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Any practical application of the Schwinger–Dyson equations to the study of n-point Green’s functions in 
a strong coupling field theory requires truncations. In the case of QED, the gauge covariance, governed by 
the Landau–Khalatnikov–Fradkin transformations (LKFT), provides a unique constraint on such truncation. 
By using a spectral representation for the massive fermion propagator in QED, we are able to show 
that the constraints imposed by the LKFT are linear operations on the spectral densities. We formally 
define these group operations and show with a couple of examples how in practice they provide a 
straightforward way to test the gauge covariance of any viable truncation of the Schwinger–Dyson 
equation for the fermion 2-point function.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The natural way to study a strong coupling theory is to solve 
the field equations of the theory, known as the Schwinger–Dyson 
equations. Solving such equations provides a nonperturbative ap-
proach to QCD with applications to hadronic physics [1]. Since this 
is an infinite system of coupled integral equations, their solution 
for any particular Green’s function, such as the fermion propagator 
we consider here, requires a truncation of this infinite system. In 
practice, when studying the fermion propagator this means mak-
ing an ansatz for the fermion–boson vertex. As a guide for QCD, 
here we deduce the constraints required on such structures that 
the gauge covariance in QED imposes. Considering arbitrary di-
mensions allows us to make connections between three and four 
dimensional theories, which are of current interest. The fermion 
propagator in QED is expected to have simple analytic structures 
with poles that correspond to physical particles, like the electron, 
and with branch cuts corresponding to particle creation such as 
additional photons, or electron–positron pairs. Such analytic struc-
tures motivate a spectral representation for the fermion propaga-
tor [2]. This turns out to be particularly useful for realizing the 
constraints of gauge covariance. Here we restrict attention to co-
variant gauges for ease of calculation.

The relation between QED Green’s functions evaluated in dif-
ferent covariant gauges is specified by the Landau–Khalatnikov–
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(M.R. Pennington).

Fradkin transformation (LKFT) [3–6]. Differential forms of the LKFT 
are also known as Nielsen identities [7–9]. Incorporating the LKFT 
into the construction of vertices in scalar QED has been studied in 
Refs. [10,11]. While in Ref. [12], assuming the propagator is bare 
in one gauge, Fourier transforms have been used to show explic-
itly how the LKFT specifies the momentum space propagator in 
any other gauge. The gauge dependence for the momentum space 
fermion propagator has recently been demonstrated to be calcula-
ble using diagrammatic cancellation identities [13]. In the present 
article we show that such dependence can be solved exactly in 
Minkowski space. Then using this exact solution, we explore the 
general gauge covariance requirement imposed on the Schwinger–
Dyson equation (SDE) for massive fermions that is independent of 
the solution in one particular gauge. Technical details can be found 
in Refs. [14,15].

This article is organized as follows. In Section 2, the spectral 
representation for the fermion propagator is introduced to deduce 
the exact solutions to the LKFT for the fermion propagator. In Sec-
tion 3, the consistency requirement between SDE and the LKFT for 
the fermion propagator is proposed. Meanwhile, two examples are 
included to explain how identities previously formulated in this 
article work in practice. Section 4 gives the conclusion.

2. LKFT for fermion propagator in spectral representation

2.1. Spectral representation of fermion propagator

The existence of spectral representations for fermion propaga-
tors relies on the exact analytic structures of propagator functions 
in the complex momentum plane. For massive fermions in QED, we 
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Fig. 1. The illustration of analytic functions with branch cuts along the positive real 
axis, corresponding to the production of real particles that can only be achieved in 
the timelike region. We use the Bjorken–Drell metric therefore this happens when 
z = p2/s > 0. The contour can be used to prove Eq. (2) using the Cauchy integral 
formula with z replaced by p2.

assume singularities of their propagator functions can only con-
sist of branch cuts along the positive real axis with, in addition, 
a finite number of poles, while being holomorphic everywhere 
else in the complex momentum plane. Fig. 1 sketches this type 
of function with only branch-cut singularities illustrated.1 This as-
sumption about the analytic structure of the fermion propagator 
establishes a bijective relation given by Eqs. (1), (2) between the 
momentum space fermion propagator and its spectral functions. 
The fermion propagator carrying momentum p, S F (p), has two 
Dirac structures identified as the coefficients of the γ -matrices and 
the identity matrix: S F (p) = S1(p2)/p + S2(p2)1. We can then as-
sociate a spectral function ρ j to each of these scalar functions;

ρ j(s; ξ) = − 1

π
Im

{
S j(s + iε; ξ)

}
, (1)

so that when j = 1, 2 the ρ j are the discontinuities across the 
branch cut in Fig. 1 for S1 and S2 respectively. Pole terms are 
implicitly included by the Feynman iε prescription. The renor-
malizability of QED in d < 4 dimensions ensures the propagator 
functions go to zero as |p2| → ∞. Therefore they are completely 
specified by

S j(p2; ξ) =
+∞∫

m2

ds
ρ j(s; ξ)

p2 − s + iε
, (2)

using the standard Cauchy integration. Note the dependence of the 
fermion propagator on the standard covariant gauge fixing param-
eter [2] ξ has been made explicit, as this is crucial for the LKFT. 
One would expect in a massive fermion theory that the spectral 
functions have components that are delta functions, correspond-
ing to particles of definite mass, and a series of theta functions at 
each particle production threshold. However, other structures may 
be required from the solution of the fermion SDE and its gauge 
covariance, as we will comment on below.

1 Poles correspond to summing up free-particle propagators with different 
masses, the value of which could be complex. Since they are trivial to include, they 
are not shown in Fig. 1.

2.2. LKFT as group transformations

The LKFT specifies how Green’s functions change from one 
gauge to another. For the fermion propagator, the LKFT was origi-
nally formulated in coordinate space [5]:

S F (x − y; ξ) = exp
{

ie2ξ [M(x − y) − M(0)]
}

S F (x − y;0), (3)

where S F (x − y; ξ) is the propagator calculated in any co-
variant gauge with ξ = 0 defining the Landau gauge. M(z) =
− ∫

dl e−il·z/(l4 + iε), where the integral measure is dl = ddl/(2π)d . 
Differentiating Eq. (3) with respect to ξ and then taking the Fourier 
transform, one obtains

∂

∂ξ
S F (p) = ie2

∫
dl

1

l4 + iε
[S F (p) − S F (p − l)] , (4)

which agrees with Eqs. (11) and (24) in Ref. [8]. Mathematically, 
Eq. (3) alone does not forbid the propagator function in coordinate 
space to contain a delta function term,2 which can be shown to be 
independent of ξ [14].

The absence of dimension-odd operators in Eq. (3) decouples 
the Dirac scalar and vector components, in contrast to the SDE we 
consider later. Because the gauge dependence factors out, solving 
for such dependence from Eq. (3) does not require knowing the 
propagator in the starting gauge. Therefore the differential form 
of the LKFT written in Eq. (4) is equivalent to its finite form, for 
physical propagators in QED in d < 4 dimensions. Consequently, 
the LKFT for the fermion propagator in momentum space effec-
tively becomes a one-loop integral, which is similar to Fig. 1 in 
Ref. [8].

To understand the mathematical properties of the LKFT, we 
start with the observation that Fourier transforms are bijective. 
While we have established that there is another bijective relation 
between the propagator functions in momentum space and the 
spectral functions. This implies the relation between propagators 
in coordinate space and propagator spectral functions is bijective 
as well, as established in Ref. [14].

Based on Eq. (3), the LKFT for the fermion propagator in coor-
dinate space is simply a real phase factor. Moreover, when consid-
ered as a linear transformation of functions in coordinate space, 
the LKFT can be viewed as a group transformation. One can easily 
verify that when the group multiplication is defined as a function 
multiplication, all the requirements of group transformations are 
satisfied. Meanwhile, the LKFT for momentum space propagators 
as well as for propagator spectral functions should all be group 
transforms, based on the one-to-one and onto correspondences. In 
fact, the coordinate space representation, the momentum space 
representation and the spectral representation of the LKFT are iso-
morphic representations of the same group. Additionally, since ξ
parameterizes the LKFT as a continuous group, the starting gauge 
of the LKFT does not matter; only the difference in ξ enters into 
calculation. The default initial gauge for the LKFT is conveniently 
chosen to be the Landau gauge. For calculations with an initial 
gauge parameter ξ0, one can replace the Landau gauge quantities 
by those at ξ0 and replace ξ by ξ − ξ0.

For the particularly interesting spectral representation of the 
LKFT for a fermion propagator, we have established that the LKFT is 
a group transformation. However, instead of simply being a phase 
factor, we expect the LKFT for the spectral representation to be 
more complicated, but still consist of linear operations. Conse-
quently, without loss of generality we can write

2 Such a term corresponds to a finite asymptotic value in the momentum space, 
the remaining terms in the propagator function still satisfy Eq. (4).
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ρ j(s; ξ) =
∫

ds′ K j(s, s′; ξ)ρ j(s′;0) , (5)

where distributions K j(s, s′; ξ), being the LKFT for the spectral 
representation, specify linear operations that encode ξ depen-
dences of ρ j(s; ξ).

In order to find out these K j , we could first substitute Eq. (2)
into Eq. (4) and complete the loop integral. Because ρ j(s; 0) is ar-
bitrary as far as the LKFT is concerned, subsequently substituting 
Eq. (5) in gives

∂

∂ξ

∫
ds

K j(s, s′; ξ)

p2 − s + iε
= − α

4π

∫
ds

	 j(p2, s)

p2 − s + iε
K j(s, s′; ξ) , (6)

where the 	 j(p2, s) are determined by the effective one-loop in-
tegral, which can be evaluated using a Feynman parameterization 
and dimensional regularization. Explicit examples are given below 
in Eqs. (11), (12). Integrals in d-dimensions are traditionally per-
formed by first making a Wick rotation and using the resulting 
d-fold spherical symmetry to perform the angular integrals before 
the radial integral [2]. However, one can instead perform the inte-
gration wholly in Minkowski space, by first integrating to infinity 
over the time component of the loop momentum and continuing 
the number of space dimensions to d − 1. Here as all aspects of 
the integrals are known, one can readily see the results with or 
without Wick rotation are identical. This is a virtue of assuming a 
spectral representation when all loop integrals involve only explic-
itly known functions. Evaluating 	 j(p2, s) directly in Minkowski 
space also ensures the resulting functions of p2 are valid in the 
complex momentum plane.

Eq. (6) is most easily solved by substituting the following test 
solutions

K j = exp

(
−αξ

4π

 j

)
, (7)

where distributions 
 j are independent of ξ . The exponential of a 
distribution is given by definition

exp
{
λ


} =
+∞∑
n=0

λn

n! 
n = δ(s − s′) + λ
 + λ2

2! 
2 + . . . , (8)

with distribution exponentiation defined as 
0(s, s′) = δ(s − s′)
and


n(s, s′) =
∫

ds′′
(s, s′′)
n−1(s′′, s′) (n ≥ 1). (9)

One can easily verify that the K j given by Eq. (7) indeed satisfy 
Eq. (6) with initial conditions K j(s, s′; 0) = δ(s − s′) provided the 
distributions 
 j solve the following identities3

∫
ds


 j(s, s′)
p2 − s + iε

= 	 j(p2, s′)
p2 − s′ + iε

. (10)

Here by writing down Eq. (10) the idea of a spectral representa-
tion for propagators has been generalized to express identities for 
other functions of p2. To solve Eq. (10), we need to find out the 
linear transform acting only on the spectral variable s of the free-
particle propagator (p2 − s + iε)−1 to create any p2 dependences 
in 	 j(p2, s)/(p2 − s + iε).

Up until now we have applied the group nature of the LKFT to 
reduce the ξ dependence of fermion propagator spectral functions 
to Eq. (10). This is the equation that the distributions 
 j have to 
satisfy. To solve for 
 j , new tools will be developed in the follow-
ing subsection.

3 One could also use group properties to deduce Eq. (7) from the differential 
equations themselves. See Ref. [14] for details.

2.3. Dimensional regularization of LKFT and solutions with fractional 
calculus

Utilizing well established perturbative techniques, we can cal-
culate the functions 	 j(p2, s) from Eq. (4). Explicitly,

	1

p2 − s
= (ε)

s

(
4πμ2

s

)ε −2

(1 − ε)(2 − ε)
2 F1(ε + 1,3;3 − ε; z)

(11)

	2

p2 − s
= (ε)

s

(
4πμ2

s

)ε −1

1 − ε
2 F1(ε + 1,2;2 − ε; z) , (12)

where z = p2/s and the number of spacetime dimension4 is given 
by d = 4 − 2ε . One can verify by applying Eq. (15.3.6) of Ref. [16]
that the hypergeometric functions in Eqs. (11), (12) are more sin-
gular than the free-particle propagator when ε > 0 in the z → 1
limit. The best way to regularize such singularities is to keep the 
number of spacetime dimensions explicit throughout the entire 
calculation [14].

To generate these hypergeometric functions from the free-
particle propagator as implied by Eq. (10) using only linear op-
erations on the spectral variable s for any ε , “exotic” linear op-
erators are expected. The first clue in finding 
 j from Eq. (10)
with 	 j given by Eqs. (11), (12) is realizing that the Taylor ex-
pansion in z = p2/s of the free-particle propagator is simply a 
geometric series. Notice that 2 F1(1, b; b; z) = (1 − z)−1, while hy-
pergeometric series are natural generalizations of geometric series. 
For integer orders of derivative, to generate any hypergeometric 
2 F1 linearly from the free-particle propagator, we could directly 
apply Eqs. (15.2.3), (15.2.4) from Abramowitz and Stegun [16]. One 
natural way to generalize these differentiation formulae to accom-
modate fractional parameters is to use the following definition of 
the Riemann–Liouville fractional calculus [17] with the integral Iα

defined by:

Iα f (z) = 1

(α)

z∫
0

dz′(z − z′)α−1 f (z′). (13)

For α > 0, the Iα allows the Riemann–Liouville fractional deriva-
tive to be defined as

Dα f (z) =
(

d

dz

)�α�
I�α�−α f (z), (14)

where �α� is the ceiling function. It follows that Dαzβ =
(1 − α + β)αz−α+β , with the Pochhammer symbol defined as
(1 − α + β)α = (1 + β)/(1 − α + β). With these definitions of 
calculus operators at fractional orders, one can then easily verify

Dαza+α−1
2 F1(a,b; c; z) = (a)αza−1

2 F1(a + α,b; c; z) ,

Dαzc−1
2 F1(a,b; c; z) = (c − α)αzc−α−1

2 F1(a,b; c − α; z) ,

(15)

as the desired generalization of Eqs. (15.2.3), (15.2.4) of Ref. [16]. 
Equipped with Eq. (15), Eq. (10) can be solved by

φn = (ε)

(
4πμ2

p2

)ε
(1 − ε)

(1 + ε)
z2ε+2−n Dε zn−1 Dε zε−1, (16)

where operators φn are defined such that at the operator level ∫
ds′
 = φ, with overlapping spectral variables integrated as in 

Eq. (9). Therefore when acting on the free-particle propagator,

4 We use ε to denote the Feynman prescription of momentum space propagators 
and ε as how close the number of spacetime dimensions is to 4.
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Fig. 2. The SDE for fermion propagator functions. Black circles correspond to con-
nected diagrams, while the white circle stands for the one-particle irreducible (1PI) 
vertex. In the quenched approximation, the gray circle gets removed, while in the 
unquenched case it represents the connected diagram.

Fig. 3. The SDE fermion propagator linear in spectral functions obtained by multi-
plying S F (p) to the right of Fig. 2. Black circles correspond to connected diagrams, 
while the white circle stands for the one-particle irreducible (1PI) vertex. In the 
quenched approximation, the gray circle gets removed, while in the unquenched 
case it represents the connected diagram.

−φnz2 F1(1,n;n; z) = (ε)

(
4πμ2

p2

)ε −(2 − ε)

(1 − ε)(1 + ε)

× z2ε+2−n Dε zn−1 Dε zε, (17)

which produces the linear transforms required to generate
	 j(p2, s)/(p2 − s + iε) from the free-particle propagator with n = 3
for j = 1 in Eq. (11) and n = 2 for j = 2 in Eq. (12).

Until now we have formally solved the ξ dependence of 
fermion propagator spectral functions with arbitrary dimensions 
as long as hypergeometric functions are well defined. However the 
exponential of distributions given by Eq. (7) remains elusive. The 
action of a linear operator on the propagator is completely speci-
fied once we know how it works on zβ with arbitrary real β . For 
φn defined by Eq. (16), we find that

K j z
β =

+∞∑
m=0

(−α)m

m!
(n + β + (m − 1)ε − 1)(β + mε)

(n + β − ε − 1)(β)
zβ+mε,

(18)

where α = (αξ/4π) 
(
4πμ2/p2

)ε
(ε)(1 − ε)/(1 + ε) and again 

with n = 3, 2 for j = 1, 2. With Eq. (18), actions of the LKFT on 
spectral variables are explicit.

3. Consistency requirement from LKFT on the fermion 
propagator SDE

3.1. SDE for fermion propagator spectral functions

The SDE for the fermion propagator in momentum space is rep-
resented by the diagrammatic identity in Fig. 2. The SDE written in 
this form is most convenient for solving propagator functions di-
rectly in the spacelike region. However each diagram is not linear 
in the spectral functions ρ j(s; ξ). Alternatively, multiplying S F (p)

to the right gives the equivalent identity shown in Fig. 3. The first 
diagram on the right-hand side is clearly linear in ρ j(s; ξ). The de-
pendence of the last diagram on the right-hand side on ρ j can 
be judged from the well-known Ward identity of QED [18]. Be-
cause the fermion–photon vertex structure S F (k) μ(k, p) S F (p) is 
required to share its renormalization constant with S F (p) to en-
sure Z1 = Z2 [2]. Consequently both of them must be linear in 
ρ j(s; ξ).

Under this linear assumption, let us imagine the dependence of 
S F (k) μ(k, p) S F (p) on the fermion propagator spectral function 
ρ j(s) is known. After evaluating the loop integral in Fig. 3, the re-
maining operations on spectral functions can only be linear. Taking 

the imaginary part of the identity in Fig. 3 means taking the dis-
continuity across the cut in Fig. 1. In the case of quenched QED 
the only particle production contributions come from the fermion 
plus the bare photon. We then have the coupled equations:(

ρ
ξ
1

ρ
ξ
2

)
+

(
�

ξ
11 �

ξ
12

�
ξ
21 �

ξ
22

)(
ρ

ξ
1

ρ
ξ
2

)
=

(
0
0

)
, (19)

where distributional multiplications are understood with the in-
tegrals over spectral variables being implicit, adopting a similar 
convention to matrix multiplication. For example, �ξ

11ρ
ξ
1 stands for ∫

ds′ �11(s, s′; ξ)ρ1(s′; ξ). While the structure of Eq. (19) is gen-
eral, the actual form of the �i j implicitly depends on the photon 
propagator. In the quenched case, there is no other dependence 
on ρ j . However, when the photon is unquenched, the �i j contain 
implicit ρ j dependence through the vacuum polarization. The fact 
that this polarization is gauge independent is ensured by the par-
ticular gauge dependence of ρ j in Eqs. (5), (7) as discussed in more 
detail in [15].

Eq. (19) is homogeneous in ρ because the real inhomoge-
neous constant on the left-hand side of the identity in Fig. 3 van-
ishes after taking the imaginary part. We will derive the explicit 
structure of the �i j in the case of quenched QED below. While 
with unquenched photons, the �i j are expected to include addi-
tional θ -functions corresponding to other real production thresh-
olds. Nevertheless, the general form of SDE for fermion propagator 
spectral functions remains that of Eq. (19). Analytic structures of 
the fermion–photon vertex are also subsumed into the formalism 
of Eq. (19) because the Ward–Green–Takahashi identity ensures 
the discontinuity of S F μS F be linear in ρ . In general with any 
number of spacetime dimensions, the �(s, s′; ξ) are distributions 
rather than simple functions of spectral variables s and s′ .

3.2. The general result

The linear operator � in Eq. (19) is determined by the in-
teractions of QED, specifically the fermion–photon vertex. With-
out knowing the vertex exactly, one needs to come up with an 
ansatz to truncate the infinite tower of SDEs. Such an ansatz deter-
mines �, which after solving Eq. (19), subsequently determines the 
spectral functions ρ j(s; ξ). With an arbitrary ansatz, the ρ j(s; ξ)

solved from Eq. (19) in different gauges are not necessarily related 
by the LKFT. Since the ξ dependence of ρ j is known exactly, a nat-
ural question arises is what is the requirement on � such that 
solutions to Eq. (19) satisfies the LKFT.

To answer this question, let us start by substituting ρξ

j =Kξ

j ρ
0
j , 

the abstract version of Eq. (5), into Eq. (19). Noting that
(diag{Kξ

1, Kξ
2})−1 = diag{K−ξ

1 , K−ξ
2 } defines this distribution in-

version, we arrive at our final result(
�0

11 �0
12

�0
21 �0

22

)
=

(
K−ξ

1

K−ξ
2

)(
�

ξ
11 �

ξ
12

�
ξ
21 �

ξ
22

)(
Kξ

1

Kξ
2

)
, (20)

or more compactly as �0 = K−ξ�ξKξ . One can also prove that �
satisfying Eq. (20) will produce ρ j with the correct ξ dependence 
given by the LKFT [14]. This is our main result. Eq. (20) is the 
necessary and sufficient condition for the LKFT and the SDE for 
the fermion propagator to be consistent with each other.

3.3. Two simple applications of the general result

We consider here two examples of applying Eq. (20).

1) In Ref. [12], within the assumption that in both three and 
four dimensions, the fermion propagator takes its free-particle 
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form, Bashir and Raya used the LKFT to determine the prop-
agator functions in any other covariant gauge. Their results 
can be reproduced by Eq. (5) when ρ1(s; 0) = δ(s − m2) and 
ρ2(s; 0) = mδ(s − m2) with distributions K j operating on zβ

given by Eq. (18). Readers interested in the details should see 
Ref. [14].

2) QED in 4-dimensions with the Gauge Technique of Delbourgo, 
Salam and Strathdee [19–22] is a useful illustration of the form 
of the operator elements �i j of Eq. (19). These are readily de-
duced in the quenched approximation, which corresponds to 
the gray circles in Figs. 2 and 3 being removed. In the lan-
guage of the fermion–photon vertex μ(k, p), the Gauge Tech-
nique generates the longitudinal Ball–Chiu vertex [23] with 
additional transverse pieces. When ultraviolet divergences are 
isolated by dimensional regularization, the �i j(s, s′; ξ) consists 
of δ-functions and θ -functions; specifically, we have

�11(s, s′; ξ) = − 3α

4π

[(
Cdiv + 4

3
+ ln

μ2

s

)
δ(s − s′)

− s′

s2
θ(s − s′)

]
− αξ

4π

1

s
θ(s − s′),

�12(s, s′; ξ) = −mB

s
δ(s − s′), �21(s, s′; ξ) = −mBδ(s − s′),

�22(s, s′; ξ) = − 3α

4π

[(
Cdiv + 4

3
+ ln

μ2

s

)
δ(s − s′)

− 1

s
θ(s − s′)

]
− αξ

4π

s′

s2
θ(s − s′), (21)

where mB is the bare mass and Cdiv = 1/ε − γE + ln 4π . 
The δ-function terms are the analogue of modifications to the 
propagator renormalization constants in perturbation theory, 
while the θ -function terms correspond to corrections to the 
propagator from real particle production in the timelike re-
gion.

The Gauge Technique in the quenched approximation is known 
to be inconsistent with the LKFT [24,25]. This can be seen just by 
inspecting the �21 component of Eq. (20). Since K−ξ

2 Kξ
1 	= 1, the 

requirement in this component is not met.
For small ε , the operations given by Eq. (18) can be written as

K j =
(

μ2z

p2

)−ν

exp

{
− ν

[
1

ε
+ γE + ln 4π +O(ε1)

]}

× z2−n Iν zn−1−ν Iν z−ν−1, (22)

where ν = αξ/(4π). One can verify, as in Ref. [14], that no com-
ponent of Eq. (20) is satisfied by Eq. (21).

While our analysis is mathematically convenient in d < 4 di-
mensions, the notion of the LKFT forming a group must be treated 
with care in four dimensions in some renormalization schemes: for 
instance, if the propagator is renormalized on-shell in one gauge, 
it contains free-particle terms. A consequence of Eq. (22) is that 
with negative changes in ξ , the propagator develops terms more 
singular than the free-particle form, rendering the propagator ill-
defined, and implying that renormalizing on-shell in one gauge 
does not necessarily ensure a free-particle component in all other 
covariant gauges for any ansatz.

4. Conclusions

In this article, we started with the structure of the fermion 
propagator using a spectral representation, which uniquely deter-
mines the propagator function in the complex momentum plane. 

This allows the LKFT for the fermion propagator spectral func-
tions ρ j(s; ξ) to be solved exactly by keeping the number of 
spacetime dimensions explicit. Recognizing the vertex structure 
S F (k) μ(k, p) S F (p) is linear in ρ j(s; ξ), we then deduced an ab-
stract version of the Schwinger–Dyson equation for the fermion 
propagator. Finally we derived the requirement for solutions of the 
fermion SDE in different covariant gauges to be consistent with 
the LKFT in any dimensions. This can be used as a new criterion 
for truncating SDEs. This is clear if the ansatz is to hold in any 
covariant gauge. However, even if we restrict ourselves to solving 
the SDEs in one gauge, the ansatz should not change significantly 
with an infinitesimal change in gauge. Then ξ -derivative of Eq. (20)
written as

∂ξ

(
�

ξ
11 �

ξ
12

�
ξ
21 �

ξ
22

)
= α

4π

[(
�

ξ
11 �

ξ
12

�
ξ
21 �

ξ
22

)
,

(

1


2

)]
(23)

must hold in that gauge. This is our primary result.
Detailed discussion of solutions to the LKFT in the spectral rep-

resentation can be found in Ref. [14]. In [15] we make explicit 
those contributions to Eq. (20) that are exactly known without 
model truncations.

The generalization of Eq. (3) to non-Abelian theories has been 
obtained in Ref. [26] as their Eq. (4), and studied up to O(g 6

s ). 
The Nielsen identity for the momentum space fermion propaga-
tor is still written as Eqs. (11), (21) of Ref. [8]. Combined with 
the Slavnov–Taylor identity [27,28], the gauge dependence of the 
fermion propagator then involves both the ghost propagator and 
the fermion–ghost four-point scattering kernel. Our QED results 
correspond to an approximation to QCD where ghosts decouple.
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