

W&M ScholarWorks

Reports

1-1998

Data Report: Pump Sampling and Sediment Analysis in Support of the Sensor Insertion System Duck, N.C. April and October, 1997

Grace M. Massey Virginia Institute of Marine Science

Carl T. Friiedrichs Virginia Institute of Marine Science

Amo de Kruif

Daan C. Rijks

Follow this and additional works at: https://scholarworks.wm.edu/reports

🔮 Part of the Oceanography Commons, and the Sedimentology Commons

Recommended Citation

Massey, G. M., Friiedrichs, C. T., de Kruif, A., & Rijks, D. C. (1998) Data Report: Pump Sampling and Sediment Analysis in Support of the Sensor Insertion System Duck, N.C. April and October, 1997. Data report (Virginia Institute of Marine Science); no. 56.. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.21220/v5x42w

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Data Report: Pump sampling and Sediment Analysis in Support of the Sensor Insertion System Duck, N.C. April and October, 1997

Grace M. Battisto, Carl T. Friedrichs, Arno de Kruif, and Daan C. Rijks

VIMS Data Report Number 56

School of Marine Science Virginia Institute of Marine Science College of William and Mary Gloucester Point, VA 23062

January 1998

Research sponsored by the U.S. Army Corps of Engineers, Waterways Experiment Station, Contract DACW39-97-M-0814, by the National Science Foundation, Ocean Sciences Division Grant OCE-9504198, and the Department of Physical Geography, Utrecht University, The Netherlands Data Report: Pump Sampling and Sediment Analysis in Support of the Sensor Insertion System, Duck, N.C., April and October, 1997

> Grace M. Battisto Carl T. Friedrichs Arno de Kruif Daan C. Rijks

VIMS Data Report Number 56

School of Marine Science Virginia Institute of Marine Science College of William and Mary Gloucester Point, VA 23062

January 1998

Research sponsored by the U.S. Army Corps of Engineers, Waterways Experiment Station, Contract DACW39-97-M-0814, by the National Science Foundation, Ocean Sciences Division Grant OCE-9504198, and by the Department of Physical Geography, Utrecht University, The Netherlands

1. Introduction

In April and October 1997, a group of scientists and graduate students coordinated by Grace Battisto of the Virginia Institute of Marine Science collected and analyzed pumped samples of suspended sediment across the surf zone in support of the Sensor Insertion System (SIS). The pump sampling field experiment was a component of a larger experiment entitled "Sediment Transport Rates During Storms" run by the "Storm Team" led by Carl Miller and Don Resio of the U.S. Army Corps of Engineers Waterways Experiment Station (USACE/WES). The participants in the April pump sampling field component were Grace Battisto, Carl Friedrichs, David Fugate, Guan-hong Lee, and Wayne Reisner; the participants in the October field component were Grace Battisto, Arno de Kruif, Daan Rijks, Billy Cartwright, Charles "Lyle" Thompson and Robert Ferguson. In addition, Eric Grant, Todd Nelson, and Steve Snyder helped assemble, install and test the pump system.

The objectives of this study were to (i) construct a pumping system, (ii) operate the system and collect samples of suspended sediment across the width of the surf zone during two major field experiments planned for the SIS in 1997, and (iii) analyze the resulting samples for sand concentration, sand size distribution, total percent sand, total percent mud, and organic content. The purpose was to provide a high quality data set of pump samples with which to later test the sensitivity of indirect measurements of suspended sand concentration to the presence of suspended mud. The response of OBSs is known to be particularly sensitive to the presence of suspended mud ("turbidity") due to the inverse response of OBS output to grain size. Without better constraints on the proper interpretation of OBS time series, the overall conclusions with regards to net along-shelf transport of sand during storms may be in doubt (see following section).

This data report describes the methodology used to pump, collect and analyze suspended sediment as part of the larger Storm Team experiment. The complete results of sediment filtering (1645 weighed samples) are provided in tabular form and are plotted as a function of position across individual transects. For October, samples at individual stations are also shown as a function of time. Graphic comparisons of duplicate samples are provided to assess the precision of the methodology. Graphic comparison between the two methodologies utilized to determine the total sand content in October and graphic presentation of percent organic matter is also provided. Because of the very large data sets involved, size distributions of sand samples run through the RSA are provided in graphical form only. Digital data will be available through a compact disk being prepared by the Storm Team.

2. Background

Proper design of inlet maintenance and beach nourishment projects requires an ability to reasonably predict along-shore sand transport in the near shore. At this point the scientific and engineering communities still do not have the ability to adequately predict the expected rate of along-shore sand transport based on physical "first principles". Rather, calculations must rely on semi-empirical equations "tuned" by direct field observation and experience. Until recently, direct field observations of suspended sand transport in the surf zone have been too few and too localized to be of much use in predicting along-shore sediment transport with statistical confidence, especially during storms when the majority of sand transport is presumed to occur.

The SIS developed by Carl Miller at WES's Field Research Facility in Duck, N.C., provides a quantum leap in the accuracy, duration, and variety of conditions over which scientists and engineers can now integrate direct measurements of along-shore currents and sediment concentration in the near shore. For the first time, closely spaced measurements of along-shore velocity and turbidity can be collected across the entire surf zone throughout the duration of a series of major storms. These unique measurements begin to provide the quantity and quality of data necessary to establish reliable, field tested predictions of along-shore transport of sand. However, a major ground-truthing measurement had been missing from the SIS, namely direct measurements of suspended sand concentration via pump sampling.

The SIS infers suspended sand concentration primarily from the strength of the optical backscatter off particles in the water column. Unfortunately, material that is not very important to total along-shore sand transport, such as mud and organic matter, tends to scatter light particularly well. For example, if one were to assume that the OBS levels measured by the SIS were a direct function of sand concentration alone, then under many conditions, SIS measurements of concentration times along-shore velocity would predict that more sand transport occurs in the upper part of the water column than near the bed. Clearly this is not the case.

Before installation of sediment sampling pumps on the SIS, estimates of suspended sand concentration and transport were made by subtracting out a "reasonable" background turbidity based on the level present in the water between intermittent suspension events when suspended sand transport was presumed to be negligible. Although this method appears to work well, the critical background turbidity level is based more on common sense than quantitative measurement. Furthermore, it is not well known how the background turbidity changes between fair weather and storms and between different stages of a single storm. In addition, various size distributions of suspended sand (which may occur at different locations across the surf zone under various wave conditions) may also impact the translation of OBS measurement into sediment concentration. By direct sampling, this data report provides the additional information necessary to calculate more reliable estimates of along-shore sediment sand transport from OBS measurements. This data report represents completion of the first stage of a planned longer-term collaboration with Carl Miller and Don Resio of USACE/WES to establish a more well-founded, quantitative and practical formulation for determining suspended sand concentration and background turbidity from OBS measurements in the near shore.

3. Sampling Technique

3.1. Pump system

In this study, four "Teel Industrial Series" Model 1P809A submersible pumps produced by the Dayton Electric Manufacturing Company were employed. Figure 1 shows their mounting arrangement during the October experiment. They operate with 115 V A/C and draw 4.5 amps under full load. Their advantages include their small size (approximately 5"x 5"x 7") and low price (~\$100) relative to their relatively strong pumping ability and durability. They also have standard 3/4" garden hose intakes and outlets, which allowed deployment of the pumps in series and remotely from the actual sampling location. This was crucial because flow disturbance in the vicinity of the electronic concentration and velocity sensors had to kept at a minimum.

The Model 1P809A's pump rate according to the manufacturer is 900, 800 and 570 gallons/hour at 1, 9 and 20 ft of head, respectively, dropping off quickly to complete shut-off at 30 ft of head. Because the distance from mean sea level to the high point of the intake hose on the SIS was more like 40 ft, priming the pumps occasionally caused problems during the field experiments, particularly during April. The head limitations were overcome to some degree in April by installing two pumps in series. In October maintaining head was only a minor problem, in that all four pumps were installed in series. The largest problem in October was jamming of the pump impeller with coarse sand and large organic material (this may have been an additional unrecognized problem in April). Fortunately, another advantage of the Model 1P809A is ease of maintenance. It is quickly disassembled with a screwdriver for internal cleaning and part replacement.

In April, we used two intakes, one located 62 cm below the cross-bar on the instrument sensor frame, and the other positioned 64 cm above the cross-bar. On the lower intake a "T" was placed to prevent suction of sediment straight up from directly below the intake. The opening of each end of the "T" was about the same size as the internal diameter of the hose leading up to the pier, namely 3/4". With a maximum pump rate of about 5 gallons/minute (often in April it was significantly less), this meant that in April the velocity flowing into each side of the "T" was less

than or equal to about 58 cm/s. This was sufficient to accurately sample the mud content of the water but may not have been fast enough to accurately sample suspended sand. In October, we pumped samples from only one elevation at a time, located from 61 cm below the cross-bar for transects 1-15 and 56 cm below the cross-bar for transects 17-29. The intake, positioned adjacent to the 6 OBS sensor cluster maintained by the Storm Team, consisted of four 4 mm diameter holes drilled horizontally around the perimeter of the end of a plugged, downward facing PCV tube. With a consistent pump rate in October of about 5 gallons/minute, this meant that in October the velocity flowing into each of the four holes was ~ 6.6 m/s.

Two 3/4" internal diameter heavy duty hoses and four submersible 115 V A/C power cables extended from the seaward end of the SIS, up through the turn-table of the SIS (also known as the "snake pit"), terminating near the rear end of the truck towing the SIS. In April, both hoses were used during portions of the experiment to alternatively or simultaneously pump sediment, depending on the particular transect, from two heights above the bed; in October only one of the hoses was active. The A/C current were kept as far as possible from the communication cables to the electronic sensors on the SIS to minimize potential 60 Hz interference due to the power cables. In April, the pumps were turned on and off by plugging them directly into the power outlet on the outside of the truck. By October, a safer splash-proof control box with ground fault interrupts had been assembled so that the pumps could remain plugged in at all times and a single switch turned the pumps on and off.

3.2. Sampling procedure

The general sampling procedure for the entire Storm Team group was to transect the surf zone moving landward from the seaward end of the FRF pier. Sampling was done straddling low or high tide in order to keep water level relatively constant. The entire transect generally took about three hours. About every 200 feet, the SIS was deployed to collect a five minute burst of backscatter and current meter data along with pump samples. The pump sampling was performed on a subset of the total number of SIS transects in April and October 1997.

In April it was difficult to maintain head on the pumps, so the procedure was to use the fresh water hose attached to the truck to push water backwards through the sampling hose along the SIS boom. The pumps were turned on just before the fresh water hose was disconnected in an effort to maintain pressure. The success of pumping was then checked before the SIS was lowered all the way to the bottom. Overall, this technique did a reasonable job at maintaining flow, given that only two pumps were being used in series. However it interfered with and slowed the overall SIS progress. With four pumps in series in October it was no longer necessary to prime the pumps with fresh water or begin pumping before the SIS settled on the bottom.

Nonetheless, the pumps were still turned on several minutes before sediment samples were taken. With approximately 40 m of hose and a water velocity within the hose of about 117 cm/s, we can expect about a 34 second delay between water intake and appearance of the pumped sample at the barrel. In addition, the signal is expected to be blurred relative to the "spiky" OBS response by shear of the flow within the hose itself.

In April, one or two hoses (depending on the particular station -- see Table 1) were used simultaneously to each fill two barrels corresponding to the first and second halves of the OBS burst collected by the personnel in the SIS truck. In April, the samples were collected in 4 to 5 gallon plastic barrels. Four gallon barrels were consistently used in October. In April, the barrels were filled over a period of about two minutes by more or less randomly moving the hose back and forth over the opening to the barrel. The goal was to extend the sampling period to avoid extreme biases associated with short, intense bursts of suspended sediment. The times of sampling were noted for later correlation to times within individual OBS bursts and are listed in Table 1.

In October, the one hose split used terminated in a "Y", with one branch passing through a laser in-situ scattering and transmissometry (LISST) instrument mounted on the SIS just behind the truck and the other leading into a barrel. Figure 2 shows a schematic representation of the sample handling in October. As in April, two samples were collected corresponding to periods within the first and second halves of the OBS burst. Times of sampling were again noted for later correlation to times within the OBS bursts (Table 2). In October continuous rather than "random" flow into the barrel was maintained. Because of the "Y" split in the flow, it consistently took about 1.6 minutes to fill a 4 gallon barrel (i.e., indicating a total flow rate of ~5 gallons/minute).

In April a VIMS truck moved along the pier with the SIS, storing barrels as they were filled. In October, the barrels were carried on the SIS itself.

3.3. Subsample and filtering procedure (see figure 2)

In April, 2 liter sub-samples or "aliquots" of suspended sediment plus water were collected from each barrel by physically shaking the barrel and transferring the whole sample into a larger barrel. The larger barrel was continually shaken while the aliquot was drawn from a spigot located at the bottom. In October the splitting procedure was improved through construction of a churn splitter in the larger barrel such that the entire 4 gallon sample could be transferred and mixed with a paddled plunger before the 2 liter aliquot was taken. In April most of the barrels were transported back to VIMS before being subsampled. The process of taking all the April subsamples took several days during which time the contents of the 4-5 gallon sample barrels may have been affected somewhat by algae growth (although the resulting organic content doesn't indicate significant contamination). This procedure was improved in October by consistently subsampling in Duck within a few hours of sample collection. The aliquots were then immediately filtered to prevent algae growth. In both April and October, duplicate 2 liter aliquots were taken on 10% of the barrels. In October, the portion of the sample left in the churn splitter after the aliquots were removed was used for further sand analysis (see 3.4).

In both April and October, a measured portion of the 2 liter aliquot, figure 2, was filtered through a pre-weighed 47 mm diameter filter stamped out of 60 micron mesh in an aluminum dish. The mesh filter was then dried at 103-105 C and reweighed. The difference in weight on the mesh filter plus dish divided by the volume filtered is the filtered sand concentration reported in grams/liter (g/l). The sand was brushed off the filter into the dish and weighed again. The dish and sand were then muffled at 550 C to volatilize organic matter before the dish and sand were weighed again. The ratio of the weight of sand scraped off the dried filter before and after muffling was used to calculate the fixed weight of the sand. This weight was divided by the volume filtered to give the concentration of the fixed sand in g/L. The difference between the total sand concentration and fixed sand concentration is the concentration of the organic matter.

An aliquot of the filtrate was immediately passed through a 47 mm diameter glass fiber filter (pore size approximately 0.8 microns) which had been pre-muffled at 550 C and preweighed. The glass fiber filter, now with fine sediment attached, was dried at 103-105 C and reweighed. The additional weight on the filter divided by the volume filtered is the "total" suspended mud portion reported in g/l. Next the filter plus attached mud was muffled at 550 C and reweighed. The weight lost divided by the volume filtered is the volatile organic matter in the mud portion in g/l; the resulting weight of the muffled mud is termed the "fixed" weight of the mud.

3.4. Sand size analysis (see Figure 2)

After subsampling for filtering in October, the remaining water in each barrel (approximately 3.5 gallons) was measured for volume and passed through a 63 micron sieve. (In April too little sand was collected to run a significant number of sand size analyses.) The trapped sand was transferred to a pre-weighed sand storage bag, air dried, and reweighed. For all but the first station on the first transect, the samples from the two barrels collected at each station were combined to yield one larger sand sample for sand size analysis. The total weight of the sand from each station divided by the total volume of the remaining water in the two barrels provided another measure of the "total" sand concentration in addition to the previous filter based estimate.

The Rapid Sand Analyzer (RSA) was used to determine the size distribution of the sand collected. The RSA utilizes the known fall velocities of natural particles to classify the particles in the sample into size classes. For evenly spaced intervals of phi, where $phi = -log_2D$ and D is the intermediate diameter in millimeters, the fall velocity (W_n) of natural grains in fresh water have been calculated:

 $W_n = 0.76 \text{ c} \text{ D}^2$

where c = 89.8 at 20°C for quartz particles (from Stokes Law), and 0.76 accounts for the effect of the natural shape of the particles.

The sample particles are uniformly dispersed at the top of the 150 cm column of water. The particles fall onto a tared balance pan located at the bottom of the column. The cumulative weight of the particles is recorded over time at 1 second intervals. The weight of the particles that have fallen in the amount of time it would take a particle for each phi size class is subtracted from the cumulative weight and called the immersed weight. A histogram of the immersed weight by phi class is then made to show the grain size distribution of the sample.

4. Data

4.1 Concentration estimates

Table 1 displays all the filter weights for sediment samples pumped during the April 1997 field experiment. The columns in order from left to right contain (1) the surf zone Storm Team transect number during which pump sampling was performed, (2) the day in April 1997, (3) the station number in feet seaward from the pier's landward benchmark, (4) the time in Eastern Standard Time that the pump sample collection began (in April the sample collection duration was typically 2 min), (5) total suspended fines concentration in grams/liter (g/l), (6) fixed suspended fines concentration in g/l, (7) total suspended sand concentration in g/l, (8) fixed suspended sand concentration in g/l, and (9) position of intake (H = high, i.e., above cross-bar; L = low, i.e., below cross-bar). Because of the low speed of the intake velocity in April, we feel the sand concentrations may be significant underestimates. The sand concentrations for April appear erratic without obvious patterns corresponding to sensible wave forcing variations in time and space. The mud estimates, in contrast, appear much more sensible. There is much less variation in mud concentration with position across the surf zone, and increases or decreases in space and time appear to be much smoother.

Table 2 displays all the filter weights for sediment samples pumped during the October 1997 field experiment. The columns in order from left to right contain (1) the surf zone Storm Team transect number during which pump sampling was performed, (2) the day in April 1997, (3) the station number in feet seaward from the pier's landward benchmark, (4) the time in Eastern Standard Time that the pump sample collection began (in October the sample collection duration was typically 1.6 min), (5) total suspended fines concentration in grams/liter (g/l), (6) fixed suspended fines concentration in g/l, (7) total suspended sand concentration in g/l determined from filters, (8) fixed suspended sand concentration in g/l determined from filters, and (9) total suspended sand concentration in g/l determined from the barrels. In column (9), one measurement for a station indicates two barrels were combined to yield a single larger sand sample for estimate of total sand concentration and sand size distribution.

4.2 Concentration as a function of position across the surf zone.

Section 1 contains a series of graphs of the fixed fines and the fixed sand concentrations presented by transect for the samples collected in April. Most transects had samples collected out of the upper inlet and the lower inlet. The graphs of the lower inlets are grouped together on one page and the next contains the graphs of the upper inlet. Each graph uses the station number in feet seaward from the pier's landward benchmark as the X axis. The left y axis is the fixed fines concentration in g/L. The bottom set of lines correspond to this axis. The right axis and the top set of lines are the fixed sand concentrations in g/L. In each set of lines, the dark solid line is the average concentration between the two containers sampled. The broken lines above and below the solid line represent the actual concentration found in each of the containers.

Section 2 contains a series of graphs of the fixed fines and the fixed sand concentrations presented by transect for the samples collected in October. The lower inlet was the only one used in October so the graphs are not grouped by inlet. Each graph uses the station number in feet seaward from the pier's landward benchmark as the X axis. The left y axis is the fixed fines concentration in g/L. The bottom set of lines correspond to this axis. The right axis and the top set of lines are the fixed sand concentrations in g/L. In each set of lines, the dark solid line is the average concentration between the two containers sampled. The broken lines above and below the solid line represent the actual concentration found in each of the containers.

4.3 Concentration as a function of time at a single station

Section 3 contains a series of graphs of the fixed fines and the fixed sand concentrations presented by station for the samples collected in October. The samples collected in April did not

have enough transects taken to be presented in this manner. Each graph uses the Storm Team transect number as the x axis. The left y axis is the fixed fines concentration in g/L. The bottom set of lines correspond to this axis. The right axis and the top set of lines are the fixed sand concentrations in g/L. In each set of lines, the dark solid line is the average concentration between the two containers sampled. The broken lines above and below the solid line represent the actual concentration found in each of the containers.

4.4 Sand size distribution

Section 4 contains a series of histograms of the RSA sand grain size distributions found from the combined sand sieved from the two containers at each station. Each histogram represents a station. All of the stations are grouped by transect. If there was insufficient sand at any of the individual stations to run an RSA a composite of the sand collected at those stations on that transect was run. The X axis of the graphs are grain sizes in Phi and the Y axis are the % immersed weight of the total immersed weight of the sand sampled that correspond to each of the Phi sizes.

4.5 Organic Matter Concentration

Section 5 contain graphs of the percentage of organic matter in the total fines and total sands concentrations for all the samples collected in October and in the total fines concentration for all the samples collected in April. The total sands concentration was not graphed for April because of the sampling inefficiency for sand during that time period. The X axis of each graph is the total concentration of fines or sands of all the samples taken that month and sorted from low to high. These concentrations are graphed against the percentage of organic matter in that concentration on the Y axis. The solid line on the graph represents the average percent organic content in the fines or sands for that month. The average percent organic content for April total fines is 12.6%. The average percent organic content for the October total fines and total sands are 24.2% and 3.64% respectively.

4.6 Method precision and methodology comparison

Section 6 contains graphs of method precision for the April fixed fines and the October fixed fines and sands. It also contains a graph of the comparison of the two different methods used to measure total sands in October.

The method precision graphs represent the absolute percent difference of each of the duplicates from their average concentration. The duplicates are two aliquots taken from the same container and are used to estimate the amount of error involved with sample handling and processing. The X axis of the graph represents the average concentration of each pair of duplicates sampled and processed for fixed fines and fixed sand concentration in October and fixed fines in April. The Y axis is the percent difference of each of those duplicates from their average. The solid line represents the average percent difference for the fixed concentration for that month. The average percent difference for April fixed fines is 9.3%. The average percent organic content for the October total fines and total sands are 13.9% and 23.3% respectively.

The last graph in this section is a comparison of the two methods used for analysis of total sand concentration in October, the sample passed through the 63 micron sieve or the aliquot filtered through a 60 micron mesh filter. The X axis represents the average concentration found by both methods at each station, and the Y axis is the percent difference for each method from the average concentration for that station. The average percent difference, represented by the solid line, for either method from the average total sand concentration is 24.6%.

Figure 1

Table 1

Fines/Sand Concentration April 1997

April 1997 Storm Fines/Sand Concentrations

(ALL results in g/L)

Transect	Date April 1997	Station	Time in EST	Total Fines	Fixed Fines	Total Sand	Fixed Sand	Inlet
4	1	870	1438	0.046	0.041	0.011	0.010	Н
4	1	870	1442	0.045	0.041	0.012	0.011	Н
5	1	1580	1919	0.049	0.045	0.086	0.084	Н
5	1	1580	1923	0.056	0.051	0.167	0.165	Н
8	2	1700	1413	0.068	0.062	0.005	0.004	Н
8	2	1700	1422	0.330	0.302	0.231	0.226	Н
8	2	1520	1441	0.478	0.437	0.526	0.522	Н
8	2	1520	1444	0.245	0.220	0.148	0.146	Н
8	2	1380	1504	0.098	0.088	0.031	0.029	Н
8	2	1380	1507	0.210	0.189	0.011	0.010	Н
8	2	1260	1527	0.101	0.091	0.057	0.055	Н
8	2	1260	1530	0.082	0.073	0.039	0.038	Н
8	2	1135	1552	0.074	0.067	0.162	0.159	Н
8	2	1135	1555	0.070	0.063	0.132	0.127	Н
8	2	920	1615	0.069	0.063	0.022	0.022	Н
8	2	920	1618	0.082	0.074	0.036	0.035	Н
8	2	780	1638	0.081	0.064	0.014	0.014	Н
8	2	780	1641	0.094	0.072	0.008	0.008	Н
9	2	1710	1958	0.038	0.022	0.006	0.005	Н
9	2	1710	2001	0.067	0.060	0.005	0.005	Н
9	2	1500	2030	0.127	0.111	0.004	0.004	н
9	2	1500	2033	0.073	0.065	0.016	0.015	н
9	2	1260	2127	0.034	0.029	0.025	0.024	н
9	2	1260	2130	0.033	0.028	0.009	0.008	Н
9	2	1130	2148	0.045	0.039	0.126	0.126	Н
9	2	1130	2152	0.037	0.033	0.023	0.023	Н
9	2	980	2227	0.066	0.059	0.031	0.030	Н
9	2	880	2246	0.058	0.052	0.073	0.072	Н
9	2	880	2249	0.054	0.047	0.094	0.093	Н
9	2	760	2319	0.054	0.047	0.023	0.023	Н
9	2	760	2322	0.054	0.047	0.031	0.030	Н

Table 2

Fines/Sand Concentration October 1997

Estimated Average duration of typical pumping = 1.6 minutes/ 4 gallons

The following transects and stations had only 1 container analyzed due to various conditions: Transect, station (11,1500), (14,780), (15,650), (17,1250), (19,1060), (21,1700), (27,1500), (28,1710)

Fixed Sand concentration for Transect 17, station 1490@1952 hours was lost...concentration from duplictate was used for graphing purposes.

						FILTER		CONTAINER	
	Date		Time in	Total	Fixed	Total	Fixed	Total	
Transect	Oct 1997	Station	EST	fines	fines	sands	sands	sands	
	_	4700	000	0.054	0.040	0.001	0.001	0.015	
1	7	1700	909	0.054	0.042	0.021	0.021	0.015	
1	7	1700	913	0.041	0.031	0.009	0.009	0.009	
1	7	1490	932	0.040	0.027	0.014	0.014	0.004	
1	7	1490	935	0.043	0.029	0.008	0.007	0.005	
1	7	1250	957	0.028	0.019	0.009	0.009	0.005	
1	7	1250	1001	0.027	0.016	0.005	0.005		
1	7	1040	1026	0.115	0.091	0.026	0.024	0.008	
1	7	1040	1030	0.066	0.051	0.014	0.013		
1	7	890	1053	0.044	0.028	0.005	0.005	0.005	
1	7	890	1057	0.038	0.024	0.006	0.006		
1	7	890	1057	0.038	0.023	0.005	0.005		
1	7	770	1119	0.087	0.062	0.003	0.003	0.004	
1	7	770	1123	0.028	0.016	0.011	0.011		
1	7	660	1145	0.032	0.019	0.008	0.008	0.040	
1	7	660	1149	0.026	0.016	0.007	0.006		
1	7	530	1222	0.016	0.007	0.017	0.017	0.027	
1	7	530	1225	0.018	0.009	0.019	0.019		
1	7	530	1225	0.016	0.008	0.040	0.040		
2	8	1700	1028	0.022	0.014	0.057	0.056	0.023	
2	8	1700	1032	0.056	0.042	0.031	0.031		
2	8	1490	1102	0.054	0.039	0.055	0.054	0.039	
2	8	1490	1105	0.018	0.011	0.004	0.004		
2	8	1250	1132	0.016	0.010	0.051	0.051	0.058	
2	8	1250	1135	0.045	0.032	0.125	0.124		
2	8	1050	1203	0.027	0.020	0.047	0.046	0.035	
2	8	1050	1206	0.024	0.016	0.032	0.032		
2	8	900	1233	0.019	0.012	0.053	0.051	0.114	
2	8	900	1236	0.022	0.015	0.313	0.311		
2	8	900	1236	0.019	0.011	0.263	0.262		
2	8	780	1300	0.015	0.009	1.343	1.340	2.605	
2	8	780	1303	0.020	0.012	6.097	6.086		
2	8	650	1324	0.010	0.004	1.623	1.620	0.977	
2	8	650	1328	0.026	0.002	0.807	0.805		
2	8	530	1357	0.013	0.007	0.384	0.380	0.247	
2	8	530	1401	0.017	0.011	0.301	0.301		
2	8	530	1401	0.022	0.016	0.216	0.216		
3	9	1700	1042	0.123	0.098	0.022	0.019	0.054	
3	9	1700	1045	0.079	0.062	0.060	0.059		
	-								

						FIL	TER	CONTAINER	
	Date		Time in	Total	Fixed	Total	Fixed	Total	
Transect	Oct 1997	Station	EST	fines	fines	sands	sands	sands	
3	9	1500	1116	0.125	0.102	0.057	0.054	0.048	
3	9	1500	1120	0.051	0.038	0.082	0.081		
3	9	1260	1145	0.065	0.048	0.081	0.080	0.012	
3	9	1260	1149	0.042	0.031	0.042	0.041		
3	9	1030	1239	0.053	0.041	0.038	0.037	0.015	
3	9	1030	1243	0.042	0.033	0.020	0.019		
3	9	900	1322	0.050	0.037	0.272	0.270	0.109	
3	9	900	1326	0.061	0.046	0.026	0.016		
3	9	900	1326	0.048	0.036	0.032	0.031		
3	9	770	1406	0.020	0.014	2.601	2.597	2.073	
3	9	770	1410	0.047	0.035	4.521	4.513		
4	10	1700	1120	0.071	0.054	0.120	0.118	0.013	
4	10	1700	1123	0.105	0.085	0.022	0.020		
4	10	770	1417	0.060	0.044	0.857	0.855	0.759	
4	10	770	1427	0.056	0.040	0.009	0.008		
4	10	650	1441	0.042	0.028	0.805	0.804	0.614	
4	10	650	1445	0.032	0.020	2.241	2.238		
6	13	1700	907	0.071	0.054	0.087	0.086	0.045	
6	13	1700	910	0.015	0.009	0.023	0.023		
6	13	1700	920	0.014	0.009	0.016	0.016	0.025	
6	13	1700	923	0.017	0.010	0.013	0.012		
6	13	780	1022	0.014	0.008	0.017	0.017	0.059	
6	13	780	1026	0.011	0.006	0.059	0.058		
6	13	780	1039	0.015	0.009	0.071	0.070	0.063	
6	13	780	1043	0.015	0.009	0.089	0.088		
6	13	780	1043	0.017	0.012	0.043	0.042		
7	14	1690	1600	0.022	0.013	0.007	0.006	0.007	
7	14	1690	1605	0.015	0.009	0.022	0.022		
7	14	1500	1634	0.019	0.012	0.018	0.018	0.018	
7	14	1500	1638	0.016	0.010	0.023	0.023		
7	14	1240	1700	0.015	0.009	0.016	0.015	0.005	
7	14	1240	1704	0.010	0.006	0.007	0.006		
7	14	1030	1731	0.013	0.008	0.017	0.016	0.020	
7	14	1030	1734	0.008	0.003	0.006	0.005		
7	14	900	1812	0.014	0.009	0.024	0.023	0.014	
7	14	900	1816	0.013	0.008	0.037	0.036		
<u>/</u>	14	900	1816	0.013	0.007	0.006	0.005		
<u>/</u>	14	770	1835	0.015	0.008	0.238	0.237	0.203	
1	14	770	1839	0.018	0.013	0.181	0.179		
1	14	660	1851	0.039	0.031	0.028	0.027	0.029	
/	14	660	1856	0.017	0.011	0.081	0.080		
1	14	540	1908	0.022	0.015	0.017	0.017	0.011	
1	14	540	1912	0.042	0.034	0.021	0.020		
/	14	540	1912	0.043	0.035	0.011	0.010		
ð	15	1/00	1/43	0.028	0.022	0.012	0.011	0.021	
Ø	15	1700	1/46	0.026	0.020	0.018	0.017		

Data						FILTER		CONTAINER	
Transect	Oct 1997	Station	Time in EST	Total fines	Fixed fines	Total sands	Fixed sands	Total sands	
0	15	1500	1000						
0	15	1500	1809	0.029	0.023	0.021	0.020	0.010	
0	15	1500	1812	0.025	0.019	0.008	0.008		
0	15	1360	1827	0.032	0.025	0.008	0.007	0.006	
0	15	1360	1830	0.019	0.014	0.007	0.007		
8	15	1260	1843	0.043	0.034	0.049	0.049	0.019	
8	15	1260	1846	0.026	0.021	0.016	0.016		
8	15	1140	1902	0.054	0.045	0.019	0.018	0.014	
8	15	1140	1905	0.029	0.022	0.016	0.015		
8	15	1140	1905	0.049	0.039	0.021	0.021		
8	15	1030	1924	0.034	0.027	0.013	0.013	0.014	
8	15	1030	1927	0.046	0.038	0.027	0.026		
8	15	900	1941	0.029	0.023	0.019	0.018	0.017	
8	15	900	1944	0.060	0.050	0.029	0.028		
8	15	770	1958	0.060	0.048	0.016	0.015	0.016	
8	15	770	2001	0.062	0.051	0.021	0.020		
8	15	770	2001	0.032	0.024	0.014	0.012		
8	15	650	2015	0.056	0.046	0.671	0.668	0.874	
8	15	650	2018	0.036	0.028	1.470	1.465		
10	16	1700	525	0.051	0.043	0.171	0.169	0 179	
10	16	1700	530	0.059	0.050	0.322	0.318	0.110	
10	16	1530	546	0.055	0.045	0.033	0.032	0.018	
10	16	1530	552	0.051	0.042	0.021	0.020	0.010	
10	16	1530	552	0.068	0.057	0.019	0.019		
11	16	1730	1753	0.055	0.038	0.506	0.493	0 090	
11	16	1730	1753	0.176	0.154	0.444	0.435	0.000	
11	16	1730	1755	0.132	0.104	0.093	0.085		
11	16	1500	1810	0.067	0.053	0.131	0.127	0 188	
11	16	1250	1826	0.120	0.101	0.100	0.093	0.126	
11	16	1250	1827	0.090	0.073	0.113	0.106	0.120	
11	16	1250	1827	0.063	0.051	0.564	0.549		
11	16	1140	1842	0.132	0.111	0.115	0.101	0.113	
11	16	1140	1845	0.028	0.020	0.148	0.140		
11	16	1040	1900	0.062	0.051	0.149	0.144	0.115	
11	16	1040	1903	0.059	0.047	0.147	0.142		
11	16	900	1917	0.097	0.082	0.058	0.055	0.418	
11	16	900	1920	0.045	0.036	0.991	0.978		
11	16	900	1920	0.123	0.101	0.046	0.041		
11	16	770	1935	0.045	0.035	0.192	0.190	0.104	
11	16	770	1937	0.073	0.058	0.139	0.137		
11	16	650	1952	0.034	0.026	1.566	1.556	1.337	
11	16	650	1954	0.043	0.032	1.158	1.147		
13	17	1700	1219	0.104	0.082	0.164	0.158	0.375	
13	17	1700	1221	0.124	0.088	0.361	0.356		
13	17	1500	1251	0.067	0.047	0,196	0.191	0.304	
13	17	1500	1254	0.130	0.092	0.136	0.132		
13	17	1280	1316	0.054	0.032	0.101	0.098	0.312	
10		1200	1010	0.001	0.002	0.101			

	-					FILT	ER	CONTAINER	
Transect	Date Oct 1997	Station	Time in EST	Total fines	Fixed fines	Total sands	Fixed sands	Total sands	
40	47	4000	1000						
13	17	1280	1322	0.102	0.069	0.147	0.144		
13	17	1140	1341	0.069	0.048	0.154	0.150	0.224	
13	17	1140	1345	0.048	0.030	0.067	0.064		
13	17	1030	1404	0.055	0.037	0.328	0.324	0.310	
13	17	1030	1408	0.107	0.072	0.202	0.198		
13	17	1030	1408	0.052	0.035	0.368	0.364		
13	17	900	1430	0.105	0.029	0.459	0.455	0.370	
13	17	900	1434	0.061	0.079	0.323	0.321		
13	17	780	1454	0.042	0.026	0.959	0.955	0.756	
13	17	780	1457	0.084	0.051	0.632	0.630		
13	17	780	1457	0.051	0.032	0.645	0.643		
14	17	1700	1852	0.049	0.030	0.363	0.361	0.245	
14	17	1700	1856	0.047	0.029	0.174	0.172		
14	17	1610	1910	0.083	0.051	0.044	0.043	0.039	
14	17	1610	1914	0.055	0.034	0.045	0.044		
14	17	1500	1937	0.053	0.033	0.172	0.170	0.117	
14	17	1500	1942	0.052	0.034	0.133	0.130		
14	17	1360	2009	0.036	0.021	0.092	0.091	0.143	
14	17	1360	2012	0.073	0.044	0.234	0.232		
14	17	1250	2028	0.069	0.050	0.252	0.250	0.181	
14	17	1250	2031	0.045	0.032	0.103	0.102		
14	17	1250	2031	0.067	0.047	0.115	0.114		
14	17	1120	2047	0.055	0.036	0.728	0.724	0.664	
14	17	1120	2050	0.053	0.033	1.091	1.086		
14	17	1040	2103	0.026	0.017	0.421	0.418	0.499	
14	17	1040	2106	0.038	0.020	0.607	0.603		
14	17	900	2118	0.038	0.020	0.552	0.548	0.706	
14	17	900	2121	0.045	0.025	0.873	0.868		
14	17	900	2121	0.073	0.045	0.553	0.550		
14	17	780	2137	0.061	0.043	0.554	0.547	0.378	
14	17	650	2150	0.039	0.019	0.364	0.362	0.466	
14	17	650	2152	0.075	0.054	0.644	0.642		
14	17	650	2152	0.094	0.068	0.751	0.749	o oo .	
15	18	1700	655	0.025	0.019	0.037	0.037	0.007	
15	18	1700	659	0.019	0.014	0.022	0.023		
15	18	1500	726	0.040	0.031	0.014	0.009	0.026	
15	18	1500	730	0.031	0.024	0.051	0.051		
15	18	1260	757	0.035	0.028	0.046	0.046	0.022	
15	18	1260	801	0.044	0.035	0.016	0.017	0.040	
15	18	1140	830	0.039	0.031	0.025	0.025	0.016	
15	18	1140	833	0.045	0.038	0.012	0.014	a aa 7	
15	18	1050	857	0.041	0.034	0.053	0.054	0.087	
15	18	1050	902	0.040	0.034	0.144	0.144		
15	18	1050	902	0.045	0.038	0.128	0.128	0.000	
15	18	890	929	0.051	0.043	0.059	0.058	0.032	
15	18	890	933	0.060	0.052	0.012	0.009		

						FILTER		CONTAINER	
Transect	Date Oct 1997	Station	Time in EST	Total fines	Fixed fines	Total sands	Fixed sands	Total sands	
15	18	770	1001	0.051	0.044	0.108	0 101	0.056	
15	18	770	1005	0.050	0.042	0.071	0.061	0.000	
15	18	650	1033	0.027	0.012	0.305	0.001	0 661	
17	18	1730	1918	0.036	0.027	0.000	0.200	0.001	
17	18	1730	1919	0.000	0.027	0.200	0.273	0.445	
17	18	1610	1934	0.101	0.102	0.333	0.004	0 359	
17	18	1610	1937	0.210	0.120	0.000	0.014	0.000	
17	18	1490	1952	0.081	0.070	0.210	0.140	0 291	
17	18	1490	1955	0.001	0.070	0.700	0.214	0.201	
17	18	1350	2009	0.107	0 101	0.169	0.214	0.476	
17	18	1350	2013	0.081	0.069	0.100	0.100	0.470	
17	18	1250	2026	0.001	0.060	0.202	0.270	0 535	
17	18	1250	2020	0.072	0.000	0.040	0.041	0.000	
17	18	1050	2113	0.040	0.004	0.200	0.200	0 5 1 5	
17	18	1050	2110	0.000	0.050	0.100	0.102	0.515	
17	18	900	2135	0.007	0.007	0.170	0.172	0 300	
17	18	900	2138	0.057	0.110	0.112	0.111	0.399	
17	18	900	2138	0.007	0.040	0.020	0.020		
19	19	1770	731	0.121	0.100	0.000	0.300	0.220	
19	19	1770	735	0.104	0.002	0.100	0.105	0.230	
19	19	1700	752	0.100	0.120	0.203	0.190	0.462	
19	19	1700	755	0.100	0.000	0.234	0.291	0.402	
19	19	1540	809	0.002	0.072	0.400	0.401	0.204	
19	19	1540	813	0.070	0.000	0.240	0.243	0.204	
19	19	1400	827	0.100	0.096	0.200	0.207	0 608	
19	19	1400	830	0 108	0.093	0.808	0.720	0.000	
19	19	1260	847	0.083	0.072	0.828	0.822	1 963	
19	19	1260	851	0.111	0.097	1.070	1 065	1.000	
19	19	1260	851	0.112	0.098	1.443	1 438		
19	19	1140	904	0 104	0.091	0.687	0.685	1 910	
19	19	1140	906	0.808	0.071	1.960	1.954	1.010	
19	19	1060	922	0.107	0.094	2.158	2.151	2,193	
19	19	900	940	0.061	0.053	1.114	1.101	0.842	
19	19	900	942	0.099	0.086	1.674	1.670		
19	19	900	942	0.092	0.078	1.329	1.325		
21	19	1750	2003	0.080	0.068	0.192	0.190	0.826	
21	19	1750	2006	0.082	0.069	1.924	1.914		
21	19	1700	2027	0.108	0.094	1.588	1.579	1.678	
21	19	1500	2100	0.118	0.104	1.620	1.612	0.551	
21	19	1500	2102	0.115	0.099	1.520	1.514		
21	19	1500	2102	0.123	0.106	2.158	2.150		
23	20	1770	841	0.148	0.128	1.538	1.484	0.807	
23	20	1770	844	0.329	0.290	0.628	0.599		
23	20	1700	916	0.230	0.203	0.219	0.207	0.175	
23	20	1700	922	0.307	0.276	0.164	0.153		
23	20	1530	942	0.183	0.160	0.076	0.068	0.029	

						FILTER		CONTAINER	
	Date		Time in	Total	Fixed	Total	Fixed	Total	
Transect	Oct 1997	Station	EST	fines	fines	sands	sands	sands	
23	20	1530	950	0.153	0.134	0.041	0.036		
23	20	1420	1019	0.159	0.136	0.193	0.185	0.633	
23	20	1420	1022	0.140	0.117	0.481	0.469		
23	20	1140	1137	0.146	0.122	1.529	1.518	1.296	
23	20	1140	1140	0.137	0.116	0.958	0.948		
24	20	1600	1535	0.212	0.187	0.437	0.410	0.943	
24	20	1600	1538	0.224	0.198	0.880	0.838		
24	20	1500	1550	0.144	0.125	0.131	0.125	0.348	
24	20	1500	1553	0.149	0.127	0.382	0.366		
24	20	1380	1611	0 150	0 129	0.206	0 201	0 760	
24	20	1380	1613	0.153	0.128	0 207	0.201	0.100	
24	20	1260	1677	0.100	0.120	1 814	1 803	1 807	
24	20	1260	1630	0.140	0.110	1 304	1.000	1.007	
24	20	1260	1630	0.165	0.100	1.504	1.232		
24	20	1760	030	0.100	0.143	0.564	0.553	0.831	
20	21	1760	909 0/1	0.177	0.135	0.560	0.535	0.051	
20	21	1700	1052	0.172	0.140	0.000	0.040	0 1 1 1	
20	21	1700	1052	0.101	0.133	0.233	0.227	0.111	
20	21	1520	1004	0.104	0.142	0.092	0.000	0.025	
20	21	1520	1114	0.143	0.122	0.036	0.037	0.035	
20	21	1020	1110	0.137	0.117	0.005	0.064	0.000	
26	21	1280	1100	0.131	0.109	0.191	0.189	0.298	
26	21	1280	1135	0.129	0.109	0.599	0.593		
26	21	1140	1150	0.140	0.122	0.105	0.104	0.090	
26	21	1140	1152	0.139	0.117	0.053	0.052		
26	21	1140	1152	0.139	0.118	0.065	0.063		
26	21	900	1208	0.139	0.117	0.090	0.088	0.154	
26	21	900	1210	0.141	0.118	0.288	0.285		
26	21	900	1210	0.139	0.115	0.300	0.297		
27	21	1700	1615	0.158	0.131	0.072	0.065	0.177	
27	21	1700	1619	0.165	0.141	0.166	0.159		
27	21	1600	1636	0.142	0.120	0.788	0.772	0.303	
27	21	1600	1639	0.149	0.126	0.309	0.295		
27	21	1500	1652	0.115	0.094	0.137	0.133	0.401	
27	21	1370	1711	0.126	0.105	0.430	0.413	0.987	
27	21	1370	1715	0.116	0.097	0.173	0.168		
27	21	1250	1735	0.117	0.095	0.247	0.244	0.359	
27	21	1250	1737	0.123	0.100	0.500	0.495		
27	21	1250	1737	0.117	0.096	0.472	0.467		
27	21	1130	1753	0.137	0.112	0.968	0.960	1.199	
27	21	1130	1756	0.114	0.094	1.878	1.864		
27	21	900	1810	0.116	0.095	0.309	0.307	0.368	
27	21	900	1812	0.124	0.101	0.587	0.582		
27	21	770	1827	0.130	0.107	1.070	1.064	0.551	
27	21	770	1830	0.115	0.095	0.273	0.270		
27	21	770	1830	0.130	0.103	0.000	0.000		

						FILTER		CONTAINER	
Transect	Date Oct 1997	Station	Time in	Total	Fixed	Total	Fixed	Total	
manocot		otation	EOT	nnes	tines	sands	sands	sands	
28	22	1710	1022	0.197	0.166	0.046	0.039	0.037	
28	22	1500	1048	0.193	0.165	0.072	0.067	0.036	
28	22	1500	1050	0.150	0.126	0.073	0.063		
28	22	1250	1112	0.150	0.127	0.073	0.064	0.089	
28	22	1250	1114	0.147	0.122	0.126	0.119		
28	22	1140	1135	0.137	0.114	0.017	0.015	0.020	
28	22	1140	1138	0.134	0.108	0.047	0.044		
28	22	1050	1201	0.126	0.103	0.045	0.041	0.033	
28	22	1050	1203	0.118	0.098	0.061	0.058		
28	22	1050	1203	0.145	0.119	0.032	0.030		
28	22	900	1232	0.104	0.085	0.019	0.018	0.013	
28	22	900	1235	0.110	0.087	0.018	0.016		
28	22	770	1258	0.127	0.104	0.172	0.168	0.083	
28	22	770	1300	0.082	0.067	0.049	0.046		
28	22	770	1300	0.117	0.096	0.035	0.033		
29	23	1760	1113	0.119	0.099	0.087	0.083	0.037	
29	23	1760	1115	0.109	0.090	0.085	0.082		
29	23	1500	1135	0.106	0.087	0.046	0.045	0.008	
29	23	1500	1139	0.103	0.085	0.011	0.010		
29	23	1250	1154	0.112	0.091	0.023	0.022	0.002	
29	23	1250	1157	0.121	0.099	0.014	0.013		
29	23	1130	1213	0.107	0.087	0.017	0.016	0.007	
29	23	1130	1216	0.116	0.094	0.042	0.041		
29	23	1050	1232	0.123	0.100	0.033	0.031	0.013	
29	23	1050	1235	0.090	0.071	0.036	0.034		
29	23	1050	1235	0.127	0.105	0.027	0.024		
29	23	900	1248	0.121	0.100	0.166	0.162	0.010	
29	23	900	1251	0.137	0.113	0.040	0.038		
29	23	770	1315	0.131	0.106	0.036	0.034	0.000	
29	23	770	1318	0.122	0.100	0.034	0.031		
29	23	650	1344	0.116	0.102	0.110	0.084	0.133	
29	23	650	1346	0.115	0.085	0.078	0.058		
29	23	650	1346	0.109	0.088	0.125	0.099		

Section 1

Fixed Fines/Sand Graphs by Transect

April 1997

Section 2

Fixed Fines/Sand Graphs by Transect

October 1997

Averaged Fixed Concentrations : Transects

Transect 29

Section 3

Fixed Fines/Sand Graphs by Station

October 1997

Section 4

Rapid Sand Analysis Histograms by Transect

October 1997

Composite : Station 1700 Station 1500 Station 1250 Station 1040 Station 900 Station 770 Station 650 Station 530

Station 650

Station 530

Composite : Station 1700 Station 1500 Station 1360 Station 1260 Station 1400 Station 1030 Station 900 Station 770 Station 650

Station 1700

Composite : Station 1700 Station 1530

Sand distribution: transect 14

Section 5

Percent Organic Content Graphs

> April 1997 & October 1997

Percent Organic Content

Section 6

Quality Control & Methodology check Graphs

> April 1997 & October 1997

Method Precision And Methology check

