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ABSTRACT. Increasingly, point-count data are used to estimate occupancy, the probability that a
species is present at a given location; occupancy accounts for imperfect detection, the probability that a
species is detected given that it is present. To our knowledge, effects of sampling duration on inferences
from models of bird occupancy have not been evaluated. Our objective was to determine whether changing
count duration from 5 to 8 min affected inferences about the occupancy of birds sampled in the
Chesapeake Bay Lowlands (eastern United States) and the central and western Great Basin (western United
States) in 2012 and 2013. We examined the proportion of species (two doves, one cuckoo, two swifts, five
hummingbirds, 11 woodpeckers, and 122 passerines) for which estimates of detection probability were
≥ 0.3. For species with single-season detection probabilities ≥ 0.3, we compared occupancy estimates derived
from 5- and 8-min counts. We also compared estimates for three species sampled annually for 5 yr in the
central Great Basin. Detection probabilities based on both the 5- and 8-min counts were ≥ 0.3 for 40% �
3% of the species in an ecosystem. Extending the count duration from 5 to 8 min increased the detection
probability to ≥ 0.3 for 5% � 0.5% of the species. We found no difference in occupancy estimates that
were based on 5- versus 8-min counts for species sampled over two or five consecutive years. However, for
97% of species sampled over 2 yr, precision of occupancy estimates that were based on 8-min counts
averaged 12% � 2% higher than those based on 5-min counts. We suggest that it may be worthwhile to
conduct a pilot season to determine the number of locations and surveys needed to achieve detection
probabilities that are sufficiently high to estimate occupancy for species of interest.

RESUMEN. El efecto de la duraci�on de conteo por puntos sobre las estimaciones de la
probabilidad de detecci�on y la ocupaci�on de aves reproductores
Progresivamente se utilizan datos de conteo por puntos para estimar la ocupaci�on, la probabilidad de que una
especie est�e presente en un lugar determinado; la determinaci�on de la ocupaci�on se incluye la detecci�on
imperfecta, la probabilidad de que una especie que est�a presente sea detectado. A nuestro conocimiento, no
han sido evaluados los efectos de la duraci�on del muestreo sobre las inferencias de los modelos de ocupaci�on
de aves. Nuestro objetivo fue determinar si el cambio de la duraci�on del conteo, de 5 min a 8 min, afect�o las
inferencias sobre la ocupaci�on de las aves tomadas en las tierras bajas de la bah�ıa de Chesapeake (este de
Estados Unidos) y en el centro y oeste de la Gran Cuenca (oeste de Estados Unidos) en 2012 y 2013.
Examinamos la proporci�on de especies (dos palomas, un cuco, dos vencejos, cinco colibr�ıes, 11 p�ajaros
carpinteros y 122 paseriformes) para los cuales las estimaciones de probabilidad de detecci�on fueron ≥ 0.3.
Para las especies con probabilidades de detecci�on de una sola estaci�on ≥ 0.3, se compararon las estimaciones
de ocupaci�on derivadas de conteos de 5 min y 8 min. Tambi�en comparamos las estimaciones de detecci�on de
tres especies que fueron muestreadas anualmente por cinco a~nos en la Gran Cuenca Central. Las
probabilidades de detecci�on basadas en los recuentos de 5 min y 8 min fueron ≥ 0.3 para el 40% � 3% de
las especies en el ecosistema. La extensi�on de la duraci�on del recuento de 5 min a 8 min aument�o la
probabilidad de detecci�on a ≥ 0.3 para el 5% � 0.5% de las especies. No encontramos diferencias en las
estimaciones de ocupaci�on que fueron basados en conteos de 5 minutos contra 8 minutos para las especies
muestreadas durante dos o cinco a~nos consecutivos. Sin embargo, para el 97% de las especies muestreadas
durante dos a~nos, las estimaciones de precisi�on de ocupaci�on basadas en conteos de 8 minutos fueron un 12%
m�as altas que aquellas basadas en conteos de 5 minutos. Sugerimos que quiz�as valga la pena para realizar un
estudio piloto para determinar el n�umero de ubicaciones y encuestas necesarias para lograr probabilidades de
detecci�on suficientemente altas para estimar la ocupaci�on de las especies de inter�es.
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Point-count surveys are the most common
method of sampling birds (Rosenstock et al.
2002, Bart 2005, Buckland 2006), and many
investigators have examined whether species-
or community-level inferences derived from
point counts are affected by sampling design
(e.g., Ralph et al. 1993, 1995, Petit et al.
1995, Smith et al. 1995, Thompson and Sch-
walbach 1995, Bibby et al. 2000, Shiu and
Lee 2003, Esquivel and Peris 2008, Cimprich
2009, Reidy et al. 2011). The temporal win-
dow for effectively sampling birds on a given
day can be relatively short, sometimes less
than 4 h, and breeding seasons are often lim-
ited to 5 to 8 weeks. Therefore, there are
trade-offs among the number of point-count
locations (hereafter, points; Buskirk and
McDonald 1995) sampled, the geographic
extent of sampling, and the duration of
point-count surveys (hereafter, counts; Bus-
kirk and McDonald 1995, Ralph et al. 1995,
Vergara et al. 2010).
Estimates of detection probability and

abundance generally increase as count dura-
tion increases, but there is considerable varia-
tion among species. For example, detection
probabilities of 14 songbird species that breed
in deciduous forests in the eastern United
States increased from > 0.4 to > 0.9 when
count duration increased from 5 to 20 min.
However, detection probabilities of 57% of
these species varied among years (Dawson
et al. 1995). Similarly, detection probability
increased as count duration increased from 3
to 6 to 10 min for six songbird species that
breed in deciduous forests in the eastern Uni-
ted States (Buskirk and McDonald 1995). By
contrast, mean abundance derived from 10-
min counts was higher than that derived from
6-min counts for 15% of 13 species (Thomp-
son et al. 2002). Other studies have revealed
that the number of individuals detected
increased as count duration increased regard-
less of either the period during the morning
when 3-, 6-, or 10-min counts were con-
ducted (Buskirk and McDonald 1995) or the
time of year when 5-, 10-, 15-, or 20-min
counts were conducted (Smith et al. 1998).
In southwestern France, the abundance of
90% of 21 breeding species was greater when

based on 10-min rather than 5-min counts,
and the abundance of all 21 species was
greater when based on 20-min rather than
15-min counts (Bonthoux and Balent 2012).
Estimates of the density of tropical species
that were adjusted for imperfect detection
were 13% greater when based on 10-min
rather than 2-min counts (Lee and Marsden
2008).
Count models suggest that the effect of

count duration on precision is equivocal. Pre-
cision based on the coefficient of variation
(CV) was homogenous among 6-, 8-, and 10-
min counts (Thompson et al. 2002), and pre-
cision based on the standard error (SE) was
homogenous among 3-, 6-, and 10-min
counts (Buskirk and McDonald 1995). How-
ever, Smith et al. (1998) found that SE-based
precision decreased as count duration
increased in 5-min increments from 5 to
20 min. Although many investigators have
studied the effects of increasing count dura-
tion on inferences from models based on
counts, how count duration might affect
inferences from occupancy models is unclear
(MacKenzie et al. 2002).
Occupancy models (MacKenzie et al.

2002) are frequently implemented to analyze
point-count data (e.g., Betts et al. 2008, Sar-
acco et al. 2011, Frey et al. 2012). Occu-
pancy is defined as the probability that a
species is present at a given location, and
occupancy models account for imperfect
detection (MacKenzie et al. 2002). Typically,
occupancy models use data from repeated sur-
veys at multiple locations to infer the propor-
tion of locations or area occupied by a species
and, optionally, the environmental attributes
associated with occupancy. Assessments of
trade-offs between the number of sampling
locations and the number of surveys at each
location have resulted in guidelines for sam-
pling design (MacKenzie et al. 2002, 2006,
MacKenzie and Royle 2005, Bailey et al.
2007). The effect of count duration on infer-
ences from occupancy models, however, has
received relatively little attention.
We examined the effect of 5- and 8-min

count durations on inferences about detection
probability and occupancy, and the precision
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of occupancy estimates, during the breeding
seasons of 2012 and 2013 in three ecosys-
tems: the Chesapeake Bay Lowlands, central
Great Basin, and western Great Basin. We
conducted our study in multiple ecosystems
to investigate potential geographical differ-
ences in inferences about detection and occu-
pancy. To extend the comparison beyond
2 yr, we also examined whether estimates of
occupancy differed from 2009 through 2013
for three species in the central Great Basin.
Furthermore, we determined the percentage
of species for which occupancy models con-
verged, i.e., diagnostics indicated no problems
with parameter estimation, and for which
detection probabilities derived from both 5-
and 8-min counts were ≥ 0.3. The 0.3
threshold was suggested as a reasonable means
to minimize bias (i.e., deviation of estimated
occupancy from the true occupancy value) in
occupancy estimates (MacKenzie et al. 2002).
We chose the 5-min count duration to be
consistent with standard point-count proto-
cols (Ralph et al. 1993, 1995, Matsuoka
et al. 2014). We chose the 8-min duration
because the results of a pilot survey in the
Chesapeake Bay Lowlands revealed that
~94% of species were detected within 8 min
(Leu, unpubl. data) and because 8 min was
the maximum count duration at which no
reduction in the number of points was neces-
sary given logistic constraints and associated
travel time between points in the central and
western Great Basin. The geographic and
temporal breadth of our analysis is novel, and
our inferences are relevant to the design of
surveys based on counts and estimates of spe-
cies richness based on occupancy models
(e.g., Iknayan et al. 2014).

METHODS

In the Chesapeake Bay Lowlands, our study
area included the Virginia Peninsula between
Toano and Hampton (Charles City, Henrico,
James City, Newport News, Williamsburg, and
York counties, Virginia) and the Middle Penin-
sula near West Point (King and Queen and
King William counties, Virginia). Our central
Great Basin study area included much of the
adjacent Shoshone Mountains and Toiyabe,
Toquima, and Monitor Ranges (Lander, Nye,
and Eureka counties, Nevada). In the western
Great Basin, our study area included the east

slope of the Sierra Nevada and the adjacent
Wassuk Range and Sweetwater Mountains
(Mono County, California, and Mineral, Dou-
glas, and Lyon counties, Nevada).
In the Chesapeake Bay Lowlands, we

located points at random on public lands in
upland coniferous and deciduous forests and
riparian forests. The canopy of upland conif-
erous forests was dominated by loblolly pine
(Pinus taeda) and, in early successional stands,
by sweetgum (Liquidambar styraciflua) (Mon-
ette and Ware 1983, Weakley et al. 2012).
Dominant canopy species in upland decidu-
ous forests were American beech (Fagus gran-
difolia) and oaks (Quercus spp.). Loblolly
pine, tulip poplar (Liriodendron tulipifera),
and sweetgum were also present (Monette
and Ware 1983, Weakley et al. 2012). The
composition of the canopy in riparian forests
depends on hydrology and soil drainage.
Common species included red maple (Acer
rubrum), birch (Betula spp.), black walnut
(Juglans nigra), sweetgum, tulip poplar, water
tupelo (Nyssa aquatica), black tupelo (N. syl-
vatica), sycamore (Platanus occidentalis), and
oaks (Weakley et al. 2012). We sampled the
same 131 points in both 2012 and 2013.
In the central and western Great Basin, we

located points along the full elevational gradi-
ent of multiple canyons in each mountain
range. We typically established two or three
points per 100-m vertical gain in elevation.
Points were positioned to sample the domi-
nant land-cover types throughout the can-
yons, including woodlands dominated by
single-leaf pinyon (Pinus monophylla) and
juniper (Juniperus osteosperma and J. occiden-
talis), shrubsteppe dominated by sagebrush
(Artemisia spp.), and riparian woodland dom-
inated by deciduous trees, including aspen
(Populus tremuloides), chokecherry (Prunus
virginiana), and cottonwood (Populus angusti-
folia and P. fremontii), and deciduous shrubs,
e.g., willow (Salix spp.) and Woods’ rose
(Rosa woodsii). In the central Great Basin, we
sampled 296 points in 2012, including 49
points in four canyons in the Shoshone
Mountains, 123 points in nine canyons in the
Toiyabe Range, 59 points in six canyons in
the Toquima Range, and 65 points in eight
canyons in the Monitor Range. In 2013, we
sampled 314 points, including the same 296
sampled in 2012 plus 18 additional points in
two additional canyons in the Monitor
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Range. In the western Great Basin, we sam-
pled the same 158 points in both 2012 and
2013 with 79 points located in seven canyons
in the Sierra Nevada, 23 points in two can-
yons in the Sweetwater Mountains, and 56
points in four canyons in the Wassuk Range.

Point-count surveys. In all three ecosys-
tems, we conducted 100-m, fixed-radius point
counts during the peak breeding seasons (late
May through June) of 2012 and 2013 between
15 min after sunrise and 10:00. Most point
centers were > 350 m apart (mean = 406 �
157 [SD] m), minimizing the probability that
observer activity would cause birds to move
among points. In the Chesapeake Bay Low-
lands, point counts were surveyed by five and
four observers in 2012 and 2013, respectively,
with two observers conducting surveys in both
years. In the central Great Basin, two different
sets of four observers conducted surveys in
2012 and 2013. In the western Great Basin,
the same two observers conducted surveys in
both years. During each visit, we recorded all
species detected by sound or sight, but here we
focus on doves, cuckoos, swifts, humming-
birds, woodpeckers, and passerines because
most observations of species in these orders
were birds either perched or foraging within
the points. We sampled each point three times
per year to capture potential variation in phe-
nology. We restricted sampling to mornings
with no precipitation and low wind speed. We
also noted whether detections occurred during
the first 5 min or the last 3 min.

Occupancy estimates. To estimate detec-
tion probabilities and occupancy, we used a
hierarchical, single-season occupancy model
that considered detection and occupancy pro-
cesses separately (MacKenzie et al. 2006). The
joint distribution of the observed detections
and non-detections is conditioned on the
latent, or unobserved, true occupancy state,
and on the marginal distribution of the occu-
pancy state variable. All models had the follow-
ing general form:

Zi �BernoulliðwÞ for i ¼ 1; 2; ;M

Yij jZi �BernoulliðZiPÞ for i ¼ 1; 2; ; J ;

where the unobserved, true occupancy state of
each species is Zi, and w is the probability

that any one of the M points is occupied by
the species. The observed pattern of detec-
tions and non-detections, Yij, for a given spe-
cies across the j = 1,. . ., J counts at the ith
point therefore is conditional on the latent
occupancy process with probability ZiP,
where P is the estimated detection probability
of the species.
We modified the general form of the

model to allow detection probability to vary
among observers (Diefenbach et al. 2003, All-
dredge et al. 2007a):

logit Pkð Þ ¼ xTbk ;

where the logit link function constrains the
detection probability for each observer, k, to
a value from zero to one. The transpose of
the vector of observers is indicated by xT ,
and bk is a given observer’s effect on detection
probability.
We modeled single-season occupancy

(MacKenzie et al. 2002) in 2012 and 2013
for species detected during 5-min counts (i.e.,
8-min counts truncated at 5 min) and species
detected during 8-min counts. We estimated
occupancy for all species with a detection
probability ≥ 0.3 for both 5- and 8-min
counts in a given year and where the confi-
dence intervals around the detection probabil-
ity did not range from zero to one. We tested
whether the occupancy estimates for each spe-
cies were significantly different when based
on 5- versus 8-min counts. We considered
differences in occupancy between count dura-
tions to be statistically significant if the 95%
confidence interval centered on the difference
between the 5- and 8-min occupancy estimate
did not include zero (Schenker and Gentle-
man 2001):

ðw5min�w8minÞ � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE5min2 þ SE8min2

p

We report the percentage (mean � SE) of
species for which occupancy models con-
verged and produced estimates (i.e., 95%
confidence interval did not range from zero
to one and other diagnostics did not indi-
cate estimation problems), and for which
detection probabilities based on both count
durations were ≥ 0.3.

Effects of Count Duration on Occupancy EstimatesVol. 88, No. 1 83



To examine whether inferences about occu-
pancy over 2 yr were consistent over longer
periods of time, we also fit single-season
occupancy models to data from 2009–2013
for American Robins (Turdus migratorius),
MacGillivray’s Warblers (Geothlypis tolmiei),
and Vesper Sparrows (Pooecetes gramineus) in
the central Great Basin. These species collec-
tively span gradients of land-cover associa-
tions, local rarity, and ease of identification.
American Robins are primarily associated
with riparian woodlands (Vanderhoff et al.
2016), MacGillivray’s Warblers with shrub-
dominated riparian thickets (Pitocchelli
2013), and Vesper Sparrows with sagebrush
shrubsteppe (Jones and Cornely 2002). Amer-
ican Robins are widespread, easily recognized,
and not likely to be confused with co-occur-
ring species. MacGillivray’s Warblers are
fairly widespread, and can be confused with
co-occurring species. Vesper Sparrows are rel-
atively uncommon, difficult to detect, and
can be confused with co-occurring species.
We examined difference in the precision of

occupancy estimates based on 5- and 8-min
counts. We defined precision as the coefficient
of variation (CV), calculated as (SD[w]/w)
100. We conducted all analyses in package
Unmarked (Fiske et al. 2015) in R (R Core
Team 2014).

RESULTS

We detected 143 species across the three
ecosystems, including two doves, one cuckoo,
two swifts, five hummingbirds, 11 woodpeck-
ers, and 122 passerines (Tables S1–S6). We
detected 84 species in the western Great Basin
(75 in 2012, 76 in 2013), 80 species in the
central Great Basin (70 in 2012, 73 in 2013),
and 62 species in the Chesapeake Bay Low-
lands (58 in 2012, 59 in 2013; Table 1,
Tables S1–S6). We detected nine species in
all three ecosystems, including Mourning
Doves, Hairy Woodpeckers, Northern Flick-
ers, White-breasted Nuthatches, Blue-gray
Gnatcatchers, American Robins, Chipping
Sparrows, Brown-headed Cowbirds, and
House Finches (scientific names are in Tables
S1–S6).

Detection estimates. For 81 � 3%
(range = 73–92%) of species, models of
detection probability based on both the 5-
and 8-min counts converged. Neither the

model based on the 5-min counts nor the
model based on the 8-min counts converged
for 14 � 4% (range = 0–24%) of the species
(Table 1). Irrespective of count duration, a
higher percentage of models converged for
species in the Chesapeake Bay Lowlands
(91% in 2012, 92% in 2013) than for species
in either the central Great Basin (73% in
2012, 78% in 2013) or western Great Basin
(73% in 2012, 79% in 2013). For 4 � 1%
of species (range = 0–7%), extending the
count duration from 5 to 8 min resulted in
model convergence (Table 1).
Detection probabilities based on both the

5- and 8-min counts were ≥ 0.3 for
40 � 3% of the species (range = 24–53%)
and < 0.3 for 35 � 1% of the species (range
= 31–41%; Table 1). The percentage of spe-
cies with detection probabilities ≥ 0.3 was
higher in Chesapeake Bay Lowlands (53% in
2012, 47% in 2013) than in either the cen-
tral Great Basin (24% in 2012, 36% in
2013) or western Great Basin (35% in 2012,
41% in 2013). Increasing count duration
from 5 to 8 min increased the detection
probability to ≥ 0.3 for 5 � 0.5% of the spe-
cies (range = 3–7%), but decreased the detec-
tion probability to < 0.3 for 2.0 � 0.5%
(range = 0–4%) of the species (Table 1).

Occupancy estimates. We estimated
occupancy for 35 species (56% of those
detected) in the Chesapeake Bay Lowlands
(31 in 2012, 27 in 2013), 27 species (34% of
those detected) in the central Great Basin (17
in 2012, 26 in 2013), and 37 species (44%
of those detected) in the western Great Basin
(26 in 2012, 31 in 2013) (Table 1). Occu-
pancy estimates based on 5- and 8-min
counts were not statistically different for any
species (Figs. 1–3). Species with low na€ıve
occupancy (percentage of points occupied,
not accounting for imperfect detection) for
which models did not converge included
those with home ranges larger than the area
of the points (~3 ha) (e.g., woodpeckers or
corvids), those that rarely occur in the land-
cover types we sampled (e.g., synanthropic
and wetland species), and those that were rare
in our study areas (Tables S1–S6).
Across ecosystems and years, point esti-

mates of occupancy for 71 � 4% of the spe-
cies were 0.001–0.12 higher when based on
8-min rather than 5-min counts (Figs. 1–3).
We found no difference in the point
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estimates for 9 � 3% of the species. By con-
trast, point estimates of occupancy for
19 � 5% of the species were 0.001–0.32
higher when based on 5-min rather than 8-
min counts (Figs. 1–3).
Occupancy estimates for American Robins,

MacGillivray’s Warblers, and Vesper Spar-
rows based on 5- and 8-min counts did not
differ significantly within or among five con-
secutive years (Table 2). In addition, differ-
ences in estimates of occupancy based on 5-
and 8-min counts were consistent (did not
exceed 0.06) among years and species. The
difference among years in occupancy based
on 5- versus 8-min counts ranged from 0.05
(American Robin) to 0.08 (MacGillivray’s
Warbler).
The precision of occupancy estimates based

on 8-min counts was higher than those for 5-
min counts for 97% of species. Two excep-
tions to this pattern were occupancy estimates
for Yellow-rumped Warblers (Setophaga coro-
nata) in 2012 and 2013 and Spotted
Towhees (Pipilo maculatus) in 2012 in the
western Great Basin (Tables S7–S9).

Excluding these two species, precision
increased by 12 � 2% (range = 0–38%)
when count duration increased from 5 to
8 min. Similarly, precision based on 8-min
counts was higher than precision based on 5-
min counts for American Robins and
MacGillivray’s Warblers from 2009 through
2013, and in three of 5 yr for Vesper Spar-
rows (Table S10). Precision increased by
18 � 4% (range = 3–25%), 20 � 3% (range
= 9–27%), and 10 � 5% (range = 0–29%)
for American Robins, MacGillivray’s War-
blers, and Vesper Sparrows, respectively.

DISCUSSION

We found that occupancy estimates based
on 5- and 8-min counts did not differ for
species with detection probabilities ≥ 0.3.
These results were consistent among three
ecosystems and for both 2-yr and 5-yr tempo-
ral windows. This suggests that a modest
extension of the recommended 5-min dura-
tion of standardized counts (Ralph et al.
1993, 1995, Matsuoka et al. 2014) is unlikely

Table 1. Total number of species detected in 2012 and 2013 in the Chesapeake Lowlands, central Great
Basin, and western Great Basin, the number (percentage) of species for which models did or did not con-
verge, and the number (percentage) of species for which detection probabilities (P) based on 5- and 8-min
counts were either ≥ 0.3 or < 0.3 (MacKenzie et al. 2002). Percentages are based on the total number of
species detected in a given year and ecosystem.

Chesapeake Bay
Lowlands

Central Great
Basin

Western Great
Basin

2012 2013 2012 2013 2012 2013

Number of species detected 58 59 70 73 75 76
Models based on 5- and 8-min
counts converged

53 (91) 54 (92) 51 (73) 57 (78) 55 (73) 60 (79)

Models converged when based
on 8-min but not 5-min counts

4 (7) 3 (5) 1 (1) 5 (7) 1 (1) 0 (0)

Models converged when based
on 5-min but not 8-min counts

1 (2) 2 (3) 1 (1) 0 (0) 2 (3) 1 (1)

Neither model converged 0 (0) 0 (0) 17 (24) 11 (15) 17 (23) 15 (20)
P ≥ 0.3 when based on 5- and
8-min counts

31 (53) 28 (47)a 17 (24) 26 (36) 26 (35) 31 (41)

P ≥ 0.3 when based on 8-min
but not 5-min counts

3 (5) 5 (8) 4 (6) 4 (5) 2 (3) 4 (5)

P ≥ 0.3 when based on 5-min
but not 8-min counts

1 (2) 1 (2) 2 (3) 3 (4) 1 (1) 0 (0)

P < 0.3 when based on 5- and
8-min counts

18 (31) 21 (36) 29 (41) 24 (33) 26 (35) 25 (33)

aWe excluded Blue-gray Gnatcatchers because confidence intervals for occupancy ranged from zero to
one.
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to affect inferences based on occupancy mod-
els. However, we found that the precision
(CV) of occupancy estimates for 97% of the
species we examined increased by 12 � 2%
(range = 0–38%) when count duration
increased from 5 to 8 min. This suggests a
trade-off between count duration and preci-
sion and that a modest 3-min increase in
count duration can provide more precise
occupancy estimates.
Our study highlights the difficulty of mod-

eling occupancy of rare species and species
with large home ranges. We found that detec-
tion probabilities based on both the 5- and 8-

min counts were ≥ 0.3 for 40 � 3% of the
species in our study. In addition, extending
count duration from 5 to 8 min increased
detection probability to ≥ 0.3 for an average
of 5 � 0.5% of species. Similarly, detection
probabilities of 14 species increased as sam-
pling duration increased in 5-min increments
from 5 to 20 min, but detection probabilities
did not reach 1 for any species even when
points were sampled for 20 min (Dawson
et al. 1995). Although we sampled > 100
points in each ecosystem, three counts per
point may not be sufficient to detect species
with home ranges larger than the area of the

Fig. 1. Occupancy estimate and lower and upper bounds of 95% confidence intervals for species of
birds with detection probabilities ≥ 0.3 when based on either 5- or 8-min counts in the Chesapeake Bay
Lowlands during 2012 and 2013. The two occupancy estimates did not differ significantly for any spe-
cies.
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point or species with low abundances. As a
general guideline, MacKenzie and Royle
(2005) recommended increasing the number
of counts rather than the number of points to
maximize the precision of estimates for com-
mon species, and increasing the number of
points rather than the number of counts to
maximize precision for rare species. Increasing
the number of counts from three to four
might have increased the number of species
for which we could have estimated occu-
pancy. Simulations indicated that four counts
were sufficient to sample species with detec-
tion probabilities of 0.4 and occupancy from

0.2–0.5, and species with detection probabili-
ties of 0.5 and occupancy from 0.7–0.8
(MacKenzie and Royle 2005). Sampling con-
straints may limit the application of distance
sampling to point-count data; 75–100 obser-
vations of each species are recommended to
achieve robust density estimates (Buckland
et al. 2001).
For 19 � 5% of species in our study, esti-

mates of occupancy based on 5-min counts
were higher than those based on 8-min
counts. This counterintuitive result reflects
the manner in which occupancy is estimated.
The na€ıve estimate of occupancy, wnaive (i.e.,

Fig. 2. Occupancy estimate and lower and upper bounds of 95% confidence intervals for species of
birds with detection probabilities ≥ 0.3 when based on either 5- or 8-min counts in the central Great
Basin during 2012 and 2013. The two occupancy estimates did not differ significantly for any species.
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the proportion of sites at which the species
was detected at least once), is adjusted as

ŵ ¼ wnaive

P� ;

where P* is the probability of detecting the
species at least once across j counts. When P
is homogeneous across surveys, P* is estimated
as 1�(1�P)j, where j is the number of counts
in a given year. When P is heterogeneous
across surveys, P* is estimated as 1�((1�P1)
(1�P2)(1�P3)), where subscript 1–3 indexes
the count (MacKenzie et al. 2006). Occu-
pancy estimates based on 5-min counts can

be higher than those based on 8-min counts
when na€ıve occupancy from 5- and 8-min
counts are similar, but a species is detected
on fewer of the 5-min counts than the 8-min
counts. This is illustrated by occupancy esti-
mates for American Robins in the western
Great Basin in 2012. Na€ıve estimates of occu-
pancy based on 5- and 8-min counts were
0.56 and 0.63, respectively. However, esti-
mates of P* based on 5- and 8-min counts
were 0.72 and 0.84, respectively. Thus, the
occupancy estimates derived from 5- and 8-
min counts were 0.77 and 0.75, respectively.
We suspect that these slight differences could
affect estimates of species richness based on

Fig. 3. Occupancy estimate and lower and upper bounds of 95% confidence intervals for species of
birds with detection probabilities ≥ 0.3 when based on either 5- or 8-min counts in the western Great
Basin during 2012 and 2013. The two occupancy estimates did not differ significantly for any species.
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occupancy models (Iknayan et al. 2014),
especially because sample sizes were too small
to estimate occupancy for a substantial pro-
portion of the birds in our study.
Because most point-count protocols are not

species-specific, but sample communities
(Thompson 2002), we believe that evaluating
whether the proposed number of points and
counts is likely to yield a sufficient number of
detections is worthwhile. The proportion of
species for which we were able to derive
robust estimates of occupancy on the basis of
single-season models differed among ecosys-
tems. Nevertheless, we could not estimate
occupancy for between 47% and 76% of the
species detected. A suggested method for esti-
mating occupancy despite low detection prob-
abilities is to make estimates at the level of
functional groups rather than individual spe-
cies. Analyses of functional groups take
advantage of similarities in detection processes
among common and rare species in a given
functional group (Alldredge et al. 2007b,
Dorazio et al. 2010). Alldredge et al. (2007b)
found that multi-species analyses yielded
more precise density estimates than single-
species analyses. Occupancy has been esti-
mated at the level of functional groups with
methods such as multi-season hierarchical
Bayesian models (Gelman and Hill 2007,

Dorazio et al. 2010, Zipkin et al. 2010).
Whether multi-species analyses on the basis
of single-season occupancy models provide
more precise occupancy estimates than single-
species analyses remains unclear.
Hayes and Monfils (2015) suggested that

point-count data are not well suited for occu-
pancy modeling because the mobility of birds
violates the assumption that the occupancy
status of points does not change among
counts (i.e., the closure assumption). Because
the area of most points is smaller than the
smallest home range of the species sampled,
individuals regularly move in and out of the
points (Rota et al. 2009). Simulations indi-
cated that even slight movements resulted in
detection probabilities that were lower than
the true value and occupancy estimates that
were higher than the true value (Hayes and
Monfils 2015). Our results were consistent
with the results of these simulations, with
detection probabilities < 0.3 for species with
large home ranges, such as woodpeckers. Ulti-
mately, whether point-count data can be used
to estimate occupancy hinges on the defini-
tion of use (i.e., open system) versus occu-
pancy (i.e., closed system) (Latif et al. 2016).
Our finding that occupancy estimates based

on 5- and 8-min counts did not differ signifi-
cantly may not be transferable to study

Table 2. Occupancy estimates (Ψ), standard error (SE), and lower and upper bounds of 95% confidence
intervals (LCI, UCI) for three species of birds detected during 5- and 8-min counts in the central Great
Basin from 2009 to 2013. Means of the five occupancy estimates did not differ significantly for any spe-
cies.

Species Year

5 min 8 min

Ψ SE LCI UCI Ψ SE LCI UCI

American Robin (Turdus migratorius) 2009 0.42 0.05 0.32 0.51 0.45 0.04 0.36 0.53
2010 0.61 0.07 0.46 0.74 0.67 0.06 0.53 0.78
2011 0.50 0.06 0.39 0.61 0.52 0.05 0.42 0.62
2012 0.53 0.06 0.41 0.65 0.57 0.05 0.46 0.67
2013 0.37 0.04 0.30 0.45 0.38 0.04 0.32 0.45

MacGillivray’s Warbler (Geothlypis tolmiei) 2009 0.39 0.04 0.32 0.46 0.43 0.04 0.36 0.50
2010 0.45 0.05 0.36 0.54 0.50 0.04 0.41 0.58
2011 0.49 0.05 0.40 0.58 0.52 0.04 0.44 0.60
2012 0.46 0.05 0.37 0.56 0.42 0.04 0.35 0.50
2013 0.40 0.04 0.33 0.47 0.41 0.03 0.34 0.47

Vesper Sparrow (Pooecetes gramineus) 2009 0.15 0.04 0.09 0.24 0.21 0.04 0.14 0.31
2010 0.28 0.06 0.18 0.41 0.28 0.05 0.19 0.39
2011 0.15 0.03 0.11 0.21 0.16 0.03 0.12 0.22
2012 0.16 0.03 0.11 0.23 0.16 0.03 0.11 0.22
2013 0.14 0.02 0.10 0.20 0.14 0.02 0.10 0.19

Effects of Count Duration on Occupancy EstimatesVol. 88, No. 1 89



designs that include fewer or more than three
counts. On the basis of our results, we do not
recommend conducting fewer than three
counts because doing so will likely lead to
inferences with low precision. MacKenzie and
Royle (2005) found that two counts were suf-
ficient to estimate occupancy if detection
probability of a species was ≥ 0.6, which was
the case for 12% (N = 358) of our single-sea-
son models, and four counts were sufficient if
detection probability of a species was ≥ 0.4.
Because 8-min counts improved precision of
occupancy estimates for 97% of our species,
and because estimates of species richness gen-
erally increase as count duration increases
(Dawson et al. 1995, Drapeau et al. 1999),
we recommend 8-min rather than 5-min
counts. Ultimately, because we found that
detection probabilities varied among species,
we also recommend conducting a pilot year
of surveys to identify species for which detec-
tion probabilities are sufficiently large to esti-
mate occupancy precisely. The freeware
GENPRES can be used to explore the opti-
mal number of points and counts (Bailey
et al. 2007).
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Table S1. Detection probability (P), stan-
dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the Chesapeake Bay Low-
lands in 2012 during 5- and 8-min point
counts (100-m fixed radius). Blank cells indi-
cate that the model did not converge for a
given species. For species for which P < 0.3
in at least one count, P and variance estimates
are highly uncertain.

Table S2. Detection probability (P), stan-
dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the Chesapeake Bay Low-
lands in 2013 during 5- and 8-min point
counts (100-m fixed radius). Blank cells indi-
cate that the model did not converge for a
given species. For species for which P < 0.3
in at least one count, P and variance estimates
are highly uncertain.
Table S3. Detection probability (P), stan-

dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the central Great Basin in
2012 during 5- and 8-min point counts
(100-m fixed radius). Blank cells indicate that
the model did not converge for a given spe-
cies. For species for which P < 0.3 in at least
one count, P and variance estimates are
highly uncertain.

Table S4. Detection probability (P), stan-
dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the central Great Basin in
2013 during 5- and 8-min point counts
(100-m fixed-radius). Blank cells indicate that
the model did not converge for a given spe-
cies. For species for which P < 0.3 in at least
one count, P and variance estimates are
highly uncertain.
Table S5. Detection probability (P), stan-

dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the western Great Basin in
2012 during 5- and 8-min point counts
(100-m fixed radius). Blank cells indicate that
the model did not converge for a given spe-
cies. For species for which P < 0.3 in at least
one count, P and variance estimates are
highly uncertain.
Table S6. Detection probability (P), stan-

dard error (SE), and lower and upper bounds
of 95% confidence intervals (LCI, UCI) for
species detected in the western Great Basin in
2013 during 5- and 8-min point counts
(100-m fixed radius). Blank cells indicate that
the model did not converge for a given spe-
cies. For species for which P < 0.3 in at least
one count, P and variance estimates are
highly uncertain.
Table S7. Annual occupancy (w), standard

error (SE), coefficient of variation (CV = SEffiffiffi
n

p
/w), and percentage change in the CV (%

D) when count duration increased from 5 to
8 min for species surveyed in the Chesapeake
Bay Lowlands in 2012 and 2013 at 131
points (100-m fixed radius). A positive
change in the CV indicates that the precision
of occupancy estimates was higher when
based on 8-min than 5-min counts. Only spe-
cies with detection probabilities ≥ 0.3 are
listed. Blank cells indicate that the model did
not converge for a given species. Scientific
names are in Supporting Information
Table S1 and S2.
Table S8. Annual occupancy (w), standard

error (SE), coefficient of variation (CV = SEffiffiffi
n

p
/w), and percentage change in the CV (%

D) when count duration increased from 5 to
8 min for species surveyed in the central
Great Basin in 2012 and 2013 at 296 and
314 points (100-m fixed radius), respectively.
A positive change (% D) in the CV indicates
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that the precision of occupancy estimates was
higher when based on 8-min than 5-min
counts. Only species with detection probabili-
ties ≥ 0.3 are listed. Blank cells indicate that
the model did not converge for a given spe-
cies. Scientific names are in Supporting Infor-
mation Table S3 and S4
Table S9. Annual occupancy (w), standard

error (SE), coefficient of variation (CV = SEffiffiffi
n

p
/w), and percentage change in the CV (%

D) when count duration increased from 5 to
8 min counts for species detected in the western
Great Basin in 2012 and 2013 at 158 points
(100-m fixed radius). A positive change in the
CV indicates that the precision of occupancy
estimates was higher when based on 8-min than
to 5-min counts whereas a negative change indi-
cates that the precision of occupancy estimates
was higher when based on 5-min than 8-min

counts. Only species with detection probabilities
≥ 0.3 are listed. Blank cells indicate that the
model did not converge for a given species. Sci-
entific names are in Supporting Information
Table S5 and S6.
Table S10. Annual occupancy (w), stan-

dard error (SE), coefficient of variation (CV
= SE

ffiffiffi
n

p
/w), and percentage change in the

CV (% D) when count duration increased
from 5 to 8 min for three species of birds
detected in the central Great Basin from
2009–2013 at 300, 244, 295, 296, and 314
points (100-m fixed radius), respectively. A
positive change in the CV indicates that the
precision of occupancy estimates was higher
when based on 8-min than 5-min counts. Sci-
entific names are in Supporting Information
Table S5 and S6.
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