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I. INT.RODUCTION 

The Rappahannock River is a major tributary of Chesapeake Bay (Figure 

1). The tidal portion of the river extends 171 kilometers from the river 

mouth in a generally north-west direction to the 'fall line' at 

Fredericksburg (Division of Water Resources, 1970). The average tidal range 

at the mouth is 37 em, increasing to 55 em at Bowlers Rock (55 km upstream), 

decreasing slightly to 46 em at Leedstown (99 km upstream) and increasing 

again to 85 em at Fredericksburg (N.o.s., 1988). The tidal portion of the 

river drains an area of 1,613 km•. The drainage area above the fall line is 

4,110 km•. The discharge ranges from 0.14 to 3,960 m•/s, with an average 

flow of 47 m1 /s (USGS, Water Resources Data for Virginia, 1986). 

The lowest portion of the Rappahannock River is a partially mixed 

estuary. The hydrodynamic characteristics arc similar to those in other 

Chesapeake bay tributaries like the Potomac, York and James Rivers 

(Ulanowicz and Flemer, 1978). Fresh and salt water mix over a broad 

transition zone seaward of Tappahannock and stratification is relatively 

weak. Water movement in this estuary follows a two-layered pattern with a 

net seaward flow through the upper layer and net landward flow through the 

lower layer (Nichols, 1973). A sill is present at the mouth of the 

Rappahannock River and restricts water exchange with the bay. 

Since the estuary empties into Chesapeake Bay, salinity in the estuary 

is moderated by the remoteness from the ocean and the effect of freshwater 

flow from other tributaries to the bay, especially the Susquehanna River. 
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A. Backsround 

The dissolved oxygen concentration (DO) in an estuary is dependent on 

several physical and biochemical factors. The solubility of oxygen is 

influenced mainly by water temperature and salinity. In addition, 

turbulence affects atmospheric reaeration rates. Respiration by marine 

organisms and the decomposition of organic material exert demands on the 

available oxygen. Dissolved oxygen values in the Rappahannock estuary have 

shown a seasonal pattern from previous observations (Brooks, 1983). The 

highest values, around 10 mg/1, were reported during the winter seasons when 

low temperatures result in high oxygen solubility as well as reduced oxygen 

demand. The level of dissolved oxygen decreases through the spring and 

reaches a minimum in tho summer when both temperature and salinity are high. 

The minimum value of 0.0 mg/1 has been frequently observed in the deep 

waters near the river mouth during the summer season. 

Aquatic organisms are highly dependent on the DO in the water column. 

In recent years a great concern has been devoted to the study of oxygen 

deficiency, i.e. hypoxic and anoxic conditions, and the identification of 

these areas in estuarine and coastal waters. Hypoxia is defined as a 

condition of reduced DO, while anoxia is defined as absence of dissolved 

oxygen. These conditions are more likely to occur in deep bottom water 

rather than surface water where oxygen is more readily available from tho 

atmosphere. Seliger et al. (1985) have concluded that oxygen deficiency 

appears to have significant ecological impacts on aquatic organisms. 

Despite the fact that Virginia's tributary estuaries have similar 

hydrodynamic characteristics, hypoxia has been observed frequently in the 

lowest reach of the Rappahannock and York Rivers but seldom in the 

corresponding portion of the James River. Kuo and Neilson (1987) reported 
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that when water temperatures exceeded 20 C (typically May through 

September). DO below S mg/1 were observed in about 95~ of the 58 surveys 

(CSA program, slackwater surveys since 1971) in the Rappahannock, 75% of the 

65 surveys in the York, but only 7~ of the 60 surveys in the James. The 

hypoxic conditions appeared earliest and lasted longest in the Rappahannock. 

Furthermore, the minimum DO in the Rappahannock was less than 4 mg/1 on all 

but one of the summer surveys. 

B. Stucly Goch 

There are several objectives to this study. The immediate objective 

is to collect a comprehensive and consistent set of field observations to 

better describe the hypoxic condition in the Rappahannock River. Other 

objectives can be classified as short and long term goals. 

Loaa tom 

(1) Identify and quantify the processes contributing to the dissolved 

oxygen budget in deep waters, and explain the variabilities among 

the three Virginia major tributary estuaries. 

(2) Provide information for resource management so that the James 

River can be protected from hypoxic problems and, perhaps, the 

problems in the York and Rappahannock Rivers can be alleviated. 

Short tom 

(1) Is the hypoxic condition in the Rappahannock River just an 

extension of that in Chesapeake Bay, or does it originate locally 

within the river? 
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(2) Does the hypoxic condition in tho Rappahannock River persist 

throughout the summer, or is there occasional oxygenation as 

observed in the York River? 
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II. FIELD SURVEYS AND DATA PRESENTATION 

Field data for this study were collected during the summer season of 

1987. Data collection can be divided into four major groups as follow: 

A. Slackwater surveys. 

B. Time-series measurements of dissolved oxygen, salinity and 

temperature. 

c. Current measurements. 

D. Tide measurements. 

A. Slackwater Surveys 

Since previous studies (Kuo and Neilson, 1987) have shown hypoxic 

conditions to exist only in the lower portion of the estuary and mostly 

during the summer season, June through September, all slackwater surveys 

covered this portion of the river and this period. A total of 13 slackwater 

surveys were conducted from 2 June to 14 September 1987 at a slack water 

phase of the tide, e.g. slack water before ebb (SBE), as it propagated 

upstream from the estuary mouth. During each survey, temperature, 

conductivity and dissolved oxygen measurements were taken at designated 

stations along the river, including one in Chesapeake Bay. Station 

locations for these surveys are shown in Figure 2. In this figure, station 

designation (e.g. 0.00, 9.80) refers to distance from the river mouth in 

kilometers. Station designation proceeded by letters (e.g CB6.1) refers to 

the Chesapeake Bay station. Stations for slackwater surveys are located at 

the deepest point of these transects. 
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Temperature and conductivity were measured with an Applied Micro 

System Conductivity-Temperature-Depth probe (CTD). Continuous vertical 

profiles, top to bottom, for these variables were obtained at each 

designated station. On the other hand, DO was measured using a probe made 

by Yellow Springs Instruments. Dissolved oxygen measurements were taken 

every meter from the surface to 15 meters depth, then measurements were 

taken every 2 meters until the bottom was reached. 

Conductivity measurements wero converted to salinities employing 

UNESCO algorithm (1983). Salinity, temperature and dissolved oxygen data 

for the river stations are displayed as isoconcentration contours in the 

vertical-longitudinal plane in Appendix A. A table listing the data for the 

bay station (CB-6.1) is also included in Appendix A. 

B. Time Series Measurement of DO, Temperature and Salinity 

1. Measureaent with DO aeters 

Time-series measurements of temperature, conductivity and dissolved 

oxygen were taken at two stations, RO.O and R16.6, by a Hydrolab DataSounde 

1. Deployment depth at station RO.O was 11.8 meters, while at station R16.6 

they were deployed at mid-depth, 7.5 m, and at the bottom, 16.2 m. The 

meter was deployed at station RO.O from S August to 2 September, during this 

period, it was repeatedly serviced, calibrated and then deployed for a 

period ranging from 7 to 10 days. Battery life and fouling restrict the 

deployment period. The meters at station R16.6 were not deployed until 

August 25 because of availability. 

All meters were set to record temperature, conductivity and dissolved 

oxygen at half-hour intervals. Conductivity readings were converted to 

salinity following the procedure used for slackwater survey data. Errors in 
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dissolved oxygen measurements are estimated by the manufacturer to be 
+ 

5.0%. The highest DO observed was about 10.0 mg/1, and hence, an error of 

± 0.5 mg/1 is introduced. Since the largest instrument error possible from 

these observations is not more than O.S mg/1, it was decided to acknowledge 

the error introduced by the instrument in reading the DO values rather than 

correcting the raw data. Time series plots of DO, salinity and temperature 

data for station RO.O are presented in Figures 3a, 3b and 3c respectively. 

The gaps shown in these figures represent the times at which the dissolved 

oxygen meter was being serviced. At station R16.6 only 8 days of data were 

retrieved because the meters broke loose from mooring after first service. 

Time series plots of DO, temperature and salinity at station R16.6 are 

presented in Figures 4 and 5 respectively for. depths 7.5 and 16.2 m. 

2. Ueasurement with 84 current meters 

Time-series measurements of temperature, pressure and conductivity 

were also taken by the S4 meters deployed at station RO.O and R16.6. 

Average values of all variables were recorded every 30 minutes. 

Conductivity readings were converted following the procedure as described 

previously for the slack water data. Tables 1 and 2 provide length of time

series and the depth at which temperature and salinity data were collected. 

Duration for these variables are the same as the current meter measurements 

described in the next section. 

Time-series plots of the half hourly measurements are displayed in 

Figures 6 through 11. These time series data were then subjected to a low

pass (36 hour) filter to remove tidal and other high frequency signals. The 
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non-tidal temperature and salinity fluctuations are also displayed in 

Figures 6 through 11. 

C. Current Measurements 

Current velocities were measured with in-situ, self recording meters 

that were deployed with taut wire moorings at station RO.O and R16.6. Two 

types of current meters were used, the Ruz meter and the Inter-ocean 84 

meter. The Ruz meter is a modified Braincon Histogram meter, which measures 

current magnitude by a savonius rotor, with a vane attached for direction 

measurement. The original photographic recording system was replaced by 

solid state memory. These meters were set tc. record current direction and 

magnitude every 34 minutes. 

The 84 meter is an electromagnetic type current meter with solid state 

memory. It is also equipped with temperature, conductivity and pressure 

sensors. The average values of all variables were recorded every 30 

minutes. 

At station RO.O, current velocities were measured at 3 depths. Two 84 

meters were deployed near the surface, 1.20 m, a Ruz meter at 6.60 m and an 

84 meter at 9.70 m. The two near surface 84 meters, i.e. meters# 746 and# 

922, were deployed at the same depth consecutively. Meter # 746 was 

deployed first and later was replaced by meter# 922. A brief description 

of the mooring at station RO.O is presented in Table 1. At station R16.6, a 

total of five current meters, three 84 and two Ruz meters, were deployed. 

Table 2 provides information describing station R16 .6 
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Table 1, Hooring at atation RO.O 

------------~--------------------------------------------------------------
Meter # Depth starting time ending time speed direction temp cond 

(meter) 
---------------------------------------------------------------------------
84#746 1.20 0919 8/03/87 1219 8/21/87 X 

84#922 1.20 1302 8/21/87 1032 9/02/87 X 

Ruz#2S8 6.60 1021 8/3/87 1940 9/02/87 X 

84#786 9.70 0946 8/03/87 1516 9/02/87 X 

X 

X 

X 

X 

X X 

X X 

X X 

---------------------------------------------------------------------------

X ~ indicates that variables have been measured. 

- = indicates that no measurement of such a variable took place. 
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Table 1. Mooring at atation RO.O 

---------------------------------------------------------------------------
Meter # Depth starting time ending time speed direction temp cond 

(meter) · 

---------------------------------------------------------------------------
S4#746 1.20 0919 8/03/87 1219 8/21/87 X X X X 

S4#922 1.20 1302 8/21/87 1032 9/02/87 X X X X 

Ruz#258 6.60 1021 8/3/87 1940 9/02/87 X X 

S4#786 9.70 0946 8/03/87 1516 9/02/87 X X X X 

---------------------------------------------------------------------------

X = indicates that variables have been measured. 

- = indicates that no measurement of such a variable took place. 
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Table 2. Doorins at station 116.6 

---------------------------------------------------------------------------
Meter# Depth starting time ending time speed direction temp cond 

(meter) 

84#789 1.20 1127 8/03/87 0957 8/30/87 X X X X 

RUZ#269 5.90 1134 8/03/87 1456 9/03/87 X X 

84#749 10.00 1053 8/03/87 1053 9/03/87 X X X X 

RUZ#316 13.90 1215 8/03/87 0241 9/03/87 X X 

84#747 18.70 1054 8/03/87 0850 9/03/87 X X X X 

---------------------------------------------------------------------------

X = indicates that variables have been measured. 

- = indicates that no measurement of such a variable took place. 
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Current speeds and directions obtained from all Ruz meters were 

unsatisfactory. Visual inspection and comparison with measurements from 

nearby S4 meters indicate either unreliable data or very short length of 

reasonable data, i.e. less than 6 days. Hence, all Ruz meters are excluded 

from ana lyses. 

Current velocities measured with the S4 meters are presented as stick 

plots in Figures 12 and 13 respectively for stations RO.O and R16.6. Data 

obtained from each current meter were analyzed to determine the principal 

axis of the flows, i.e. the dominant direction of ebb and flood flows at 

that location. Figures 14 and 15 present polar plots for current data at 

each station with direction of principal axis indicated. Each point in the 

plot represents the magnitude and direction of a half-hourly current 

measurement. An axis along the direction of the principal axis is tho 

natural choice as the principal axis of a coordinate system for any further 

current data analysis •. The procedure to determine the principal axis 

direction, a, is done by resolving velocity data into the east-west 

component, u, and the north-south component, v. At each station, an angle a 

was determined by the following equation. 

a 

in which the over bar represents averaging over all data points. 

The angle a represents the direction along which the sum of absolute 

values of velocity components from all data points attains maximum. This 

direction would be the direction of the principal axis if flood and ebb 

flows are diametrically opposed. In order to justify such an assumption, 

data points were split into two groups by a line perpendicular to the 
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direction of angle a. From those two data groups two angles, a
0 

and af, 

were determined separately employing the same equation with each group. The 

resulting two directions represent the direction of ebb and flood flows. 

Since the difference between these two angles and the principal direction 

was less than 5 degrees in all cases, implying that the ebb and flood flows 

are almost diametrically opposed to each other, the principal direction was 

taken as the longitudinal axis for a coordinate system for further current 

analysis. 

The time series plots of the longitudinal velocity component are 

presented in Figures 16 and 17 respectively for station RO.O and R16.6. The 

time series data of the longitudinal velocity component were then subjected 

to a low-pass filter with a 1/36 hour cut-off frequency. This process 

removes the tidal current and currents of higher frequency. These results 

are presented in Figures 16 and 17. 

D. Tide Reasurements 

Three tide gauges were installed during this study at the locations 

shown in Figure 2. Tide gauges were maintained at Deltaville and Urbanna 

from July 22 to September 8, and at Tappahannock from August 18 to September 

8. Tidal heights were recorded every six minutes. These raw data were then 

converted to hourly tidal elevations. Time series of hourly tidal heights 

are displayed in Figures 18 through 20. These time series data were then 

subjected to a low-pass (36 hour) filter to remove tidal and other high 

frequency signals. The non-tidal water surface fluctuations are presented 

in Figures 18 through 20. Tide heights at Deltaville have been adjusted 

such that the heights are relative to NGVD (National Geodetic Vertical 
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Datum). Since the other two gauges, Urbanna and Tappahannock, were not 

surveyed, the heights were adjusted to mean tide level during the period of 

measurements. 
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III. DATA INl"ERPREI'ATIONS AND RESULTS 

A. Ryctrosraphlo Conditions 

The freshwater discharge in tho Rappahannock River was lower than 

normal during summer 1987. The monthly mean flows at the fall line were 

22.8. 7.3 and 4.4 m1 /s respectively for June, July and August, well below 

the long-term means of 3S. 25 and 32 m•/s respectively. In particular. the 

flows in July and August were so low and steady that they did not contribute 

to the variabilities in water circulation and salinity stratification in the 

saline portion of the river. The hydrographic conditions described in the 

following were mainly influenced by tide. wind and the conditions in the 

bay. 

All time series data of current velocity and surface elevation contain 

a strong semi-diurnal component associated with the astronomical tide 

(Figures 16-20); the tidal amplitude varied fortnightly through the spring

neap cycle. The data also show that spring tides alternate between stronger 

and weaker amplitudes. implying that strongest mixing occurred on a 29-day 

interval. 

The sub-tidal component of surface elevation was of the same order of 

magnitude as the tidal component (see Figures 18-20). The sub-tidal 

component varied on time scales ranging from two to ten days. and mainly was 

forced by meteorological conditions. The sub-tidal currents were much 

smaller than tidal currents and less than 10 cm/s most of the time (Figures 

16 and 17). Despite being variable in time. the sub-tidal currents show 

outflow near the surface and inflow near the river bottom. a circulation 

pattern characteristic of coastal plain estuaries. At the river mouth the 
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net velocity averaged over record lengths was 0.0 and -6.2 cm/s at 1.2 and 

9.7 m depths respectively where positive valuo designates downriver 
! 

direction. The net velocity at 16.6 km upriver was 2.9, -3.0 and -3.7 cm/s 

respectively at depths of 1.2, 10 and 18.7 m. These imply that the water 

mass at the river bottom originated mainly from the bay. 

The salinity and temperature time series (Figures 3-11) show a 

significant semi-diurnal component induced by the tide, however, the 

magnitude of these variations were much smaller than longer-term sub-tidal 

variations. As seen in Figures 6-11, the sub-tidal component has time 

scales ranging from two to ten days, with longer time scale variations 

dominant. Since the source of salinity in the river is the bay, this 

implies that the mechanisms of bay-tributary interaction are highly 

variable. 

B. Real-Time DO Variations 

Three sets of DO time series data, measured at half hourly intervals, 

aro available. The data from the bottom water at the river mouth are 

presented in Figure 3a. Because there are data gaps when the instrument was 

retrieved for service and cleaning, no low-pass filtering of the data was 

performed. The figure indicates that the magnitude of semi-diurnal tidal 

variations may be as big a~ the sub-tidal variations, especially during 

periods of lower DO. Therefore, the phase of the tide selected for 

slackwater surveys would have significant effect on the data at this 

location. Any results derived from slackwater survey data should be treated 

with caution. 

Because of the problem of instrument calibration, only eight days of 

DO data are available at station R16.6. These data are presented in Figures 
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4a and Sa respectively for DO at mid-depth and near bottom. There was 

little sub-tidal variation at mid-depth where DO .was above S mg/1 most of 

the time. On the contrary, DO in the bottom water had a decrease of about 2 

mg/1 starting August 29, following the trend that occurred about three days 

earlier at the river mouth (Figure 3a). Figure Sa also indicates that the 

tidal variation of DO in the deep basin is of the order of O.S mg/1. 

Therefore. the tidal phase of slackwater surveys would have little effect on 

the data. 

c. Spatial Extent of Hypoxic Condition 

There is no widely accepted quantitative definition of hypoxia: DO 

below S mg/1 is considered hypoxic for the purpose of the following 

discussions. The Commonwealth of Virginia has adopted water quality 

standards of S mg/1 daily average with no observation below 4 mg/1 in 

estuarine waters. Many other states have comparable standards. 

Additionally, all of the slackwater survey data are daytime DO values, which 

are higher than the daily average in general. Thus, S mg/1 is a reasonable 

quantitative definition from the water quality management standpoint. 

A total of 13 slackwater surveys were conducted from 2 June to 14 

September 1987. The data are presented as constant value contours of 

dissolved oxygen, salinity and temperature in a vertical-longitudinal plane 

along the river axis in the Appendix. The S mg/1 DO contour was highlighted 

in these figures. Comparison of these figures with those of previous years 

suggests that the spatial extent of the hypoxic condition in 1987 was more 

widespread than in the past. The hypoxia existed in the lower portion of 

·the water column and extended upriver from the mouth beyond the station at 

km 58, where the water depth is less than 8 m. The hypoxic waters were. 
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never observed to reach the water surface. however. they often occupied more 

than half of the water column. In early summer. the most severe DO 

condition occurred on the sloping bottom between km 40 and SO, where anoxic 

conditions existed. The location of minimum DOs progressed downriver until 

it roached tho bottom waters around km 30 in the middle of July and remained 

in that region for the rest of the summer. 

In the segment of tho river downstream from km 46 where the river 

deepens sharply- hypoxia was observed in each of the 13 surveys at all 

stations except that at the mouth. The station at the river mouth is only 

13 m deep and thoro bottom DO was above 5 mg/1 on some surveys. 

Furthermore. continuous monitoring of bottom DO at the river mouth from S 

August to 2 September (Figure 3a) indicates that it exceeded 5 mg/1 more 

than 50% of the time. On the contrary. the bottom DO at the station in the 

bay was observed to be below S mg/1 at every survey throughout the summer. 

D. Temporal Variation of Hypoxic Condition 

Some differences in DO distribution between times of spring and neap 

tides are evident in the figures presented in Appendix. The DO distribution 

during neap tide (e.g. June 4. July 8 and Aug. 4) was highly stratified 

throughout this lower portion of the estuary. while some degree of vertical 

mixing occurred soon after spring tide (e.g. June 18. July 16 and Aug. 17). 

Tidal mixing during spring tides was strong enough to completely mix the 

water at the river mouth. however. the mixing of water in the deep basin was 

limited so that the vertical gradient of DO remained strong. 

The effect of periodic intense mixing by spring tides can be 

demonstrated much clearer with constant value contours of DO and salinity in 

a depth-time plane. Figures 21 to 24 depict the time· history of the 
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vertical distributions of DO and salinity at four stations: one at the 

river mouth, two at the deep basin inside the river, and one in the bay off 

the river mouth. Reoxygenation of bottom water following spring tides was 

evident at station RO.O, the river mouth (Figure 2la). Dissolved oxygen 

concentrations became fairly uniform (S to 6 mg/1) throughout the water 

column at roughly monthly intervals after the stronger spring tide. In the 

period between spring tides, bottom DO dropped to as low as 2 mg/1, while 

surface DO increased to's mg/1. Salinity distribution (Figure 2lb) also 

underwent the destratification-stratification cycle following the spring

neap cycling. One exception occurred in the period between 20 and 30 August 

when both DO and salinity distributions failed to restratify during neap 

tide before the 24 August survey. Mixing by strong winds on 22 and 23 

August may offer the explanation. Only a partial reoxygenation of bottom 

waters was observed at stations inside the river (Figures 22a and 23a), and 

none at the station in the bay (Figure 24a). Hypoxic conditions existed in 

bottom waters of the deep basin and the bay continuously from May to 

September. Figures 22b, 23b and 24b also show that the mixing by spring 

tides was not strong enough to eliminate salinity stratification at these 

locations. 

To present the temporal variation of the overall DO condition in the 

deep basin, a quantity is defined to represent spatial extent of hypoxic 

condition as percentage of water column with DO less than 5 or 2 mg/1. The 

total water area of the vertical plane along the river axis from river mouth 

to 60 km upriver is 8.47 x 10 5 m1 , obtained from figures in the Appendix. 

The areas with DO less than S and 2 mg/1 respectively were calculated for 

each DO contour plot, and expressed in terms of percentages of total water 

area. The percentages were plotted as a function of time in Figure 25. It 
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is to be noted that these values so obtained only serve to provide relative 

quantities to demonstrate temporal variation. Because of the non-uniform 

depth variation across the river and tho lack of information on the 

transverse variation of DO, these values represent only a rough estimate of 

the volume of hypoxic waters. 

The hypoxic condition first appeared at the upriver end of the deep 

basin around late April (Figure 23a), about 20 days before it was first 

observed at the bay station (Figure 24a). By early June, 68% of the water 

column in the deep basin became hypoxic and 28% of water column had DO below 

2 mg/1. Figure 25 shows that there were short-term variations superimposed 

on the longer-term seasonal trend. The short-term variations were the 

result of periodic intense mixing during t~e spring tide period, which 

temporarily reduced the spatial extent of hypoxic waters. Except for these 

temporary reductions, tho spatial extent of hypoxic condition was relatively 

constant in June and July and then started to decrease in early August. 

E. Bay-Tributary ID.teractioll 

A quantitative assessment of the effect of the hypoxic condition in 

the bay on that in the Rappahannock River can be made only from the 

measurement of DO flux through the transect at the river mouth. This 

requires simultaneous measurements of DO and current velocity at 10 or more 

sampling points in the transect at time intervals on the order of an hour. 

The amount of field work involved was beyond the scope of this study. 

As a first attempt, a self recording DO meter was deployed near the 

bottom of the station at the river mouth. Dissolved oxygen was measured at 

half hour intervals for about one month while current velocity was measured. 

As a reference, the mid-depth and bottom DO at station .R16.6 were also 

19 



measured, however, the measurements lasted for less than 10 days because of 

instrument calibration problems. Figures 3 to S pre~ent the DO time series. 

Figure 3a shows that DO was highly variable at the river mouth, implying 

that the bay-tributary interaction was very dynamic. The DO stayed above S 

mg/1 most of the time, and dropped to the 2 to S mg/1 range for periods 

lasting 2 to 3 days. On the contrary, the DO of the bottom waters in the 

deep basin (Figure Sa) was much less variable. It stayed hypoxic 

continuously for the 9-day period when the data were available. 

The net estuarine circulation transports water into the estuary along 

the bottom and out of the estuary near the surface. Figure 16 shows that 

though the sub-tidal (low-pass filtered) current at the bottom of the river 

mouth was variable, it was directed into the river most of the time. On the 

other hand, Figure 3a indicates that the intrusion of hypoxic bay water into 

the river might occur only during the several brief periods when bottom DO 

at the mouth dropped below S mg/1. These periods lasted only about two to 

three days at each occurrence. This implies that the water mass transported 

into the river has distinct properties at different times, perhaps from 

different origins in the bay. 

Some characteristics of bay-tributary interaction may be inferred from 

the examination of time series data of DO, salinity and velocity at the 

bottom of the river mouth. It is apparent from Figures 3a and 3b that there 

was a strong correlation between DO and salinity. During tho several brief 

periods when DO dropped below S mg/1, there were corresponding increases in 

salinity. Comparison of Figures 3a and 16b further shows that these low DO, 

high salinity waters always arrived at the river mouth when the net upriver 

circulation was particularly strong, 10-20 cm/s. On the other.hand, the 

upriver net circulation did not always bring in water with low DO~ It may 
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be concluded that the transport of hypoxic waters from the bay into the 

river is an intermittent phenomenon. 

With tho data from the simultaneous measurements of current velocity 

and DO, tho average DO of the water transported into the Rappahannock was 

calculated to be 5.1 mg/1. This was about 2 mg/1 below saturation value, 

and yet about 2 mg/1 or more above the bottom water DO in the river. 

Therefore, the hypoxic condition in the deep basin of the river was more 

locally driven than just an extension of that in Chesapeake Bay. The same 

conclusion may be drawn by comparing tho timing and degree of DO depression 

at the bay station (Figure 24a) and those at stations in the river (Figures 

22a and 23a). The bottom DO in the river dropped below 2 mg/1 around 10 May 

while that in the bay maintained above 2 mg/1 until mid-June. Anoxia 

occurred in tho river, but was not observed in the bay off the mouth of the 

river. 
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CONCLlJSIONS 

Hypoxia, a condition where dissolved oxygen concentrations are less 

than S mg/1, was observed to' exist in the deep basin (from river mouth to 46 

km upriver) of the lower Rappahannock estuary as early as April. It first 

occurred on the sloping bottom at the upriver end of the deep basin, where 

the water became anoxic in early summer. Although hypoxic water often 

occupied a major portion of the water column, it never reached the water 

surface. Dissolved oxygen in the deep basin remained depressed throughout 

the summer despite the periodic decrease in th~ spatial extent of hypoxic 

water resulting from stronger mixing by spring tides. 

The net estuarine circulation transports water into the estuary along 

the bottom and out 9f the estuary near the surface. Time series data 

measured at the bottom of the river mouth indicate that the DO of the water 

transported from the bay into the river was highly variable. In addition to 

intra tidal fluctuations, it also fluctuated widely at sub-tidal time scales. 

The tidal average DO at the bottom of the river mouth stayed above S mg/1 

most of the time in August 1987 when time series data were taken. It 

dropped to an average of about 3 mg/1 for several brief periods, each 

lasting about 2 to 3 days. These periods of low DO coincided with periods 

of higher salinity and stronger upriver circulation. This implie.s that the 

transport of hypoxic bottom water from the bay into the river was 

intermittent. 

The average DO of the water entering the river along its bottom in 

August 1987. was calculated to be S .1 mg/1. This was 2 mg/1 or more above 

the DO of bottom water in the river. Therefore, the hypoxic condition in 
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tho deep basin of the river was more locally driven than being an extension 

of that in the bay. Anoxia was observed in the deep basin. while not at the 

station off the river mouth in the bay. ' 
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Figure 3a. Dissolved oxygen concentration at station RO.O, depth 11.8 m 
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Figure 5b. Salinity at station R16.6, depth 16.2 m (1330 hr, 25 August to 3 Sept~ber 1987). 
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Figure 7a. Salinity at station R~O, depth 1.2 m (1302 hr, 21 August to 2 September 1987, 
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Figure 7b. Temperature at station RO.O, depth 1.2 m (1302 hr, 21 August to 
2 September 1987, meter# 922). 
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Figure 8b. Temperature at station RO.O, depth 9.7 m (1302 hr, 3 August to 2 September 1987). 
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Figure 12b. Velocity at stationRO.O, depth 9.7 m (0946 hr, 3 August to 2 September 1987, x-axis 
is to the south). 
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direction). 
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Figure 18. Tidal height and filtered signal at Deltaville (1300 hr, 22 July to 8 September 1987). 
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Figure 19. Tidal height and filtered signal at Urbanna (1400 hr, 22 July to 8 September 1987). 
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to 8 September 1987). 
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Figure 2la. Constant value contours of DO in depth-time plane at station 
RO. 0 (s on the top of the figure indicates time of stronger 
spring tide). 
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Figure 22a. Constant-value contours of DO in depth-time plane at station Rl6.~ 
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DISSOLVED OXYGEN: 38.81 

s 
Ap r i 1 1 5, 1 9 8 7 - S e p t e mb e r 2 3, 1 9 8 7 

s s s s 
0 

-2 

-4 

0 -6 
E 

-...! 
p 

..... 
T 
H -8 

m 

-10 

-12 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

NUMBER OF DAYS SINCE APRIL 15, 1987 

Figure 23a. Constant value ~ontours of DO in depth-time plane at station R38.8. 
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Figure 23b. Constant value contours of salinity in depth-time plane at station R38.8. 
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