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Abstract. An ordinary differential equation model describing interaction of

water and plants in ecosystem is proposed. Despite its simple looking, it is
shown that the model possesses surprisingly rich dynamics including multiple

stable equilibria, backward bifurcation of positive equilibria, supercritical or
subcritical Hopf bifurcations, bubble loop of limit cycles, homoclinic bifurca-

tion and Bogdanov-Takens bifurcation. We classify bifurcation diagrams of the

system using the rain-fall rate as bifurcation parameter. In the transition from
global stability of bare-soil state for low rain-fall to the global stability of high

vegetation state for high rain-fall rate, oscillatory states or multiple equilib-

rium states can occur, which can be viewed as a new indicator of catastrophic
environmental shift.

1. Introduction. In the past four decades, the disappearance of vegetation which
is referred as desertification has become a serious environmental problem, and the
global ecosystems are threatened today more than ever before [7]. Biologically it
indicates the ecological unbalance between the limited water resource and ecosys-
tem engineers such as animals, plants or microorganisms [12, 13]. How ecosystem
engineers affect ecosystems is one of the main frontiers in ecology [25] and it has
fascinated many ecologists [7, 12, 13]. The disappearance of vegetation may be a
slow and gradual process in many forms, such as spotted vegetation patches, fairy
rings, tiger bush bands, and bands, which have been reported and studied in dif-
ferent environment [15, 14, 22, 23, 25, 28]. Mathematically it means formation
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of non-uniform spatiotemporal patterns, such as symmetry breaking, instabilities,
and coexistence of stable states [7]. Pattern formation in water-plant systems in
the semi-arid climatic zone has been investigated by many authors [17, 31] with
the applicability of Turing’s idea [30]. The dynamic of this class of water-plant sys-
tems is governed by the competition of plants (shrubs, trees) for common resource
(water, light) which admits spatial dynamics. The corresponding reaction-diffusion
systems undergo a Turing-like stability change, which means a uniform steady state
is stable with respect to the ordinary differential equation system but unstable with
respect to the corresponding reaction-diffusion system, that may generate spotted
vegetation patches, fairy rings, tiger bush bands, and bands in some parameter
range.

Figure 1. A water-plant interaction system with the infiltration feedback.

Understanding the underlying mechanism for generation of vegetation patterns
and their observed resilience is considered as an important step toward a compre-
hension of the desertification process, where environmental effects such as climate
changing and grazing destroy the natural balance toward stable aridity [28]. Vege-
tation pattern formation is a complex process involving not only the spatial physical
movement of substance described by diffusion, advection and chemotaxis, but also
the chemical interactions between resource and biomass. In this article, we propose
a model of ordinary differential equations of water and biomass, based on a previ-
ous model proposed in Shnerb et al. [28] describing interaction of one plant species
(shrubs or trees) and one resource. We show that the proposed two-dimensional
simple ODE model possesses surprisingly rich dynamics including multiple stable
equilibria, backward bifurcation of positive equilibria, supercritical or subcritical
Hopf bifurcations, bubble loop of limit cycles, homoclinic bifurcations and saddle-
node bifurcation. This model will serve as the kinetic model for our subsequent
studies of spatiotemporal pattern formation for the corresponding partial differen-
tial equation model with effect of diffusion, advection and cross-diffusion.

Based on the model in [28], we propose a nondimensionalized water-biomass
model in the following form 

dw

dt
= R− λwb− w,

db

dt
= wb− µ(b)b.

(1)

Here w(t) is the amount of available water and b(t) is the amount of shrubs biomass;
R is the rain-fall rate; the term −w represents water losses by percolation and
evaporation; the term wb represents growth of shrubs as they consume water, while
−λwb is the corresponding consumption of water by shrubs and λ is the water
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consumption rate in the presence of biomass; µ(b)b is the biomass death rate. A
flow diagram for (1) is shown in Figure 1. In [28], a reaction-diffusion type system
was proposed with the kinetic system (1) with µ(b) ≡ µ (a constant), and they
showed that no Turing-like instability can occur for that system. In this study, we
consider a biomass per capita death rate in the following form [20] (see Figure 2)

µ(b) = µ0 +
µ1

b+ 1
, (2)

where µ0 and µ1 are positive constants. Here µ(b) is assumed to be a decreasing
function of biomass b in order to capture the infiltration feedback [6, 7]. Biologically
it can be explained as follows. The biomass can improve the soil environment locally
which in turn increases infiltration at vegetation patch. Thus the larger biomass
density results in the higher infiltration and the more soil water available and the
smaller death rate of the biomass, whereas upon a constant death rate µ0.

b

µ
0
+µ

1

µ
0

µ(b)

Figure 2. The graph of biomass per capita death rate µ(b) = µ0+
µ1

b+ 1
. Here

µ0 = 0.5, µ1 = 2, and 0 ≤ b ≤ 10.

When µ1 = 0 (that is, the biomass per capita death rate is a constant), system
(1) is reduced to a well-known epidemic model (with some proper rescaling): SIR
model with birth/death. In that context, w(t) is the susceptible population, b(t)
is the infective population, and the removed population can be determined by the
conservation of total population. The dynamics in that situation is well-known [3].
Indeed in this special case (1) has a bare-soil equilibrium (w0, b0) = (R, 0) for all

parameter values and a unique positive equilibrium (w+, b+) =

(
µ0,

R− µ0

λµ0

)
if

R > µ0. By using Lyapunov theory, we have the following results (detailed proof is
given in subsection 2.1).

Proposition 1.1. Consider (1) with µ(b) given by (2). Assume that µ1 = 0 and
the parameters R, λ, µ0 are all positive. Then

1. If 0 < R ≤ µ0, then the bare-soil equilibrium (w0, b0) is globally asymptotically
stable;

2. If R > µ0, then the positive equilibrium (w+, b+) is globally asymptotically
stable.

The bifurcation diagram of (1) with µ1 = 0 looks like the one in Figure 3 (a)
when using the rain-fall rateR as the bifurcation parameter. Hence one can conclude
that the dynamics of (1) with µ1 = 0 is a relatively simple one: when increasing



2974 XIAOLI WANG, JUNPING SHI AND GUOHONG ZHANG

the rain-fall, there is a direct transition from the bare-soil state to the vegetation
state.

b

R

(a)

b

R

(b)

b

R

(c)

b

R

(d)

b

R

(e)

b

R

(f)

b

R

(g)

b

R

(h)

Figure 3. Possible bifurcation diagrams for (1)-(2) for different (λ, µ0, µ1).

In all diagrams, the horizontal axis is the rain-fall rate R, and the vertical
axis is the biomass b. (a) forward bifurcation and no cycle; (b) forward bi-

furcation and bubble loop of cycles; (c) backward bifurcation and no cycle;
(d) backward bifurcation and bubble loop of cycles; (e) backward bifurcation,

and bubble loop of cycles with one subcritical and one supercritical Hopf bi-

furcations and a saddle-node bifurcation of cycles; (f) backward bifurcation,
subcritical Hopf bifurcation, and branch of cycles into a homoclinic bifurcation;
(g) backward bifurcation, supercritical Hopf bifurcation, and branch of cycles

into a homoclinic bifurcation; (h) backward bifurcation, subcritical Hopf bifur-
cation, saddle-node bifurcation of cycles and branch of cycles into a homoclinic

bifurcation.

In this paper, we consider (1) with a decreasing biomass per capita death rate
as in (2) which captures the infiltration feedback, and we show that when µ1 > 0,
system (1) can exhibit surprisingly rich dynamics. While mathematical details of
our result will appear in later sections, we summarize our main findings using the
bifurcation diagrams in Figure 3. In all bifurcation diagrams shown in Figure 3, the
horizontal axis is the rain-fall rate R, and the vertical axis is the biomass b. We use
solid curve to represent stable equilibria, and dashed curve for unstable one; and
we use an upper-lower pair of solid curve to represent stable periodic orbits, and
dashed pair for unstable one. When µ1 = 0, a simple diagram as in Figure 3 (a)



INTERACTION BETWEEN WATER AND PLANTS 2975

predicts convergence to bare-soil or vegetation equilibrium. When µ1 is positive,
several complications of bifurcation diagrams can occur:

1. Backward bifurcation of positive equilibria. The positive equilibria emerges
from the bare-soil ones through a transcritical bifurcation when increasing R.
The ones in Figure 3 (a) and (b) are forward bifurcation, and the ones in (c)-
(h) are backward ones. The phenomenon of backward bifurcations has been
found in many epidemic models [2, 3, 9, 34], and here it occurs as a result of
higher infiltration for higher biomass density.

2. Saddle-node bifurcation of positive equilibria. If there is a backward bifurcation
of positive equilibria, note that there is no positive equilibria for small positive
R, then the branch of positive equilibria necessarily turns back at a saddle-
node bifurcation point for equilibria as seen in Figure 3 (c)-(h). The two
equilibria for R near the bifurcation point can be a saddle and a stable node
(as in (c)-(e)), but they can also be a pair of a saddle and an unstable node
(as in (f)-(h)). We remark that this was also found in some other water-plant
models [14].

3. Closed loop (“bubble” or “heart”) of periodic orbits. For certain parameter
range, oscillatory patterns emerge at the intermediate rain-fall rates. Indeed,
we show that periodic orbits do not exist for small or large R. When there are
two Hopf bifurcation points, the branch of periodic orbits form a closed loop
starting and ending on the high vegetation equilibrium (Figure 3 (b), (d) and
(e)). We call the ones in (b) and (d) “bubble”, and the one in (e) “heart”.
The difference is that in (b) and (d), both Hopf bifurcations are supercritical
and bifurcating limit cycles are stable, while in (e), one of Hopf bifurcations
is subcritical. In the latter case, a saddle-node bifurcation of periodic orbits
always occurs so the shape of the closed loop is like a heart. The bubble loop
of limit cycles are more frequently found in delay differential equation models
with delay as bifurcation parameter, for example [19, 29], but not so often in
purely ODE models.

4. Homoclinic orbit, homoclinic bifurcation and open ended branch (“lotus” or
“pepper”) of periodic orbits. In Figure 3 (f)-(h), an unstable node merges
from the saddle-node bifurcation of equilibria, and there is only one Hopf
bifurcation point when increasing R. Hence the branch of periodic orbits
cannot be a closed loop with two ends. Instead the other end of the branch
is a homoclinic orbit in this case. This is known as a homoclinic bifurcation
for which the period of limit cycles tends to infinity when approaching to
the homoclinic bifurcation point. When there is no more bifurcation on the
branch of cycles, we call the open ended branch of periodic orbits to be a
“lotus” ((f) and (g)), and we call it a “pepper” if there is another saddle-node
bifurcation of cycles on the branch (h). Note that the “lotus” can either be
forward (f) or backward (g).

5. Bogdanov-Takens bifurcation. All bifurcation phenomena described above are
codimension one with parameter R. By using R and µ1 as bifurcation un-
folding parameters, we show that a codimension two Bogdanov-Takens bi-
furcation (see [16]) occurs at the intersection of the Hopf bifurcation curve
and the equilibrium saddle-node bifurcation curve. In this bifurcation sce-
nario, the saddle-node bifurcation produces a saddle and unstable node, the
unstable undergoes a Hopf bifurcation generating a limit cycle, and the cycle
continues in the “lotus” to a homoclinic orbit based on the saddle equilibrium.
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Figure 3 (f)-(h) shows several possible one-dimensional cross sections of the
Bogdanov-Takens bifurcation, and see Section 4 for more details.

Compared with the simple monostable dynamics when µ1 = 0, the system (1)
with (2) shows bistability of (i) two equilibria (Figure 3 (c), (d)-(f) for some R);
(ii) one equilibrium and one limit cycle (Figure 3 (d)-(h) for some R), or even
possibly tristability of (iii) two equilibria and one limit cycle (Figure 3 (h) for
some R). Specific conditions for achieving the bifurcation diagrams in Figure 3
and bistability/tristability are given in Sections 2-4. The system also have multiple
locally stable equilibria, multiple periodic orbits and homoclinic orbit. Note that
various bistability also appear in predator-prey type models with Allee effect in
prey growth [33], while in (1) the “prey” (water) does not have an Allee effect type
growth.

The bifurcation phenomena revealed above have been documented in textbooks
of dynamical systems [16], but it is rare that all of them appear in the same simple
model like (1)-(2). This is perhaps a minimal model to have all these dynamical
behavior of backward equilibrium transcritical bifurcation, saddle-node bifurcations
for equilibria and limit cycles, Hopf bifurcations, limit cycle bubble/heart, homo-
clinic bifurcation, and Bogdanov-Takens bifurcation.

Our mathematical results here have interesting biological implications. In all
bifurcation scenarios in Figure 3, the bare-soil equilibrium is globally asymptotically
stable for low rain-fall rate R, and the higher positive vegetation equilibrium is
globally asymptotically stable for high rain-fall rate R (see subsection 2.3), which
is not surprising. However for intermediate rain-fall rate, many different dynamical
behavior are shown in Figure 3. Note that each of Figure 3 (c)-(h) has a backward
bifurcation and a hysteresis loop when R decreases. The hysteresis loop predicts
a catastrophic shift from the higher vegetation state to the bare-soil state at the
saddle-node bifurcation point, which has been the main feature of many studies of
ecological or physical phase transitions [21, 25, 27]. Moreover the early warning
sign of catastrophic shift has been a recent hot topic, as it is important to predict
and prevent such catastrophic changes [4, 26]. Our results shown in Figure 3 (d)-
(e) suggest that oscillatory patterns can occur at the intermediate rain-fall rate,
that can be regarded as an early warning sign of getting close to the tipping point
(saddle-node bifurcation point).

While the system (1) models the interaction between water and plants, it can
also be interpreted as an epidemic model as mentioned earlier for the case of µ1 = 0.

In that context, the term µ(b)b = µ0b +
µ1b

b+ 1
can be broken into two terms: µ0b

represents moving from infected to removed class, and
µ1b

b+ 1
indicates the treatment

of infected individuals. Similar SIR models with birth/death and treatment have
been considered in [32, 34, 38, 39]. In all these work, backward bifurcation has
been discovered and some also found Hopf bifurcation and existence/nonexistence
of limit cycles. But none of these work considered limit cycle bubble, homoclinic
bifurcation, and Bogdanov-Takens bifurcation.

This paper is organized as follows. In Section 2, we analyze the existence, local
and global stability of equilibria. In Section 3, we show the occurrence of Hopf bi-
furcations and homoclinic bifurcations. The Bogdanov-Takens bifurcation analysis
is given in Section 4. We end with some more discussions in Section 5.
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2. Equilibria and stability.

2.1. Preliminaries. The system corresponding to (1) with death rate given in (2)
is in form 

dw

dt
= R− λwb− w := F (w, b),

db

dt
= wb−

(
µ0 +

µ1

b+ 1

)
b := G(w, b),

w(0) ≥ 0, b(0) > 0.

(3)

It is clear that F (w, b), G(w, b) are analytic functions in the first quadrant R2
+ =

{(w, b) ∈ R2 : w ≥ 0, b ≥ 0}. We also assume all the parameters R, λ, µ0, µ1 are
positive. We first show that system (3) is as “well behaved” as one intuits from the
biological problem.

Lemma 2.1. Any solution of (3) is positive for t > 0, exists for t ∈ (0,∞) and is
eventually bounded, i.e., let

k1 = min{1, µ0}, (4)

then for any ε > 0, there exists T > 0,

Rk1
R+ k1 + ε

≤ w(t) ≤ R+ ε, and 0 < b(t) ≤ R+ ε

λk1
for t > T. (5)

Proof. For system (3), we have w′|w=0 = R > 0 and

b(t) = b(0) exp

(∫ ∞
0

(w(s)− µ0 −
µ1

b(s) + 1
)ds

)
> 0.

So the solution is positive. Next we show the boundedness of the solution. Firstly,
from the water equation we see that lim sup

t→∞
w(t) ≤ R. Then for any ε > 0, there

exists a T1 > 0 such that w(t) ≤ R+ ε for t > T1.
Let

k1 = min{1, µ0}, k2 = max{1, µ0 + µ1}.
Then

R− k2(w + λb) ≤ (w + λb)′ ≤ R− k1(w + λb),

which yields that

R

k2
≤ lim inf

t→∞
(w(t) + λb(t)) ≤ lim sup

t→∞
(w(t) + λb(t)) ≤ R

k1
.

Then there exists a T2 > 0 such that b(t) ≤ R+ ε

λk1
for t > T2. Thus, we have

w′(t) ≥ R−
(
R+ ε

k1
+ 1

)
w(t),

which yields

lim inf
t→∞

w(t) ≥ Rk1
R+ k1

.

This shows that there exists a T3 > 0 such that w(t) ≥ Rk1
R+ k1 + ε

for t > T3.

Let T = max{T1, T2, T3}, we obtain (5) which also implies the global existence in
time.
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The system (3) has a trivial (bare-soil) equilibrium (w0, b0) = (R, 0) for all pa-
rameters. A positive equilibrium (w, b) satisfies

w =
R

λb+ 1
, R = (λb+ 1)

(
µ0 +

µ1

b+ 1

)
. (6)

So b is a positive root of the quadratic equation

µ0λb
2 + (µ0(λ+ 1) + µ1λ−R)b+ µ0 + µ1 −R = 0. (7)

Define

∆0 = (µ0(λ+ 1) + µ1λ−R)2 − 4λµ0(µ0 + µ1 −R),

R0 = µ0 + µ1, R1 = (
√

(1− λ)µ0 +
√
λµ1)2,

(8)

and

b± = b±(R) =
R− (λ+ 1)µ0 − λµ1 ±

√
∆0

2λµ0
. (9)

First we have the following result about the positive equilibria of (3) from ele-
mentary calculation.

Theorem 2.2. Assume that the parameters R, λ, µ0, µ1 are all positive and let
∆0, R0, R1, b

± be defined as in (8) and (9). Then

1. If either λ ≥ 1 or 0 ≤ µ1 ≤
λµ0

1− λ
, then the system (3) has a unique positive

equilibrium (w+, b+) =

(
R

λb+ + 1
, b+
)

when R > R0, and has no positive

equilibrium if R ≤ R0.

2. If µ1 >
λµ0

1− λ
, then the system (3) has a unique positive equilibrium (w+, b+) =(

R

λb+ + 1
, b+
)

when R ≥ R0 and R = R1, has two positive equilibria (w±, b±)

=

(
R

λb± + 1
, b±
)

when R1 < R < R0, and has no positive equilibrium when

R < R1.

In the following (w+, b+) is referred as the higher vegetation state, while (w−, b−)
is the lower vegetation state. It is useful to note that for any b > 0, there is at most
one R = R(b) such that some (w, b) is a positive equilibrium for R = R(b). Indeed
from (7), it is easy to solve that

R(b) =
µ0λb

2 + (µ0(λ+ 1) + µ1λ)b+ µ0 + µ1

b+ 1
. (10)

Note that in the (R, b) bifurcation diagram, R = R1 is a saddle-node bifurcation
point and R = R0 is a transcritical bifurcation point where positive equilibria
bifurcate from the bare-soil equilibrium. To determine whether the bifurcation at
R = R0 is supercritical or subcritical for the positive equilibria, from (10) we have
the slope of the positive equilibrium branch at zero biomass density:

R′(0) = λ(µ0 + µ1)− µ1.

Then the bifurcation at R = R0 is subcritical (backward) if

0 < λ < 1 and µ1 >
λµ0

1− λ
, (11)
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and it is supercritical (forward) if

0 < λ < 1 and 0 ≤ µ1 ≤
λµ0

1− λ
, or λ ≥ 1. (12)

See Figure 3 (a)-(b) for illustration of forward bifurcations, and Figure 3 (c)-(h) for
backward ones.

We end this subsection with a proof of Proposition 1.1.

Proof of Proposition 1.1. For part 1, we use a Lyapunov function

E1(w, b) := w − w0 − w0 ln
w

w0
+ λb. (13)

Its derivative along the solutions of (1) is

Ė1(w(t), b(t)) =
(

1− w0

w

)
(R− λwb− w) + λb (w − µ0)

=−R
(
w

w0
+
w0

w
− 2

)
+ λ(R− µ0)b.

Note that
w

w0
+
w0

w
−2 ≥ 0. Thus, Ė1 ≤ 0 if R ≤ µ0 and Ė1 = 0 only if (w(t), b(t)) =

(R, 0). Hence, from LaSalle’s invariance principle, all solutions ultimately approach
the bare-soil equilibrium (w0, b0) if 0 < R ≤ µ0.

For part 2, we use a Lyapunov function

E2(w, b) := w − w+ − w+ ln
w

w+
+ λ

(
b− b+ − b+ ln

b

b+

)
. (14)

Using the fact that R = λw+b+ + w+ and
w

w+
+
w+

w
− 2 ≥ 0, we have

Ė2(w(t), b(t)) =

(
1− w+

w

)
(R− λwb− w) + λ(b− b+)(w − µ0)

=− w+

(
w

w+
+
w+

w
− 2

)
− λw+b+

(
w

w+
+
w+

w
− 2

)
=− w+(1 + λb+)

(
w

w+
+
w+

w
− 2

)
≤ 0.

Furthermore, Ė2 = 0 only if (w(t), b(t)) = (w+, b+) or (w(t), b(t)) = (R, 0). Note
that (R, 0) is unstable when R > µ0. Then from LaSalle’s invariance principle, the
positive equilibrium (w+, b+) is globally asymptotically stable for all nonnegative
initial values except (R, 0) whenever it exists.

Remark 2.3. When µ1 = 0, the model considered in Proposition 1.1 is the same
as (after a rescaling) the classical SIR epidemic model with birth/death: (here
a, α, β > 0) 

dS

dt
= a− αSI − aS,

dI

dt
= αSI − βI − aI,

dR

dt
= βI − aR,

(15)

with basic reproduction number R0 = β/α. In (15), S(t), I(t) and R(t) denote
the number of individuals that are susceptible to infection, that are infectious, and
that have been removed with immunity, respectively. The parameter a is the birth
(death) rate, α is the incidence rate and β is the natural recovery rate of the infective
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individuals. Clearly (1) with µ1 = 0 is equivalent to the first two equations of (15)
with a “basic reproduction number” R0 = R/µ0. We shall return to the discussion
of connection between (1) (with µ1 > 0) and epidemic models in Section 5.

2.2. Local stability of equilibria. From Theorem 2.2, the system (3) may have
three non-negative equilibria: (R, 0), (w−, b−) and (w+, b+). In this subsection we
investigate the local stability of these equilibria. First we have the following results
for the equilibria (R, 0) and (w−, b−).

Proposition 2.4. Assume that the parameters R, λ, µ0, µ1 are all positive. Then

1. The bare-soil equilibrium (R, 0) is locally asymptotically stable when R < R0,
and it is unstable when R > R0, where R0 is defined in (8).

2. The positive equilibrium (w−, b−) is an unstable saddle whenever it exists.

Proof. The associated Jacobian matrix at an equilibrium (w, b) is given by

J(w, b) =

( −λb− 1 −λw
b w − µ0 −

µ1

(b+ 1)2

)
.

Then at the bare-soil equilibrium (w0, b0) = (R, 0),

J(R, 0) =

(
−1 0
0 R− (µ0 + µ1)

)
,

which shows that (R, 0) is locally asymptotically stable when R < R0, and it is
unstable when R > R0.

At the equilibrium (w−, b−), the associated Jacobian matrix is

J(w−, b−) =

 −λb− − 1 − λR

λb− + 1

b−
µ1b
−

(b− + 1)2

 .

Then

Det(J(w−, b−)) =
λRb−

λb− + 1
− (λb− + 1)

µ1b
−

(b− + 1)2

= b−
[
λ

(
µ0 +

µ1

b− + 1

)
− µ1(λb− + 1)

(b− + 1)2

]
.

On the other hand, by using (10), a direct calculation shows that

R′(b) = λ

(
µ0 +

µ1

b+ 1

)
− µ1(λb+ 1)

(b+ 1)2
. (16)

Thus we have Det(J(w−, b−)) = b−R′(b−). Furthermore, from (16) we have

R′(b) =
1

(b+ 1)2
[
λµ0b

2 + 2λµ0b+ λ(µ0 + µ1)− µ1

]
. (17)

If (w−, b−) exists, we have µ1 >
λµ0

1− λ
and b− < b(R1) which imply that R′(b−)

< 0, where R1 is the saddle-node bifurcation point defined in (8) and b(R1) =√
λ(1− λ)µ0µ1 − λµ0

λµ0
. Thus we have Det(J(w−, b−)) < 0 which shows that (w−,

b−) is always a saddle equilibrium.
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Next we discuss the local stability of (w+, b+). We consider the two cases that
λ satisfies 0 < λ < 1 and λ ≥ 1 separately. For the case of 0 < λ < 1, we define

m(µ0) =
µ0

λ(1− λ)

(
λ+

1− λ
µ0 − (1− λ)

)2

, for µ0 > 1− λ, (18)

and

µ∗0(λ) =
(1− λ)(2λ+ 1 +

√
8λ+ 1)

2λ
,

µ∗1(λ) =
(4λ+ 5 + 3

√
8λ+ 1)(4λ− 1 +

√
8λ+ 1)

16λ
,

µ∗∗0 (λ) =
(1− λ)µ∗1(λ)

λ
.

(19)

Define the subregions I, II, III, IV and V in the µ0−µ1 plane as follows (see Figure

µ
0

I

II

III

IV

V

µ
1
=m(µ

0
)

µ
1

µ
1
*

µ
0
* µ

0
**

µ
1
=λµ

0
/(1− λ)

µ
0

VI

VII

µ
1

µ
1
*

Figure 4. Illustration of the stability parameter subregions in the µ0 − µ1
plane. (Left) 0 < λ < 1; (Right) λ ≥ 1.

4 left panel):

I = I1
⋃

I2, (20)

where

I1 =

{
(µ0, µ1) : 0 < µ0 ≤ 1− λ, µ1 >

λµ0

1− λ

}
⋃{

(µ0, µ1) : 1− λ < µ0 < µ∗0,
λµ0

1− λ
< µ1 < m(µ0)

}
,

I2 =

{
(µ0, µ1) : µ∗0 < µ0 < µ∗∗0 ,

λµ0

1− λ
< µ1 < µ∗1

}
;

(21)

and

II = {(µ0, µ1) : µ0 > 0, µ1 > m(µ0)} ;

III =

{
(µ0, µ1) : µ0 > µ∗0,max

{
µ∗1,

λµ0

1− λ

}
< µ1 < m(µ0)

}
;

IV =

{
(µ0, µ1) : µ0 > 0, 0 < µ1 < min

{
λµ0

1− λ
, µ∗1

}}
;

V =

{
(µ0, µ1) : µ0 > µ∗∗0 , µ

∗
1 < µ1 <

λµ0

1− λ

}
.

(22)

Then the local stability of (w+, b+) is as follows:
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Theorem 2.5. Assume that the parameters R, λ, µ0, µ1 are all positive and 0 < λ <
1. Let m(µ0), µ∗0, µ∗1, µ

∗∗
0 and subregions I, II, III, IV and V be defined as above.

1. If (µ0, µ1) ∈ I
⋃

IV, then (w+, b+) is locally asymptotically stable;
2. If (µ0, µ1) ∈ II, then there exists R3 with R3 > R1 such that (w+, b+) is

unstable when R1 < R < R3, and it is locally asymptotically stable when
R > R3;

3. If (µ0, µ1) ∈ III
⋃

V, then there exist R2, R3 with R1 < R2 < R3 such that
(w+, b+) is unstable when R2 < R < R3, and it is locally asymptotically stable
when R1 < R < R2 or R > R3.

On the other hand, for the case that λ ≥ 1, we define the subregions VI,VII in
µ0 − µ1 plane (see Figure 4 right panel):

VI = {(µ0, µ1) : 0 < µ1 ≤ µ∗1(λ)} ;

VII = {(µ0, µ1) : µ1 > µ∗1(λ)} .
(23)

Then the local stability of (w+, b+) is as follows:

Theorem 2.6. Assume that the parameters R, λ, µ0, µ1 are all positive and λ ≥ 1.
Let µ∗1 be defined as (19) and VI,VII be defined as in (23). Then we have

1. If (µ0, µ1) ∈ VI, then (w+, b+) is locally asymptotically stable;
2. If (µ0, µ1) ∈ VII, then there exist R2, R3 with R0 < R2 < R3 such that

(w+, b+) is unstable when R2 < R < R3, and it is locally asymptotically stable
when R0 < R < R2 or R > R3.

The proofs of Theorems 2.5 and 2.6 are technical, and we postpone them to
subsection 2.4.

2.3. Global stability and nonexistence of periodic orbits. In this subsection,
we discuss the global dynamical behavior of the system (3). First of all, the bare-
soil equilibrium is globally asymptotically stable if the rain-fall rate R is low. More
precisely, we have

Proposition 2.7. Assume that the parameters R, λ, µ0, µ1 are all positive and let
k1 be defined as (4). If

0 ≤ R <
µ0 − λk1 +

√
(λk1 + µ0)2 + 4λk1µ1

2
≡ R∗∗, (24)

then (R, 0) is globally asymptotically stable for system (3).

Proof. According to Lemma 2.1, for any ε > 0, there exists a T1 > 0 such that

0 < b(t) ≤ R+ ε

λk1
for t > T1, where k1 is defined as (4). Then, for system (3), we

have

b′(t) ≤ b(t)
(
R− µ0 −

µ1

b(t) + 1

)
≤ b(t)

(
R− µ0 −

µ1

(R+ ε)/(λk1) + 1

)
(25)

for t > T1. So, if 0 ≤ R < µ0 +
λµ1k1
R+ λk1

, i.e. R satisfies (24), we have lim
t→∞

b(t) = 0.

Thus there exists a T2 such that b(t) < ε for t > T2, and

R− (1 + λε)w(t) ≤ w′(t) ≤ R− w(t). (26)

This clearly shows that lim
t→∞

w(t) = R.
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Our next result is that when the rain-fall rate R is either low or high, the system
(3) cannot have a periodic orbit. Define

R∗ = µ0 + 1, R∗ = µ1(1 + λ+ µ0), (27)

Then by the Dulac criterion we can eliminate the possibility of periodic orbits in
the system (3) in the following result for low or high rain-fall rate R.

Proposition 2.8. Assume that the parameters R, λ, µ0, µ1 are all positive and let
R∗ and R∗ be defined as in (27). Then for 0 < R ≤ R∗ or R ≥ R∗, system (3) has
no periodic orbits.

Proof. We prove by using the Dulac Criterion. Define a Dulac function in the form
(see [10, 11])

D(w, b) = s(w)r(b),

where s(w) and r(b) are to be determined later. Then along solution orbits of
system (3), we have

∂(FD)

∂w
+
∂(GD)

∂b
= D(w, b)

(
∂F

∂w
+
∂G

∂b
+ F

s′(w)

s(w)
+G

r′(b)

r(b)

)
= D(w, b)

[
−1− µ0 − λb−

µ1

(b+ 1)2
− (µ0 +

µ1

b+ 1
)b
r′(b)

r(b)

+w + (R− w − λwb)s
′(w)

s(w)
+ wb

r′(b)

r(b)

]
.

(28)

Let s(w) = ecw where c is a constant to be determined. Then s′(w)/s(w) = c and
(28) is reduced to

∂(FD)

∂w
+
∂(GD)

∂b
= D(w, b)

[
Rc− 1− µ0 − λb−

µ1

(b+ 1)2
− (µ0 +

µ1

b+ 1
)b
r′(b)

r(b)

+ w

(
1− c− λcb+ b

r′(b)

r(b)

)]
.

(29)

In (29), we choose r(b) = eλcbbc−1 so that r(b) satisfies

1− c− λcb+ b
r′(b)

r(b)
= 0, (30)

From (29) and (30), it follows that

∂(FD)

∂w
+
∂(GD)

∂b

= D(w, b)

[
Rc− 1− µ0 − λb−

µ1

(b+ 1)2
− (µ0 +

µ1

b+ 1
)(λcb+ c− 1)

]
≡ D(w, b)H(b).

(31)

Now we choose c = 1. Then

H(b) = Rc− 1− µ0 − λb−
µ1

(b+ 1)2
− (µ0 +

µ1

b+ 1
)(λcb+ c− 1)

= R− 1− µ0 − λb(1 + µ0)− µ1

(b+ 1)2
− λµ1b

b+ 1

≤ R− 1− µ0,

(32)



2984 XIAOLI WANG, JUNPING SHI AND GUOHONG ZHANG

which is negative if R ≤ R∗ = 1 + µ0. Thus from Dulac Criterion, there are no
nontrivial periodic solutions if 0 < R ≤ R∗ and this completes the proof for the
case of 0 < R ≤ R∗.

For R ≥ R∗, we choose c = −1/µ0. Then

H(b) ≤ Rc− (1 + λb)(1 + µ0c)−
µ1(c− 1) + λµ1cb

b+ 1

= − R
µ0

+
µ1(1 + µ−10 )

b+ 1
+

λµ1b

µ0(b+ 1)
≤ − R

µ0
+ µ1

(
1 +

1

µ0

)
+
λµ1

µ0
,

(33)

which is negative if R ≥ R∗ = µ1(1+λ+µ0). Hence, there are no nontrivial periodic
orbits for (3) if 0 < R ≤ R∗ or R ≥ R∗.

Combining with the existence and local stability of equilibria proved in Theorems
2.2, 2.5 and 2.6, and the classical Poincaré-Bendixon theorem for the planar systems,
we obtain the following results regarding the global dynamic behavior of (3):

Theorem 2.9. Assume that the parameters R, λ, µ0, µ1 are all positive. Let R0,
R1, R∗∗, R∗ and R∗ be defined as in (8), (24) and (27) respectively.

1. When 0 < R < R∗∗, the bail-soil equilibrium (R, 0) is globally asymptoti-
cally stable, and when R > max{R0, R

∗}, the positive equilibrium (w+, b+) is
globally asymptotically stable for system (3);

2. Suppose that one of the following conditions hold

λ ≥ 1 and 0 ≤ µ1 ≤
1 + µ0

1 + µ0 + λ
, (34)

or

0 ≤ λ < 1 and 0 ≤ µ1 ≤ min

{
1 + µ0

1 + µ0 + λ
,
λµ0

1− λ

}
. (35)

Then for system (3), when 0 < R ≤ R0, the bail-soil equilibrium (R, 0) is glob-
ally asymptotically stable, and when R > R0, the positive equilibrium (w+, b+)
is globally asymptotically stable;

3. Suppose that

0 ≤ λ < 1 and
λµ0

1− λ
< µ1 ≤

1 + µ0

1 + µ0 + λ
. (36)

Then for system (3), when 0 < R < R1, the bail-soil equilibrium (R, 0) is
globally asymptotically stable; when R > R0, the positive equilibrium (w+, b+)
is globally asymptotically stable; and when R1 < R < R0, then each solution
of (3) tends to (R, 0) or (w+, b+) as t→∞ except the one-dimensional stable
manifold of (w−, b−).

Proof. Part 1 follows from Propositions 2.4, 2.8 and Poincaré-Bendixon theorem.

For parts 2 and 3, we notice that if 0 ≤ µ1 ≤
1 + µ0

1 + µ0 + λ
, then R∗ ≥ R∗. Hence

system (3) has no periodic orbits for any R > 0. Then the results in parts 2 and 3
follow from Theorems 2.2, 2.5, 2.6 and Poincaré-Bendixon theorem.

Theorem 2.9 show that when µ1 is small, then the dynamics of system (3) is
dominated by equilibria. That is, any solution orbit tends to a non-negative equi-
librium. When µ1 is near 0 (satisfying (34) or (35)), the dynamics of (3) has a
transition from the unique vegetation equilibrium to the bare-soil state as the rain-
fall rate R decreases across R0. The transition is a gradual one as the bifurcation is
forward at R = R0. When µ1 is in an intermediate range (satisfying (36)), there is a
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bistable parameter regime R1 < R < R0, and there is a sudden transition from high
vegetation equilibrium (w+, b+) to the bar-soil one at R = R1. Hence a hysteresis
effect occurs in this case. In all these parameter ranges for µ1, there is no limit
cycle for (3), and the biomass always tends to an equilibrium level asymptotically.
However as shown in Theorems 2.5 and 2.6, when µ1 is larger, the system (3) can
have oscillatory patterns for intermediate rain-fall rates. This will be shown in the
Section 3.

2.4. Proof of Theorems 2.5 and 2.6. In this subsection we prove Theorems 2.5
and 2.6. Recall the function in (6):

R(b) = (λb+ 1)

(
µ0 +

µ1

b+ 1

)
.

With a change of variable B = b+ 1, we see that R(b) = R̃(B) where

R̃(B) = λµ0B +
(1− λ)µ1

B
+ (1− λ)µ0 + λµ1.

The properties of function R̃(B) can be summarized as follows:

1. If λ ≥ 1, then R̃′(B) > 0 for all B ∈ (0,∞);

2. If 0 < λ < 1, then R̃(B) has an unique critical point at B = B∗ =

√
(1− λ)µ1

λµ0

which is a global minimum point, and R1 = R̃(B∗) = (
√

(1− λ)µ0 +
√
λµ1)2;

R̃′(B) < 0 for B ∈ (0, B∗) and R̃′(B) > 0 for B ∈ (B∗,∞); lim
B→0+

R̃(B) =

lim
B→∞

R̃(B) =∞.

Let B+ = b+ + 1 then B+ > 1 and we always have R̃′(B+) > 0.
The associated Jacobian matrix at the equilibrium (w+, b+) is given by

J(w+, b+) =

 −λb+ − 1 − λR

λb+ + 1

b+
µ1b

+

(b+ + 1)2

 .

Then we have

Det(J(w+, b+)) =
λRb+

λb+ + 1
− (λb+ + 1)

µ1b
+

(b+ + 1)2

= b+
[
λ(µ0 +

µ1

b+ + 1
)− (λb+ + 1)

µ1

(b+ + 1)2

]
= (B+ − 1)R̃′(B+) > 0.

And the trace of J(w+, b+) is given by

Trace(J(w+, b+)) =
1

(b+ + 1)2
[
µ1b

+ − (λb+ + 1)(b+ + 1)2
]

where b+ = b+(R) is defined as in (9).
Let

f(b) = µ1b− (λb+ 1)(b+ 1)2.

Then f(b) = f̃(B), where

f̃(B) = −λB3 + (λ− 1)B2 + µ1B − µ1. (37)
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We consider the sign of f(b) for b = b+, or equivalently the one for f̃(B) for B = B+.

The properties of function f̃(B) can be summarized as follows:

1. f̃(B) has at most two zeros in (0,∞), since lim
B→−∞

f̃(B) =∞ and f̃(0) = −µ1

then f̃(B) has at least one zero in (−∞, 0);

2. From f̃ ′(B) = −3λB2+2(λ−1)B+µ1 = 0, we get B =
λ− 1±

√
(λ− 1)2 + 3λµ1

3λ
.

Let

B∗∗ =
λ− 1 +

√
(λ− 1)2 + 3λµ1

3λ
> 0. (38)

Then f̃ ′(B∗∗) = 0 and f̃ ′′(B∗∗) < 0. So B = B∗∗ is a local maximum point of

f̃(B), and it is the unique critical point of f̃(B) in (0,∞).

We consider f̃(B) for two cases: B∗ > 1 or B∗ ≤ 1. For the case of B∗ > 1, we

consider f̃(B) for B ∈ [B∗,∞), and we have the following results:

Lemma 2.10. Assume that B,B∗, B∗∗ and f̃(B) are defined as above and B∗ > 1.
Then

1. If B∗ ≥ B∗∗ and f̃(B∗) ≤ 0, then f̃(B) < 0 for all B > B∗;

2. If B∗ < B∗∗, f̃(B∗) < 0 and f̃(B∗∗) > 0, then there exist B2 < B∗∗ < B3 such

that f̃(B) < 0 for B ∈ (B∗, B2)
⋃

(B3,∞) and f̃(B) > 0 for B ∈ (B2, B3);

3. If B∗ < B∗∗ and f̃(B∗∗) ≤ 0, then f̃(B) < 0 for all B > B∗;

4. If f̃(B∗) > 0, then exists B3 > B∗∗ such that f̃(B) > 0 for B ∈ (B∗, B3) and

f̃(B) > 0 for B ∈ (B3,∞).

And for the case of B∗ ≤ 1, we consider f̃(B) for B ∈ [1,∞). Notice that

f̃(1) = −1 < 0. Then we have the following results:

Lemma 2.11. Assume that B∗∗ and f̃(B) are defined as above and B∗ ≤ 1. Then

1. If B∗∗ < 1, then f̃(B) < 0 for B ∈ [1,∞);

2. If B∗∗ > 1, f̃(B∗∗) < 0, then f̃(B) < 0 for B ∈ [1,∞);

3. If B∗∗ > 1, f̃(B∗∗) > 0, then there exist 1 < B2 < B∗∗ < B3 such that

f̃(B) < 0 for B ∈ [1, B2)
⋃

(B3,∞) and f̃(B) > 0 for B ∈ (B2, B3).

The proofs of Lemmas 2.10 and 2.11 are elementary and we omit them here. Now
we determine the ranges of parameters (λ, µ0, µ1) so that the conditions in Lemmas
2.10 and 2.11 are met. Define

m0(µ0) =
4µ0(1− λ)3

λ(µ0 − 3(1− λ))2
, for µ0 > 3(1− λ) (39)

and m(µ0) as in (18). Then we have the following results:

Lemma 2.12. Let B,B∗, B∗∗, f̃(B),m0(µ0) be defined as above, let m(µ0) be de-
fined as in (18) and let µ∗1(λ) be defined as in (19). Then

1. B∗ > 1 if and only if µ1 >
λµ0

1− λ
;

2. B∗∗ < 1 if and only if µ1 < λ+ 2;
3. If µ0 ≤ 3(1− λ), then B∗ > B∗∗; If µ0 > 3(1− λ), then B∗ < B∗∗ if and only

if µ1 > m0(µ0);

4. If µ0 ≤ 1 − λ, then f̃(B∗) < 0; If µ0 > 1 − λ, then f̃(B∗) < 0 if and only if
µ1 < m(µ0);

5. f̃(B∗∗) < 0 if and only if µ1 < µ∗1(λ).
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Proof. The proof of part 1 and part 2 can be easily obtained by the expressions of
B∗ and B∗∗. For part 3, we have

B∗ −B∗∗ =

√
(1− λ)µ1

λµ0
−
λ− 1 +

√
(λ− 1)2 + 3λµ1

3λ

=
1

3λµ0

[
3
√
λ(1− λ)µ0µ1 + (1− λ)µ0 − µ0

√
(1− λ)2 + 3λµ1

]
.

Denote A1 = 3
√
λ(1− λ)µ0µ1 + (1− λ)µ0 and A2 = µ0

√
(1− λ)2 + 3λµ1. Then

A2
1 −A2

2 = 3µ0

[
λ(3(1− λ)− µ0)

√
µ1 + 2(1− λ)

√
λ(1− λ)µ0

]
.

If µ0 ≤ 3(1 − λ), then A1 > A2 which results in B∗ > B∗∗. If µ0 > 3(1 − λ),
then A1 = A2 when µ1 = m0(µ0), A1 > A2 when µ1 < m0(µ0), and A1 < A2

when µ1 > m0(µ0). Or equivalently B∗ = B∗∗ when µ1 = m0(µ0), B∗ > B∗∗ when
µ1 < m0(µ0), and B∗ < B∗∗ when µ1 > m0(µ0).

For part 4, we have

f̃(B∗) = −λB3
∗ + (λ− 1)B2

∗ + µ1B∗ − µ1

=
µ1

λµ2
0

[
−(λµ2

0 + (1− λ)2µ0) + (µ0 − (1− λ))
√
λ(1− λ)µ0µ1

]
.

If µ0 ≤ 1− λ, we have f̃(B∗) < 0. If µ0 > 1− λ, defining the function m(µ0) as in

(18), then we have f̃(B∗) = 0 when µ1 = m(µ0), and f̃(B∗) < 0 when µ1 < m(µ0);

f̃(B∗) > 0 when µ1 > m(µ0).

To prove part 5, from the equation f̃ ′(B∗∗) = 0 we have µ1 = 3λB2
∗∗−2(λ−1)B∗∗.

Then

f̃(B∗∗) = −λB3
∗∗ + (λ− 1)B2

∗∗ + µ1B∗∗ − µ1

= −λB3
∗∗ + (λ− 1)B2

∗∗ + (B∗∗ − 1)[3λB2
∗∗ − 2(λ− 1)B∗∗]

= B∗∗[2λB
2
∗∗ + (1− 4λ)B∗∗ + 2(λ− 1)].

Hence f̃(B∗∗) > 0 when B∗∗ > B̃, and f̃(B∗∗) < 0 when B∗∗ < B̃, where B̃ =
4λ− 1 +

√
1 + 8λ

4λ
. Notice that

B∗∗ − B̃ =
λ− 1 +

√
(λ− 1)2 + 3λµ1

3λ
− 4λ− 1 +

√
1 + 8λ

4λ

=
1

3λ

[√
(1− λ)2 + 3λµ1 −

(
2λ+ 1 +

−3 + 3
√

1 + 8λ

4

)]
.

Define µ∗1(λ) as in (19). Then we have B∗∗ = B̃ if µ1 = µ∗1(λ); B∗∗ > B̃ if

µ1 > µ∗1(λ); and B∗∗ < B̃ if µ1 < µ∗1(λ). Thus we have f̃(B∗∗) < 0 when µ1 < µ∗1(λ);

f̃(B∗∗) > 0 when µ1 > µ∗1(λ).

To prove Theorem 2.5, we point out some properties of the functions µ1 = m0(µ0)
and µ1 = m(µ0).

1. The function µ1 = m0(µ0), with µ0 = 3(1 − λ) as the vertical asymp-
tote and µ1 = 0 as the oblique asymptote, is decreasing in the interval

(3(1 − λ),+∞) and intersects with the line µ1 =
λµ0

1− λ
at a certain point

((1− λ)(λ+ 2)/λ, λ+ 2).
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2. The function µ1 = m(µ0), with µ0 = 1−λ as the vertical asymptote and µ1 =
λ

1− λ
µ0+2 as the oblique asymptote, is decreasing in the interval (1−λ, µ∗0(λ))

and increasing in the interval (µ∗0(λ),+∞), where µ∗0(λ) is defined as (19).
3. The two curves µ1 = m0(µ0) and µ1 = m(µ0) intersect at (µ0, µ1) = (µ∗0(λ),
µ∗1(λ)), and m0(µ0) > m(µ0) when 1 − λ < µ0 < µ∗0(λ); m0(µ0) < m(µ0)
when µ0 > µ∗0(λ). Furthermore, direct calculations show that µ∗1(λ) > λ+ 2.

Define R2 and R3 such that B2 = B+(R2) and B3 = B+(R3), where B2, B3 are
defined in Lemmas 2.10 and 2.11. Now we give the proof of Theorems 2.5 and 2.6.

Proof of Theorem 2.5. Note that Det(J(w+, b+)) > 0. Then to consider the stabil-
ity of (w+, b+) we just need to consider the sign of the trace of J(w+, b+), which

has the same sign with f̃(B+).

If (µ0, µ1) ∈ I, we consider the sign of f̃(B+) in three subregions I1, I2 and I3,
where

I1 =

{
(µ0, µ1) : 0 < µ0 ≤ 1− λ, µ1 >

λµ0

1− λ

}
;

I2

=

{
(µ0, µ1) : 1− λ < µ0 <

(1− λ)(λ+ 2)

λ
,
λµ0

1− λ
< µ1 < min{m0(µ0),m(µ0)}

}
;

I3 =

{
(µ0, µ1) : µ∗0 < µ0 < µ∗∗0 ,max{m0(µ0),

(1− λ)(λ+ 2)

λ
} < µ1 < µ∗1}

}
.

Then I = I1
⋃

I2
⋃

I3 = I1
⋃

I2, where I1, I2 are defined as in (21). If (µ0, µ1) ∈ I1

then f(b+) < 0 by the expression of f(b+). If (µ0, µ1) ∈ I2, then B∗ > 1 by Lemma

2.12 part 1, f̃(B∗) < 0 by Lemma 2.12 part 4, B∗ > B∗∗ by Lemma 2.12 part 3.
Then the conclusion follows from Lemma 2.10 part 1. If (µ0, µ1) ∈ I3, then B∗ > 1

by Lemma 2.12 part 1, f̃(B∗) < 0 by Lemma 2.12 part 4, B∗ < B∗∗ by Lemma 2.12

part 3 and f̃(B∗∗) < 0 by Lemma 2.12 part 5. Then the conclusion follows from
Lemma 2.10 part 3.

If (µ0, µ1) ∈ II, then f̃(B∗) > 0 by Lemma 2.12 part 4 and the conclusion follows
from Lemma 2.10 part 4.

If (µ0, µ1) ∈ III, then B∗ > 1 by Lemma 2.12. 1, B∗ < B∗∗ by Lemma 2.12 part

3, f̃(B∗) < 0 by Lemma 2.12 part 4, f̃(B∗∗) > 0 by Lemma 2.12 part 5. Then the
conclusion follows from Lemma 2.10 part 2.

If (µ0, µ1) ∈ IV, then B∗ < 1 by Lemma 2.12 part 1, f̃(B∗) < 0 by Lemma 2.12

part 4, f̃(B∗∗) < 0 by Lemma 2.12 part 5. Then the conclusion follows from Lemma
2.11 parts 1 and 2.

If (µ0, µ1) ∈ V, then B∗ < 1 by Lemma 2.12 part 1, B∗∗ > 1 by Lemma 2.12 part

2, f̃(B∗∗) > 0 by Lemma 2.12 part 5. Then the conclusion follows from Lemma
2.11 part 3.

Proof of Theorem 2.6. When λ ≥ 1, we consider B ∈ [1,∞). Note that µ∗1 > λ+ 2

and f̃(1) < 0. If (µ0, µ1) ∈ VI, then f̃(B∗∗) < 0 by Lemma 2.12. 5. Similar to

Lemma 2.11. 1 and 2, we have f̃(B) < 0 which implies the stability of (w+, b+) if
(µ0, µ1) ∈ VI.

If (µ0, µ1) ∈ VII, then f̃(B∗∗) > 0 by Lemma 2.12. 5. Similar to Lemma 2.11.

3, there exist 1 < B2 < B∗∗ < B3 such that f̃(B) < 0 for B ∈ [1, B2)
⋃

(B3,∞)
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and f̃(B) > 0 for B ∈ (B2, B3), which implies that there exist R2, R3 with R0 <
R2 < R3 such that (w+, b+) is unstable when R2 < R < R3, and it is locally
asymptotically stable when R0 < R < R2 or R > R3.

3. Hopf bifurcations and homoclinic bifurcations. From Theorem 2.5 and
Theorem 2.6, there exist values of R, which denoted by Ri, i = 2, 3 such that the
corresponding characteristic matrix has a pair of complex roots, denoted by σ(R),

σ(R) = α(R)± iω(R),

where

α(R) =
1

2

[
b+µ1

(b+ + 1)2
− (λb+ + 1)

]
,

ω(R) =

√
λRb+

λb+ + 1
− 1

4

(
b+µ1

(b+ + 1)2
+ λb+ + 1

)2

.

From last section, we have

α(Ri) =

(
1

2(B+)2
f̃(B+)

)∣∣∣∣
R=Ri

= 0, i = 2, 3,

α′(Ri) =

(
1

2(B+)2
f̃(B+)

)′∣∣∣∣∣
R=Ri

=

(
1

2(B+)2
f̃ ′(B+)

)∣∣∣∣
R=Ri

6= 0, i = 2, 3,

where f̃(B) is defined as (37). Here, we use the fact that f̃ ′(B2) > 0 and f̃ ′(B3) <
0 which result in α′(R2) > 0 and α′(R3) < 0. Then we conclude that a Hopf
bifurcation occurs at R = Ri, i = 2, 3.

Theorem 3.1. Assume that the parameters R, λ, µ0, µ1 are all positive and R =
Ri, i = 2, 3 are as defined in Theorems 2.5 and 2.6. Then system (3) undergo a
Hopf bifurcation at R2 and R3 if exists.

We note that there are well-established methods (see [8, 24]) to determine the
direction of the Hopf bifurcations at R = R2 and R = R3. Here we omit the detailed
procedure as the computation is tedious and inconclusive. In the following we show
by cases and examples that both supercritical and subcritical Hopf bifurcations can
occur for different parameter ranges.

First when (µ0, µ1) is in the parameter regions III, V, or VII, there are two
Hopf bifurcation points R = R2 and R = R3. In this case, a bounded branch of
limit cycles emerges from the equilibrium (w+, b+) at R = R2 and returns to the
same equilibrium at R = R3, so the branch is a loop or a “bubble“. In Figure
5, the bifurcation diagrams and phase portraits of limit cycles for three sets of
parameters in III, V, and VII respectively are shown. In each case, the bifurcation
diagram (produced with MatCont) in the left panel shows two Hopf bifurcation
points (labelled by “H”), and the numerically calculated first Lyapunov coefficients
at both bifurcation points are negative in all three cases so the bifurcating periodic
orbits are stable ones. Note that in Figure 5 (a)-(b), the dynamics is bistable with
a stable limit cycle and a stable equilibrium (R, 0) when R2 < R < R3, while in (c)-
(d) and (e)-(f), the limit cycle is globally asymptotically stable when R2 < R < R3.
In all cases shown in Figure 5, the limit cycle appears to be unique, though we do



2990 XIAOLI WANG, JUNPING SHI AND GUOHONG ZHANG

11.12 11.13 11.14 11.15 11.16
0

0.5

1

1.5

R

b,
M

in
(b

) 
an

d 
M

ax
(b

)

H 
LP

H 

(a)

 
 

9.5 10 10.5 11

0

0.2

0.4

0.6

0.8

1

w

b

(b)

24.5 25 25.5 26 26.5 27 27.5
0

0.5

1

1.5

R

b,
M

in
(b

) 
an

d 
M

ax
(b

)

H 

BP

H 

(c)

 
 

22 23 24 25 26

0

0.2

0.4

0.6

0.8

1

w

b

(d)

12 14 16 18 20
0

0.5

1

1.5

R

b,
M

in
(b

) 
an

d 
M

ax
(b

)

H 

BP

H 

(e)

 
 

8 10 12 14 16

0

0.2

0.4

0.6

0.8

1

w

b

(f)

Figure 5. Bifurcation diagrams (bubble branch of cycles) and phase portraits

of limit cycles when there are two Hopf bifurcation points R = R2 and R = R3.

In (a), (c) and (e), the blue curve, the cyan curve and the purple curve represent
the biomass b, the minimum value and the maximum value of b of the limit

cycles versus the rain-fall rate R, respectively; corresponding phase portraits
are shown in (b), (d) and (f). In (a) and (b) λ = 0.2, (µ0, µ1) = (7, 4.7) ∈ III,
and R = 11.14 in (b); in (c) and (d) λ = 0.2, (µ0, µ1) = (20, 4.8) ∈ V, and

R = 26 in (d); and in (e) and (f) λ = 1.2, (µ0, µ1) = (5, 8) ∈ VII, and R = 16
in (f).
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Figure 6. Hopf bifurcation and multiple limit cycles when λ = 0.2 and
(µ0, µ1) ∈ III. (a): The bifurcation diagram when (µ0, µ1) = (20, 6.5) ∈ III.

The blue curve, the cyan curve and the purple curve represent the biomass b,
the minimum value and the maximum value of b of the limit cycles vs. the rain-

fall rate R, respectively. (b): Two limit cycles when (µ0, µ1) = (20, 6.5) ∈ III
and R = 31.4. (c): Period of limit cycles versus R when (µ0, µ1) = (7, 4.7) ∈
III, and the period is monotonically decreasing in R. (d): Period of limit cy-
cles versus R when (µ0, µ1) = (20, 6.5) ∈ III, and the period is not monotone
in R and is not single-valued (indicating multiple limit cycles). (e): Time

series of the small amplitude periodic orbit when (µ0, µ1) = (20, 6.5) ∈ III
and R = 31.4. (f): Time series of the large amplitude periodic orbit when
(µ0, µ1) = (20, 6.5) ∈ III and R = 31.4.
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not have an analytic proof of that. For the parameter values in Figure 5 (a)-(b),
the period of the (unique) limit cycle is decreasing in R as shown in 6 (c).

In Figure 6 (a)-(b), the bifurcation diagram and phase portrait of limit cycles
for a different value (µ0, µ1) ∈ III is shown. Here the Hopf bifurcation at R = R2

is supercritical but the one at R = R3 is subcritical. The branch of limit cycles
is still a closed loop but we call it a “heart” to indicate the existence of multiple
periodic orbits for some values of R. Indeed here a saddle-node bifurcation for the
periodic orbits occurs at some R = R4 > R3, and there exist two periodic orbits for
R3 < R < R4 (see Figure 6 (b) for phase portrait and Figure 6 (e)-(f) for the time
series of the two periodic orbits). The dependence of period of periodic orbits on R
is shown in 6 (d): for R close to R2, the period appears to be not monotone, and
for R close to R3, the period is multi-valued as there are multiple periodic orbits.

Secondly, if (µ0, µ1) is in the parameter region II, then there is only one Hopf
bifurcation point R = R3. Here the branch of limit cycles is not a closed loop as
in the “bubble” or the “heart” case above, but is an “open-ended” one. However
the results in Proposition 2.8 imply that there is no periodic orbits for large R or
small R, hence the branch of periodic orbits is bounded in R direction. On the
other hand, Lemma 2.1 implies that all periodic orbits are bounded on the phase
plane for bounded R values. Then from the global Hopf bifurcation theorem [1, 5],
the period of the periodic orbits on the bifurcating branch must be unbounded. We
call such a bifurcation diagram a “lotus” with the Hopf bifurcation point as the
base and the homoclinic bifurcation point the top of the lotus. In Figure 7 (a)-(b)
and (c)-(d), the bifurcation diagrams and phase portraits of limit cycles for two
different (µ0, µ1) ∈ II are shown. For (µ0, µ1) ∈ II, there is always a saddle-node
bifurcation point at R = R1, which is labeled by “LP” in Figure 7 (a) and (c).
The Hopf bifurcation at R = R3 can be supercritical as in (a), or subcritical as in
(c). In the former case, the bifurcating periodic orbits are stable while in the latter
case they are unstable. In Figure 7 (e) and (f), one can observe that the period of
cycles is increasing in R for the bifurcation diagram corresponding to (a), and the
period is decreasing in R for the one corresponding to (c). In both cases, the period
approach to ∞ when R tends to some R = RHL, which is a homoclinic bifurcation
point where the limit cycles converge to a homoclinic orbit based on the saddle
equilibrium (w−, b−). This can be observed in Figure 7 (a) and (c) as the limit of
minimum of the cycles is the lower positive equilibrium. Note that the sequence
of Hopf bifurcation and homoclinic bifurcation is also the signature of the codim-2
Bogdanov-Takens bifurcation, which will be discussed later.

Figure 8 shows the evolution of phase portraits of system (3) with λ = 0.2 and
(µ0, µ1) = (5, 5.2) ∈ II (which is the one in Figure 7 (a)) when R increases. One can
easily calculate that the bifurcation values R0 = 10.2 (backward transcritical bifur-
cation point), R1 = 9.119216 (saddle-node bifurcation point), and R3 = 9.161059
(Hopf bifurcation point). Here the Hopf bifurcation is subcritical so the bifur-
cating periodic orbits are unstable. Moreover the homoclinic bifurcation point is
RHL = 9.1830408. Apparently when 0 < R < R1, the bare-soil equilibrium (R, 0)
is the attractor; when R1 < R < R3, both positive equilibria (w+, b+) (unstable
node) and (w−, b−) (saddle) are unstable, and all positive orbits except the posi-
tive equilibria and the stable manifold (the green orbits) of (w−, b−) tend to the
trivial bare soil equilibrium (w0, b0) = (R, 0) (see Figure 8 (a)); when R increases
to R3 < R < RHL, the equilibrium (w+, b+) becomes stable and an unstable limit
cycle emerges from the subcritical Hopf bifurcation (see Figure 8 (b)). In this case,
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Figure 7. Homoclinic bifurcation, saddle-node bifurcation, Hopf bifurcation

and the existence of one limit cycle when λ = 0.2 and (µ0, µ1) ∈ II. In (a), (c),
the blue curve, the cyan curve and the purple curve represent the biomass b, the
minimum value and the maximum value of b of the limit cycles vs. the rain-fall
rate R, respectively. (a): Bifurcation diagram when (µ0, µ1) = (5, 5.2) ∈ II.
(b): Phase portrait with periodic orbit when (µ0, µ1) = (5, 5.2) and R = 9.17.

(c): Bifurcation diagram when (µ0, µ1) = (7, 4.9) ∈ II. (d): Phase portrait
with periodic orbit when (µ0, µ1) = (7, 4.9) and R = 11.38. (e): Period of

the stable periodic orbits when (µ0, µ1) = (5, 5.2). (f): Period of the unstable
limit cycles when (µ0, µ1) = (7, 4.9).
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the unstable cycle serves as the separatrix between the basins of attraction of the
equilibria (w+, b+) and (R, 0). At R = RHL, a homoclinic orbit exists and it is the
separatrix between the basins of attraction of the equilibria (w+, b+) and (R, 0) (see
Figure 8 (c)). When R increases to RHL < R < R0, the basins of attraction for
the two locally stable equilibria are separated by the stable manifold of the saddle
equilibrium (w−, b−) (see Figure 8 (d)). In each of Figure 8 (b), (c) and (d), system
(3) has a bistability of the bare-soil equilibrium (R, 0) and the positive equilibrium
(w+, b+), but the separatrix is different. When R > R0, the system is monostable
as all solutions tend to the positive equilibrium (w+, b+).
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Figure 8. Evolution of phase portraits of (3) for λ = 0.2, (µ0, µ1) = (5, 5.2) ∈
II and R > R1. (a) R = 9.14; (b) R = 9.17; (c) R = 9.1830408; (d) R = 9.19.

On the other hand, Figure 9 shows the evolution of phase portraits of system
(3) with λ = 0.2 and (µ0, µ1) = (7, 4.9) ∈ II (which is the one in Figure 7 (c))
when R increases. Now the bifurcation values are R0 = 11.9, R1 = 11.265296, and
R3 = 11.391151 and the Hopf bifurcation at R = R3 is supercritical. Furthermore
the homoclinic bifurcation point is RHL = 11.363757. When R > R3, the equilib-
rium (w+, b+) is stable in Figure 9 (d). Then system (3) admits the bistability of the
bare-soil equilibrium and a positive equilibrium when R3 < R < R0 and the region
of attraction for these equilibria are separated by the separatrix (the green orbits)
of saddle (w−, b−). As R decreases to RHL < R < R3, the equilibrium (w+, b+)
becomes unstable and a stable limit cycle emerges from a supercritical Hopf bifur-
cation in Figure 9 (c). In this case, system (3) admits the bistability of the bare-soil
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equilibrium and a stable limit cycle with the stable manifolds (the green orbits) of
the saddle (w−, b−) as the separatrix of attraction. When R decreases to RHL, the
period of the limit cycle tends to infinity and a homoclinic orbit emerges in Figure
9 (b). As R decreases to R1 < R < RHL, the homoclinic orbit is broken and the
equilibrium (w+, b+) is still unstable. All of the positive orbits except for positive
equilibria (w±, b±) and stable manifold (the green orbits) of (w−, b−) tend to the
trivial bare-soil equilibrium (w0, b0) = (R, 0) in Figure 9 (a).
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Figure 9. Evolution of phase portraits of (3) for λ = 0.2 and (µ0, µ1) =
(7, 4.9) ∈ II and R > R1. (a) R = 11.3; (b) R = 11.363757; (c) R = 11.38; (d)
R = 11.4.

Finally we mention that homoclinic bifurcation and multiple periodic orbits can
occur for the same (µ0, µ1) value. In Figure 10, the bifurcation diagram and phase
portraits of limit cycles are shown for λ = 0.2 and (µ0, µ1) = (7, 5) ∈ II. Here
a subcritical Hopf bifurcation occurs at R = R3. In some range of R only one
stable limit cycle exists (Figure 10 (b)), and the multi-valued period of the limit
cycles in Figure 10 (c) implies that two periodic orbits can coexist (Figure 10 (d)).
The period of the limit cycles tend to infinity at a critical value RHL = 11.47377
which is the homoclinic bifurcation point. Time series of the two limit cycles for the
same parameter values are shown in Figure 10 (e) and (f). We call this bifurcation
diagram a “pepper” as it resembles the shape of bell pepper.
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Figure 10. Homoclinic bifurcation, saddle-node bifurcation, Hopf bifurcation
and multiple limit cycles for λ = 0.2 and (µ0, µ1) = (7, 5) ∈ II. (a): The bifur-

cation diagram. The blue curve, the cyan curve and the purple curve represent
the biomass b bifurcation diagram, the minimum value and the maximum value

of b of the limit cycles vs. the rain-fall rate R, respectively. (b): Phase portrait

with one stable limit cycle when R = 11.48. (c): Period of limit cycles versus
R. (d): Phase portrait with two limit cycles when R = 11.498. (e): Time

series of the small amplitude periodic orbit when R = 11.498. (f): Time series

of the large amplitude periodic orbit when R = 11.498.
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Figure 11 shows the evolution of phase portraits when λ = 0.2 and (µ0, µ1) =
(7, 5) ∈ II (the one in Figure 10). The bifurcation points are R0 = 12, R1 =
11.332864, and R3 = 11.497537 and the Hopf bifurcation is subcritical. Two ad-
ditional bifurcation points which cannot be analytically solved are the limit cycle
saddle-node bifurcation point RLPC = 11.49838 and the homoclinic bifurcation
point RHL = 11.47377. Some parts of evolution are same as the ones in Figure
9, but in Figure 11 (d) there are indeed three locally stable states: the positive
equilibrium (w+, b+), the large amplitude limit cycle, and the bare-soil equilibrium
(R, 0). This is the only “tristable” dynamics for (3), while most other cases for (3)
are bistable or monostable.

4. Bogdanov-Takens bifurcation. So far our bifurcation analysis is through a
single bifurcation parameter R with other parameters (λ, µ0, µ1) in certain ranges.
By using two-parameter unfolding, we can show that a Bogdanov-Takens bifurcation
occurs in the system (3). To that end, we fix λ ∈ (0, 1) and µ0 > 0, and choose µ1

and R in the following way:

(C1) µ1 = m(λ, µ0) which is defined in (18);
(C2) R = R1(λ, µ0, µ1(λ, µ0)) which is defined in (8).

Then system (3) admits an unique positive equilibrium (w∗, b∗) (at the saddle-node
bifurcation point) defined by

w∗ =
R1

λb∗ + 1
, b∗ =

√
λ(1− λ)µ0µ1 − λµ0

λµ0
, (40)

and

Det(J(w∗, b∗)) = (B∗ − 1)R̃′(B∗) = 0, Trace(J(w∗, b∗)) =
1

B2
∗
f̃(B∗) = 0, (41)

where f̃(B) is defined as (37). Therefore, if (C1) and (C2) are satisfied then the
Jacobian matrix at (w∗, b∗) has a zero eigenvalue with multiplicity 2. This suggests
that (3) may admit a Bogdanov-Takens bifurcation. In the following, by similar
procedures to those in [18, 35, 36], we confirm that (w∗, b∗) is a cusp singularity of
codimension 2.

Theorem 4.1. Assume that the parameters R,µ0, µ1 are all positive, 0 < λ < 1 and
µ∗0 is defined as (19). Suppose that (C1) and (C2) are satisfied. If µ0 6= µ∗0, then the
equilibrium (w∗, b∗) of (3) is a cusp of codimension 2, i.e. it is a Bogdanov-Takens
singularity.

Proof. By the transformation of u = w − w∗, v = b − b∗, and still denoted u, v by
w, b, system (3) becomes

dw

dt
= a11w + a12b− λwb,

db

dt
= b∗w − a11b+ wb+ a20b

2 +Q1(w, b),
(42)

where Q1(w, b) are smooth functions in (w, b) at least of order three, and

a11 = −(λb∗ + 1), a12 = − (λb∗ + 1)2

b∗
, a20 =

µ1

(b∗ + 1)3
.
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Figure 11. Evolution of phase portraits of (3) for λ = 0.2, (µ0, µ1) = (7, 5) ∈
II and R > R1. (a) R = 11.4; (b) R = 11.47377; (c) R = 11.48; (d) R = 11.498;

(e) R = 11.5; (f) R = 12.
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Set u = w, v = a11w + a12b and rename u, v as w, b respectively. Then (42) is
transformed into 

dw

dt
= b+ b1w

2 + b2wb,

db

dt
= c1w

2 + c2wb+ c3b
2 +Q2(w, b),

(43)

where Q2(w, b) are smooth functions in (w, b) at least of order three, and

b1 =
λa11
a12

, b2 = − λ

a12
,

c1 =
a11(λa11 − a12 + a20a11)

a12
, c2 =

a12 − λa11 − 2a20a11
a12

, c3 =
a20
a12

.

Let u = w, v = b − c3wb and rewrite u, v as w, b respectively. Then system (43)
becomes 

dw

dt
= b+ b1w

2 + (b2 + c3)wb+ P3(w, b),

db

dt
= c1w

2 + c2wb+Q3(w, b),
(44)

where P3(w, b), Q3(w, b) are smooth functions in (w, b) at least of order three. Fi-

nally by the transformation of u = w− b2 + c3
2

w2, v = b+ b1w
2 and rewrite u, v as

w, b respectively, system (44) becomes
dw

dt
= b+ P4(w, b),

db

dt
= c1w

2 + (c2 + 2b1)wb+Q4(w, b),
(45)

where P4(w, b), Q4(w, b) are smooth functions in (w, b) at least of order three.
Note that

c1 =
µ1b
∗(1− λ)2(µ0 − (1− λ))

(b∗ + 1)2µ0(µ0λ+ (1− λ)2)
> 0,

and

c2 + 2b1 =
1

µ0(µ0λ+ (1− λ)2)

[
−λµ2

0 + (1− λ)(1 + 2λ)µ0 + (1− λ)3
]
6= 0,

if µ0 6= µ∗0. Thus, it follows from [16, Lemma 8.6] that the equilibrium (w∗, b∗)
of (2.1) is a cusp of codimension 2, i.e. it is a Bogdanov-Takens singularity if
µ0 6= µ∗0.

Theorem 4.1 implies that system (3) may admit a Bogdanov-Takens bifurca-
tion. From [16, Theorem 8.4] and symbolic calculation in Maple, we can find the
versal unfolding and approximating bifurcation curves depending on the original
parameters for (2.1) near the Bogdanov-Takens bifurcation point (see Appendix for
details).

Figure 12 illustrates the Bogdanov-Takens bifurcation in the R − µ1 plane for
several (λ, µ0) values. In each panel of Figure 12, the cyan curve Γ1 represents the
Hopf bifurcation curve, the blue curve Γ2 represents the saddle-node bifurcation
curve (which only exists when 0 < λ < 1) and the black line Γ3 is the transcritical
bifurcation curve R = R0 = µ1+µ0. When 0 < λ < 1, the saddle-node curve Γ1 and
the Hopf curve Γ2 divide the R−µ1 plane into three parts, marked by “nonexistence”
(no positive equilibrium), “stable” ((w+, b+) is stable) and “unstable” ((w+, b+) is
unstable), respectively (see Figure 12 (a), (b) and (c)). The line Γ3 separates the
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Figure 12. The cyan curve represents the Hopf bifurcation curve, the blue

curve represents the saddle-node bifurcation curve and the black line is µ1 =

R − µ0. The “BT” mark indicates a Bogdanov-Takens bifurcation point; the
“CP” mark indicates a cusp bifurcation point; and the “GH” mark indicates

a generalized Hopf point where the first Lyapunov coefficient vanishes while
the second Lyapunov coefficient does not vanish, which indicates that it is

nondegenerate, i.e. Hopf bifurcation changes from subcritical to supercritical.

(a): λ = 0.2, µ0 = 5. (b): λ = 0.2, µ0 = 7. (c): λ = 0.2, µ0 = 20. (d):
λ = 1.2, µ0 = 5.

parameter regions with 1 or 2 positive equilibria. The intersection point of the
saddle-node curve Γ1 and the Hopf curve Γ2 is the Bogdanov-Takens bifurcation
point marked by “BT”, and the intersection of Γ2 and Γ3 is the cusp bifurcation
point marked by “CP” (again by using package MatCont). Another degenerate
bifurcation point marked by “GH” is the generalized Hopf bifurcation point where
the first Lyapunov coefficient vanishes while the second Lyapunov coefficient does
not vanish, and that is where the Hopf bifurcation changes from subcritical to
supercritical. In Figure 12 (a), the Hopf bifurcation curve is a monotone curve,
which implies that there is only one Hopf bifurcation point R = R3 when using R
as bifurcation parameter. On the other hand, in Figure 12 (c) the Hopf bifurcation
curve is not monotone which means that there may exist two Hopf bifurcation points
R = R2 and R = R3. In Figure 12 (c), the Hopf bifurcation curve Γ1 also intersects
with the transcritical bifurcation curve Γ3, which means that the Hopf bifurcation
points R2 and R3 may be larger than R0.

Figure 12 (d) shows the case of λ ≥ 1. Here the R − µ1 plane is divided by the
Hopf bifurcation curve Γ1 and the transcritical bifurcation curve Γ3. There is no
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Bogdanov-Takens bifurcation point here as there is no saddle-node bifurcation point,
and we suspect all Hopf bifurcations are supercritical so there is no generalized Hopf
bifurcation point. Note that Figure 12 does not exhaust all possible situations, but
in other cases (as shown in Theorems 2.5 and 2.6), there is no Hopf bifurcation
curve then the dynamics is simpler.

5. Conclusions. We propose an ordinary differential equation model (3) for the
interaction between a plant (shrubs or trees) and a resource (water). The biomass
death rate is assumed to be decreasing respect to the biomass in order to capture
the infiltration feedback [6, 7]. We find rich bifurcation structure in (3) including
(forward/backward) transcritical bifurcations, saddle-node bifurcations, (subcriti-
cal/supercritical) Hopf bifurcations, homoclinic bifurcation, and Bogdanov-Takens
bifurcations. The type of bifurcations are listed in Table 1 according to the values
of (µ0, µ1) in different regions.

Table 1. Results of bifurcation points.

λ (µ0, µ1)
Transcritical
at R = R0

Saddle-node
bifurcation

Hopf bifurcation
points

Homoclinic
bifurcation

B-T
bifurcation

0 < λ < 1 I backward R1 none none R1

0 < λ < 1 II backward R1 R3 exist R1

0 < λ < 1 III backward R1 R2, R3 none R1

0 < λ < 1 IV forward none none none none
0 < λ < 1 V forward none R2, R3 none none
λ ≥ 1 VI forward none none none none
λ ≥ 1 VII forward none R2, R3 none none

From analysis and simulations, system (3) admits monostable, bistable or tristable
dynamics. There exist bistable regions in which the bare-soil equilibrium coexists
with a positive equilibrium, i.e. the extinction of the biomass coexists with the
“steady state persistence” of the biomass, or the bare-soil equilibrium coexists with
a stable limit cycle, i.e. the extinction of the biomass coexists with the “oscillatory
persistence” of the biomass, or the positive equilibrium coexists with a stable limit
cycle, and tristable regions in which two equilibria coexist with one limit cycle. In
the bistable and tristable parameter regions, the asymptotic biomass is determined
by the initial water and biomass density.

A hysteresis loop exists in the model (3) if the rain-fall rate varies. When the rain-
fall rate is high, the system stays at a high vegetation equilibrium; when the rain-fall
rate drops, the vegetation equilibrium decreases and it may switch to a oscillatory
state; when the rain-fall rate further decreases, the oscillatory state may shrink
back to an equilibrium (Figure 3 (d)-(e)), or may suddenly go to global extinction
(Figure 3 (f)-(h)). In the former case, the high vegetation state will also disappear
in the saddle-node bifurcation. So either case lead to a catastrophic shift. But
in both scenarios, time-periodic pattern occurs, which may be an early indicator
of the catastrophic shift. Previous work on catastrophic shifts focus on mostly
equilibrium behavior changes in the models (without spatial effect) [14, 28, 31], and
our work indicates that time-periodic pattern is also an important state for such
systems. System (3) provides a fundamental theoretical foundation for alternative
stable states and oscillations in species-resource systems, and it will also serve as
a basic kinetic model for spatiotemporal pattern formation with effect of diffusion,
cross-diffusion and nonlocal dispersal.
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As mentioned earlier, our model (3) can also be considered as an epidemic model.
Indeed one can consider an SIR epidemic model with birth/death and treatment:


dS

dt
= a− αSI − aS,

dI

dt
= αSI − βI − aI − bI

1 + cI
,

dR

dt
= βI − aR+

bI

1 + cI
,

(46)

where α, β, a, b, c > 0. Then methods used in this paper can also be applied to (46).
Similar SIR epidemic models with treatment have been considered in [32, 34, 38, 39].
Backward bifurcation has been observed in all these models, and some also studied
Hopf bifurcation and existence/nonexistence of limit cycles. But none of these
work considered limit cycle bubble, homoclinic bifurcation, and Bogdanov-Takens
bifurcation. By using our methods here, one can also obtain a detailed partition
of the parameter space and classify the dynamics of (46) into various bifurcation
diagrams including “bubble”, “heart”, “lotus” and “pepper”.

Appendix A. Approximating bifurcation curves. We choose R and µ1 as
bifurcation parameters. Suppose R,µ1, µ0, λ satisfy (C1) and (C2). Let

R = R1 + λ1, µ1 = m(µ0) + λ2,

w∗ =
R1

λb∗ + 1
, b∗ =

√
λ(1− λ)µ0m1 − λµ0

λµ0
.

(47)

Then, (w∗, b∗) is a degenerate equilibrium of (3) if λ1 = λ2 = 0. By the transfor-
mation of u = w − w∗, v = b− b∗, and still denoted u, v by w, b, (3) becomes

dw

dt
= λ1 + a1w + a2b− λwb,

db

dt
= a3 + b∗w + a4b+ wb+ a5b

2 +W1(w, b),

where W1(w, b) are smooth functions in w, b, λ1, λ2 at least of order three, and

a1 = −(λb∗ + 1), a2 = − λR1

λb∗ + 1
,

a3 = − b∗λ2
b∗ + 1

, a4 =
m1b

∗ − λ2
(b∗ + 1)2

, a5 =
m1 + λ2
(b∗ + 1)3

.
(48)

Let u = w, v = λ1 + a1w + a2b − λwb and rewriting u, v as w, b, respectively, we
have 

dw

dt
= b,

db

dt
= b0 + b1w + b2b+ b3w

2 + b4wb+ b5b
2 +W2(w, b),
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where W2(w, b) are smooth functions in w, b, λ1, λ2 at least of order three, and

b0 =
a22a3 + a5λ

2
1 − a2a4λ1
a2

,

b1 =
b∗a32 − λ1a22 + a5λλ

2
1 − a1a22a4 + 2a1a2a5λ1 − a22a3λ

a22
,

b2 =
λλ1 + a1a2 + a2a4 − 2a5λ1

a2
,

b3 =
a21a

2
2a5 + a5λ

2λ21 + 2a1a2a5λλ1 − a1a32 − λb∗a32
a32

,

b4 =
λa1a2 + λ2λ1 + a22 − 2a5λλ1 − 2a1a2a5

a22
,

b5 =
a5 − λ
a2

.

(49)

Note that

lim
(λ1,λ2)→(0,0)

b4 =
−λµ2

0 + (1− λ)(1 + 2λ)µ0 + (1− λ)3

µ0(µ0λ+ (1− λ)2)
6= 0,

if µ0 6= µ∗0.

Setting u = w +
b2
b4

and renaming u as w, we have
dw

dt
= b,

db

dt
= b0 −

b1b2
b4

+ b1w + b3w
2 + b4wb+ b5b

2 +W3(w, b),

where W3(w, b) are smooth functions in w, b, λ1, λ2 at least of order three.
Introducing a new time τ by dt = (1− b5w)dτ and rewriting τ as t, we have

dw

dt
= b(1− b5w),

db

dt
= (1− b5w)(b0 −

b1b2
b4

+ b1w + b3w
2 + b4wb+ b5b

2 +W3(w, b)).

Now, setting u = w, v = b(1− b5w) and renaming u, v as w, b, we obtain
dw

dt
= b,

db

dt
= c0 + c1w + c2w

2 + b4wb+W4(w, b),

where W4(w, b) are smooth functions in w, b, λ1, λ2 at least of order three, and

c0 = b0 −
b1b2
b4

, c1 = b1 − 2b5(b0 −
b1b2
b4

)

c2 = b3 + b25(b0 −
b1b2
b4

)− 2b1b5.

(50)

Note that

lim
(λ1,λ2)→(0,0)

b0 = 0, lim
(λ1,λ2)→(0,0)

b1 = 0,

lim
(λ1,λ2)→(0,0)

c2 = lim
(λ1,λ2)→(0,0)

b3 =
(1− λ)b∗

b∗ + 1
> 0.
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Set u =
b24w

c2
, v =

b24b

c22
, τ =

c2t

b4
, and denote u, v, τ as w, b, t, respectively. We have

dw

dt
= b,

db

dt
= η1 + η2w + w2 + wb+W5(w, b),

where W5(w, b) are smooth functions in w, b, λ1, λ2 at least of order three, and

η1 =
c0b

4
4

c32
, η2 =

c1b
2
4

c22
.

By the results of Section 8.4.2 in [16], we have the following approximating bifur-
cation curves in a small neighborhood of the origin.

Theorem A.1. Assume ak, bk, ck are defined as (48), (49) and (50), respectively.
Suppose that (C1) and (C2) hold and µ0 6= µ∗0. Then

1. there is a saddle-node bifurcation curve SN : {(λ1, λ2) : 4c0c2 = c21+o(‖µ‖2)};
2. there is a Hopf bifurcation curve H : {(λ1, λ2) : c0 = 0 + o(‖µ‖2)};
3. there is a homoclinic bifurcation curve HL : {(λ1, λ2) : 25c0c2 + 6c21 = 0 +

o(‖µ‖2)}.
Here, µ = (λ1, λ2).
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[19] M.-X. Liu, E. Liz and G. Röst, Endemic bubbles generated by delayed behavioral response:

Global stability and bifurcation switches in an SIS model, SIAM J. Appl. Math., 75 (2015),

75–91.

[20] A. Manor and N. M. Shnerb, Dynamical failure of Turing patterns, Europhys. Lett., 74 (2006),
837–843.

[21] R. M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states,
Nature, 269 (1977), 471–477.

[22] H. Meinhardt, Pattern formation in biology: A comparison of models and experiments, Rep.

Prog. Phys., 55 (1992),797–849.

[23] E. Meron, E. Gilad and J. von Hardenberg, et al, Vegetation patterns along a rainfall gradient,

Chaos, Solitons Fract., 19 (2004), 367–376.

[24] L. Perko, Differential Equations and Dynamical Systems, volume 7 of Texts in Applied Math-

ematics, Springer-Verlag, New York, 2001.

[25] M. Rietkerk, S. C. Dekker, P. C. De Ruiter and J. van de Koppel, Self-organized patchiness
and catastrophic shifts in ecosystems, Science, 305 (2004), 1926–1929.

[26] M. Scheffer, J. Bascompte and W. A. Brock, et al, Early-warning signals for critical transi-
tions, Nature, 461 (2009), 53–59.

[27] M. Scheffer, S. Carpenter and J. A. Foley, et al, Catastrophic shifts in ecosystems, Nature,

413 (2001), 591–596.

[28] N. M. Shnerb, P. Sarah, H. Lavee and S. Solomon, Reactive Glass and Vegetation Patterns,

Phys. Rev. Lett., 90 (2003), 038101.

[29] H.-Y. Shu, L. Wang and J.-H. Wu, Global dynamics of Nicholson’s blowflies equation revisited:

Onset and termination of nonlinear oscillations, J. Differential Equations, 255 (2013), 2565–
2586.

[30] A. M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol.
Sci., 237 (1952), 37–72.

[31] J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and

desertification, Phys. Rev. Lett., 87 (2001), 198101.

[32] J.-L. Wang, S.-Q. Liu, B.-W. Zheng, and Y. Takeuchi, Qualitative and bifurcation analysis
using an SIR model with a saturated treatment function, Math. Comput. Modelling, 55
(2012), 710–722.

[33] J.-F. Wang, J.-P. Shi and J.-J. Wei, Predator-prey system with strong Allee effect in prey, J.
Math. Biol., 62 (2011), 291–331.

[34] W.-D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201

(2006), 58–71.

[35] W.-D. Wang and S.-G. Ruan, Bifurcation in an epidemic model with constant removal rate

of the infectives, J. Math. Anal. Appl., 291 (2004), 775–793.

[36] X.-L. Wang, W.-D. Wang and G.-H. Zhang, Global analysis of predator-prey system with

hawk and dove tactics, Stud. Appl. Math., 124 (2010), 151–178.

http://dx.doi.org/10.1007/978-1-4612-4018-1_14
http://dx.doi.org/10.1126/science.284.5421.1826
http://dx.doi.org/10.1103/RevModPhys.66.1481
http://dx.doi.org/10.1103/RevModPhys.66.1481
http://www.ams.org/mathscinet-getitem?mr=MR1711790&return=pdf
http://dx.doi.org/10.1016/S0092-8240(96)00072-9
http://www.ams.org/mathscinet-getitem?mr=MR2428006&return=pdf
http://dx.doi.org/10.1016/j.jde.2007.10.034
http://dx.doi.org/10.1016/j.jde.2007.10.034
http://www.ams.org/mathscinet-getitem?mr=MR3299143&return=pdf
http://dx.doi.org/10.1137/140972652
http://dx.doi.org/10.1137/140972652
http://www.ams.org/mathscinet-getitem?mr=MR2240366&return=pdf
http://dx.doi.org/10.1209/epl/i2005-10580-5
http://dx.doi.org/10.1038/269471a0
http://dx.doi.org/10.1088/0034-4885/55/6/003
http://dx.doi.org/10.1016/S0960-0779(03)00049-3
http://www.ams.org/mathscinet-getitem?mr=MR1801796&return=pdf
http://dx.doi.org/10.1007/978-1-4613-0003-8
http://dx.doi.org/10.1126/science.1101867
http://dx.doi.org/10.1126/science.1101867
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1038/nature08227
http://dx.doi.org/10.1038/35098000
http://dx.doi.org/10.1103/PhysRevLett.90.038101
http://www.ams.org/mathscinet-getitem?mr=MR3090069&return=pdf
http://dx.doi.org/10.1016/j.jde.2013.06.020
http://dx.doi.org/10.1016/j.jde.2013.06.020
http://www.ams.org/mathscinet-getitem?mr=MR3363444&return=pdf
http://dx.doi.org/10.1098/rstb.1952.0012
http://dx.doi.org/10.1103/PhysRevLett.87.198101
http://dx.doi.org/10.1103/PhysRevLett.87.198101
http://www.ams.org/mathscinet-getitem?mr=MR2887411&return=pdf
http://dx.doi.org/10.1016/j.mcm.2011.08.045
http://dx.doi.org/10.1016/j.mcm.2011.08.045
http://www.ams.org/mathscinet-getitem?mr=MR2771175&return=pdf
http://dx.doi.org/10.1007/s00285-010-0332-1
http://www.ams.org/mathscinet-getitem?mr=MR2252078&return=pdf
http://dx.doi.org/10.1016/j.mbs.2005.12.022
http://www.ams.org/mathscinet-getitem?mr=MR2039086&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2003.11.043
http://dx.doi.org/10.1016/j.jmaa.2003.11.043
http://www.ams.org/mathscinet-getitem?mr=MR2590176&return=pdf
http://dx.doi.org/10.1111/j.1467-9590.2009.00466.x
http://dx.doi.org/10.1111/j.1467-9590.2009.00466.x


3006 XIAOLI WANG, JUNPING SHI AND GUOHONG ZHANG

[37] A. S. Watt, Pattern and process in the plant community, J. Ecol., 35 (1947), 1–22.

[38] X. Zhang and X.-N. Liu, Backward bifurcation of an epidemic model with saturated treatment
function, J. Math. Anal. Appl., 348 (2008), 433–443.

[39] L.-H. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources
revisited, Nonlinear Anal. Real World Appl., 13 (2012), 312–324.

Received April 2016; revised April 2017.

E-mail address: wxl711@swu.edu.cn

E-mail address: shij@math.wm.edu

E-mail address: zgh711@swu.edu.cn

http://dx.doi.org/10.2307/2256497
http://www.ams.org/mathscinet-getitem?mr=MR2449361&return=pdf
http://dx.doi.org/10.1016/j.jmaa.2008.07.042
http://dx.doi.org/10.1016/j.jmaa.2008.07.042
http://www.ams.org/mathscinet-getitem?mr=MR2846841&return=pdf
http://dx.doi.org/10.1016/j.nonrwa.2011.07.036
http://dx.doi.org/10.1016/j.nonrwa.2011.07.036
mailto:wxl711@swu.edu.cn
mailto:shij@math.wm.edu
mailto:zgh711@swu.edu.cn

	INTERACTION BETWEEN WATER AND PLANTS: RICH DYNAMICS IN A SIMPLE MODEL
	Recommended Citation

	1. Introduction
	2. Equilibria and stability
	2.1. Preliminaries
	2.2. Local stability of equilibria
	2.3. Global stability and nonexistence of periodic orbits
	2.4. Proof of Theorems 2.5 and 2.6

	3. Hopf bifurcations and homoclinic bifurcations
	4. Bogdanov-Takens bifurcation
	5. Conclusions
	Appendices
	Appendix A. Approximating bifurcation curves
	Acknowledgments
	REFERENCES

