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Machine learning action parameters in lattice quantum chromodynamics
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Numerical lattice quantum chromodynamics studies of the strong interaction are important in many
aspects of particle and nuclear physics. Such studies require significant computing resources to undertake.
A number of proposed methods promise improved efficiency of lattice calculations, and access to regions
of parameter space that are currently computationally intractable, via multi-scale action-matching
approaches that necessitate parametric regression of generated lattice datasets. The applicability of
machine learning to this regression task is investigated, with deep neural networks found to provide an
efficient solution even in cases where approaches such as principal component analysis fail. The high
information content and complex symmetries inherent in lattice QCD datasets require custom neural
network layers to be introduced and present opportunities for further development.

DOI: 10.1103/PhysRevD.97.094506

I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) [1] is a well
established numerical method [2,3] used to study quantum
chromodynamics (QCD), the theory of the strong inter-
action. A central part of the Standard Model (SM) of
nuclear and particle physics, strong interactions bind
quarks and gluons into protons and nuclei, and dictate
the emergence of complex nuclear structure in nature.
High-precision LQCD calculations are important in deter-
mining the parameters of the SM and guide searches for
evidence of new physics beyond it [4]. Recent LQCD
calculations also provide new insights into the quark and
gluon structure of protons [5] and the structure and
interactions of light nuclei [6,7]. Similarly, LQCD calcu-
lations have enabled investigations of QCD matter at
extreme temperatures, and efforts to understand QCD
matter at high density are underway [8]. These calculations
are extremely computationally demanding, consuming
significant fractions of the computational resources that
are available for scientific research worldwide.
LQCD calculations are performed on a discrete

4-dimensional space-time grid (typically a hypercubic
lattice), and use Monte-Carlo importance sampling [9] to
determine the dynamics of the quark and gluon fields

defined on this space. Achieving physical results requires a
series of calculations at different discretization scales
(referred to as the lattice spacing), and different lattice
volumes, and a subsequent extrapolation to the continuum
(where the discretization vanishes) and infinite volume
limits. Particularly challenging is the approach to the
continuum limit; the computational cost of the hybrid
Monte-Carlo (HMC) algorithm [10] typically used scales
with a high inverse power of the lattice spacing, a,
approximately a−z with z > 6 for a fixed physical lattice
volume [11]. Known as critical slowing down, this occurs
because of the quasilocal nature of the HMC updating
procedure, requiring an increasing number of steps to
update physics on a fixed physical volume as the lattice
spacing decreases. A number of methods attempt to
circumvent this issue by acting at multiple physical length
scales. Examples include perfect actions [12–15] that aim
to achieve almost-continuum physics at finite lattice spac-
ings, and multiscale thermalization techniques [16–21].
Such approaches require careful renormalization group
matching [22,23] of the LQCD actions defined at different
scales such that they describe the same long-distance
physics. An essential challenge is to solve the parametric
regression task: Which action parameters best represent the
coarse-scale physics of an ensemble of samples generated
at a finer resolution, and vice-versa? Similar parameter
regression problems of LQCD data sets arise in the context
of mixed action LQCD simulations (see for example
Refs. [24–26]).
In this work, machine learning (ML) techniques, in

particular neural networks, are applied to the regression
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problem of determining LQCD action parameters from an
ensemble of samples. Significant progress inMLover the last
few years has led to new scientific applications of ML tools,
including to a number of statistical and quantum mechanics
problems. In one set of studies,ML has been used to infer the
presence of phase transitions and thermodynamic properties
in simple condensed matter models [27–30]. In another
study, variational methods have been optimized for many-
body problems using ML techniques [31,32]. Novel
approaches to the Monte-Carlo method that is ubiquitous
in numerical simulations of many systems have also been
developed using ML ideas [33–39]. Finally, ML regression
for matchingHamiltonians in condensed matter contexts has
recently been investigated [34,40] and shows promise. Very
few studies, however, have applied ML techniques to
investigate gauge field theories such as LQCD (LQCD is
a particularly important example of a more general class of
theories defined with a local invariance known as a gauge
symmetry), and new techniques and adaptations are required
because of the unique and complex symmetry structures of
these theories.1 Averaged over Monte-Carlo importance
sampling, LQCD data is invariant under discrete spacetime
translations and hypercubic group transformations, although
individual samples do not have these symmetries. In addi-
tion, internal symmetries based on the continuous Lie group
SU(3) associated with each spacetime location must be
respected. Exploiting these symmetries is essential to the
success of the approach used here; it is found that suitably
customized deep neutral networks can provide an efficient
and practical method of determining the action parameters
describing the physics of a given set of configurations.
This article is arranged as follows. In Sec. II, the basic

aspects of the lattice QCD calculations that are used to train
and test parametric regression by neural networks are
discussed, and a principal component analysis (PCA) is
used to ascertain the difficulty of the regression tasks that
are attempted. In Sec. III, a number of different neural
network structures are studied. First, in Sec. III A, a fully
connected neural network is used. This easily solves the
parameter regression problem on training ensembles, but
suffers from overfitting due to the inverted hierarchy of the
information content of each sample to the number of
samples available for training. Despite its failure to general-
ize, this network finds features that persist in the LQCD
data for Monte-Carlo times considerably longer than those
seen for typical physics-motivated observables. The over-
fitting problem is remedied in Sec. III B, where several
custom symmetry-enforcing layers are introduced to define
neural network structures that efficiently solve the regres-
sion problem. The trained networks correctly resolve
parameter differences even between ensembles which are
essentially indistinguishable under the PCA analysis.

Section IV provides a summary. Two appendices provide
additional details of aspects of machine learning and of the
lattice QCD calculations.

II. LATTICE QCD

Lattice QCD calculations are performed by approximat-
ing the QCD path integral by a Monte Carlo sum over
gauge field configurations on a discrete four-dimensional
space-time. The expectation value of an operator O that
defines some physical quantity is given by:

hOi ¼ 1

Z

Z
DψDψ̄DAO½ψ ; ψ̄ ; A�e−S½ψ ;ψ̄ ;A� ð1Þ

¼ 1

Z

Z
DUÕ½U�e−S̃½U�; ð2Þ

where Z ¼ R
DψDψ̄DAe−S½ψ ;ψ̄ ;A�, the (anti-)fermion and

gluon fields (gauge fields) are denoted by ψðψ̄Þ and A, and
S½ψ ; ψ̄ ; A� is the discretized QCD action (defined in
Appendix B 1). In the second line, the fermion and
antifermion fields are integrated out exactly, and the gauge
fields are transformed to link fields U ¼ eiA, to give an
effective action S̃½U� and operator Õ½U� depending only on
the gluon link fields. The resulting integral can be approxi-
mated as

hOi≊ 1

Ncfg

XNcfg

i¼1

O½Ui�; ð3Þ

where the gauge field configurations Ui (i indexes the
configurations in a given “ensemble” of fields) are distrib-
uted according to the probability measure e−S̃½U�. In
practice, this is guaranteed by sampling the fields from a
Markov chain Monte-Carlo stream for which this proba-
bility measure is a fixed point. These representative gauge
fields are the input data for the ML approaches to para-
metric regression studied here. For additional details of the
LQCD approach, see Refs. [2,3] and Appendix B 1.
Lattice QCD gauge fields are represented as links

between sites on a 4-dimensional lattice of volume2

V ¼ L3 × T, with the lattice sites separated by some
physical distance a, typically 0.05–0.15 fm. Each link,
labeled by UμðxÞ, where x denotes the spacetime coor-
dinates of the origin site and μ the direction of the link, is
encoded by an SU(3) matrix (a 3 × 3 complex matrix M
with M−1 ¼ M† and det½M� ¼ 1).3 Links in opposing
directions are related via U−μðxÞ ¼ U†

μðx − μ̂Þ, and only

1Reference [41] investigates the ability for neural networks to
learn a simple order parameter in pure SU(2) gauge theory at
finite temperature.

2The spatial, L, and temporal, T, extents of the lattice geometry
are often distinct.

3Here, M† ¼ ðM�ÞT is the Hermitian conjugate. An SU(3)
matrix can be specified by 8 real numbers, but typically the
redundant representation with 18 real numbers is used.
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links in the positive direction are stored. In this format, a
gauge field used in typical modern lattice QCD calculations,
where for example L ¼ 64 and T ¼ 128, is described by
L3 × T × 4 × 18 ≈Oð109Þ floating point or double preci-
sion numbers, where the factor of 4 arises from the number of
positive spacetime directions (labelled by μ). In order to
recover QCD results, calculations must be performed on a
number of ensembles of field configurations with different
lattice spacings a and lattice volumes V, and the continuum
(a → 0) and large-volume (V → ∞) limits must be taken.
The governing equations of QCD and their lattice

counterparts have a variety of symmetries, some that are
highly nontrivial. The symmetries satisfied by ensembles of
gauge fields are of particular interest in the context of the
ML approaches studied here, as they place strong restric-
tions on numerical operations that can be performed on
lattice data to extract physically meaningful results. In
particular, lattice QCD is invariant under a local symmetry
of the gauge fields known as a gauge symmetry; this is an
invariance under local multiplications of link variables by
SU(3) matrices

UμðxÞ → U0
μðxÞ ¼ ΩðxÞUμðxÞΩ†ðxþ μ̂Þ

for all ΩðxÞ ∈ SUð3Þ; ð4Þ

referred to as a gauge transformation (note that the matrix
ΩðxÞ differs at every spacetime point). This symmetry is
not apparent from the numerical representation of a QCD
configuration, but rather constrains physical observables
calculated on a given gauge field to be invariant under all
gauge transformations of that field. In addition, lattice QCD
defined on a discretized finite volume is invariant under
discrete translations and under 4-dimensional rotations and
reflections (transformations generated by the hypercubic
group, H4 [42]). Unlike gauge symmetry, these latter
symmetries do not hold on a configuration-by-configura-
tion basis, but rather emerge after averaging physical
quantities over all gauge fields in an ensemble. An addi-
tional important property of QCD is that a characteristic
length scale, 1=ΛQCD ∼ 1 fm, emerges dynamically from
the interactions of the theory, setting a spacetime distance
over which values of the link fields are correlated.

A. Lattice QCD ensembles

A number of different ensembles of lattice QCD gauge
field configurations were used for this first exploratory
study. Each ensemble was generated using a two-color
Nc ¼ 2 Wilson gauge action with Nf ¼ 2 flavors of
dynamical Wilson fermions (defined in Appendix B 1).
This action depends on two bare couplings/parameters, β
and m0. QCD with Nc ¼ 2 exhibits similar rich dynamical
structure to the full theory with Nc ¼ 3 and is a natural
testing ground for the new approaches developed here.
Ensembles were generated with a standard HMC algorithm

using a leapfrog integrator to take molecular dynamics
trajectory steps of length τMD ¼ 0.5 in 15–40 substeps
(tuned to keep the acceptance rate ∼70%). In each case, the
streams were initialized from a hot start or from a
thermalized lattice from a nearby set of couplings, and
the initial 500 trajectories were not included in the further
analysis. For most ensembles, configurations were saved
every 10 trajectories to generate ensembles of Oð103Þ
independent configurations, with the separation determined
from studies of the autocorrelation times of typical observ-
ables (for some ensembles, configurations were saved
every trajectory to allow studies of autocorrelation times
to be undertaken). Since Nc ¼ 2 in these calculations,
rather than Nc ¼ 3 in full QCD, the lattice data structures
used here are somewhat smaller than those used for state-
of-the-art calculations, with each configuration represented
by Oð106Þ double precision numbers. All ensembles were
generated using a modified version of the CHROMA lattice
field theory library [43] that was previously [44] found to
produce results consistent with an independent code [45].
Ensembles were generated at many points in param-

eter space:
(i) Grid A: Twenty 123 × 36 ensembles of 10,000

trajectories with each β ∈ f1.785; 1.835; 1.885;
1.935; 1.985g and m0 ∈ f−0.7;−0.8;−0.9;−1.0g,
excluding the pair fβ; m0g ¼ f1.985;−1.0g which
could not be thermalized efficiently;

(ii) Grid B: Twenty-five 123 × 36 ensembles of 10,000
trajectories with each β∈f1.76;1.81;1.86;1.91;
1.96g and m0∈f−0.65;−0.75;−0.85;−0.95;−1.05g,
excluding the pair fβ; m0g ¼ f1.91;−1.05g which
could not be thermalized efficiently;

(iii) Grid C: Twenty ensembles with the same bare
parameters as Grid A, but with a spacetime
volume of 163 × 48, excluding the pairs fβ; m0g ¼
f1.935;−1.0g and f1.985;−1.0g, which could not
be thermalized efficiently;

(iv) Two sequences of ensembles with parameters tuned
to produce closely matched plaquette values. The
parameters of each set are indicated by the paren-
theses ðβ; m0Þ:
(a) Set D: fD1ð1.815; −0.98Þ; D2ð1.825; −0.93Þ;

D3ð1.838; −0.87Þ; D4ð1.85; −0.83ÞD5ð1.862;
−0.79Þg;

(b) Set E: fE1ð1.826; −1.03Þ; E2ð1.837; −0.99Þ;
E3ð1.847; −0.95Þ; E4ð1.858; −0.9ÞE5ð1.87;
−0.85Þg;

(v) Set F: Ten independent streams of 10,000 trajecto-
ries denoted F1, …; F10, saved every trajectory,
generated with the same values of β ¼ 1.76
and m0 ¼ −0.75.

Simple physical observables, including the pion and rho
meson masses and scale setting observables w0 and t0 [46],
have been calculated on Grids A and B; contour plots
displaying the variation of these quantities across the
ensembles are shown in Fig. 1.
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In order to check the validity of the HMC streams, the
evolution of simple quantities along the trajectories has
been monitored. The simplest, and computationally cheap-
est, way to produce a gauge invariant quantity from links is
to take the trace of products of links over closed loops
(“Wilson loops”). Wilson loops are defined from gauge
links as shown schematically in Fig. 2, and detailed in
Appendix B 1. Planar Wilson loopsWk×lðxÞ, with indices k
and l denoting the dimensions of the loop (with orientation
label suppressed), were computed for square loops up to
6 × 6, as well as rectangular loops of size 1 × n for
n ¼ 2;…; 12, and all possible planar orientations. The
evolution of representative loop types for the ensembles in
Grids A, B, and C, averaged over orientations and

spacetime position, is shown in Appendix B 2. For each
case, this evolution indicates that the data is well thermal-
ized after approximately 500 trajectories.
To determine the number of HMC steps required for

gauge field configurations to be independent, the autocor-
relation times of the pion and rho two-point correlation
functions, and of the same sets of Wilson loops introduced
above, have been calculated. The autocorrelation function
for a given operator O is defined as

ρðτÞ ¼
X
τ0
hðOðτ0Þ − hOiÞðOðτ0 þ τÞ − hOiÞi; ð5Þ

where τ is the trajectory difference in the autocorrelation.
This function decays exponentially as ρðτÞ ∼ exp½−τ=τexp�
at large Monte-Carlo times τ. The decay constant τexp
defines an autocorrelation time. Calculations of the auto-
correlation time using this definition can suffer from large
uncertainties, especially when τexp is small. Another
definition of the autocorrelation time is [3,47]

τint ¼
1

2
þ lim

τmax→∞

1

ρð0Þ
Xτmax

τ¼0

ρðτÞ; ð6Þ

which approaches a constant as τmax → ∞. The autocorre-
lation functions and integrated autocorrelation times τint for
the Wilson loops, and those for the zero-momentum pro-
jected pion and rho two point correlation functions, CπðρÞ
(defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is ⪅ 10 trajectories,
validating the choice to take trajectories spaced by this
distance as an uncorrelated set to form an ensemble. Other
observablesmay have different autocorrelation times, but the
observables considered here are relatively representative.4

B. Ensemble discrimination using
principle component analysis

To guide the application of ML methods to parametric
regression of gauge fields in the space defined by the sample
ensembles, the differentiability of the ensembles was
assessed using a principle component analysis (PCA) [48–
50]. Since Wilson loops are the simplest gauge-invariant
objects, the basis for the PCAwas generated by calculating a
set of square planar loops of sizes up toL=2 × L=2, aswell as
1 × n for n up to L, averaged over all possible planar
orientations and space-time locations. Averaged loops are
denoted Wj×l ¼

P
Oðj×lÞ

P
x Wj×lðxÞ, where the sum over

Oðj × lÞ is over all hypercubic transformations of the
indicated loop. The averaged loop data are sufficiently small

FIG. 1. Contours show the scale setting quantities t0 and ω0, as
well as the lattice spacing times the pion mass amπ , and rho
meson mass amρ, determined using calculations on each ensem-
ble in the two L=a ¼ 12 grids. The stars show the locations of the
ensembles from Grids A (blue) and B (orange).

FIG. 2. Diagrammatic representation of the construction of
planar Wilson loops Wk×lðxÞ, with indices k and l denoting the
dimensions of the loop (with orientation label suppressed), from
gauge links UμðxÞ.

4The topological charge of the gauge field typically has a long
autocorrelation time, but at the relatively coarse lattice spacings
used here, it will be comparable to that of the observables that are
investigated.
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in dimension that it is possible to display them for a
representative set of ensembles. Figure 4 shows contour
plots of ln jWn×mj from evaluations on each ensemble in the
two L=a ¼ 12 grids (Grids A and B). Figures 20, 22, and 24
(in Appendix B 2) show histograms for a subset of the loops
for each ensemble in each of Grid A, B, and C, respectively.
Clearly, some of the loops are statistically well determined,
and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are
more sharply defined than those in Grids A and B as their
larger spacetime volume enables more statistical averaging.
For large loop sizes, all ensembles become hard to
distinguish.
To perform the PCA on the loop data, a correlation

matrix between the various loop observables can be
constructed, either for a given ensemble, or, as is done
here, across a collection of ensembles. The correlation
matrix elements are

Mli;lj ¼
X
e

X
c

½Wliðe;cÞ− W̄liðeÞ�½Wljðe;cÞ− W̄ljðeÞ�
σðWliðeÞÞσðWljðeÞÞ

;

ð7Þ

where li ∈ f1 × 1; 2 × 2;…g, and e and c label the
ensemble and the configuration in that ensemble, respec-
tively. The summation over ensembles is for all ensembles
in a given grid, and X̄ and σðXÞ denote the mean and
standard deviation of the given quantity over the particular
ensemble of configurations. The eigenvalues, ei, and
eigenvectors, vi, of this correlation matrix for Grid A are
shown in Fig. 5. There are three particularly large eigen-
values. Similar pictures emerge from PCAs run on Grid B
and Grid C, indicating three dominant degrees of freedom
in the calculated Wilson loops. Histograms showing the
combinations of loops corresponding to the three dominant,
and fourth sub-dominant, eigenvectors are presented for the

FIG. 3. Autocorrelation functions ρðτÞ=ρð0Þ [left, defined in Eq. (5)] and autocorrelation times τint [right, defined in Eq. (6)] of the
pion (top) and ρ (center) two-point correlation functions at different Euclidean time separations, and of the various space-time averaged
n ×m planar Wilson loops (bottom). Measurements are performed on a subset of ensemble F1, for Ntraj ¼ 4000 sequential trajectories
(Ntraj ¼ 7980 for the loops). The colors identify the type of loop and the shaded bands correspond to the uncertainties on these quantities
as determined from a bootstrap procedure using Nboot ¼ 100 bootstrap resamplings of size Ntraj.
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ensembles in Grid A in Fig. 6. Clearly, the information
encoded in a collection of the simplest gauge-invariant
objects is sufficient to distinguish all but a few of the
ensembles in Grid A.
The Jensen-Shannon divergence [51,52] provides a mea-

sure of the overlap of probability distributions and can be

used to quantify the distinguishability of such distributions.
Given two probability distributions P and Q, defined over a
space X, the Jensen-Shannon divergence is given by

DJSðPkQÞ ¼ 1

2
DKLðPkMÞ þ 1

2
DKLðQkMÞ; ð8Þ

FIG. 4. Contours show ln jWn×mj from evaluations on each ensemble in the two L=a ¼ 12 grids. The stars show the locations of the
ensembles from Grids A (blue) and B (orange).

FIG. 5. Eigenvalues en (left panel) and eigenvectors vn (right panel) of the loop correlation matrix for Grid A. The strength of the
contribution of each loop to each eigenvector is represented by the tone of the corresponding box in the right panel (i.e., darker ¼
larger contribution).
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where M ¼ 1
2
ðPþQÞ, and DKLðPkQÞ is the Kullback-

Leibler divergence [53], defined as

DKLðPkQÞ ¼
Z

dxPðxÞlog2
PðxÞ
QðxÞ : ð9Þ

The Jensen-Shannon divergence is bounded by
0 ≤ DJSðPkQÞ ≤ 1, with DJS ¼ 0 if and only if Q ¼ P
almost everywhere, and larger values denoting lower overlap
between distributions. The square root of the Jensen-
Shannon divergence provides a well-defined metric [54,55].
As a test of differentiability, the Jensen-Shannon diver-

gences were calculated between all pairs of three-dimen-
sional probability distributions defined by the three
dominant eigenvectors of the loop correlation matrix for
each ensemble in Grid A.5 To do this, each distribution was
first interpolated over the samples from the given ensemble
using smooth kernel distributions. The resulting values of
DJS are shown pictorially in Fig. 7 for all pairs of the 19
ensembles in Grid A. Clearly, the dominant eigenvectors in
loop space allow excellent differentiation between most
pairs of ensembles, with approximately 8 out of 171
independent pairs that are only weakly, or not at all,
differentiable.

A more challenging test of distribution differentiability is
provided by the ensembles in Sets D and E, each designed
to have maximal overlap of Wilson loops on each of the
ensembles in the set, but different parameters in the fβ; m0g
plane. Figure 8 shows histograms of the combinations of
Wilson loops corresponding to the dominant eigenvectors of
the loop correlation matrix for ensemble Sets D and E, while
Fig. 9 displays the Jensen-Shannon divergence between pairs
of ensembles in these sets.As the ensembles in each of SetsD

FIG. 6. Combinations of loops corresponding to the four largest eigenvectors of the loop correlation matrix for Grid A. Each color
denotes a different ensemble in Grid A.

FIG. 7. The Jensen-Shannon divergence, DJS, between pairs of
ensembles in Grid A, calculated over the three-dimensional
distributions defined by the three dominant eigenvectors of the
loop correlation matrix used for the PCA. DJS ¼ 1 implies
completely distinguishable distributions.

5On a given ensemble e, this three-dimensional probability
distribution is given by Peðsi; s2; s3Þ where

si ¼ vi · ðW1×1ðe; cÞ;W2×2ðe; cÞ;…W1×12ðe; cÞÞ;
and where vi is the ith eigenvector of the PCA. Additional tests
with the largest two or four eigenvectors gave qualitatively
similar results.
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and E are very poorly distinguishable in the space of Wilson
loops, accurate differentiation between them presents a key
challenge to parametric regression via ML.

III. NEURAL NETWORKS FOR PARAMETRIC
REGRESSION OF LATTICE QCD GAUGE FIELDS

Machine learning techniques, and in particular neural
networks, offer a promising solution to parameter regression
problems. The main focus of this work is to address such a
problem in the context ofLQCD: given an ensemble of lattice
gauge fields, determine the parameters of a given action that
are most likely to have generated it. As discussed in the
introduction, this challenge arises, for example, in attempts to
ameliorate critical slowing down by the matching of coarse
and fine lattice actions, and in the context of perfect actions.

Its solution will allow for more efficient LQCD calculations,
enabling studies in regions of parameter space which are
currently computationally unreachable.
To determine the action parameters of a given ensemble

(for a particular choice of lattice action), one possible
approach is to calculate a sufficiently large set of physics
observables both on that ensemble and on a set of
ensembles for which the parameters are known, and
perform an interpolation and matching task using the
calculated observables. The alternative considered here is
to train a neural network to perform the regression directly.
In principle, this approach is far more general than one
based on a set of physics quantities, as the network can use
all of the information encoded in a gauge field configu-
ration. On the other hand, this is also challenging. As
discussed in Sec. II A, a single gauge field configuration is
represented byOð109Þ real numbers in modern lattice QCD
calculations. In comparison, a typical ensemble used for
such calculations consists of Oð103Þ configurations. This
hierarchy implies that the stochastic learning of features of
the relevant degrees of freedom of the gauge field con-
figurations—in particular that extracted physics results
must be invariant under spacetime translations, reflections,
and hypercubic rotations as well as under gauge trans-
formations—is challenging.
This challenge is approached in two ways, described in

the following two sections. First, a multilayer perceptron (a
fully connected feed-forward neural network) is trained to
learn the action parameters corresponding to lattice gauge
field configurations. As anticipated, using gauge fields as
input with no symmetry constraints leads to overfitting of
the spacetime and gauge features of the data which are not

FIG. 8. Combinations of loops corresponding to the dominant eigenvectors of the loop correlation matrix for ensemble Sets D and E.
Each color denotes a different ensemble.

FIG. 9. The Jensen-Shannon divergence, DJS, between pairs of
ensembles in Sets D (left) and E (right), calculated over the three-
dimensional distributions defined by the three dominant eigen-
vectors of the loop correlation matrix used for the PCA. The
maximum value ofDJS in each Set is 0.6.DJS ¼ 1 corresponds to
completely distinguishable distributions.
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related to the physics encoded by a given ensemble.
Nevertheless, this exploration reveals a number of interest-
ing features of the problem at hand. Second, a practical
solution to the parametric regression problem is provided in
the form of a network with a structure that imposes the
spacetime and gauge symmetries of LQCD (or, equiva-
lently, involves preprocessing gauge field data into a format
that respects these symmetries).

A. Fully-connected network

The simplest approach to the parametric regression of
lattice QCD gauge fields using neural networks is to use a
multilayer perceptron [56–59], i.e., a fully-connected feed-
forward network structure (a glossary of neural network
terminology is provided in Appendix A). For each of the
ensembles of gauge-field configurations in Grid B, 850
configurations were randomly selected as training data,
while 100 were held out as validation data [60,61]. Each
gauge field configuration, consisting of Oð106Þ real num-
bers, was treated as an individual input. As physical
quantities are only defined on ensemble average, regression
on these inputs cannot be exact; a given gauge configu-
ration could, with various probabilities, have been gen-
erated from an action differing in both form and parameters
from the one that it was in fact generated with, so a
perfectly functioning network will necessarily have some
spread in predictions from a given ensemble. Quantifying
this maximum resolution is possible in principle, but

computationally prohibitive, and for this reason has not
been undertaken. Investigations into new ensemble-based
training approaches that would sharpen the maximum
regressor predictability are ongoing.
A simple fully-connected neural network structure,

represented graphically in Fig. 10, was trained on the
regression task.6 The network was initialized by setting the
biases to zero and the weights to a truncated normal
distribution centred at zero with a width of 0.02. A tanh
activation function was applied to the nodes in each layer,
as well as an L2 regularizer with weight decay set to 0.001.
Dropout [62–64] was also applied to each layer. While
many variations of the network structure were investigated,
a systematic hyperparameter tuning was not undertaken
due to computational limitations. In general, it was found
that fewer hidden units and layers than in the illustrated
network led to less optimal minima of the loss function,
while a greater number did not appreciably change the
outcome. Dropouts in the range 0.3–0.6 were required to
eliminate over-fitting. A range of regularization prescrip-
tions and hyperparameters, as well as a range of activations
including tanh, reLU [65–67], and sigmoid were
studied. The Adam optimizer [68] reached the minimum
loss with less training than stochastic gradient descent

FIG. 10. A schematic representation of the neural network structure used for parametric regression. Gauge links, expressed in an SU
(2) basis as 4 real numbers, are used as inputs to the network. There are 4 links in each positive direction from a given site, giving a total
of 4 × 4 × V ¼ 16 × 123 × 36 ¼ 995328 real numbers per gauge field. Two fully connected layers, each with 96 nodes, are used. Each
hidden layer features a tanh activation function and dropout. A random set of connections between layers are omitted to denote
dropout.

6The open source packages TENSORFLOW and TFLEARN were
used to implement all neural networks and are available from
https://www.tensorflow.org and http://tflearn.org,
respectively.
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(SGD), and a loss function based on least absolute devia-
tions (L1) rather than least square errors (L2), performed
better.
The predictions of the best-performing network for the

held-out validation data are shown in Fig. 11. While these
results appear to signal the success of this approach, the
generalization ability of the network, i.e., its ability to
interpolate in parameter space, is poor. In particular:

(i) New ensembles, even those in the 10 ensembles of
Set F, generated from separate HMC streams but
with the same fβ; m0g as one of the training
ensembles, were predicted to sit at the average β
and m0 values of all ensembles included in training.
This indicates that the network did not succeed in
learning the gauge-invariance properties of lattice
QCD gauge fields, nor in parametrizing the param-
eter space of the grid of ensembles;

(ii) Configurations from the continuation of the HMC
streams used to generate the training and validation
configurations were also predicted to have different
parameters. Specifically, the next configurations in
the HMC streams were predicted to have the correct
m0 and β values, but these predictions drifted
towards the average over all training ensembles
within a few steps. This indicates that the network
is identifying some quantity with a longer autocor-
relation time than the physics quantities studied in
Sec. II A, i.e., that the configurations separated in
MC time such that they are independent by the
measure of various physics observables, are not
independent by the alternative measure found by
the network.

The majority of these features are unsurprising; infor-
mation content suggests that with Oð103Þ samples con-
taining Oð106Þ real numbers each, it is not feasible to
stochastically learn symmetries such as the gauge invari-
ance of the data, and that generalization will be challeng-
ing. This could be remedied by using far larger ensembles
of gauge field configurations for training, if that were
computationally feasible.
The ability of the network to distinguish different

streams generated at the same values of β and m0 is
interesting. In the limit of infinite stream lengths, no
calculated quantity, corresponding to a physical observable
or otherwise, can achieve this distinction. Such distinguish-
ability indicates that the streams are not completely
sampling the gauge field configuration space and is tied
to the existence of a feature, identified by the network, that
has a longer autocorrelation than those of the physics
observables studied in Sec. II A. An autocorrelation time of
the neural network feature was obtained from the output of
classification networks trained on each of the pairs of
streams in Set F, generated at the same set of action
parameters. Rather than training this network to identify the
fβ; m0g of a given gauge field as for the regression network
described previously, the classifier was trained to produce a
classification: f1; 0g for configurations from one stream,
and f0; 1g for those from a second. The network structure
used was identical to that shown in Fig. 10, with a
softmax [69] activation function used for the final layer
to provide a normalized probability interpretation for the
output: an output fa; 1 − ag for a given configuration
indicates that that sample can be identified with the first
stream with a probability a. A categorical cross-entropy

FIG. 11. Predictions of β and m0 on validation ensembles at the same parameter values as the training ensembles. The stars in the left
panel denote the parameters used to generate the ensembles, while the ellipses show the one-standard deviation confidence interval of
the predictions for the validation ensembles. The same validation data are shown as histograms in the right figure, with the intersections
of the grid lines indicating the parameters used for ensemble generation.
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[70,71] loss function was used for this training. For each
pair of streams, 600 trajectories from each stream were used
to train an instance of the network. The output of that
instance for the trajectories sequentially following the
training data defines an autocorrelation function:

ρðτÞ ¼ 2½PγðcγðτÞÞ� − 1: ð10Þ

Here, cγðτÞ labels a trajectory from stream γ ¼ fα; βg, τ steps
in Monte-Carlo time after the end of the sequence used as
training data, andPγðcγÞ denotes the probability, determined
from the network output, that trajectory c is in stream γ. The
autocorrelation function, and an autocorrelation time deter-
mined from this function by Eq. (6), are shown in Fig. 12.
Comparing to Fig. 3, it is clear that the autocorrelation timeof
the feature used by the network to distinguish streams is
approximately three times longer than the longest autocor-
relation time of the physics observables that were calculated
in Sec. II.
It is natural to speculate that the strong autocorrelation

observed in the neural network output is based on some local
features of the data, rather than features encoding the physics
of interest.7 Further investigation did not find evidence for
this interpretation; neither Moran’s I [72] nor Geary’s C [73]
tests supported the existence of correlated spatial regions in
the derivatives of the loss function with respect to inputs.
There is also no correlation of these derivatives with known
spatially-varying physical quantities such as topological
charge density and action density. While the long–correla-
tion-time feature could not be identified in this study, it
provides an interesting topic for further study. In particular, it
will be informative to investigate how this scale changeswith
parameter range, particularly in regions of parameter space

where topological charge freezing becomes a difficult
problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with
simple fully-connected neural networks were not success-
ful at parametric regression of lattice QCD gauge fields for
the training data sets used in this study. This is not
unexpected; learning the symmetries of gauge field con-
figurations stochastically is certain to be a challenging task.
Symmetries of lattice QCD, however, act to reduce the
effective degrees of freedom of the problem, and can be
incorporated into the structure and training of neural
networks in several ways. First, the stochastic learning
of symmetries can be accelerated through data augmenta-
tion (i.e., randomly performing a gauge transformation and/
or translation/lattice rotation on a configuration). This is
analogous to typical uses of data augmentation [74] in, for
example, image recognition [75,76], to introduce sym-
metries such as rotational symmetry.8 In practice, this was
found to be untenable for the case studied here as a result of
the large number of symmetries that must be learned, their
complex nature, and the requirement that they be strictly
observed. Second, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow
gauge invariant and lattice-symmetry invariant outputs of
the network. This approach is found to be successful.
To incorporate the symmetries of lattice QCD gauge

fields into neural network structures, several custom net-
works were designed, featuring an initial preprocessing
layer that forms only quantities that respect the invariances
of the problem, followed by fully-connected layers operat-
ing on these quantities. The possible gauge and translation-
invariant degrees of freedom that are allowed by the first

FIG. 12. Autocorrelation function in Monte-Carlo time [left, defined in Eq. (10)] and autocorrelation time [right, defined in Eq. (6)] of
the feature distinguishing two streams at the same set of parameters, trained on sequences of gauge field configurations. The
autocorrelation function was generated by averaging over many different results (trained using all different pairs of the 10 streams,
F1;…;10, at the same parameters), and was found to be robust under changes of the network structure used to generate it. The dashed
horizontal line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

7This is supported by the observation that features with similar
autocorrelation times were identified using network structures that
respect gauge-invariance, but retain full spatial information.

8The incorporation of symmetries into various neural network
structures has been studied in Refs. [77–80].
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layer are specified by hand; in principle this choice could be
part of the learning process, although naïve implementa-
tions are prohibitively expensive. Wilson loops of all
shapes and sizes, along with their correlated products,
suitably averaged over spacetime, provide a natural choice
of gauge-invariant, translation-invariant quantities that can
be formed from a gauge field configuration9 The number of
such loops is exponentially large in the spacetime volume
and it is computationally intractable to allow all to be
generated, so a suitable subset must be chosen. As used in
the PCA analysis in Sec. II B, one such subset is the set of
square planar loops of sizes up to L=2 × L=2, as well as
1 × n rectangular loops for n up to L, averaged over all
possible planar orientations and space-time locations.
Another natural choice is the set of all correlated products
of two Wilson loops, similarly averaged:

Wj×k;l×mðRÞ¼
X
jrj¼R

X
l∈Oðj×kÞ

X
l0∈Oðl×mÞ

X
x

WlðxÞWl0 ðxþ rÞ;

ð11Þ

where the sum over l ∈ Oðj × kÞ is over all lattice
rotations of loops of size j × k, and these loops are chosen
from the same list as the single loops described above.
Histograms of these correlated loop products for each
ensemble in Grids A, B, and C are shown in Figs. 21,
23, and 25 in Appendix B 2. A third choice of simple,
gauge-invariant quantities is the set of subtracted correlated
products of loops,

WðsubÞ
j×k;l×mðRÞ¼

X
jrj¼R

X
l∈Oðj×kÞ

X
l0∈Oðl×mÞ

�X
x

WlðxÞWl0 ðxþrÞ

−
X
x

WlðxÞ
X
x

Wl0 ðxÞ
�
: ð12Þ

Network structures that allow each of these sets—labeled
as single loops (SL), unsubtracted products of two loops
(CP), and single loops plus the subtracted correlated
products of two loops (SLCP)—to be formed in the first
layer, are studied.
The complete network structures used for regression are

illustrated in Fig. 13 for each of the SL, CP, and SLCP
cases. Each network was trained using 850 independent
configurations from each ensemble in a given grid, with a
further 100 held out as validation data. As for the fully-
connected network described in the previous section, the
networks were initialized by setting the biases to zero and
the weights to a truncated normal distribution centred at
zero with a width of 0.02. Although no rigorous tuning of
the hyperparameters of the networks was undertaken for

the various structures, a large number of variations were
investigated. In general, networks with fewer hidden units,
or fewer layers, than those illustrated in Fig. 13 were
found to produce less optimal solutions, while larger
networks did not significantly improve on the results that
are presented. As for the fully-connected networks, an L1
distance in the two-dimensional parameter space was used
as the loss function, and this was found to perform
considerably better than the L2 distance. For a given
network structure and loss function, the same minimum
loss was achieved using different choices of optimizer,
including SGD, Adam [68], and Nesterov [81], with
various parameters, although the number of epochs
required to convergence varied.
The outputs of neural networks allowing each of the SL,

SLCP, orCP loop sets to be formed in the first layer, trained
on the ensembles in Grid A, are shown in Fig. 14. In each
case, the results display accurate regression and clear
differentiation between the ensembles, with the shapes
of the confidence ellipses of network predictions elongated
in the direction of constant 1 × 1 plaquette, the simplest and
most precise gauge-invariant object. The mild distortion of
the regression results towards the centre of the grid is
natural, as this will always lead to a smaller loss in the case
of misidentifications than any alternative. With additional
tuning and larger or denser parameter grids for training, one
might expect that this distortion can be removed. The
training and validation losses of each network are shown
against training epoch in Fig. 15. TheCP network performs
slightly better than the SL network, as one may anticipate,
given that it allows a larger number of degrees of freedom
to be utilized. The SLCP network, while also having more
degrees of freedom than the SL network, displays over-
fitting: while the training loss is as good as that of the
CP network, the validation loss remains higher. It is likely
that tuning the network hyperparameters individually
for each network structure would improve these results.
For the purpose of the present proof-of-principle study,
the CP network is taken as the best example for fur-
ther study.
Unlike the fully-connected network described in the

previous section, the symmetry-respecting networks gen-
eralize successfully, both correctly identifying the param-
eters of other streams generated with the same action as the
training data, which are indistinguishable from the vali-
dation distributions, and interpolating to intermediate
ensembles. This interpolation is illustrated in Fig. 16,
which shows the predictions of the CP network on both
the evenly-spaced intermediate ensembles of Grid B, and
on ensembles in Sets D and E, generated to lie along lines
of constant plaquette (isoplaquette lines). While the latter
ensembles are essentially indistinguishable along each
isoplaquette by various Wilson loops, even using a princi-
pal component analysis (see Sec. II B), the parameter
predictions from the trained network are distinguishable,

9It may also be interesting to explore using the PCA basis of
Wilson loops as features for network training.
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FIG. 13. Diagrams of the neural network structure used. In the first layer, SL, CP, or SLCP structures are formed, e.g., in the CP case,
products of the 18 different types of loops separated by lattice distance R < 13 (averaged in integer space bins of R) are allowed, for a
total of 18 × 18 × 13 ¼ 4212 loop products. The first layer is followed by 3 fully connected hidden layers with 1024, 512, and 256
nodes. Each hidden layer uses a tanh activation function, with dropouts between layers.
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and, most importantly, have the correct relative positions in
parameter space. The overlap between the network pre-
dictions for the very closely-spaced ensembles from Set E
is anticipated; as described in earlier sections, there is a
maximum resolution inherent in this regression problem.
Nevertheless, the ordering of the central values of the
distributions remains robust. This shows accurate regres-
sion of dense points in a region of parameter space
significantly smaller than the space between adjacent
training ensembles, confirming that the network has suc-
cessfully parametrized the relevant features of lattice QCD
gauge fields.

The accurate regression achieved with the CP network
relies on having a sufficient density of points in the fβ; m0g
plane in the training data set to enable interpolation.
Reducing this density by half, for example, and training
the same network structure in the same manner, yields a
network instance that generalizes poorly to intermediate
ensembles. Figure 17 shows the results of such a test, using
the Grid A ensembles. Despite the poor generalization
performance, both training and validation loss converge to
the same values as for the CP network trained on the
entirety of Grid A; that is, the training does not indicate
over-fitting.

FIG. 14. Predictions of β and m0 for the validation ensembles in Grid A at the same parameter values of the training ensembles, using
SL (left panel), SLCP (right panel) andCP (bottom panel) network structures. The stars show the location of each ensemble in parameter
space, while the ellipses show the 1σ confidence regions generated from the variation of the predictions for the 100 validation samples
from each ensemble.
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The successful parametric regression of lattice QCD
gauge fields presented here must be extended to larger-
volume lattices more typical of modern lattice QCD
calculations for the method to be applied in practice. As
lattice volume increases, Wilson loop distributions become
more sharply peaked, and as a result become more distinct,
as can be seen by comparing Figs. 21 and 25 which display
these loops for data sets with spacetime volumes V ¼
L3 × T ¼ 123 × 36 and 163 × 48, respectively. It can thus
be anticipated that regression performance with the net-
work structures developed here will improve on larger
lattice volumes. Figure 18 shows the results of a CP
network structure trained on Grid C. As expected, the
regression performance is better than for the smaller-
volume ensembles. Extending these results to even larger
volumes, and to Nc ¼ 3 QCD, is essential.

FIG. 16. Predictions of β andm0 from the CP network trained on Grid A, for the ensembles in Grid B (left panel) and Sets D and E (right
panel). The open circles show the location of each ensemble in parameter space, while the ellipses show the 1σ confidence regions generated
from thevariation of the predictions for the 100 validation samples from each ensemble. The greyed-out stars and ellipses show the validation
data and training ensemble locations.

FIG. 17. Predictions of β and m0 from a CP network trained on a subset of the ensembles in Grid A. The stars show the location of
each ensemble in parameter space, while the ellipses show the 1σ confidence regions generated from the variation of the predictions for
the 100 validation samples from each ensemble. In the right panel, the open circles show the location of testing ensembles, that were not
included in training, in the parameter space, while the matched-color ellipses show the 1σ confidence regions of the network predictions.

FIG. 15. Loss for networks trained on the ensembles in Grid A
with SL (orange),CP (blue), and SLCP (green) structures in the first
layer, optimized with the Adam optimizer. The dark lines indicate
the training loss and the pale lines show loss on the validation data.
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IV. SUMMARY

Deep neural networks with custom symmetry-preserv-
ing layers provide a solution to the parameter regression
problem in lattice QCD, for the proof-of-principle case
considered here. Specifically, neural networks regressors
trained on grids of ensembles in action parameter space
were able to accurately identify the parameters used to
generate streams of ensembles, generalizing successfully
and accurately to ensembles densely spaced and between
grid points in the training space. Non-symmetry preserv-
ing networks were also studied. While these were unsuc-
cessful at the regression task, they revealed an unknown
feature of the lattice ensembles with a longer correlation
length than any of the physics observables that were
studied.
Extending this work to SU(3) gauge groups and to

larger lattice volumes will be essential for the practical
application of the methods developed. In addition to the
symmetries exploited here, a typical length scale,
1=ΛQCD ∼ 10−15 m, emerges dynamically in LQCD cal-
culations. Consequently, there are potential advantages for
a convolutional approach [82–84] at larger lattice volumes.
Convolutional layers would again have to be customized,
respecting the gauge symmetry of the problem. Particular
use-cases of LQCD parameter regression may also impose
additional constraints. For example, regression for the
matching of coarse and fine lattice actions requires the
identification of ensembles generated in a coarse space
with ensembles describing the same physics, but generated
via a coarsening prescription [20,21]. The latter ensem-
bles, by renormalization-group evolution, are described by
lattice actions with more parameters than those generated

in the coarse space. Preliminary investigation suggests that
regression under these conditions will require network
structures invariant under irrelevant short-distance degrees
of freedom, or the marginalization over such degrees of
freedom in the learning procedure. Regression of the
larger number of parameters in such actions (and used
in the construction of perfect actions [12–15]), must also
be investigated further.
Clearly, having demonstrated the feasibility of neural

network approaches to LQCD in the present work, sig-
nificant further study is warranted. In particular, the use of
lattice symmetries to overcome the dramatic inverted data
hierarchy of LQCD—the feature that there are typically far
fewer samples than degrees of freedom per sample avail-
able—opens the door to many novel applications of
machine learning in LQCD.
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APPENDIX A: NEURAL NETWORK GLOSSARY

Multi-layer perceptron: A multilayer perceptron is the
simplest form of a multilayer neural network, having a
feed-forward network structure, i.e., triggering the activa-
tion of each layer of the network successively, without
circulating, and consisting of multiple fully-connected
layers that use nonlinear activation functions.
Loss function: A loss, or objective, function, is a

measure of the difference between the output of a neural
network for a given training sample, and the ground truth.
This function defines success for network training.
Training procedures, such as stochastic gradient descent,
or adaptive learning rate algorithms such as Adam or

FIG. 18. Predictions of β andm0 for the validation ensembles in
Grid C at the same parameter values of the training ensembles,
using a CP network structure. The stars show the location of each
ensemble in parameter space, while the ellipses show the 1σ
confidence regions generated from the variation of the predictions
for the 100 validation samples from each ensemble.
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Nesterov, update the weights and biases of neural net-
works to minimize the loss.
Training and validation data sets: It is typical to hold out

some data from training a neural network to form a
validation data set to provide a generalization test for the
network. A larger loss calculated on the validation data than
on that used for training is an indication of over-fitting.
Over-fitting: The production of a model that is fit to

irrelevant features or fluctuations of the training data and
therefore fails to generalize reliably.
Dropout: Dropout is a regularization procedure in neural

networks whose purpose is to prevent over-fitting. Dropout
prevents neutrons from coadapting by randomly setting a
fraction, governed by the dropout hyperparameter, to zero
at each training iteration. This results in a model that can be
interpreted as randomly sampling from an exponential
number of similar networks [64], and creates more general-
izable representations of data.
Activation:A neural network layer typically consists of a

linear transformation followed by a non-linear transforma-
tion at each node, known as the activation function. This
non-linearity is what allows neural networks to learn
complex decision boundaries. Typical choices of activation
functions include sigmoid, tanh, and reLU (defined as
x for x > 0, 0 otherwise).
Epoch vs. iteration: In the training of a neural network,

an iteration is one update of the neural net model
parameters. Typically, networks are batch-trained, with a
hyperparameter governing the batch size of training data
considered per update. An epoch is a complete pass
through a given training data set, which may take one
(if the batch size is equal to the size of the dataset) or more
iterations.

APPENDIX B: LATTICE QCD DETAILS

1. Details of lattice actions, correlation functions,
and Wilson loops

The discretized lattice QCD action is expressed in terms
of the gauge links between lattice sites, UμðxÞ (which are
SUðNcÞ matrices for a theory with Nc colors), and the
fermion fields ψðxÞ, with the Euclidean space-time posi-
tions x ∈ Λ ¼ faðn1; n2; n3; n4Þjni ∈ Zg. The simplest
action with the appropriate symmetries for a theory with
Nf flavors is given by:

Sðβ; m0Þ ¼
β

Nc

X
x∈Λ

X
μ<ν

Re Tr½1 − PμνðxÞ�

þ
XNf

f¼1

a4
X
x;y∈Λ

ψ̄fðxÞDðm0ÞψfðyÞ; ðB1Þ

where Pμν is the plaquette: the shortest, nontrivial, closed
loop on the lattice, defined in terms of gauge links as

PμνðxÞ ¼ UμðxÞUνðxþ μ̂ÞU−μðxþ μ̂þ ν̂ÞU−νðxþ ν̂Þ;
ðB2Þ

where μ̂ denotes the vector of length a in the μ direction.
The Wilson Dirac operator is

Dðm0Þ ¼
�
4

a
þm0

�
I −

1

a

X3
μ¼0

ðP−
μΩþ

μ þ Pþ
μ Ω−

μ Þ; ðB3Þ

with

P�
μ ¼1

2
ð1�γμÞ; hxjΩþ

μ jyi¼δxþμ;yUðx;μÞ; Ω−
μ ¼ðΩþ

μ Þ†:
ðB4Þ

The action is parametrized by two values: the coupling
constant β and the bare quark mass m0.
The plaquette can be generalized to Wilson loops

of arbitrary shapes and dimensions. Planar Wilson
loops Wk×lðxÞ, with indices k and l denoting the dimen-
sions of the loop (with orientation label suppressed),
as illustrated in Fig. 2, are expressed in terms of gauge
links as

Wk×lðxÞ ¼ UμðxÞUμðxþ μ̂Þ…Uμðxþ ðk − 1Þμ̂Þ
× Uνðxþ kμ̂ÞUνðxþ kμ̂þ ν̂Þ…
× Uνðxþ kμ̂þ ðl − 1Þν̂ÞU−μðxþ kμ̂þ lν̂Þ
× U−μðxþ ðk − 1Þμ̂þ lν̂Þ…U−μðxþ μ̂þ lν̂Þ
× U−νðxþ lν̂ÞU−νðxþ ðl − 1Þν̂Þ…U−νðxþ ν̂Þ

ðB5Þ

Two-point correlation functions are defined as the
matrix elements corresponding to the creation of some
state at a time 0, and annihilation at some later time t. For
the pion and rho mesons considered in this work, with
suitable choices of creation and annihilation operators, the
zero-momentum projected correlation functions can be
defined as

CπðρÞðtÞ ¼
X
x

h0jūγ5ð3Þdðx; tÞd̄γ5ð3Þuð0; 0Þj0i; ðB6Þ

where u and d denote quark creation (and ū and d̄
annihilation) operators. For further details, see Refs. [2,3].
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2. Further details of ensemble properties

In this appendix, the properties of the various LQCD data sets used in this work are presented. Figure 19 shows the
evolution of various Wilson loops with HMC trajectory for the ensembles in Grids A, B, and C, while Figs. 20–25 present
histograms of the Wilson loops and correlated products of Wilson loops on each ensemble in these grids.

FIG. 19. The various Wilson loops, Wm×n, on the first 1600 (of 10000) trajectories of each of the ensembles in Grid A (left column),
Grid B (middle column) and Grid C (right column).
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FIG. 20. The various Wilson loops, Wm×n, on each of the ensembles in Grid A for all m, n combinations used in this work.

FIG. 21. The various Wilson loop correlators, Wm×n;p×qðrÞ, on each of the ensembles in Grid A for a selection of choices of loop
shapes and separations r ¼ 0, 1.
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FIG. 22. The various Wilson loops, Wm×n, on each of the ensembles in Grid B for all m, n combinations used in this work.

FIG. 23. The various Wilson loop correlators, Wm×n;p×qðrÞ, on each of the ensembles in Grid B for a selection of choices of loop
shapes and separations r ¼ 0, 1.
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FIG. 24. The various Wilson loops, Wm×n, on each of the ensembles in Grid C for all m, n combinations used in this work.

FIG. 25. The various Wilson loop correlators, Wm×n;p×qðrÞ, on each of the ensembles in Grid C for a selection of choices of loop
shapes and separations r ¼ 0, 1.
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