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Over the last half century, anthropogenic impacts 
have dramatically decreased water quality 
throughout the Chesapeake Bay. Improving the 
health of the Bay has become a priority for the 
U.S. federal government and the six states that 
make up the Bay watershed, and together they 
have committed to utilize a regulatory model to 
inform their management decisions. As 
ecosystem and water quality models are 
becoming increasingly used for operational 
forecasts as well as scenario-based management 
decisions, it is important to understand the 
strengths and limitations of existing models of 
varying complexity. The utilization of multiple 
models can also inform projections by providing 
independent confidence bounds for management 
decisions based on a regulatory model. 

INTRODUCTION

Assess the viability of using models of varying 
complexity in operational and scenario-based 
water quality forecasting for the Chesapeake Bay. 

Simulations of the Chesapeake Bay from six 3-D 
coupled hydrodynamic-oxygen models of varying 
complexity (Table 1) were statistically compared 
to each other and to historical monitoring data 
using root-mean squared differences (RMSD), 
bias, standard deviations, and correlation 
coefficients as illustrated on target and Taylor 
diagrams (Joliff et al, 2009; Taylor, 2001). Model 
skill for temperature, salinity, dissolved oxygen 
(DO), nitrate, and chlorophyll was assessed 
based on cruise data from the EPA’s Chesapeake 
Bay Program for 2004 and 2005 from 13 stations 
along the main stem of the Bay (Fig. 2). Stations 
were sampled on 34 cruises: twice a month from 
April to August and once a month for the 
remainder of the year. The focus on DO 
concentrations in this research is because DO is 
the primary indicator used by regulatory agencies 
in assessing the health of the Chesapeake Bay. 

Figure 2. 
Location of 

the 13 
Chesapeake 
Bay Program 

monitoring 
stations 

utilized in the 
study. 
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Figure 1.
 Map of the 

Chesapeake 
Bay and its 
watershed.

 (Najjar et al., 
2010). 

  

•  All models have significant skill in reproducing bottom DO (Fig. 3), and specifically resolve 
the mean and seasonal variability of bottom DO well (Fig. 4a), but have difficulty resolving 
spatial variability (Fig. 4b). 

    ! Simple constant-biology models reproduce bottom DO as well       
    as models that include complex biogeochemical processes. 

•  All models underestimate the maximum strength of the oxycline and halocline and place 
the depth of stratification too high in the water column (Figs. 5 & 6). Stratification too high in 
the water column results in DO being underestimated relatively near the surface (Fig. 3a). 

•  All models successfully reproduce temperature, but have difficulty resolving the variables 
typically thought to be the main drivers of DO variability, e.g. stratification, nitrate, and 
chlorophyll (Fig. 7). 

•  Observations demonstrate a stronger correlation between the depths of the oxycline and 
halocline than between their magnitudes (Fig. 8). 

    ! To adequately model hypoxia throughout the water column, it 
     is more important for models to successfully simulate the 
     depth of stratification than the magnitude of stratification. 

CH3D-
ICM

ChesROMS-
ECB

ChesROMS-
BGC

ROMS-
RCA

CBOFS-
1term

ChesROMS-
1term

Institute EPA VIMS UMCES UMCES NOAA WHOI
BGC? Yes Yes Yes Yes No No

XY - Grid 0.25 - 1km2 ~ 1km2 ~1km2 ~ 1km2 ~ 0.3km2 ~ 1km2

Z - Grid z: ~ 5ft σ: 20 layers σ: 20 layers σ: 20 layers σ: 20 layers σ: 20 layers
Table 1. Characteristics of the individual models.  

Six models were used in this study that all couple a 
hydrodynamic component to a biogeochemical (BGC) 
component of varying degrees of complexity or to a 
single, 1-term oxygen variable. CH3D-ICM is the 
regulatory water quality model used by the EPA’s 
Chesapeake Bay Program. The other five models, 
including CBOFS (Chesapeake Bay Operational 
Forecasting System, NOAA-CSDL), have hydrodynamic 
components built upon the community-based Regional

MODELS

Ocean Modeling System (ROMS). ChesROMS-ECB, ROMS-RCA, and ChesROMS-BGC include a full suit of biogeochemical interactions 
throughout the water column. CBOFS and ChesROMS-1term both only include dissolved oxygen as a tracer based on a constant respiration 
rate. CBOFS has higher horizontal resolution than the other ROMS models. !

These findings have significant ramifications for short-term bottom DO forecasts, which may 
be successful with very simple oxygen parameterizations. On the contrary, scenario-based 
water quality forecasts are likely to benefit from more complex models, which must 
adequately reproduce the correct response of the oxygen field to changes in nutrients and 
organic matter. This study suggests that a key factor for resolving hypoxic conditions 
throughout the water column is the ability of models to adequately resolve the depth of 
stratification, rather than the absolute strength of stratification (as long as modeled dS/dz is 
strong enough to limit vertical mixing). This is critical because the observations show that 
during hypoxic events, low dissolved oxygen water will fill the water column up to where 
stratification limits further mixing. This effectively cuts off waters below the depth of 
maximum stratification for use by the majority of Bay main stem living resources during the 
summer months. This study also helps to demonstrate how multiple community models can 
be used together to provide independent confidence bounds for management decisions 
based on regulatory model results. 
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Figure(3.(Normalized!(A)!target!diagram!and!(B)!Taylor!diagram!
demonstra6ng!how!well!the!models!resolve!the!mean!spa6al!
and!temporal!variability!of!DO!at!the!surface,!5m!depth,!10m!
depth,!and!boEom.!!

Figure(4.(Normalized!target!diagrams!demonstra6ng!how!well!the!
models!resolve!the!(A)!temporal!and!(B)!spa6al!variability!of!
boEom!DO.!Dots!in!(A)!represent!observa6on!sta6ons.!Dots!in!(B)!
represent!the!month.!Red:!MayJSept.!Blue:!OctJApril.!!

Figure(6.!Normalized!target!diagrams!demonstra6ng!how!well!the!
models!resolve!the!(A)!temporal!and!(B)!spa6al!variability!of!
stra6fica6on.!Dots!in!(A)!represent!observa6on!sta6ons.!Dots!in!
(B)!represent!the!month.!Red:!MayJSept.!Blue:!OctJApril.!!

Figure(5.(Normalized!(A)!target!diagram!and!(B)!Taylor!diagram!
demonstra6ng!how!well!the!models!resolve!the!mean!spa6al!
and!temporal!variability!of!maximum!stra6fica6on!(halocline!and!
oxycline)!and!depth!of!stra6fica6on.!!

Figure(7.(Normalized!(A)!target!diagram!and!(B)!Taylor!diagram!
demonstra6ng!how!well!the!models!resolve!the!mean!spa6al!and!
temporal!variability!of!surface!and!boEom!temperature,!nitrate!
(BGC!models),!and!chlorophyll!(BGC!models)!
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Figure(8.!Correla6on!plots!of!summer!(MayJSept)!(A)!maximum!
dDO/dz!vs!maximum!dS/dz!and!(B)!depth!of!maximum!dDO/dz!vs!
depth!of!maximum!dS/dz!for!observa6ons!(black),!CH3DJICM!
(magenta),!and!ChesROMSJ1term!(cyan).!All!pJvalues!<<!0.05.!!
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