complicated
model. We are looking at short-term Allee effects, which
might in the long term be mitigated (or exacerbated) by
a predator numerical response (among other things).

The conclusions from this model correspond well to
those from more specific predator–prey models. In a
Lotka–Volterra predator–prey system ( linear functional
response), aggregation is generally destabilizing unless
it is accelerating, i.e. there are disproportionate
numbers of predators in dense patches (Murdoch &
Stewart-Oaten 1989), a type III aggregative response.
Overall, predator–prey modellers have come to varying
conclusions about the stabilizing effect of predator
aggregation in model systems (Murdoch 1994), not
surprising as the form of the response (i.e. the specifics
of a given model) is critical to prey dynamics.

Despite its simplicity, the model gives a useful over-
view of where predator-driven Allee effects are likely to
occur. In reality, the shape and strength of responses
are variable in space and time (Hanski 1991; Morgan,
Brown & Thorson 1997; Fauchald, Erikstad & Skarsfjord
2000; Johnstone & Norris 2000) and are difficult to
measure. This model is useful in highlighting the role
and consequences of the various responses.

  

Prey can have three types of  distribution: random,
uniform and clumped. For a random distribution,
functional and aggregative responses are both relevant.
As the distribution becomes more uniform, there is less
scope for an aggregative response, so a functional
response-driven Allee effect potentially becomes more
important. As the distribution becomes more clumped,
a higher proportion of prey is living at high density, so
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the functional response becomes less relevant and the
aggregative response more important. For extremely
aggregated distributions (such as schooling fish), pred-
ators can respond to prey population size or density
both within aggregations and between aggregations,
although the time scale of predator response may be
much shorter within aggregations than between, hence
this model is more relevant to predator movements
within aggregations.

The literature on the effect of spatial heterogeneity
on predator–prey relationships is substantial (Hassell
1984; Kareiva 1987; Taylor 1990; Hawkins, Thomas
& Hochberg 1993; Murdoch 1994; Cosner et al. 1999;
McCauley et al. 2000). In general, spatial heterogeneity
in predator or prey distribution is stabilizing through the
existence of refuge groups, although there are excep-
tions (Kareiva 1987).

Dispersal between subpopulations also reduces the
likelihood of a demographic Allee effect (Taylor 1990;
McCauley et al. 2000; Frank & Brickman 2000, 2001;
but see also Murdoch et al. 1996). Even a small amount
of connectivity between subpopulations may be suffi-
cient to reduce extinction risk for each subpopulation
significantly (Hill, Hastings & Botsford 2002), and
habitat fragmentation that isolates small subpopu-
lations can create a predator-driven Allee effect in model
systems (Cantrell, Cosner & Fagan 2001).

   -
  

How likely is a predator-driven Allee effect in natural
systems? The type II functional response is the most
common (Arditi 1982; Begon, Harper & Townsend 1996;
Johnstone & Norris 2000; Seitz et al. 2001); this is the
case for both generalist and specialist predators (Murdoch
& Oaten 1975; Sinclair et al. 1998). Specialist predators
are most likely to have type III aggregative and
numerical responses, but may not (Johnstone & Norris
2000). However, generalist predators seem the most
likely candidates for creating Allee effects in prey, since
they are the least likely to respond strongly to prey density
over both short (aggregative response) and long (numer-
ical response) time scales. In fact, generalist predators,
or even predators with two main prey species, need not
show any numerical or aggregative response to a given
prey species (Cappuccino 1987; Sinclair et al. 1998).

In addition, prey as well as predator life history plays
a role in determining the functional response. Some
predator avoidance strategies, such as crypsis and
refuges, are more effective at lower densities, yielding a
type III functional response. Prey species with passive,
non-density-dependent predation avoidance strategies,
such as armouring, spines or aposematic colouring, are
likely to yield a type II predator functional response
(Cappuccino 1987; Jeschke & Tollrian 2000; Seitz et al.
2001). Such prey species use weight of numbers as an
anti-predator strategy (the dilution effect) and this
makes them theoretically vulnerable to Allee effects.

-    
 

Predator-driven Allee effects may provide a useful tool
in clarifying ecosystem-level responses to anthropogenic
disturbance. Ecosystems can be regarded (simplisti-
cally) as a series of interconnected predator–prey rela-
tionships with different types of stabilizing factors. A
predator–prey modelling framework may be valid even
in systems that seem much more complicated (Mur-
doch et al. 2002). Ecosystems as diverse as rangelands,
lakes and coral reefs have shown abrupt transitions to
alternative stable states, with consumer dynamics as an
important mediating factor (Noy-Meir 1975; Scheffer
et al. 2001). Allee effects predict thresholds and non-
linear population dynamics, and may provide a con-
ceptual link between population, predator–prey and
ecosystem dynamics.

  

Conservation biologists and managers spend much of
their time dealing with populations that are small or
sparse, having been depleted by human activity, or with
populations in fragmented habitats, or with attempts at
reintroduction. In all these population types it is cru-
cial to be aware that there is the potential for critical
extinction thresholds in population size or density, and
that these thresholds can occur in a wide range of taxa
with different life histories. We present examples of
predation-driven Allee effects in mammals (four examples),
seabirds (two), fish (three) and marine invertebrates
(two). Predator species include mammals (non-human)
(five), birds (three), fish (one), invertebrates (one) and
humans (two), mainly in systems where prey popula-
tions have been reduced for other reasons (habitat loss,
exploitation, etc.). Managers and conservationists
need to be aware of the potential for predation-driven
Allee effects if  (i) predation is a major source of mor-
tality, (ii) prey have little spatial or temporal refuge
from predation and (iii) predators are generalists and/
or are territorial or agonistic. Precautionary manage-
ment of such populations would involve taking Allee
effects into account, particularly as Allee effects are not
always apparent in the dynamics of spatially structured
populations until collapse has occurred (Frank &
Brickman 2000, 2001). From the perspective of conser-
vation science, there is a large body of theory on positive
density dependence and stability in ecological inter-
actions that has so far not been integrated into work on
Allee effects, but would be of immense practical use in
the conservation and management of endangered species.
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