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Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy
in the York River estuary

Peter A. Raymond1 and James E. Bauer
School of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062

Jonathan J. Cole
Institute of Ecosystems Studies, Millbrook, New York 12545

Abstract

Direct measurements of the partial pressure of CO2 (pCO2) and dissolved inorganic carbon (DIC) were made
over a 2-yr period in surface waters of the York River estuary in Virginia. The pCO2 in surface waters exceeded
that in the overlying atmosphere, indicating that the estuary was a net source of CO2 to the atmosphere at most
times and locations. Salinity-based DIC mixing curves indicate there was also an internal source of both DIC and
alkalinity, implying net alkalinity generation within the estuary. The DIC and alkalinity source displayed seasonal
patterns similar to that of pCO2 and were reproducible over a 2-yr study period.

We propose that the source of inorganic carbon necessary for both the sustained CO2 evasion to the atmosphere
and the advective export of DIC is respiration in excess of primary production (e.g., net heterotrophy). The rates
of CO2 evasion and DIC export were estimated to provide an annual rate of net heterotrophy of ;100 g C m22

yr21. Approximately 40% of this excess inorganic carbon production was exported as DIC to the coastal ocean,
whereas 60% was lost as CO2 evasion to the atmosphere. The alkalinity generation needed to sustain the export of
inorganic carbon, as HCO3

2, is most likely provided by net sulfate reduction in sediments. Accumulation of sulfide
in the sediments of a representative site directly adjacent to the York River estuary is sufficient to account for the
net export of alkalinity. The seasonality of net heterotrophy causes large variations in annual CO2 and DIC con-
centrations, and it stresses the need for comprehensive temporal data sets when reporting annual rates of CO2

evasion, DIC advection, and net heterotrophy.

The metabolic state of an ecosystem represents the bal-
ance between gross primary production (GPP) and total res-
piration (R; Kemp et al. 1997). In heterotrophic systems, R
. GPP as a result of the breakdown of allochthonous or-
ganic material and the remineralization of inorganic nutrients
and carbon (as CO2). In autotrophic systems, GPP . R, re-
sulting in the export or burial of organic matter through the
conversion of inorganic nutrients and carbon dioxide by pho-
tosynthesis. In an estuary, the linkage between net metabo-
lism and carbon and nutrient cycling will alter the quantity,
quality, and species of carbon, nitrogen, and phosphorus
reaching the coastal oceans.

Photosynthesis is dependent, in part, on the availability of
inorganic nutrients, whereas respiration is dependent on the
availability of labile organic material. Thus, the metabolic
state of an estuary is also inherently linked to the delivery
of allochthonous inorganic nutrients and labile organic ma-

1 To whom correspondence should be addressed. Present address:
The Ecosystems Center, Marine Biological Lab, Woods Hole, Mas-
sachusetts 02543 (praymond@mbl.edu).
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terial (Hopkinson and Vallino 1995; Smith and Hollibaugh
1997). The delivery of nutrients and organic material to es-
tuaries is rarely in steady state; it may change dramatically
over short time scales because of events such as rain events
and storms (Magnien et al. 1992). Furthermore, processes
such as flocculation (Sholkovitz et al. 1978), desorption
(Mayer et al. 1998), sedimentation, pycnocline development,
light limitation on phytoplankton (Cloern 1987), and the
mixing of freshwater and seawater create complex carbon
and nutrient dynamics within estuaries. As a result of this
complexity, estimates of metabolism in estuaries are difficult
to assess, and few comprehensive studies of it have been
undertaken (Smith and Hollibaugh 1993; Heip et al. 1995;
Gattuso et al. 1998).

A summary of the methods presently used for estimating
metabolism in coastal and estuarine systems can be found in
Smith and Hollibaugh (1993). One method involves the mea-
surement of inorganic carbon species, because the cycling
of inorganic carbon is related to the metabolic state of an
estuary through the production and utilization of CO2 during
photosynthesis and respiration. In fact, Smith and Holli-
baugh (1993) state that the most satisfactory approach to
estimating net metabolism in the coastal ocean might be the
detailed analysis of CO2 in surface waters.

Recently, CO2 supersaturation in estuaries has been re-
ported for a number of different systems (Raymond et al.
1997; Cai and Wang 1998; Frankignoulle et al. 1998), in-
dicating net heterotrophy; yet, a detailed description and
analysis of the spatial and temporal variability of CO2 and
dissolved inorganic carbon (DIC) distributions and fluxes in
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Fig. 1. Map of York River estuary and surrounding region. The
York River estuary was broken into five 10-nautical-mile sections
to estimate CO2 flux. The first three sections are located in the lower
York estuary, whereas sections 4 and 5 are located on the Pamunkey
River, which discharges most of the freshwater into the lower York.

estuaries is lacking. More importantly, CO2 supersaturation
is only qualitative evidence for net heterotrophy. Estuarine
CO2 may have sources and fates other than net heterotrophy
and atmospheric exchange, and for a quantitative and con-
vincing estimate of system metabolism, a robust data set of
concurrent surface water CO2 and DIC measurements is nec-
essary. Another notable source of estuarine CO2 is supersat-
urated riverine waters, and therefore, quantitative informa-
tion that estuarine CO2 supersaturation is balanced by
internal net heterotrophy is necessary.

Apart from atmospheric evasion, the inorganic carbon
produced by net heterotrophy can also be exported advec-
tively as DIC in the form of bicarbonate (HCO3

2). Raymond
et al. (1997) used a comprehensive temporal and spatial data
set to quantify CO2 evasion and DIC export in the tidal fresh-
water Hudson River, and they concluded that DIC export
was not a significant sink for CO2 generated from net het-
erotrophy. In order to convert CO2 produced by net hetero-
trophy to bicarbonate, a source of alkalinity must be present.
Estuarine systems receive large quantities of sulfate from
seawater mixing, and sulfate reduction can balance CO2 con-
version to bicarbonate (Smith and Hollibaugh 1997). We
propose that sulfate reduction may be an important sink for
CO2 produced by net heterotrophy in the York River estuary.

This paper represents a novel approach for elucidating and
quantitatively estimating patterns of net metabolism in the
York River estuary by using spatial and seasonal dynamics
of atmospheric CO2 exchange and DIC dynamics. We show
that in the York, the advective export of excess DIC from
net heterotrophy is of equal importance to CO2 gas evasion
when using inorganic carbon dynamics to estimate net het-
erotrophy for the entire system.

Materials and methods

Description of study area—The York River estuary is a
subestuary of the Chesapeake Bay and is formed by the con-
vergence of the Pamunkey and Mattaponi Rivers 50 km from
its mouth (Fig. 1). The Pamunkey contributes approximately
70% of the total flow to the York, and it is flanked by tidal
freshwater marshes, with some individual marshes being
greater than 4 km2 in size. The York River estuary is con-
sidered pristine amongst the subestuaries of the Chesapeake
Bay, with the only industry being a paper plant at the con-
vergence of the Pamunkey and Mattaponi.

Previous work has focused primarily on the mouth of the
estuary, concentrating on the effects of stratification–destra-
tification caused by spring-neap cycles (Haas et al. 1981;
Ducklow 1982). More recently, bacterial dynamics (Koepfler
1989; Schultz 1999) and phytoplankton and nutrient dynam-
ics (Sin et al. 1999) have been studied in the main part of
the York River estuary. Bacterial production has been found
to increase with decreasing salinity (Koepfler 1989; Schultz
1999), and it is directly related to temperature, with produc-
tion rates being three-fold greater in warm than in cold
months (Koepfler 1989). Phytoplankton exhibit distinct win-
ter/spring blooms in the mesohaline portions of the York
system and smaller summer blooms in the upper York (Sin
et al. 1999).

Twelve sampling transects for DIC and the partial pressure
of CO2 (pCO2) were performed between the mouth of the
York and the point at which freshwater was encountered.
The salinity at the mouth ranged from 14 to 23.5. Sampling
sites were not fixed in location, but instead were sampled to
provide adequate coverage of salinity.

pCO2 measurements—In order to model the flux of CO2

and examine CO2 dynamics in the York River estuary, the
pCO2 in surface waters (;0.5-m depth) was measured a total
of 99 times on 12 transects from July 1996 to December
1997. The pCO2 is equal to [CO2]/a, where a is the CO2

solubility coefficient, and it was measured according to the
method of Cole et al. (1994). Two 0.5-liter gas-tight bottles
were filled with unfiltered sample water, 25 ml of air was
introduced, and the bottle was shaken 100 times to force the
air into equilibrium with the water sample. Each air head-
space was subsampled into two 20-ml syringes and returned
to the laboratory for gas analysis. CO2 gas was analyzed on
a Li-Cor LI6252 or a Beckman model 880 infrared gas an-
alyzer by using a flow-through system with ultra-high purity
helium gas as the carrier. Samples were analyzed on the
same day they were collected, along with multiple sets of 0,
400, 1000, and 10,000 ppmv CO2 gas standards. The average
coefficient of variation for this procedure was 7% of the
mean for duplicates.

Dissolved inorganic carbon measurements—On 12 tran-
sects between July 1996 and April 1998, 100 surface water
measurements of DIC were made along the salinity gradient
of the York River estuary. Duplicate water samples were
collected in 7-ml gas-tight test tubes and stored on ice and
in the dark while in the field and were analyzed in the lab-
oratory within 12 h of sampling. DIC concentrations were
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measured on a Shimadzu TOC 5000A in inorganic carbon
mode, and they were calibrated with 0, 500, 800, 1,000, and
2,200 mM NaHCO3 standards. The average coefficient of
variation for this procedure was 4% of the mean for dupli-
cates.

Atmospheric exchange calculation—The gas exchange co-
efficient (k) and the concentration gradient govern the flux
(in mmol m22 s21) of CO2 across the air–water interface as
follows:

Flux 5 k([CO2]water 2 [CO2]air) (1)

where k (m s21) is the gas exchange coefficient for CO2 at
a given temperature and salinity. The term [CO2]water 2
[CO2]air is the concentration gradient (mmol m23) between
the water and the air. In order to estimate k, we modeled k
as a function of wind speed using data from two estuarine
studies that measured directly k and the wind speed in tidal
systems (Clark et al. 1994, Carini et al. 1996). Both studies
modeled k as a function of wind speed and reported values
of k for a gas with a Schmidt number of 600 (k600), which
is the Schmidt number for CO2 at 208C. We fit the individual
data points from these studies with the following power
function:

k600 5 2.78U ,0.46
10 (2)

where U10 is the wind speed recorded at 10 m (r2 5 0.43;
P , 0.03; n 5 11). Once k600 has been established, k for
CO2 (k ) can be calculated by the ratio of the SchmidtCO2

numbers using the following equation (Jahne et al. 1987):

k600/k 5 (600/Sc )n.CO CO2 2
(3)

The Schmidt numbers for CO2 (Sc ) for given temperaturesCO2

and salinities were calculated with the relationships in Wan-
ninkof (1992). The exponent n can vary from unity to 20.67,
depending on the process that dominates diffusion; an esti-
mate of 20.5 (Jahne et al. 1987) was used for this study.

In order to determine spatial variations in CO2 flux, the
estuary was subdivided into five sections of 10 nautical
miles each (Fig. 1). The concentration gradient in Eq. 1 was
estimated by using direct measurements of pCO2 and an at-
mospheric pCO2 concentration of 380 ppmv. For each tran-
sect, a minimum of one site was located within each section
of 10 nautical miles. When multiple sites were located in a
section, concentrations were averaged. Based on the pre-
dictable seasonal changes in pCO2 observed in this study,
changes in CO2 concentrations for a given section between
two sampling dates were assumed to be linear, allowing for
the calculation of daily fluxes for each section for the entire
sampling period.

In order to report CO2 fluxes as an integrated whole es-
tuary flux, the fluxes for each section of the York were nor-
malized to sectional areas using the surface areas reported
by Cronin (1971). For the Pamunkey River (upper York),
the surface area of tidal marshes could not be ignored be-
cause each meander of the Pamunkey (Fig. 1) is occupied
by large stretches of tidal marsh that are inundated with river
water twice a day. We therefore tabulated the surface areas
for the marshes using reports by Doumelele (1979), and Sil-
berhorn and Zacherle (1987), and divided by 2 (because they

are only inundated during high tides) and included this area
in the surface areas of sections 4 and 5. The fluxes from
each section were then summed to obtain an integrated daily
flux for atmospheric exchange in the York River estuary sys-
tem.

Estimating fluxes of DIC—Mixing curves of DIC versus
salinity were used to estimate how much DIC is added by
net heterotrophy during estuarine transport. Mixing curves
are a commonly used approach for interpreting net source/
sink dynamics of estuarine constituents (for examples, see
Officer 1979; Loder and Reichard 1981; Kaul and Froelich
1984). When observed values fall on the linear mixing
curve, it is generally interpreted that the constituent of in-
terest mixes conservatively with respect to the system’s res-
idence time. In contrast, values falling above the conserva-
tive mixing curve are indicative of a net internal source,
whereas values falling below indicate a net internal sink for
the constituent being examined.

Kaul and Froelich (1984) presented a model that uses mix-
ing curves to estimate the internal flux of a dissolved con-
stituent. When the distribution of a dissolved constituent is
continuous and predictable with simple polynomial equa-
tions, the flux (mmol s21) of that dissolved constituent within
the estuary is defined as

Input flux 5 Q(Cs 2 CO), (4)

where Q is freshwater flow (m3 s21), CO (mM) is where the
polynomial equation defining DIC concentrations intersects
the y-intercept (or the concentration at zero salinity), and Cs

(mM) is the concentration of the constituent where the tan-
gent at the seawater end-member crosses the y-intercept. For
our purposes, when an estuarine source of DIC was present,
we modeled each mixing curve with a second-order poly-
nomial. We used the polynomial equation to define the tan-
gent and calculate the y-intercept for the tangent at the sea-
water end-member. According to Kaul and Froelich (1984),
the total export flux from the estuary is the product of Cs

and flow, the internal flux is the product of Cs 2 CO and
flow, and the flux from the freshwater end-member is the
product of CO and flow. In order to express these fluxes in
terms of a rate in mmol m22 d21, we converted seconds to
days, and the flux was divided by the surface area used to
define our system’s boundaries (i.e., the same surface area
used in the atmospheric evasion estimate outlined above).

Supplemental data—In addition to our measured values
for the York, pCO2 was calculated for the James, Rappahan-
nock, and Potomac estuaries for the 1997 water year from
data available on the Environmental Protection Agencies
(EPA) Chesapeake Bay program Web site (http://www.
chesapeakebay.net/bayprogram). Alkalinity, pH, tempera-
ture, and salinity were used to calculate pCO2 according to
equations found in Millero (1995). The following EPA sta-
tions were used for each estuary: LE 5.4, LE 5.3, LE 5.2,
LE 5.1, RET 5.2, TF 5.6, and TF 5.5A for the James; LE
3.2, LE 3.1, RET 3.1, RET 3.2, TF 3.3, TF 3.2, and TF 3.2
for the Rappahannock; and RET 2.4, RET 2.3, RET 2.2, and
RET 2.1 for the Potomac.
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Fig. 2. (a)–(d) Seasonal examples of surface water pCO2 in the
York River estuary plotted as a function of salinity. The pCO2 was
generally higher at low salinities and reached a late summer and
early fall maximum. Winter: 17 Jan 97; Spring: 19 Mar 97; Sum-
mer: 18 Jul 97; Fall: 25 Sep 97. Each point is an average of two
duplicate samples. The horizontal line represents atmospheric pCO2

values of ;380 ppmv.

Table 1. CO2 flux estimates (mmol m22 d21) for the York River estuary. The k values used for these estimates were obtained using
Equation 2 (see text) and daily wind speeds. Positive fluxes are from the estuary to the atmosphere (evasion). Whole estuary fluxes were
obtained by multiplying each section’s flux by its surface area, summing the five section fluxes, and dividing by the surface area of the
entire estuary. Surface areas are (all 106 m2) 58.4, 58.6, 39.0, 12.6, and 11.3 for sections 1–5, respectively.

Period
Section 1

flux
Section 2

flux
Section 3

flux
Section 4

flux
Section 5

flux
Whole

estuary flux

10 Jul 96–07 Sep 96
08 Sep 96–18 Nov 96
19 Nov 96–22 Jan 97
23 Jan 97–24 Mar 97
25 Mar 97–13 Apr 97

8.0
3.6

22.1
25.6
23.3

12.9
0.7
0.5
4.9
7.2

10.0
8.5
7.8
6.1
6.2

98.0
73.5
47.8
32.5
38.3

68.1
69.0
35.1
18.1
18.0

23.1
11.0
6.1
6.9
9.5

14 Apr 97–22 Jun 97
23 Jun 97–16 Jul 97
17 Jul 97–22 Sep 97
23 Sep 97–29 Oct 97
30 Oct 97–12 Dec 97

1.6
4.1
8.3
7.7
4.8

6.4
18.6
27.3
19.7

7.0

9.1
12.8
14.7
15.1
15.1

36.9
80.9
81.9
73.2
37.0

35.8
93.0

107.3
72.5
45.1

10.5
27.6
36.1
27.0
12.2

Results

pCO2: spatial and temporal patterns and atmospheric ex-
change—The York River estuary was dominated by super-
saturated pCO2 conditions. The average (with SD) pCO2

measured at a total of 99 surface sites was 1,070 6 867
ppmv, with a maximum of 3,467 ppmv in July 1996 in sec-
tion 4 of the estuary, and a minimum of 113 ppmv in April
of 1997 in section 2. Of the 99 total measurements, 21 were
undersaturated with respect to the atmosphere, and all except
one of these undersaturated samples were taken from sec-
tions 1 or 2. For the estuary sections depicted in Fig. 1, the
average salinity for sections 1–5 was 17.5, 13.4, 10.5, 4.8,
and 1.1, respectively, whereas the average pCO2 was 468,
416, 763, 1,886, and 1,818 ppmv, respectively.

The pCO2 values in the York River estuary displayed pro-

nounced spatial and temporal variations. Spatially, pCO2 de-
creased with increasing salinity, with the gradient being
stronger in the summer and fall months (Fig. 2). Low salinity
sections 4 and 5 had high average pCO2 values; section 3
was a transitional zone showing intermediate pCO2 levels,
whereas the lower estuary (sections 1 and 2) had the lowest
pCO2 values. Temporally, pCO2 levels were lowest in winter
and early spring (Fig. 2a,b) and highest in the late summer
and early fall (Figs. 2c,d). The most pronounced seasonal
variation occurred in the lower salinity portions of the York
(Fig. 2a–d).

Calculated evasion rates for CO2 along the York River
estuary are shown in Table 1. Temporal and seasonal vari-
ation in gas exchange generally correlated with pCO2 distri-
butions, with exchange generally being greatest at low sa-
linities and during summer and fall months (Table 1). The
whole-estuary flux was much lower than fluxes in the upper
river (sections 4 and 5), because the lower sections have
larger surface areas and lower pCO2 concentrations. Nega-
tive fluxes (pCO2 invasion) were calculated for winter
months in section 1 (Table 1). The weighted annual average
rate of CO2 evasion for the period of July 1996 to July 1997
was 52.7 g C m22 yr21, and it rose to 75.1 g C m22 yr21 if
the period between December 1996 and December 1997 was
considered. The July 1996 to July 1997 and December 1996
to December 1997 rates for the upper York (section 5) were
202.8 and 235.3 g C m22 yr21, respectively, and for the lower
York (section 1) they were 5.0 and 9.7 g C m22 yr21, re-
spectively.

DIC: spatial and temporal trends—Surface DIC measure-
ments were made along the salinity gradient of the York
River estuary from July 1996 to April 1998. When mixing
curves were generated for individual transects, a strong sea-
sonal pattern in the nonconservative behavior of DIC de-
veloped (Fig. 3a–l). In July 1996 (Fig. 3a), a large DIC
anomaly occurred in the middle reaches of the estuary,
where measured DIC concentrations fell above the mixing
curve. In Fall 1996, the anomaly was still present, but DIC
concentrations approached the conservative mixing line. In
Spring 1997, DIC mixed conservatively. The patterns ob-
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Fig. 3. (a)–(l) Dissolved inorganic carbon distributions in the York River estuary. The mixing
curves indicate that an estuarine source of DIC followed pronounced seasonal variation and repeated
itself over the 2-yr study period. Each point represents the average of two samples, and the average
coefficient of variation for the duplicate samples was 4% of the mean.

served in 1996–1997 were repeated during the 1997–1998
sampling period with positive anomalies in DIC mixing
curves in the summer and fall, followed by conservative
mixing in the winter and spring.

The DIC mixing curves (Fig. 3a–l) were readily repro-
duced with polynomial equations (Table 2). This allowed for
the calculation (with Eq. 4) of the advective export of the
DIC that was added during estuarine transport and the ex-
amination of the relative magnitude and temporal variation
in this inorganic carbon sink. There are, however, several
shortcomings involved with interpreting mixing curves. The
main problem is that the constituent being examined is as-
sumed to be in steady state with respect to freshwater resi-
dence time. Because mixing curves are generated from con-
centrations at the freshwater and mouth stations, sudden
large variations (i.e., non–steady state behavior) in end-
member concentrations can affect the slope of a mixing
curve (Loder and Reichard 1981), making a parameter ap-
pear nonconservative when in fact it is conservative. In the
York River estuary, DIC at the freshwater end-member (CO,
in Table 2) varied seasonally; freshwater DIC concentrations

decreased during high flow periods in the winter and spring
months. The winter/spring decline in freshwater DIC con-
centrations does not affect our calculation because mixing
curves indicate that there is a DIC source during the summer
and fall months only (Fig. 3a–l). The average (with SD)
freshwater concentration for summer and fall months was
407.8 6 69.4, whereas the average change between sampling
periods was 46.8 6 37.9. These changes are small compared
with the large differences between Cs and CO in Table 2, and
therefore, they have little effect on the calculation of added
DIC.

The concentrations of DIC added to the York during es-
tuarine transport (Cs 2 CO; Eq. 4) were high in summer and
fall, and low (sometimes zero) in winter and spring, whereas
flow rates in the York were low in summer and fall and high
in winter and spring. High flow rates combined with negli-
gible amounts of DIC added during the winter and spring
make this period important when considering the total flux
of DIC out of temperate estuaries. The DIC added during
estuarine transport ranged from 0% to 76% of the total flux
and averaged (with SD) 42% 6 30%. We calculated annual
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Table 2. DIC distributions and fluxes in the York River estuary. Equations are polynomial equations used to fit the data from DIC
versus salinity transects displayed in Fig 3. All equations have r2 . 0.98 and P , 0.01. The flux of freshwater DIC is defined as (Co 3
Q), whereas the flux of DIC added internally is Q(Cs 2 Co); see Methods section for complete description. The reported annual fluxes
were obtained by assuming a steady state between transects and by assuming that the July 1996 transect data was in steady state for 1
month.

Date Equation
Co

(mM)
Cs

(mM)
Q

(m3 s21)

Export
internally

added DIC
(109 mmol d21)

Export
freshwater

DIC
(109 mmol d21)

Jul 96
Sep 96
Nov 96
Jan 97
Mar 97
Apr 97

23.93S21121.63S1498.7
22.13S2197.93S1503.3
28.93S2175.33S1497.0
20.83S2172.53S1512.2

73.43S1341.3
72.03S1258.0

499
503
497
512
341
258

1910
1131

742
689
341
258

36
45
75

123
114
107

4.5
2.4
1.9
2.5
0
0

1.5
1.9
2.9
4.8
3.4
2.4

Jun 97
Jul 97
Sep 97
Oct 97
Dec 97

20.83S2166.93S1457.6
21.83S2195.43S1391.8

22.53S21117.03S1343.4
22.33S21117.03S1260.2

53.63S1543.7

458
398
343
260
544

760
1210
1654
1523

544

45.8
25
15
7.6

43.9

1.2
1.8
1.7
0.8
0

1.8
7.9
5.3
2.4
2.1

Total flux (109 mole yr21): Jan 96–Jun 97, 1.7; Dec 96–Dec 97, 2.1. Internally added flux (109 mole yr21): Jun 96–Jun 97, 0.6; Dec 96–Dec 97, 0.9.
Conservative flux: (109 mole yr21): Jun 96–Jun 97, 1.1; Dec 96–Dec 97, 1.2.

Fig. 4. Rates of whole system CO2 evasion, DIC accumulation,
and net heterotrophy in the York River estuary. All three parameters
had a late summer and early fall maximum and a spring minimum.
Rates of net heterotrophy were calculated by summing CO2 evasion
and DIC accumulation.

DIC fluxes from the York to the lower Chesapeake Bay and
estimated how much of this DIC was added within the es-
tuary (Table 2). The total flux from the estuary for the period
of June 1996 to June 1997 was 1.7 3 109 mole C yr21 and
was slightly higher (2.2 3 109 mole C yr21) if the period
between December 1996 and December 1997 was consid-
ered. The percentage of the total flux added during estuarine
transport was 38% in the June–June and 41% in the Decem-
ber–December intervals, respectively.

Net heterotrophy—We argue that CO2 evasion and the ex-
port of internally produced DIC must be balanced by net
heterotrophy, which can be estimated by summing these two
inorganic carbon sinks. The internally produced DIC avail-

able for export (Table 2) was converted to areal estimates
by dividing by the total surface area of the York River es-
tuary. Seasonal rates of CO2 evasion, DIC accumulation, and
net heterotrophy are shown in Fig. 4. CO2 evasion and DIC
accumulation were both positive on all sampling dates, mak-
ing the estuary a net heterotrophic system year-round. It is
also evident from Fig. 4 that rates of CO2 evasion and DIC
accumulation were of equal importance as sinks for estuarine
pCO2, and therefore, both must be considered when calcu-
lating rates of net heterotrophy.

The degree of heterotrophy followed distinct patterns,
with rates being highest in the late summer and fall and
lowest in the late winter and early spring (Fig. 4). For the
period of July 1996 to July 1997 the annual estimate of net
heterotrophy was 100 g C m22 yr21 (29.4 mmol m22 d21),
but it increased to 114 g C m22 yr21 when the period of
December 1996 to December 1997 was considered. If CO2

supersaturation and evasion were products of net heterotro-
phy, we can also interpret spatial and temporal patterns in
CO2 evasion (Table 1) as indicative of spatial and temporal
trends in net heterotrophy. The highest rates of net hetero-
trophy were in the low salinity regions (sections 4 and 5)
from June through October. The lowest rates of net hetero-
trophy were in sections 1–3 of the estuary from November
through June, and in fact, section 1 was net autotrophic from
November 1996 to April 1997. The spatial and temporal
dynamics of net heterotrophy are illustrative of the complex
biological dynamics occurring within the estuary.

Discussion

Estimates of piston velocity—Rates of pCO2 evasion and
estimates of net heterotrophy based on pCO2 evasion are
highly dependent on the choice of k (Eq. 1). Because direct
measurements of k were not available for the York, we orig-
inally relied on wind–speed relationships from literature re-
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views (see Wanninkof 1992; Cole and Caraco 1998) to es-
timate k from average daily wind speeds. The average daily
k600 values calculated with daily wind speeds and the equa-
tions offered by Wanninkhof (1992) and Cole and Caraco
(1998) were 3.8 and 3.9 cm h21 (i.e., 1.06 and 1.08 3 1025

m s21), respectively. However, several recent estuarine stud-
ies have used k600 values of $8 cm h21 to estimate CO2

exchange for a number of U.S. and European rivers and
estuaries (Cai and Wang 1998; Frankignoulle et al. 1998;
Cai et al. 1999). For the 521 d of this study, a k600 value of
8 cm h21 provides an average daily whole estuary flux of
27.4 mmol m22 d21 compared with fluxes of 11.2 and 12.2
mmol m22 d21 with the relationships from Wanninkhof
(1992) and Cole and Caraco (1998), respectively. Frankig-
noulle et al. (1998) chose a value of 8 cm h21 based on a
number of floating dome measurements made on the same
European estuaries. In their earlier work on two Georgia
blackwater estuaries, Cai and Wang (1998) used an average
k of 12.5 cm h21. This was the k value for Rn established
for the Pee Dee River (Elsinger and Moore 1983), as derived
by a 222Rn mass balance approach. In contrast, for the same
Georgia estuaries, Cai et al. (1999) more recently used the
average k value of 8 cm h21 proposed by Frankignoulle et
al. (1998).

The k600 values used in these other studies are a factor of
2 higher than the average values established by the Wan-
ninkhof (1992) and Cole and Caraco (1998) equations. How-
ever, these higher k600 values are still within the reported
range of most studies that have reported values for large
rivers or estuaries (Elsinger and Moore 1983; Hartman and
Hammond 1984; Devol et al. 1987; Clark et al. 1992; Ma-
rino and Howarth 1993; Clark et al. 1994; Carini et al. 1996).
Furthermore, the increased average k600 value of 8 cm h21

measured by Frankignoulle et al. (1998) was believed to be
associated with increased turbulence created by interactions
of tidal currents with wind and bottom substrate (Frankig-
noulle pers. comm.). Previous workers have found that bot-
tom-associated turbulence can control turbulence at the sur-
face in shallow, fast-running streams and rivers (O’Connor
and Dobbins 1956). In estuaries, however, turbulence asso-
ciated with bottom stress will vary with depth and tidal ve-
locity. A study by Cerco (1989) concluded that bottom-as-
sociated turbulence will be important only in shallower
estuaries with high current speeds. We concur that estuarine
systems may inherently have more turbulence than do other
systems (i.e., lakes and oceans), thereby leading to higher k
values. Nevertheless, we believe that an estimate of 8 cm
h21 is somewhat increased compared with those expected for
average conditions on the York River estuary. We therefore
chose to apply an equation based on wind speed that pro-
duced a more conservative estimate of k.

A direct and accurate method for measuring piston veloc-
ities over large temporal and spatial scales is by the addition
of SF6 (sulfur hexafluoride), because it is nonreactive and
can be detected in extremely small quantities. The only two
SF6 studies on tidal systems (Clark et al. 1995; Carini et al.
1996) were conducted on temperate estuaries of varying
depth and tidal velocity. Both Clark et al. (1995) and Carini
et al. (1996) report k as a function of wind, and by grouping
the two studies together, we obtained Eq. 2 (see Materials

and methods). By using Eq. 2 and measured daily wind
speeds, we obtained an average k value of 4.7 cm h21 and
an average daily whole-estuary flux of 16.5 mmol m22 d21

for the 521 d of this study.
It is possible that the actual value of k is somewhat higher

than the value we chose because of chemical enhancement
of CO2 exchange (Wanninkhof and Knox 1996). Using pH,
temperature, and estimated unenhanced k values (data not
shown), and then calculating an enhanced k according to
Wanninkhof and Knox (1996), we estimate that chemical
enhancement in the York would result in k values that are
no more than 11 6 19% (average with SD, n 5 72) higher
than unenhanced values. Chemical enhancement of diffusion
in the York is thus assumed to be negligible and not a source
of bias.

pCO2 supersaturation in estuaries—A net heterotrophic
system will have R . GPP, resulting in waters that are su-
persaturated with respect to CO2 (Teal and Kanwisher 1966;
Smith and Hollibaugh 1993). For a given system, the mag-
nitude of CO2 supersaturation is affected by the degree of
heterotrophy, leading to higher CO2 concentrations during
periods of greater net heterotrophy. The York River estuary
is dominated by supersaturated CO2 conditions (Fig. 2). We
therefore view the predominance of supersaturation as qual-
itative evidence of net heterotrophy, and we use CO2 con-
centrations and distributions to elucidate patterns in net het-
erotrophy (see below). However, first we examine other
factors controlling CO2 in estuaries.

Possible abiotic sources of inorganic carbon to the York
River estuary include groundwater and CaCO3 dissolution.
However, the magnitude of deep groundwater flow directly
to the York estuary is low, with most of it being exported
to the coastal ocean (Dai pers. comm.). Similarly, the pH,
Ca21, and DIC levels in the York do not indicate dissolution
or even precipitation of CaCO3. Even if we could argue an
abiotic source of inorganic carbon to the York, it is difficult
to propose an abiotic source that would create the predictable
seasonal and temporal patterns witnessed in CO2 and DIC,
or to balance the large quantities of carbonate alkalinity add-
ed within the York.

High estuarine CO2 concentrations in the York may also
originate from riverine waters upstream that have not had
time to de-gas. In the York, on the basis of a k of 4.7 cm
h21 and an average depth of 7 m, 50% equilibration with the
atmosphere occurs approximately every 6 d. The flushing
time of the York is 1–2 months (Sin et al. 1999), and there-
fore, most CO2 lost to the atmosphere must be balanced by
an internal source.

The spatial trends in pCO2 observed in the York River
estuary are qualitatively similar to those recently reported in
Frankignoulle et al. (1998) and Cai and Wang (1998). Fran-
kignoulle et al. (1998) proposed mixing of supersaturated
freshwater with seawater, CO2 efflux to the atmosphere, and
marked heterotrophy in the upper estuary as major controls
on the spatial distributions of pCO2 within an estuary. In the
York, the most pronounced spatial variation occurs in the
summer and fall (Fig. 2), when flow rates are low and water
residence times are long. As discussed earlier, the average
time required for the pCO2 in the York to reach 50% equil-
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Table 3. Average pCO2 ranges for various United States and
European estuaries. The average range was obtained by averaging
the low and high concentrations for each transect, and the estuaries
are ranked by the high average range.

Estuary
Number of
transects

Average pCO2

range
(ppmv)

Altamaha (Georgia)*
Scheldt (Belgium/Netherlands)†
Sado (Portugal)†
Satilla (Georgia)*
Thames (U.K.)†
Ems (Germany/Netherlands)†

1
10

1
2
2
1

380–7800
496–6653
575–5700
420–5475
485–4900
560–3755

Gironde (France)†
Douro (Portugal)†
York (Virginia)‡
Tamar (U.K)†
Hudson (N.Y.)§
Rhine (Netherlands)†

5
1

12
2
6
3

499–3536
1330–2200

352–1896
390–1825
517–1795
563–1763

Rappanhannock (Virginia)\
James (Virginia)\
Elbe (Germany)†
Columbia (Oregon)¶
Potomac (Maryland)\

9
10

1
1

12

474–1613
284–1361
580–1100
560–950
646–878

Average 5 531–3129

* From Cai and Wang (1998) and Cai et al. (1999).
† From Frankignoulle et al. (1998).
‡ Present study.
§ From Raymond et al. (1997).
\ From U.S. Environmental Protection Agency data as outlined in Methods

section of this paper.
¶ From Park et al. (1969).

ibration with the atmosphere (average depth/k ; 6 d) is a
factor of 5–10 faster than freshwater residence times (1–2
months, Sin et al. 1999). This indicates that the mixing of
supersaturated freshwater with seawater is too slow to create
the pCO2 distributions observed in the York River estuary,
and the processes of atmospheric evasion and net heterotro-
phy are of greater importance.

Atmospheric efflux of CO2 increases in the lower York
because of morphological changes (i.e., increases in surface
area) in the estuary. At the two end-member stations, the
surface area for sections of 10 nautical miles increases from
11.3 3 106 m2 for section 5 of our study to 58.4 3 106 m2

for section 1. Similar morphological changes associated with
funnel-shaped estuaries are found in the Scheldt (Frankig-
noulle et al. 1996) and the Satilla (Cai and Wang 1998),
which also exhibit similar spatial patterns in pCO2. Thus,
large increases in surface area with proximity to the mouth
of these estuaries would increase the importance of atmo-
spheric exchange in the lower estuary, and they may be par-
tially responsible for lower pCO2 concentrations at higher
salinities. The morphology of funnel-shaped estuaries would
also increase the fetch at the mouth of the estuary and allow
for increases in wind speed and wind-induced turbulence.

Ancillary data collected in the York are consistent with
the hypothesis that marked heterotrophy in the upper estuary
is partially responsible for spatial variations in pCO2. In the
upper York where CO2 is supersaturated, phytoplankton are
light-limited (Sin et al. 1999), and bacterial production is
greatest (Schultz 1999). The combination of these two fac-
tors in conjunction with high rates of marsh respiration in
the upper York (Neubauer et al. 2000) favor net heterotro-
phy, the accumulation of pCO2, and high rates of CO2 eva-
sion. Interestingly, other patterns in system metabolism are
consistent with pCO2 trends in the York River estuary.
Spring blooms in the York occur in the higher salinity reach-
es of the York (Sin et al. 1999). We speculate that these
blooms create a midestuary minimum in spring pCO2 levels
(Fig. 2). The relationship between net heterotrophy and CO2

concentrations is also evident in seasonal CO2 oscillations.
Maximum CO2 concentrations in all five sections of the es-
tuary occur in the summer and early fall, when water tem-
peratures are high, favoring high rates of benthic, pelagic,
and marsh respiration. Minimum CO2 concentrations occur
in the winter and spring, when water temperatures are low,
spring phytoplankton blooms are common (Sin et al. 1999),
and discharge is high. Similar seasonal patterns in CO2 were
observed at a heterotrophic freshwater station in the Hudson
River (Raymond et al. 1997).

It is worth noting that the present study did not correct
for diel fluctuations in CO2 when calculating atmospheric
flux. Instead, all CO2 measurements were made during day-
light hours. Correcting for diel variation could result in a
slightly higher estimate of CO2 evasion, particularly in the
summer, because nighttime CO2 levels are generally higher
because of the absence of primary production (Raymond et
al. 1997). However, limited diel studies on the York (Ray-
mond unpublished data) concluded the range in CO2 over a
summer diel cycle (;400 ppmv) was considerably less than
the observed range in seasonal (.2,000 ppmv) and spatial
measurements (.2,000 ppmv).

Table 3 compares pCO2 concentrations from various Unit-
ed States and European estuaries. We compare pCO2 con-
centrations instead of gas fluxes because of the aforemen-
tioned uncertainties associated with comparing CO2 flux data
from studies using different k values. The York River estuary
and other subestuaries from the Chesapeake Bay (i.e., the
Potomac, Rappahannock, and James) fall in the low range
of pCO2 reported for estuaries. Part of the discrepancy may
be because of a lack of seasonal coverage in many of the
estuaries; yet, the large range in estuarine pCO2 is probably
not a function of this alone. It is probable that an important
source of variation in estuarine CO2 supersaturation is
caused by large differences in organic matter concentrations
between estuaries. Frankignoulle et al. (1998) stated that the
European estuaries encompassed in their study were subject
to increased loading of detrital organic matter from pollu-
tion. Cai and Wang (1998) reported dissolved organic carbon
(DOC) concentrations in the Satilla and Altamaha rivers of
25–50 and 10 mg L21, respectively, whereas concentrations
of DOC in the low salinity region of the York averaged 5
mg L21 (Raymond and Bauer 2000).

If excess respiration is contributing to the excess pCO2 in
rivers and estuaries, the ultimate source of this excess CO2

is organic carbon, which is oxidized to CO2 by heterotrophic
populations. We may therefore predict that greater DOC con-
centrations are correlated with higher pCO2 concentrations.
We observed a positive relationship (r2 5 0.75, P , 0.001)
between DOC and pCO2 for six of the estuaries in Table 3,
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Fig. 5. (a) DIC at salinity 10 plotted against pCO2 at salinity 5.
DIC concentrations were estimated with equations in Table 2,
whereas pCO2 concentrations were estimated by assuming a linear
change in pCO2 between the two stations that bracketed salinity 5
on a given transect. (b) The same data, but DIC at salinity 10 is
plotted against pCO2 from salinity 5 from the previous month. We
believe the relationship between DIC and pCO2 is more applicable
in Fig. 5b (as seen in the inserts) because it corrects for the time
lag between water at salinity 10 versus salinity 5.

where DOC and pCO2 values were available. Relationships
between DOC and pCO2 have also been reported for lake
systems (Hope et al. 1996; Cole 1999).

The average pCO2 range for the 17 estuaries listed in Ta-
ble 3 is 531–3,129 ppmv. Using these concentrations and an
average estuarine salinity (8 ppt) and temperature (188C) and
a k600 of 4.7 cm h21 provides a range in the rate of evasion
of 2.3 moles m22 yr21 to 42.0 moles m22 yr21. This range is
a factor of 4 lower than the 36–182 moles m22 yr21 estimated
by Frankignoulle et al. (1998) for western European estu-
aries alone. Approximately half of the discrepancy is a result
of our study using a more conservative estimate for k.

On the basis of the large seasonal variation in pCO2 con-
centrations in the York River estuary, it is also evident that
more detailed temporal coverage is needed for accurate an-
nual flux estimates. In particular, care must be taken to in-
clude winter measurements when reporting annual evasion
rates, because estuaries exhibit a winter minimum in CO2

concentrations (Fig. 2). In the York, if we calculated CO2

fluxes from July 1997 to December 1997 (an incomplete
annual sampling period), we would calculate an annual flux
of 11.7 moles m22 yr21, as opposed to 7.1 moles m22 yr21

for the period of December 1996 to December 1997. This
equates to a factor of 1.7 difference. On the basis of the
seasonal variation in pCO2 found in the study, we stress the
importance of complete temporal coverage when reporting
annual integrated CO2 fluxes in temperate estuaries.

Internally added DIC—An average (with SD) of 94 6
6% of the DIC pool in the York River estuary comprises
bicarbonate and carbonate, as determined by DIC and CO2

measurements. Therefore, the internally added DIC that is
subsequently exported via advection represents a flux of car-
bonate alkalinity, not dissolved CO2 that has not had suffi-
cient time to de-gas. This is an important distinction because
the DIC/alkalinity flux represents a long-term, nonatmos-
pheric sink for CO2 generated during the respiration of or-
ganic matter in estuaries. In fact, because of the charge of
carbonate (22), the flux of internally produced carbonate
alkalinity is slightly (;1.3%) greater than the flux of inter-
nally produced DIC (data not shown).

If, as we have argued, net heterotrophy is also the source
of the DIC available for advective export from the York,
DIC should exhibit similar temporal trends and be correlated
to pCO2 in the estuary. The large number of transects and
stations and the predictability of DIC (see equations in Table
2) and pCO2 in this study allowed us to establish relation-
ships among these parameters. A significant relationship (r2

5 0.44, P , 0.05) was found between the DIC concentration
extrapolated for salinity 10 and CO2 from salinity 5 (Fig.
5a). The pCO2 and DIC distributions also displayed similar
seasonal patterns (Fig. 5a). The strong relationship between
pCO2 and DIC concentrations in Fig. 5a is further qualitative
evidence that net heterotrophy is responsible for temporal
variations in both pCO2 and DIC. Interestingly, the relation-
ship between pCO2 and DIC is even stronger (r2 5 0.80, P
, 0.001) when DIC at salinity 10 is plotted against pCO2 at
salinity 5 for the previous month (Fig. 5b). This is expected
because there is a ;1-month time lag between water parcels
at salinities 5 and 10. Similar seasonal DIC fluctuations

caused by changes in metabolic rates were found in stream
and soil environments (Jones and Mulholland 1998).

We also found a significant negative relationship (r2 5
0.63, P , 0.05) between freshwater flushing rates and DIC
accumulation (data not shown). Therefore, part of the expla-
nation for the seasonality of DIC concentration within the
estuary and the seasonality of the internally produced DIC
flux is from seasonal changes in freshwater residence times
and flow rates. When the residence time of freshwater in the
York is long, the DIC from net heterotrophy has more time
to accumulate.

The conversion of CO2 derived from net heterotrophy to
carbonate alkalinity will occur only if a source of alkalinity
is present. Our results indicate that the generation of alka-
linity must occur at a rate of ;8 mmol m22 d21 to account
for the internal production of DIC. Numerous microbially
mediated processes, including denitrification, manganese re-
duction, iron reduction, and sulfate reduction, produce al-
kalinity by consuming H1. Kemp et al. (1990) reported rates
of denitrification of approximately 1 mmol m22 d21 in Ches-
apeake Bay sediments, which is too low to balance the nec-
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essary source of alkalinity (although rates of denitrification
may be higher in freshwater reaches of York).

Smith and Hollibaugh (1997) and Cai and Wang (1998)
hypothesized that the source of alkalinity to the brackish and
marine systems they investigated was sulfate reduction. Sul-
fate reduction oxidizes organic material to CO2, using sulfate
as an electron acceptor. The alkalinity produced by this pro-
cess will then titrate CO2 from respiration (aerobic or an-
aerobic) to HCO3

2. As discussed in Smith and Hollibaugh
(1997), net sulfate reduction is related to DIC by the follow-
ing equation:

Net sulfate reduction 5 (added [DIC])/2. (5)

Equation 5 lists net sulfate reduction, because at least part
of the sulfide produced by sulfate reduction is subsequently
reoxidized in a reaction that ultimately consumes a fraction
of the liberated alkalinity. Total sulfate reduction, thus, will
exceed net sulfate reduction (Smith and Hollibaugh 1997),
and the burial or export of reduced sulfide will balance the
difference between the two (total 2 net). For our purposes,
we account for all inorganic carbon produced by the oxi-
dation of the organic matter during sulfate reduction. The
inorganic carbon from net sulfate reduction will be account-
ed for by the accumulation of DIC as bicarbonate because
the 2 moles of alkalinity will titrate the 2 moles of CO2 for
a net gain of 2 moles of DIC. The balance (total sulfate
reduction 2 net sulfate reduction) will be accounted for by
the accumulation of DIC as CO2 because the alkalinity
formed by sulfate reduction will be lost during the reoxi-
dation of the reduced sulfide.

Roden and Tuttle (1993) measured rates of total sulfate
reduction in Chesapeake Bay sediments adjacent to the York
River estuary. They report average total summer sulfate re-
duction rates of around 40 mmol S m22 d21. If we assume
sulfate burial rates of 30% of total sulfide production (Roden
and Tuttle 1993), this will produce net sulfate reduction rates
of around 12 mmol S m22 d21, or 24 mmol C m22 d21 (Eq.
5). These rates are high enough to balance the advective
export of internally produced DIC reported in Fig. 4. Spatial
variation in sulfate reduction rates in estuaries is highly var-
iable with maximum rates in salt marsh sediments and shal-
low subtidal areas (Howarth 1984), but it is evident that rates
of net sulfate reduction in these areas could balance the al-
kalinity source necessary for DIC accumulation. It is worth
noting that Abril et al. (1999) recently measured alkalinity
generation at the maximum turbidity zone in the Gironde
estuary. These workers proposed that in the Gironde, 14%
of the total HCO3

2 exported to the coastal ocean was pro-
duced in the maximum turbidity zone, and a significant per-
centage of the generated HCO3

2 was balanced by denitrifi-
cation and manganese reduction.

Net heterotrophy in the York River estuary—The net het-
erotrophic nature of coastal and estuarine systems has been
proposed by a number of workers (Smith and Mackenzie
1987; Smith and Hollibaugh 1993; Heip et al. 1995; Gattuso
et al. 1998). The most recent summary of net heterotrophy
in estuaries and shallow coastal systems provides an average
rate of net heterotrophy of 72 6 100 g of C m22 yr21 for 21
systems (Gattuso et al. 1998). Our estimate of 100 g C m22

yr21 for the York is slightly higher than the average estuary,
yet well within the reported range of Gattuso et al. (1998).
The organic matter fueling net heterotrophy in the York was
not produced autochthonously during the 1.5-yr study. Flux-
es of total organic carbon into the freshwater portion of the
York during the same time period averaged ;20 g C m22

yr21, indicating that allochthonous freshwater organic carbon
transported to the York during this study cannot account for
a large percentage of net heterotrophy. It is possible that on
longer time scales, the York is more closely balanced, and
that during our study, net heterotrophy was supported by
phytoplankton organic matter deposited in previous years.
The York may also receive inputs of labile allochthonous
organic matter from its associated marshes or the lower
Chesapeake Bay, which is net autotrophic (Kemp et al.
1997). Yet another possibility is that the York imports dis-
solved inorganic carbon from respiration in flooded marsh
waters and marsh sediments during tidal inundation of
marshes by estuarine waters (Cai et al. 1999).

A current paradigm is that CO2 evasion balances net het-
erotrophy in estuaries. In accordance with Smith and Hol-
libaugh (1997), we show in this study that another sink, the
conversion of CO2 to bicarbonate, may be quantitatively im-
portant in systems in which significant sulfate reduction oc-
curs. Our method for calculating net heterotrophy is rela-
tively simple and straightforward if ancillary data, such as
river discharge, depth, and surface area or volume exist.
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