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Flavor from the double tetrahedral group without supersymmetry

Christopher D. Carone,∗ Shikha Chaurasia,† and Savannah Vasquez‡

High Energy Theory Group, Department of Physics,

College of William and Mary, Williamsburg, VA 23187-8795

Abstract

We consider a class of flavor models proposed by Aranda, Carone and Lebed, relaxing the

assumption of supersymmetry and allowing the flavor scale to float anywhere between the weak

and Planck scales. We perform global fits to the charged fermion masses and CKM angles, and

consider the dependence of the results on the unknown mass scale of the flavor sector. We find

that the typical Yukawa textures in these models provide a good description of the data over a

wide range of flavor scales, with a preference for those that approach the lower bounds allowed by

flavor-changing-neutral-current constraints. Nevertheless, the possibility that the flavor scale and

Planck scale are identified remains viable. We present models that demonstrate how the assumed

textures can arise most simply in a non-supersymmetric framework.

∗cdcaro@wm.edu
†scchaurasia@email.wm.edu
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I. INTRODUCTION

There is a vast literature on models that attempt to explain the observed hierarchy of

fermion masses by means of horizontal symmetries. In this paper, we revisit one such model,

proposed by Aranda, Carone and Lebed, based on the double tetrahedral group T ′ [1, 2].

Prior to this work, it had been shown that supersymmetric grand unified theories with U(2)

flavor symmetry predict simple forms for the Yukawa matrices, ones that provide a successful

description of charged fermion masses and the Cabibbo-Kobayashi-Maskawa (CKM) mixing

matrix [3, 4]. The authors of Ref. [1, 2] posed a simple question: What is the smallest

discrete flavor group that predicts the same form for the Yukawa textures? The answer to

this question was determined by the specific group theoretic properties of U(2) that were

utilized in the most successful U(2) models [4]:

1. U(2) models involved fields in 1, 2 and 3 dimensional representations (reps). Matter

fields of the three generations were embedded into 2⊕1 dimensional reps; the fact that

the third generation fields were treated differently allowed the model to accommodate

an order one (i.e., a flavor-group-invariant) top quark Yukawa coupling. The flavor-

symmetry-breaking fields, called flavons, appeared in all three of these representations.

2. In each Yukawa matrix, the two-by-two block associated with the first two generations

decomposed into an antisymmetric and symmetric part. These followed from the

couplings of the 1 and 3-dimensional flavon fields, respectively, due to the group

multiplication rule

2⊗ 2 = 3⊕ 1 . (1.1)

3. The U(2) symmetry was broken to a U(1) subgroup that rotated all first generation

fields by a phase. This U(1) symmetry was subsequently broken at a lower energy

scale than that of the original U(2) symmetry. Since Yukawa couplings emerge as a

ratio of a symmetry-breaking scale to a cut off, the sequential breaking of the flavor

symmetry explains why the Yukawa couplings associated with first generation were

smaller than those of the heavier generations.

The group T ′ is special in that it is the smallest discrete group that has 1, 2 and 3-

dimensional representations, as well as the multiplication rule 2 ⊗ 2 = 3 ⊕ 1. We will
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briefly review the representations and multiplication rules for T ′ symmetry in Sec. II. Fol-

lowing Ref [1, 2], the appropriate symmetry breaking sequence is achieved if the flavor group

includes an Abelian factor, so that GF = T ′ × Z3. Then the breaking pattern of the U(2)

model

U(2)
ε−→ U(1)

ε′−→ nothing, (1.2)

is mimicked by

T ′ × Z3
ε−→ ZD

3
ε′−→ nothing. (1.3)

Here we have indicated the scale of each symmetry breaking via the dimensionless parameters

ε and ε′, which represent the ratio of a symmetry-breaking vacuum expectation value (vev) to

the cut off of the effective theory. We refer to the cut off as the flavor scale, MF , henceforth.

A useful way to understand the connection between Eq. (1.2) and (1.3) is to consider the

SU(2)×U(1) subgroup of U(2); The T ′ factor is a subgroup of the SU(2) factor while Z3 is a

subgroup of the U(1). The Z3 factor remaining after the first step in the symmetry-breaking

chain in Eq. (1.3) also transforms all first generation fields by a phase and will be specified

later. The T ′×Z3 model defined in this way reproduces the successful Yukawa textures of the

U(2) models, but with a much smaller symmetry group. For other productive applications

of T ′ symmetry in flavor model building, we refer the reader to Ref. [5].

The T ′ models of Refs. [1, 2] were constructed more than 16 years ago, when it was

widely assumed that weak-scale supersymmetry was the likely solution to the gauge hier-

archy problem. The numerical study of the Yukawa textures in these references assumed

supersymmetric renormalization group equations to relate the predictions of the theory at

the flavor scale MF to those at observable energies. Superpartners were taken to have masses

just above the electroweak scale, while MF was identified with the scale of supersymmetric

grand unification, ∼ 2× 1016 GeV. The latter choice was motivated by the most elegant T ′

models, which were formulated in the context of an SU(5) grand unified theory. Some of

the essential features of the Yukawa textures followed from the combined restrictions of the

flavor and grand unified symmetries.

At the present moment, however, the status of weak-scale supersymmetry as a necessary

ingredient in model building is far less certain. The latest data from the LHC has found

no evidence for supersymmetry. Of course, this may simply mean that the scale of the

superpartner masses is slightly higher than what one might prefer from the perspective of
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naturalness; this interpretation would have little effect on the results of Refs. [1, 2]. On

the other hand, the LHC may be hinting that there is no necessary connection between the

weak scale and the scale of supersymmetry breaking. In this case, one might entertain the

possibility that the supersymmetry breaking scale is associated with the only higher physical

mass scale whose existence is well established: the Planck scale. For example, it has been

suggested in Ref. [6] that the shallowness of the Higgs potential may be explained by Planck-

scale supersymmetry breaking, assuming that supersymmetry is still relevant for a quantum

gravitational completion. This latter assumption itself has been challenged in Ref. [7],

where it has been noted that there are consistent string theories that are fundamentally

non-supersymmetric and whose low-energy limit could include the standard model. Whether

supersymmetry is broken at the Planck scale, or not present at any scale, one might attempt

to address the hierarchy between the weak scale and Planck scale, for example, by anthropic

selection, or by Higgs field relaxation [8], or by mechanisms not yet known. Alternatively,

one might pursue the idea that quantum gravitational physics does not contribute to scalar

field quadratic divergences in the way that one expects naively from effective field theory

arguments [9]. In this paper, we remain completely agnostic on the issue of naturalness. We

instead investigate a question that can be addressed in a more definitive and quantitative

way: how well do the T ′ flavor models in Refs. [1, 2] work if there is no supersymmetry

below the Planck scale?

We begin our study by assuming a standard form for the Yukawa textures expected in

models with T ′ × Z3 symmetry and perform a global fit to the charged fermion masses and

CKM elements assuming that the predictions at the flavor scale MF are related to those at

the weak scale via non-supersymmetric renormalization group equations1. In the absence of

supersymmetry, we no longer have gauge coupling unification and therefore do not consider

grand unified embeddings. The flavor scale is taken as a free parameter that may vary

anywhere from the TeV scale to the Planck scale. By study of the goodness of these fits, we

consider whether there is any preference for a higher or lower flavor scale within the specified

1 Note that we do not consider neutrino physics in the present work due to the additional model depen-

dence affecting that sector of the theory. For example, the structure of the theory is different depending

on whether neutrino masses are Dirac or Majorana, whether the Majorana masses arise via a seesaw

mechanism or via coupling to electroweak triplet Higgs fields, and whether additional neutral fermions

are present with which the neutrinos can mix. We reserve such a study for future work.
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range. If one were to find acceptable results for values of MF near the Planck scale, one

might conclude that the model is consistent with a minimal scenario in which there are no

other energy scales of physical relevance other than the weak and the Planck scale. On the

other hand, if one were to find acceptable results for MF closer to the lower bounds from

flavor-changing-neutral-current processes, then one might obtain interesting predictions for

observable indirect effects of heavy particles associated with the flavor sector.

Our paper is organized as follows. In the next section, we briefly review the flavor models

of interest and present a parameterization of the Yukawa matrix textures that typically arise

in these models at the flavor scale MF . In Sec. III, we study the predictions that follow from

these textures by a non-supersymmetric renormalization group analysis, including global fits

to the current data on charged fermion masses and CKM elements. In Sec. IV, we point

out the largest indirect effects of heavy flavor-sector particles on flavor-changing-neutral

current processes in the case where MF is low. In Sec. V, we address model building issues:

supersymmetric models have two Higgs doublets (in order to cancel anomalies) and have

a superpotential that is constrained by holomorphicity; these requirements are absent in

the non-supersymmetric case. Hence, in this section we show how the textures assumed in

Sec. III may arise in non-supersymmetric T ′ models. In the final section, we summarize our

conclusions.

II. TYPICAL YUKAWA TEXTURES FROM T-PRIME SYMMETRY

The group T ′ is discussed at length in Ref. [2]. Here we summarize only the most basic

properties relevant to the present discussion: The group has 24 elements. This includes 12

elements that correspond to the 12 proper rotations that take a regular tetrahedron into

coincidence with itself, with choices of Euler angles that are less than 2π. The remaining 12

elements are the first set times an element called R that corresponds to a 2π rotation. As

we indicated earlier, T ′ has 1, 2 and 3-dimensional representations, that we specify more

precisely below. For odd-dimensional representations, R acts trivially and the action of

the group T ′ is not distinguishable from that of the tetrahedral group T . For the even-

dimensional representations, however, R acts non-trivially; this reflects the fact that T ′ is a

subgroup of SU(2) and that spinors flip sign under a rotation by 2π.

The complete list of T ′ representations is as follows: there is a trivial singlet, 10, two
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non-trivial singlets, 1±, three doublets, 20 and 2±, and one one triplet, 3. The different

singlet and doublet representations are distinguished by how they transform under a Z3

subgroup, generated by the group element called g9 in Ref. [2]. This is indicated by the

triality superscript; when we multiply representations, trialities add under addition modulo

three. Keeping this in mind, the rules for multiplying representations are then specified by

1⊗R = R⊗ 1 for any rep R,

2⊗ 2 = 3⊕ 1,

2⊗ 3 = 3⊗ 2 = 20 ⊕ 2+ ⊕ 2−,

3⊗ 3 = 3⊕ 3⊕ 10 ⊕ 1+ ⊕ 1−.

(2.1)

As we indicated in the Introduction, the models of interest are based on the flavor group

GF = T ′×Z3, which includes a Z3 subgroup that rotates all first-generation matter fields by

a phase. We now identify that subgroup. In the models of Ref. [2], the first two generations

are assigned to the 20 representation2, in which the element g9 is given by

g9(20) =

η2 0

0 η

 , (2.2)

where η ≡ e2πi/3. However, the matter fields may also transform under the Z3 factor

that commutes with T ′. We represent charge assignments under this Z3 by an additional

triality index 0, + and −, corresponding to the phase rotations 1, η and η2. The diagonal

subgroup of the Z3 subgroup generated by g9 and the Z3 factor that commutes with T ′ is

the intermediate symmetry that we desire; we call this subgroup ZD
3 . If we assign the first

two generations to the rep 20−, then the action of ZD
3 is through powers of the product

g9(20) · η2 =

η 0

0 1

 , (2.3)

which provides the desired first generation phase rotation.

Assigning the three generations of matter fields to the T ′ × Z3 reps 20− ⊕ 100 yields the

following transformation properties of the Yukawa matrices:

YU,D,E ∼

[3− ⊕ 10−] [20+]

[20+] [100]

 . (2.4)

2 This choice is motivated by the cancelation of discrete gauge anomalies. See Ref. [2] for details.
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The models of interest include a set of flavon fields, Aab, φab and Sab, which transform as

10−, 20+ and 3−, respectively. When the T ′ × Z3 symmetry is broken to ZD
3 , the doublet

and triplet flavons acquire the VEVs

〈φ〉
MF

∼

0

ε

 ,
〈S〉
MF

∼

0 0

0 ε

 , (2.5)

where we use ∼ when we omit possible order one factors. This is the most general pattern of

non-vanishing entries that is consistent with the unbroken ZD
3 symmetry defined by Eq. (2.3).

Yukawa couplings involving first-generation fields are generated only after the ZD
3 symmetry

is broken at a lower scale; in analogy to the U(2) models of Ref. [3, 4], it is assumed that

this is accomplished solely through the vev of the flavon Aab,

〈A〉
MF

∼

 0 ε′

−ε′ 0

 , (2.6)

where ε′ < ε. This sequential breaking T ′ × Z3
ε−→ ZD

3
ε′−→ nothing yields a Yukawa texture

for the up quarks, down quarks and leptons of the form

YU,D,E ∼


0 ε′ 0

−ε′ ε ε

0 ε 1

 , (2.7)

where we’ve suppressed O(1) operator coefficients.

The forms of the Yukawa matrices obtained in Eq. (2.7) are inadequate, given the known

differences between the up-, down- and charged-lepton masses. The top quark Yukawa cou-

pling is of order one, while the all others are substantially smaller, suggesting an additional

overall suppression factor is desirable in YD and YE. Moreover, the hierarchy of quark masses

is more extreme in the up-quark sector than in the down; for example, the quark mass ratios

renormalized at the supersymmetric grand unified scale are given approximately by [10]

md :: ms :: mb = λ4 :: λ2 :: 1 while mu :: mc :: mt = λ8 :: λ4 :: 1, (2.8)

where λ ≈ 0.22 is the Cabibbo angle. This suggest that an additional suppression in the 1-2

block of YU is also desirable. We call these suppression factors ρ and ξ, which modify the
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textures of Eq. (2.7) as follows:

YU ∼


0 ε′ρ 0

−ε′ρ ε ρ ε

0 ε 1

 , YD ∼


0 ε′ 0

−ε′ ε ε

0 ε 1

 ξ, YE ∼


0 ε′ 0

−ε′ ε ε

0 ε 1

 ξ. (2.9)

Clearly, the smallness of ρ and ξ does not follow directly from the assumed flavor symme-

try breaking, but requires additional symmetries and/or dynamics. In the U(2) models of

Refs. [3, 4] and the T ′ models of Refs. [1, 2], ξ is assumed to arise from mixing in the Higgs

sector of the theory, while the origin of ρ is understood in terms of a grand unified embed-

ding. Flavon charge assignments under the unified gauge group can cause Yukawa entries

to arise at higher order in 1/MF than they would otherwise. In the non-supersymmetric

T ′ models that we discuss in Sec. V, we will neither have an extended Higgs sector nor a

grand unified embedding; we will, however, show how ρ and ξ may arise simply by a small

extension of the flavor symmetry.

All other differences between YU , YD and YE can now be accommodated by the choice

of the undetermined O(1) operator coefficients, identified according to naive dimensional

analysis. We generally require these to be between 1/3 and 3 in magnitude; the precise

range is a matter of taste, but our choice is consistent with the assumptions of Refs. [1,

2]. Variations in the operator coefficients are then sufficient, for example, to account for

differences between YD and YE that are attributed to group theoretic factors of 3 in grand

unified theories [11]. We parameterize the Yukawa matrices in terms of coefficients ui, di

and `i as follows:

YU =


0 u1ε

′ρ 0

−u1ε
′ρ u2ερ u3ε

0 u4ε u5

 , YD =


0 d1ε

′ 0

−d1ε
′ d2ε d3ε

0 d4ε d5

 ξ, YE =


0 `1ε

′ 0

−`1ε
′ `2ε `3ε

0 `4ε `5

 ξ.

(2.10)

These forms will be used to define the Yukawa matrices at the flavor scale MF in the

numerical study presented in the following section.

III. NUMERICAL ANALYSIS

We numerically evolve the Yukawa matrices in Eq. (2.10), using the one-loop, non-

supersymmetric renormalization group equations (RGEs). The flavor scale MF is taken
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to be variable, while the scale of observable energies is chosen to be the mass of the Z

boson, mZ . We omit all weak-scale threshold corrections. The RGEs are given by [12]

dgi
dt

=
bSM
i

16π2
g3
i , (3.1)

dYU
dt

=
1

16π2

(
−
∑
i

cSM
i g2

i +
3

2
YUY

†
U −

3

2
YDY

†
D + Y2(S)

)
YU , (3.2)

dYD
dt

=
1

16π2

(
−
∑
i

c′SM
i g2

i +
3

2
YDY

†
D −

3

2
YUY

†
U + Y2(S)

)
YD , (3.3)

dYE
dt

=
1

16π2

(
−
∑
i

c′′SM
i g2

i +
3

2
YEY

†
E + Y2(S)

)
YE, (3.4)

where

Y2(S) = Tr[3YUY
†
U + 3YDY

†
D + YEY

†
E] . (3.5)

Here, the gi are the gauge couplings, YU , YD and YE are the Yukawa matrices, and t = lnµ

is the log of the renormalization scale. The SU(5) normalization of g1 is assumed. In the

absence of supersymmetry [12],

bSM
i =

(
41
10
, −19

6
, −7

)
, (3.6)

and

cSM
i =

(
17
20
, 9

4
, 8
)
, c′SM

i =
(

1
4
, 9

4
, 8
)
, c′′SM

i =
(

9
4
, 9

4
, 0
)
. (3.7)

The MS gauge couplings are chosen to satisfy the boundary conditions

α−1
1 (mZ) = 59.01 ,

α−1
2 (mZ) = 29.59 ,

α−1
3 (mZ) = 8.44 ,

(3.8)

where αi = g2
i /4π. These were computed using the values of αEM = e2/4π = 127.950 and

sin2 θ̂W = 0.23129 renormalized at mZ [13] as well as

e = gY cos θ̂W = g2 sin θ̂W and g1 =
√

5/3 gY , (3.9)

where the latter equation converts the standard model hypercharge gauge coupling to SU(5)

normalization [14]. The QCD coupling is given directly in Ref. [13].

At the flavor scaleMF , the Yukawa matrices are given by Eq. (2.10). For a given numerical

choice of symmetry-breaking parameters and operator coefficients, the Yukawa matrices are
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lnμ (GeV)

χ˜
2

FIG. 1: Minimum χ̃2 values as a function of MF , for two different model assumptions.

run down to the scale mZ and diagonalized. In addition to the nine fermion mass eigenvalues,

three CKM mixing angles can be compared to experimental data. (In this work, we do not

consider the CKM phase, which is not constrained by the flavor symmetry.) Equivalently, we

take the predictions of the theory to consist of the nine fermion masses and the magnitudes

of the three CKM elements, Vus, Vub and Vcb.

To optimize the choice of parameters and operator coefficients for a given choice of flavor

scale MF , we follow the approach of Ref. [2] and minimize the function

χ̃2 =
9∑
i=1

(
mth
i −m

exp
i

∆mexp
i

)2

+

(
|V th
us | − |V exp

us |
∆V exp

us

)2

+

(
|V th
ub | − |V

exp
ub |

∆V exp
ub

)2

+

(
|V th
cb | − |V

exp
cb |

∆V exp
cb

)2

+
5∑
i=1

(
ln |ui|
ln 3

)2

+
5∑
i=1

(
ln |di|
ln 3

)2

+
5∑
i=1

(
ln |`i|
ln 3

)2

.

(3.10)

Here, the quantities with the superscript th refer to the predictions of the theory, obtained

as we have described previously. The quantities with the superscript exp refer to the exper-

imental data, taken from Ref. [13], and written as X ±∆X, where the second term is the

experimental uncertainty. Since we’ve omitted two-loop corrections and threshold effects,

we take this uncertainty into account in the same way as Ref. [2]: we inflate experimental

error bars to 1% of the central value if the experimental error is smaller than this. The terms

involving ratios of logarithms in Eq. (3.10) ensure that the operator coefficients remain near

unity [2].
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We have called the function we minimize χ̃2 to make clear that it differs from the con-

ventional χ2 function one would define in a simple least-squares fit. The latter cannot

be sensibly formulated for the purpose of our analysis. A conventional χ2 function only

involves differences between the theoretical predicted values and the experimental measure-

ments. The conventional χ2 function that would replace our Eq. (3.10) would thus involve

TABLE I: Fit parameters and observables for MF = 106 GeV with χ2 = 7.021. In this example,

the operator corresponding to u4 is absent from the theory. All masses are given in GeV. (Note

that mt is the MS mass, not the pole mass.)

Best Fit Parameters

ε = 0.182, ε′ = 0.005, ρ = 0.029, ξ = 0.014

u1 = 1.131 d1 = 1.162 `1 = 0.651

u2 = 0.921 d2 = −0.631 `2 = −0.710

u3 = −0.575 d3 = 1.024 `3 = −1.242

u4 = 0 (fixed) d4 = 2.375 `4 = −1.244

u5 = 0.628 d5 = −0.931 `5 = −0.637

Observable Expt. Value [13] Fit Value

mu (2.3± 0.6)× 10−3 1.4× 10−3

mc 1.275± 0.025 1.277

mt 160± 4.5 160.1

md (4.8± 0.4)× 10−3 4.18× 10−3

ms (9.5± 0.5)× 10−2 9.84× 10−2

mb 4.18± 0.03 4.18

me (5.11± 1%)× 10−4 5.11× 10−4

mµ 0.106± 1% 0.106

mτ 1.78± 1% 1.78

|Vus| 0.225± 1% 0.226

|Vub| (3.55± 0.15)× 10−3 3.58× 10−3

|Vcb| (4.14± 0.12)× 10−2 4.13× 10−2
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the sum of 12 terms that are a function of 19 parameters. This means that the numbers

of degrees of freedom is negative and the conventional χ2 probability distribution is not

defined. This reflects the fact that we could choose parameter values to set a conventional

χ2 function identically to zero (i.e., there would be nothing to fit)3. Doing so, however, is

not adequate since this does not prevent a parameter value from exceeding the limits that

assure a valid effective field theory. For example, a choice of parameters that gives a very

good match to all the experimental central values but includes an operator coefficient that

is, for example, 17.3, would be in wild conflict with the assumption that we have a valid

effective field theory description. The χ̃2 function, on the other hand, includes additional

terms that give weight to the theoretical constraint that the effective theory remain valid

and consistent with naive dimensional analysis. Any alternative way of imposing such a the-

oretical constraint, which necessarily involves adding additional terms to the function that

is minimized that are independent of the output predictions of the theory, would not be a

conventional χ2 function with the conventional statistical interpretation. Hence, we opt for

a form that is both simple and consistent with what has been used in the past literature [2].

The quantity χ̃2 is useful in that it allows us to quantify the comparison of one of our fits to

another. To interpret the meaning of a given value of χ̃2 in absolute terms, one then directly

inspects the fit output, as we will discuss later. Since the ui, di and `i are not treated as free

parameters, we might expect qualitatively that a good fit will have a χ̃2 ≈ 8, corresponding

to 12 pieces of experimental data minus 4 unconstrained parameters (ε, ε′, ρ and ξ). We

will see that this is consistent with our numerical results.

A plot of χ̃2 as a function of the flavor scale MF is shown in Fig. 1. The two curves in this

figure correspond to the cases were the coefficient u4 is allowed to float, or is fixed to zero.

(In the latter case, the sum over the ui in the second line of Eq. (3.10) omits i = 4.) These

cases are motivated by two variants of the Yukawa textures that may arise in explicit models,

3 Note that there is one way that one could do a conventional χ2 fit, namely, if one arbitrarily fixes a subset

of the model parameters. This approach, however, is not adequate: Imagine if one fixed 14 of the 19

model parameters, and fit the 12 predictions of the theory to the data in terms of the 5 free parameter

values. There are over 11, 000 different ways of choosing the set of free parameters in this example and

no physical basis for choosing one set over another, nor for determining the precise values to which the

fixed parameters should be set. We therefore follow an approach where all the parameters are allowed to

float. Note that in the one case where we do fix a parameter value, i.e., u4 = 0, there is a specific physics

justification that follows from the model building considerations discussed in Sec. V.
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TABLE II: Fit parameters and observables for MF = 1018 GeV with χ2 = 7.762. In this example,

the operator corresponding to u4 is absent from the theory. All masses are given in GeV. (Note

that mt is the MS mass, not the pole mass.)

Best Fit Parameters

ε = 0.131, ε′ = 0.004, ρ = 0.02, ξ = 0.011

u1 = 1.005 d1 = 1.005 `1 = 0.847

u2 = 1.01 d2 = −0.64 `2 = −0.633

u3 = −0.458 d3 = 1.024 `3 = −1.193

u4 = 0 (fixed) d4 = 2.397 `4 = −1.199

u5 = 0.369 d5 = −0.676 `5 = −0.847

Observable Expt. Value [13] Fit Value

mu (2.3± 0.6)× 10−3 1.4× 10−3

mc 1.275± 0.025 1.277

mt 160± 4.5 160.4

md (4.8± 0.4)× 10−3 4.2× 10−3

ms (9.5± 0.5)× 10−2 9.8× 10−2

mb 4.18± 0.03 4.18

me (5.11± 1%)× 10−4 5.11× 10−4

mµ 0.106± 1% 0.106

mτ 1.78± 1% 1.78

|Vus| 0.225± 1% 0.226

|Vub| (3.55± 0.15)× 10−3 3.58× 10−3

|Vcb| (4.14± 0.12)× 10−2 4.13× 10−2

as we show in Sec. V. Over the entire range of MF we find good fits with χ̃2 ≈ 8, but with

clear and monotonic improvement in χ̃2 towards smaller values of MF . In addition, the case

where the operator corresponding to u4 is absent from the theory (i.e., where u4 is fixed to

zero), which we will see corresponds to more minimal model-building assumptions, provides

a better description of the data than the case where it is present. We present two examples

of our results in Tables I and II, for MF = 106 GeV and 1018 GeV, respectively, both in the
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case where u4 = 0. The first choice corresponds to a flavor scale of the same order as the

lower bounds from flavor-changing neutral current processes, as we discuss further in the

next section, while the second is of the same order as the Planck scale. Interestingly, the

latter demonstrates that the model is consistent with the possibility that their are only two

important physical scales in nature, the weak and the Planck scales (with flavor associated

with the latter) so that no additional hierarchies or fine-tuning need to be considered.

Note that Tables I and II correspond to the extreme values of χ̃2 on the lower curve of

Fig. 1 and show directly that all the predictions of the theory are within one, or occasionally

two, standard deviations of the experimental data, with model parameters consistent with

naive dimensional analysis. One can then infer that every point on the lower curve of Fig. 1

provides a reasonably good description of the data in comparison to these reference points,

over the entire range of flavor scales studied, with a slight preference for lower values. Similar

qualitative conclusions can be drawn about the upper curve in the same figure, though, for

the sake of brevity, we omit the corresponding fit tables.

IV. DIRECT LOWER BOUNDS ON THE FLAVOR SCALE

Our results in Fig 1 indicate that typical T ′ Yukawa textures provide a good description

of charged fermion masses and CKM angles over a wide range of MF , but with a preference

for values closer to the TeV scale than to the Planck scale. The lowest possible values of MF

are separately constrained by flavor-changing-neutral-current (FCNC) processes that receive

contributions from heavy flavor-sector fields. In this section, we provide some estimates of

the lower bounds on MF following from K0 −K0
, D0 −D0

, B0 −B0
and B0

s − B
0

s mixing.

In addition, we give the branching fractions predicted for the largest flavor-changing neutral

meson decays, which also violate lepton flavor.

The new physics contributions to the FCNC processes of interest come from flavon ex-

change, or more precisely, the exchange of the physical fluctuations about the flavon vevs.

We identify these as follows:

φ =

 ϕ1

εMF + ϕ2

 , Sab =

S̃11 S̃12

S̃12 εMF + S̃22

 , Aab =

 0 ε′MF + Ã

−ε′MF − Ã 0

 ,

(4.1)

where the ϕi, the S̃ij and Ã are complex scalar fields. The couplings to standard model
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fermions originate from the same operators that gave us the Yukawa couplings. As an

example, let us consider the origin of ∆S = 2 operators, where S here refers to strangeness.

We focus on the largest flavor-changing effects, ones that are present even in the absence

of a rotation from the gauge to mass eigenstate basis. Let Ψ be a three-component column

vector with the elements d, s and b. Then the flavon-quark-anti-quark vertex in the down

sector follows from

L ⊃ − v√
2

(ΨLYDΨR + h.c.) , (4.2)

where we have set the standard model Higgs field to its vev v/
√

2, where v = 246 GeV, and

where

YD =

 Sab/MF + Aab/MF φ/MF

φ/MF 1

 ξ , (4.3)

with the flavons S, A and φ given by Eq. (4.1), and ξ is the dimensionless suppression factor

defined earlier. (We provide an origin for ξ and ρ in the next section.) The flavon couplings

involving fermions of the first two generations only are given by

d1
v ξ√
2MF

(dLÃ sR − sLÃ dR)− d2
v ξ√
2MF

(dLS̃12 sR + sLS̃12 dR) + h.c. . (4.4)

Four-fermion operators are obtained by integrating out the heavy fields. It follows that the

∆S = 2 operator that contributes to the K0 −K0
mass splitting is

O∆S=2 = −

(
d2

1

m2
Ã

+
d2

2

m2
S̃12

)
v2ξ2

2M2
F

[dLsRdRsL], (4.5)

where the di are the same order one coefficients defined in Eq. (2.10). As the flavon masses

are not known exactly, we assume that they are of the same order as the symmetry-breaking

scale associated with the given flavon; in the present example,

mS̃12
∼ εMF and mÃ ∼ ε′MF . (4.6)

Moreover, we pick numerical values of ε, ε′, ρ and ξ that are characteristic of the values

found in our global fits for MF below ∼ 1000 TeV:

ε ∼ 0.1, ξ ∼ 0.03, ρ ∼ 0.02 . (4.7)

We set all order one coefficients equal to one. With these assumptions, the new physics

contribution to the neutral pseudoscalar meson mass splittings, ∆m, may be expressed as
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Mass Splitting Operator MF Lower Bound

K0 −K0 −d2
2

1
m2

S̃12

v2ξ2

2M2
F
dLsRdRsL 85 TeV

B0 −B0 −d3d4
1

m2
ϕ1

v2ξ2

2M2
F
dLbRdRbL 22 TeV

B0
s −B0

s −d3d4
1

m2
ϕ2

v2ξ2

2M2
F
bLsRbRsL 14 TeV

D0 −D0 −u2
2

1
m2

S̃12

v2ρ2

2M2
F
uLcRuRcL 14 TeV

TABLE III: Lower bounds on the flavor scale. See the text for definitions of our notation.

a function of the scale MF . In general, given a ∆F = 2 interaction of the form cO, where

c is the operator coefficient and F represents either strange (S), charm (C) or bottom (B),

the mass splitting is given by

∆m =
c

mP 0

∣∣〈P 0|O|P 0〉
∣∣ , (4.8)

where P 0 (P
0
) is the pseudoscalar meson (anti-meson) in question, and the states are rela-

tivistically normalized. For an operator of the form

O =
1

4
[h
α
(1− γ5)`α][h

β
(1 + γ5)`β] , (4.9)

where h, ` represent the heavy (light) quark flavors and α, β are color indices, the matrix

element in Eq. (4.8) is given by [15]

〈P 0|O|P 0〉 =
1

2
BP 0

m4
P 0f 2

P 0

(mh +m`)2
, (4.10)

in the case where P 0 = K0 or D0. Here, BP 0 is the bag parameter, mP 0 and fP 0 are the

mass and decay constants of the meson and m`, mh are the masses of the quarks that make

up the meson. For P 0 = B0 or B0
s , the matrix element is given by [16]

〈P 0|O|P 0〉 =
1

2
BP 0f 2

P 0 m2
P 0

[(
mP 0

mh +m`

)2

+
1

6

]
. (4.11)

As computed on the lattice, the bag parameter in Eq. (4.10) is defined by the expression as

shown [15], omitting the additional term proportional to 1/6 that is retained in Eq. (4.11);
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Decays BF (Ref. [13]) Operator MF Lower Bound BF (MF = 85 TeV)

K0
L → µe < 4.7× 10−12 −d2`2

1
m2

S̃12

v2ξ2

2M2
F
eLµRsRdL 9.8 TeV 1.5× 10−19

B0 → τe < 2.8× 10−5 −d4`3
1

m2
ϕ1

v2ξ2

2M2
F
eLτRdRbL 0.62 TeV 2.3× 10−22

B0
s → τµ — −d3`4

1
m2

ϕ2

v2ξ2

2M2
F
sLbRµRτL — 3.2× 10−22

TABLE IV: Lower bound on MF for the largest flavor-changing decays. The predicted branching

fraction for MF set equal to the K0-K̄0 mixing bound is also shown.

in the case where P 0 = K0 or D0, the effect of this term is negligible. All masses and mass

splittings were obtained from the Review of Particle Properties [13], all decay constants were

obtained from Ref. [17], the bag parameters for ∆S = 2 and ∆C = 2 were obtained from

Ref. [15], and the bag parameters for ∆B = 2 were obtained from Ref. [16]. To estimate

the lower bound on MF , we assume that the experimentally observed mass splittings are

consistent with the standard model predictions and require that the new physics contribu-

tions not exceed the current 2σ experimental uncertainty. Such an approach is sufficient

for an estimate given the theoretical uncertainties involved in determining the new physics

contribution itself. Our results are shown in Table III. As one might expect, we obtain the

tightest bound from the K0 − K̄0 mass splitting, which requires MF & 85 TeV.

Flavon exchange between quarks and leptons can also lead to flavor-changing neutral

meson decays. We again focus on operators that are flavor-changing in the absence of a

rotation of the fields from the gauge to mass eigenstate basis. The largest effects are shown

in Table IV. The relevant operators are of the form Oijknqde ≡ (`iej)(dkqn), in the notation

of Ref. [18]; in the same reference, bounds on the operator coefficients are conveniently

summarized. We translate these into bounds on the scale MF which, as can be seen from

Table IV, are much weaker that those coming from the pseudoscalar meson mass splittings.

Therefore, we also show the predicted branching fractions with MF set equal to our lower

bound fromK0-K0 mixing. It is clear that the predicted branching fractions are far below the
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experimental bounds and unlikely to have observable consequences. Note that we have only

considered CP conserving processes and it is generally known that bounds on CP violation

in the neutral kaon system tends to give a better bound on the scale of new physics by about

an order of magnitude compared to the CP-conserving FCNC bounds. Given the smallness

of these branching fractions, this fact does not change our qualitative conclusions, so we do

not pursue that issue further.

V. NONSUPERSYMMETRIC MODELS

In the renormalization group analysis of Sec. III, the Yukawa matrices Yi are defined by

Lm =
v√
2
ψiLYiψ

i
R + h.c. , (5.1)

where i = U , D or E and generation indices are suppressed. In order to replicate the

Yukawa textures of the supersymmetric models of Refs. [1, 2], we assign the right-handed

fermions of the three generations to the T ′ × Z3 representations 20− ⊕ 100. Hence, for

example, we would assign the first two generations of the charge-2/3 quarks according to

(ucL, c
c
L) ∼ (uR, cR) ∼ 20−, where the superscript “c” refers to charge conjugation; since

ψ = iψcTγ0γ2, this is equivalent to specifying the transformation properties of the Dirac

adjoints (uL, cL). We then identify the following transformation properties for the various

blocks of the Yi,

YU,D,E ∼

 [3− ⊕ 10−] [20+]

[20+] [100]

 , (5.2)

i.e., Eq. (2.10) (or Eq. (4.1) in Ref. [2]), which omits any additional symmetries that may

be needed to explain the suppression factors ρ and ξ. As in the supersymmetric model,

the transformation properties given in Eq. (5.2) determine the allowed flavon couplings.

However, in the supersymmetric case, Eq. (5.2) dictates the form of terms in the superpo-

tential, which is required to be a holomorphic function of the superfields. The absence of

this constraint in the nonsupersymmetric case could lead, in principle, to additional flavon

couplings that are not present in the supersymmetric theory. However, we see that as far as

the φ, S and A flavons are concerned, this is not the case: each has a nontrivial Z3 charge,

which prevents new flavon couplings at the same order that involve the complex conjugates

of these fields.
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In the supersymmetric theories of Refs. [1, 2], the additional suppression factors associated

with the parameters ρ and ξ required the introduction of additional fields and symmetries.

For example, in the simplest unified T ′×Z3 model of Refs. [1, 2], SU(5) charge assignments

of the flavon fields are responsible for forbidding the coupling of the A and S flavons in

YU at lowest order in 1/MF . However, these couplings emerge via higher-order operators

that involve a flavor-singlet, SU(5) adjoint field Σ ∼ 24, just as in earlier models based on

U(2) flavor symmetry [4]. The suppression associated with the parameter ξ, on the other

hand, was assumed to arise via mixing in the Higgs sector, a reasonable possibility since

supersymmetric models require more than one Higgs doublet.

Here we will also achieve the additional suppression factors by means of additional fields

and symmetries. However, the additional symmetry will be much smaller than the product

of supersymmetry and a grand unified gauge group. (The latter, of course, would not be

appropriate for the non-supersymmetric case where the gauge couplings do not unify.) We

will simply assume an additional Z3 factor, so that the flavor group is Gnew
F = T ′ × (Z3)2

Defining one of the elements of the new Z3 factor as ω = exp(2 i π/3), the only standard

model fields that transform nontrivially under this symmetry are

H → ωH and tR → ω tR , (5.3)

where H is the standard model Higgs field and tR is the right-handed top quark. In the

standard model, H couples to YD and YE, while σ2H∗ couples to YU . Hence, when the new

Z3 symmetry is unbroken, the assignments in Eq. (5.3) forbid YD and YE entirely, as well

as the first two columns of YU . How one proceeds with the model building depends on the

desired relative sizes of ε, ε′, ρ and ξ. For example, for some choices of MF , it is possible to

find numerical results that are consistent with the simple possibility ε ∼ ρ ∼ ξ, up to order

one factors. In this case, we assume the symmetry-breaking pattern

T ′ × (Z3)2 ε−→ ZD
3

ε′−→ nothing , (5.4)

where the intermediate ZD
3 factor is exactly the same one as in the original theory, that

transforms all first generation fields by a phase; in this case, the new Z3 symmetry is broken

at the first step in the symmetry-breaking chain. We introduce two new flavon fields

ρ0 → ω2 ρ0 and φ̃→ ω φ̃ , (5.5)
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where φ̃ transforms like φ ∼ 20+ under the original flavor group. With the assumed symme-

try breaking pattern, the ρ0 field and one component of the φ̃ doublet can develop vevs of

order εMF . The Z3 charges of these fields now allow us to rebuild our otherwise forbidden

Yukawa matrices as follows:

(i.) For YD and YE, we may generate matrices proportional to the standard form if we

replace H by H ρ0; it follows that 〈ρ0〉/MF is identified with the suppression factor ξ, which

we now predict to be of order ε, up to an order one factor. One might worry that we

could obtain a lower-order contribution from operators that don’t involve ρ0, but involve

φ̃∗ instead, which also transforms under the new Z3 factor as φ̃∗ → ω2φ̃∗. However, this

does not occur since φ̃∗ ∼ 20− under the original flavor symmetry, which is not one of the

representations that leads to a lowest order coupling. On the other hand, the product ρ∗0φ̃

does couple at the same order as ρ0 φ; however, this additional contribution does nothing to

the form of the resulting Yukawa textures beyond a redefinition of the order one coefficients.

(ii.) For YU , the two-by-two block associated with the flavons A and S can now be

recovered via operators involving ρ∗0A and ρ∗0S. Hence, the parameter we called ρ previously

is now predicted to be of the same order as ξ. In an analogous way, the 3-1 and 3-2 entries

of YU can couple to the product ρ∗0φ, but this transforms in the same way as φ̃, which may

couple at lower-order. Hence the canonical YU texture with an additional suppression in

only the upper-left two-by-two block is obtained. Note that we could simply omit φ̃ from

the theory and ignore the corresponding entries in YU ; this leads to an alternative texture in

which u4 = 0 in Eq. (2.10), neglecting corrections from higher-order operators. This was the

alternative possibility considered in Sec. III. It is worth noting that in the case where the φ̃

is omitted from the theory, there is no longer a necessary connection between the scale of the

additional Z3 breaking and the scale of the T ′ doublet vev, εMF . In this case, we could vary

this additional scale independently so that ρ and ξ are still comparable, but intermediate in

size between ε and ε′. This construction would be compatible with the numerical results in

Tables I and II.

In summary, we have provided an existence proof that the textures considered in our

numerical analysis may arise in a relatively simple way in a non-supersymmetric framework.
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VI. CONCLUSIONS

In this paper, we have reconsidered models of flavor based on the non-Abelian discrete

flavor group T ′ that were proposed in Ref. [1, 2]. We have relaxed two assumptions made

in these studies, that the models are supersymmetric and that the scale of the flavor sector

is around the scale of supersymmetric grand unification. Our numerical study found that

T ′ models without supersymmetry provide a viable description of charged fermion masses

and CKM angles for a range of values of the flavor scale MF . We find that identification of

MF with the reduced Planck scale is a viable possibility, consistent with a simple picture in

which no new physics appears between the weak and gravitational scales. However, we also

find that our fits improve monotonically as MF is lowered toward the lower bound dictated

by the constraints from flavor-changing-neutral-current processes. In the case where MF is

as low as possible, we identified the largest flavor-changing neutral current effects that result

from the exchange of heavy flavor-sector fields; these could provide indirect probes of the

model. We then showed how the form of the Yukawa textures that we studied, which were

the same as, or closely related to, those described in Ref. [1, 2], can nonetheless arise in a

non-supersymmetric framework, where there is only a single Higgs doublet field and where

the interactions do not originate from a superpotential, a holomorphic function of the fields.

The models we described are arguably simpler than their supersymmetric counterparts; in

the non-supersymmetric case, we needed only to extend the original flavor-group by a Z3

factor to obtain the desired Yukawa textures shown in Eq. (2.10), while avoiding the well-

known complications that come with a grand unified Higgs sector. Extending the present

study to include the neutrino sector is more model dependent, but would be interesting for

future work.
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