

W&M ScholarWorks

Reports

7-1978

Chesapeake Bay Baseline Data Acquisition Appendix III: Toxics in the Chesapeake Bay

Chesapeake Research Consortium, Incorporated

Follow this and additional works at: https://scholarworks.wm.edu/reports

Recommended Citation

Chesapeake Research Consortium, Incorporated. (1978) Chesapeake Bay Baseline Data Acquisition Appendix III: Toxics in the Chesapeake Bay. Virginia Institute of Marine Science, College of William and Mary. https://doi.org/10.25773/MBZK-TG49

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

VIMS TO. 225 CUS 0451 1978 C. 2

Inesoreuka

CHESAPEAKE BAY BASELINE DATA ACQUISITION

TOXICS IN THE CHESAPEAKE BAY

Preliminary Report

Contract No. 68-01-3994

between

U.S. Environmental Protection Agency

and

Chesapeake Research Consortium, Incorporated

July 1978

CONTENTS

Introd	duction	n	•••	•	•••	•	••	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	4
Annex	Ι.	Consc	olidat	ed	Тох	ric	Sub	sta	an	ces	5 I	is	t	••	•	•	٠	٠	•	•	•	• 2	.6p
Annex	II.	Direc	ctory	of	Res	sear	che	rs	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	6p
Annex	111.	Data	Files	•	• •		•••	•	•	•	•	•	•	• •	•	•	٠	•	٠	•	٠	21	.4p
	Pai	rt A.	Data List	Fi ed	le By	Ind Key	ex Vo	- rd	•	•	•	•	•		•	•	•	•	•	•	•	. 2	:5p
	Par	rt B.	Data	Fi	les	;.	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19	0 p
				Int	rod	iuct	ion	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	26
				EDB	DE	File	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	29
				New	Fi	lles	•	•	•	•	•	•	•	•••	•	•	•	٠	•	•	•	. 1	.65
Annex	IV.	Monit	oring	; Pr	ogr	ams		•	•	•	•		•		•	•			•		•	. 2	4p

•

INTRODUCTION

This preliminary report on toxic substances is estimated to be 60 to 70% complete. Appendices I and II, "A Chesapeake Bay Directory" and "Submerged Aquatic Vegetation," respectively, have already been submitted in final form.

The main thrust of this report was to deal with accumulations of toxics in biota, water and sediment. Metals, biocides and PCB's were the toxics encountered most frequently in this study. Oil spill data files were included only when bioaccumulation was measured.

This report comprises four sections as follows:

<u>Annex</u> I. is a consolidation of toxic substances from five major summaries.

<u>Annex II.</u> contains researchers presently engaged in toxic studies in the Chesapeake Bay.

<u>Annex III.</u> is an indexed listing of toxic data files pertinent to the Chesapeake Bay and adjacent coastal states. <u>Annex IV.</u> summarizes the monitoring efforts as derived from Annex III.

During this study, interviews have been conducted with 150 scientists from 30 organizations. From these interviews 50 new data files listed in Annex III were described. These file descriptions have been forwarded to the Environmental Data Service (EDS) for incorporation into the Environmental Data Base Directory (EDBD). In addition, EDBD has provided a complete listing of all Chesapeake Bay

-4-

data files. These files were carefully screened by the study team and all those pertinent to toxics were included in Annex III. ANNEX I

Consolidated Toxic Substances List

Toxics in the Chesapeake Bay

The "Consolidated Toxic Substances List" includes substances from the following sources:

<u>Priority Pollutant List</u> (65 classes, 129 compounds based on consent decree of EPA and the National Resources Defense Council).

Section 311 List (PL92-500).

Maryland's Hazardous Substances List (Maryland law 08.05.05).

EDBD Parameter Thesaurus (EDS, National Oceanic and Atmospheric Administration).

STORET Parameter Listing (STOrage and RETrieval, EPA).

Virginia's hazardous substances list is presently under development. The expected promulgation date is early 1979.

The toxic substances are listed in alphabetical order. To the right of each substance is a checklist indicating from which list(s) the substance was taken. The last column of the matrix indicates whether this substance is described in the Annex III EDBD data files for the Chesapeake Bay. New files are not referenced in this column.

-2-

TOXIC	LIST(S) ON WHICH SUBSTANCE APPEARS						
SUBSTANCE	311	6521 N	ld. ST	ORET	EDBD	СВ	
1,1-Dichloroethane		x		x			
1,1-Dichloroethylene		x		x			
1,1,1-Trichloroethane		x		x			
1,1,2-Trichloroethane		x		x			
1,1,2,2-Tetrachloroethane		x		x			
1,2-Dichlorobenzene		x		x			
1,2-Dichloroethane		x		x			
1,2-Dichloropropane		x		x			
1,2-Dipheny1hydrazine		x		x			
1,2-trans-Dichloroethylene		x		x			
1,2,3,4,5,7,7-Heptachloro Norbornene				x			
1,2,3,4,7,7-Hexachloro Norbornadiene				x			
1,2,4-Trichlorobenzene		x		x			
1,2,5,6-Dibenzanthracene		x		x			
1,3-Dichlorobenzene		x		x			
1,3-Dichloropropene		x		x			
1,4-Dichlorobenzene		x		x			
2-Chloroethyl Vinyl Ether		x		x			
2-Chloronaphthalene		x		x			
2-Chlorophenol		x		x			
2-Nitrobiphenyl			x				
2-Nitrophenol		x		x			
2,3-Dinitrophenol			x				
2,3,6-Trichlorophenol			x				
2,3,7,8-Tetrachlorodibenzo Dioxin (TCD)		x		x			

•

^

TOXIC		L1 St	ISTS(S) JBSTANC	ON WHIC	H S		
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	
2,4-D Acid	x		x	x	x	x	
2,4-D Buteny Ester			x				
2,4-D Butyl Ester			x				
2,4-D Esters	x		x				
2,4-Dichlorophenol		x		x			
2,4-Dimethylphenol		x		x			
2,4-Dinitrophenol		x	x	x			
2,4-Dinitrotoluene		x		x			
2,4-D Isooctyl Ester			x				
24,-D Isopropyl Ester			x				
2,4,5-T Acid	x			x	x	x	
2,4,5-T Esters	x			x			
2,4,5-Trichlorophenol			x				
2,4,5-Tri Iso Octyl Ester				x			
2,4,6-Trichlorophenol		x	x	x			
2,5-Dinitrophenol			x				
2,6-Dinitrophenol			x				
2,6-Dinitrotoluene		x		x			
3,3-Dichlorobenzidine		x		x			
3,4-Dinitrophenol			x				
3,4,5-Trichlorophenol			x				
3,5-Dinitrophenol			x				
4-Bromophenyl Phenyl Ether		х		x		-	
4-Chlorophenyl Phenyl Ether		x		x			

ΤΟΧΤΟ		L S	ISTS(S) UBSTANC) ON WHIC CE APPEAR	CH RS	·
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB
4-Nitrobiphenyl			x			
4-Nitrophenol		x		x		
4,6-Dinitro-Ortho-Cresol		x		x		
17-Alpha-Estradiol Abate			x	x		
Acenaphthene		x		x		•
Acenaphthylene		x		x		
Acetaldehyde	x		x			
Acetic Acid	x		x	x		
Acetic Acid Fluno-Potassium Salt			x			
Acetic Acid, Fluoro-, Triethyl Lead S	alt		x			
Acetic Anhydride	x		x			
Acetone Cyanohydrin	x		x			
Acetylaminofluorene			x			
Acetyl Bromide	x		x			
Acetyl Chloride	x		x			
Acrolein	x	x	x	x		
Acrylonitrile	x	x	x	x		
Adiponitrile	x		x			
Aldicarb				x		
Aldrin	x	x	x	x	x	x
Allethrin				x		
Allyl Alcohol	x		x			
Allyl Chloride	x		x			
Alpha-BHC		x		x	x	x

.

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS										
SUBSTANCE	311	6521 Md.	STORET	EDBD	СВ	-					
Alpha-Naphthylamine		x									
Aluminum Fluoride	x	x									
Aluminum Sulfate	x	x									
Ametryne				x							
Aminodiphenyl		x									
Ammonia	x	x	x	x	x						
Ammonium Acetate	х	x									
Ammonium Benzoate	x	x									
Ammonium Bicarbonate	x	x									
Ammonium Bichromate	x	x									
Ammonium Bifluoride	x	x									
Ammonium Bisulfite	x	x									
Ammonium Bromide	x	x									
Ammonium Carbamate	x	x									
Ammonium Carbonate	x	x									
Ammonium Chloride	x	X									
Ammonium Chromate	x	x									
Ammonium Citrate	x										
Ammonium Citrate Dibasic		x									
Ammonium Fluoborate	x	x									
Ammonium Fluoride	x	x									
Ammonium Hydroxide	x	x									
Ammonium Hypophosphite	x	x									
Ammonium Iodide	x	x									
Ammonium Nitrate	x	x									
Ammonium Oxalate	x	x									

		L	ISTS(S)	ON WHIC	H	
TOXIC SUBSTANCE	311	6521	Md.	STORET	EDBD	СВ
Ammonium Pentaborate	х		x			
Ammonium Persulfate	x		x			
Ammonium Silicofluoride	x		х			
Ammonium Sulfamate	x		x			
Ammonium Sulfide	x		x			
Ammonium Sulfite	x		x			
Ammonium Tartrate	x		x			
Ammonium Thiocyanate	x		x			
Ammonium Thiosulfate	x		x			
Amyl Acetate	x		x			
Aniline	x		x			
Anthracene		x		x		
Antimony		x		x	x	
Antimony Pentachloride	x		x			
Antimony Pentafluoride	x		x			
Antimony Potassium Tartrate	x		x			
Antimony Tribromide	x		x			
Antimony Trichloride	x		x			
Antimony Trifluoride	x		x			
Antimony Trioxide	x		x			
Antimycins			x			
Arsenic		x		x	x	х
Arsenic Acid	x		x			
Arsenic Disulfide	x		x			
Arsenic Pentaroxide			x			
Arsenic Pentoxide	x					

.

TOXIC		L S	ISTS(S) UBSTAN) ON WHIC CE APPEAF	CH RS	
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB
Arsenic Trichloride	x		x			
Arsenic Trioxide	x		x			
Arsenic Trisulfide	x		x			
Asbestos (Fibrous)		x	x	x	x	
Atrazine				x	x	
Auramine			x			
Barium Cyanide	x		x			
Benefin				x		
Benzacephenanthrylene		x				
Benzene	x	x	x	x		
Benzidine		x	x	x		
Benzo(a)anthracene		x		x		
Benzo flouranthene		x		x		
Benzoic Acid	x		x			
Benzonitrile	x		x			
Benzo(ghi)perylene		x		x		
Benzopyrene		x		x	x	
Benzoyl Chloride	x		x			
Benzyl Chloride	x		x			
Beryllium		x		x	x	x
Beryllium Chloride	x		x			
Beryllium Fluoride	x		x			
Beryllium Nitrate	x		x			

TOXIC		L	IST(S) JBSTANC	ON WHICH	l .S		
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	-
Beta-BHC		x		x	x	x	
Beta-Naphthylamine			x				
Beta-Propiolactone			x				
Bidrin				x			
Bis-(2-Chloroethyoxy) Methane		x		x			
Bis-(2-Chloroethyl) Ether		x		x			
Bis-(2-Chloroisopropyl) Ether		x		x			
Bis-(2-Ethylhexyl) Phthalate		x		x			
Bis-(Chloromethyl) Ether		x	x	x			
Bromoform		x		x			
Butyl Acetate	x		x				
Butylamine	x		x				
Butyl Benzyl Phthalate		x		х			
Butyric Acid	x		x				
Cadmium		x		x	x	x	
Cadmium Acetate	x		x				
Cadmium Bromide	x		х				
Cadmium Chloride	x		x				
Cadmium Fluborate			x				
Cadmium Fluoride			x				
Cadmium Fluosilicate			x				
Cadmium Lactate			x				
Cadmium Nitrate			x				
Cadmium Oxide			x				
Cadmium Phosphate			x				
Cadmium Sulfate			x				

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS										
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	-				
Cadmium Sulfate Hydrate			x								
Cadmium Sulfate Tetrahydrate			x								
Cadmium Sulfide			x								
Calcium Arsenate	x		x								
Calcium Arsenite	x		x								
Calcium Carbide	x		x								
Calcium Chromate	x		x								
Calcium Cyanide	x		x								
Calcium Dodecylbenzene-Sulfonate	x										
Calcium Hydroxide	x		x								
Calcium Hypochlorite	x		x								
Calcium Oxide	x		x								
Captan	x		x	x	x						
Carbaryl	x		x	x	x						
Carbofuran					x						
Carbon Disulfide	x		x								
Carbon Tetrachloride		x		x	x						
C.D.E.C.					x						
Cerium-144				x	x	x					
Cesium-137				x	x	x					
Chlordane	x	x	x	x	x	x					
Chlorine	x		x	x	x						
Chlornaphazine (Bis(2-Chloroethy1) 2-Napthylamine)			x								
Chlorobenside				x	x						
Chlorobenzene	x	x	x	x							
Chlorobenzilate				x	x						

TOXIC		L S	ISTS(S) UBSTANC	ON WHIC	H S	
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB
Chlorodibromomethane		x		x		
Chloroethane		x		x		
Chloroethylene Bisthiocyanate				x		
Chloroform	x	x	x	x	x	
hlorosulfonic Acid	x		x			
Chlorothion				x		
Chlor. Phenoxy Acid				x		
Chromates			x			
Chromic Acetate	x		x			
Chromic Acid	x		x			
Chromic Acid, Calcium Salt			x			
Chromic Acid, Lead Salt			x			
Chromic Acid, Zinc Salt			x			
Chromic Sulfate	x		x			
Chromium		x		x	x	x
Chromium Carbonyl			x			
Chromium Chloride			x			
Chromous Chloride	x		x			
Chromyl Chloride	x		x			
Chrysene		x		x		
Cinerin				x		
Cobaltous Bromide	x		x			
Cobaltous Fluoride	x		x			

TOXIC		L S	IST(S) UBSTANC	ON WHICH	S					
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB				
Cobaltous Formate	x		x							
Cobaltous Sulfamate	x		x							
Copper		x		x	x	x				
Coumaphos	x		x	x						
Cresol	x		x							
Cupric Acetate	x		x							
Cupric Acetoarsenite	x									
Cupric Chloride	x		x							
Cupric Formate	x		x							
Cupric Glycinate	x		x							
Cupric Lactate	x		x							
Cupric Nitrate	x									
Cupric Oxalate	x		x							
Cupric Subacetate	x		x							
Cupric Sulfate	x		x							
Cupric Sulfate Ammoniated	x		x							
Cupric Tartrate	x		x							
Cuprous Bromide	x		x							
Cyanide		x	x	x	x	x				
Cyanogen Chloride	x		x							
Cyclohexane	x		x							
Dacthal				x	x					
Dalapon	x		x							
Dasanit				X						
DDA					x					
DDD	x	x	x	x	x	x				
DDG		x		x	x	x				

TOXIC		L	ISTS(S) UBSTANC	ON WHIC	H S		
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	
DDT	x	x	x	x	x	x	
Def				x			
Delnav				x			
Delta-BHC		x		x	x	x	
Demeton				x			
Diazinon	x		x	x	x		
Dibutyl Phthalates		x	x	x			
Dicamba	x		x		x		
Dicapthon				x			
Dichlobenil	x		x				
Dichlone	x		x	x	x		
Dichlorobenzidine			x				
Dichlorobromomethane		x		x			
Dichlorodifluoromethane		x		x			
Dichlorvos	x		x				
Dicofol	x		x	x	x		
Dieldrin	x	x	x	x	x	x	
Diethylamine	x		x				
Diethyl Phthalate		x	x	x			
Difolatan				x			
Diisobutyl Phthalate			x	x			
Dilan				x	x		
Dimethoate				x	x		
Dimethylamine	x		x				
Dimethylaminoazobenzene			x				
Dimethyl Formamide			x				

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB			
Dimethyl Phthalate		x	x	x					
Di-N-Butyl Phthalate		x	x	x					
Dinitrobenzene	x		x						
Dinitrophenol	x		x						
Dioctyl Phthalate		x	x	x					
Dioxins			x						
Diquat	x		x		x				
Disulfoton	x		x	x					
Disyston				x					
Diuron	x		x	x	x				
DNOC				x					
Dodecylbenzenesulfonic Acid	x		x						
Dursban	x		x	x					
Dyfonate				x					
Dylox	x		x	x	x				
Dyrene					x				
Endosulfan	x	x	x	x	x				
Endosulfan Sulfate		x		x					
Endrin	x	x	x	x	x	x			
Endrin Aldehyde		x		x					
Epsilon B.H.C					x	x			
Estradiol, 3-Benzoate			x						
Estradiol, Dipropionate			x						
Estrogenic Compounds			x						
Ethion	x		x	x	x				

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS							
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB		
Ethylbenzene	x	x	x	x				
Ethylenediamine	x		x					
Ethylenediaminetetra Acetic Acid (EDTA)	x		x					
Ethylene Glycol Dinitrate				x				
Ethyleneimine			x					
Sthylparathion				x				
thyl Phenylphosphonothiate				x				
Fenthion				x				
Ferric Ammonium Citrate	x		x					
Ferric Ammonium Oxalate	x		x					
ferric Chloride	x		x					
ferric Fluoride	x		x					
ferric Nitrate	x		x					
Perric Sulfate	x		x					
errous Ammonium Sulfate	x		x					
Ferrous Chloride	x		x					
Ferrous Sulfate	x		x					
Fluoranthene		x		х				
Fluorene		x		x				
Fluoroacetic Acid and its Salts			x					
Fluoroacetic Acid, Sodium Salt			x					
Folpet					x			
Formaldehyde	x		x	x				
Formic Acid	x		x					
Fumaric Acid	x		x					
Furfural	x		x					

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	_		
Furodan					x				
Gamma-BHC		x		x	x	x			
Guthion	x		x	x	x				
Heptachlor	x	x	x	x	x	x			
Heptachlor Epoxide		x	x	x	x				
Hexachlorobenzene		x		x	x				
Hexachlorobutadiene		x		x					
Hexachlorocyclopentadiene		x		x					
Hexachloroethane		x		x					
Hydrochloric Acid	x		x						
Hydrofluoric Acid	x		x						
Hydrogen Cyanide	x		x						
Hydroxylamine	x		x						
Indeno-(1,2,3-cd)-Pyrene		x		x					
Isodrin				x					
Isophorone		x		x					
Isoprene	x		x						
Isopropanolamine Dodecylbenzene- sulfonate	x								
Kelthane	x		x	x	x				
Kepone			x	x	x				
Lead .		x		x	x	x			
Lead-210				x	х	x			
Lead Acetate	x		x						
Lead Arsenate	x		x						
Lead Chloride	x		x						
Lead Fluoborate	x		x						

TOYTO	LISTS(S) ON WHICH SUBSTANCE APPEARS							
SUBSTANCE	311	LISTS (S) ON WHICH SUBSTANCE APPEARS	CB					
Lead Fluoride	x		x					
Lead Iodide	x		x					
Lead Nitrate	x		x					
Lead Stearate	x		x					
lead Sulfate	x		x					
Lead Sulfide	x		x					
Lead Tetraacetate	x		x					
Lead Thiocyanate	x		x					
Lead Thiosulfate	x		x					
Lead Tungstate	x		x					
Lindane	x	x	x	x	x	x		
Lithium Bichromate	x							
Lithium Chromate	x		x					
Malathion	x		x	x	x			
Maleic Acid	x		x					
Maleic Anhydride	x		x					
MCDA-2,4D,4 Chlor-2 Methylphenoxy Acetic				x				
Mercuric Acetate	x		x					
Mercuric Cyanide	x		x					
Mercuric Nitrate	x		x					
Mercuric Sulfate	x		x					
Mercuric Thiocyanate	x		x	•				
Mercurous Nitrate	x		x					
Mercury		x	x	x	x	x		

TOYIC	4 	LISTS(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB				
Mercury Benzoate			x							
Mercury Bromide			x							
Mercury Chloride			x							
Mercury, Chloroethyl			x							
Mercury, Chloromethyl			x							
Mercury Nitrate			x							
Mercury Oxide			x							
Mercury Sulfate			x							
Merphos				x						
Metasystox				x						
Methomy1				x						
Methoxychlor	x		x	x	x					
Methyl Bromide		x		x						
Methyl Chloride		x		x						
Methyl Chloromethyl Ether			x							
Methylene-Bis-Chloraniline			x							
Methylene Chloride		x		x						
Methyl Mercaptan	x		x							
Methyl Mercury					x					
Methyl Methacrylate	x		x			۲				
Methyl Parathion	x		x	x	х					
Methyl Trithion				x	x					
Mevinphos	x		x	x	x					
Mirex			x	x	x					
Monoethylamine	х		x							
Monomethylamine	x		x							

τοχτς	LISTS(S) ON WHICH SUBSTANCE APPEARS							
SUBSTANCE	311	6521	Md.	STORET	EDBD	СВ		
Mustard Gas (Bi-Chloroethyl Sulphide)			x					
Naled	x		x					
Naphthalene	x	x	x	x				
Naphthenic Acid	x		x					
N-Butyl Benzyl Phthalate				x				
Neburon					x			
Nickel		x		x	x	x		
Nickel Ammonium Sulfate	x		x					
Nickel Carbonyl			x					
Nickel Chloride	x		x					
Nickel Formate	x		x					
Nickel Hydroxide	x		x					
Nickel Nitrate	x		x					
Nickel Sulfate	x		x					
Nitric Acid	x		x					
Nitrobenzene	x	x	x	x				
Nitrobiphenyl			x					
Nitrogen Dioxide	x		x					
Nitroglycerin				x				
Nitroglycerin + Ethylene Glycol Dinitrate			•	x				
Nitrophenol	x		x					
N-Nitrosodimethylamine		x	x	x				
N-Nitrosodi-N-Propylamine		x		x				
N-Nitrosodiphenylamine		x		x				
Org. Phos. Compnone				x				

TOXIC	LISTS(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	СВ			
Ovex .				x					
Para-Chloro-Meta-Cresol		x		x					
Paraformaldehyde	x		x						
Paraoxon-O, O Diethyl O, P Netrophenyl Phos				x					
Paraquat					x				
Parathion	x		x	x	x				
PCN				x					
Pentachlorophenol	x	x	x	x					
Perthane				x	x				
Phenanthrene		x		x					
Phenol	x	x	x	x	x	x			
Phorate .				x	x				
Phorate Sulfone				x					
Phosdrin	x		x	x	x				
Phosgene	x		x						
Phosphoric Acid	x		x						
Phosphorus Oxychloride	x		x						
Phosphorus Pentasulfide	x		x						
Phosphorus Trichloride	x		x						
Phthalic Acid Esters			x						
Picloram			x	x					
Polybrominated Biphenyls (PBB)			x	x					

TOVIC	LIST(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB			
Polychlorinated Biphenyls (PCB)	v	v	v	v	32				
PCB 300	A	А	x x	А	X	х			
PCB 400			x x						
PCB 500			v						
PCB 1010			21	x					
PCB 1016		x		x					
PCB 1221		x		x					
PCB 1232		v		x v					
PCB 1242		A V		x v					
PCB 1242			X	X					
DCD 1256		x		x					
FGB 1234 DCB 1340		x	x	x					
PCB 1200		x	x	x					
Potassium Arsenate	x		x						
Potassium Arsenite	x		x						
Potassium Bichromate	x		x						
Potassium Chromate	x		x						
Potassium Cyanide	x		x						
Potassium Hydroxide	x		x						
Potassium Permanganate	x		x						
Prometone				x					
Prometryne				x					
Propanil .				x					
Propazine				x					
Propham				x					
Propionic Acid	x		x						
Propionic Anhydride	x		x						
Propyl Alcohol	x		x						
Pyrene		x		x					
Pyrethrins .	x		x	x					
Quinolíne	x		x						
Radium-226				x	x	x			
Radium-228				x	x	x			

TOXIC	LIST(S) ON WHICH SUBSTANCE APPEARS						
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB	_
Resorcinol	x		x				
Ronnel				x	x		
Rotenone			x				
Ruthenium-106				x	x	x	
Selenium		х			x	x	
Selenium Oxide	x		x				
Sevin	x		x	x	x		
Silver		x		x	x	x	
Silvex				x	x	x	
Simazine				x	x		
Simetryne				x			
Sodium Arsenate	x		x				
Sodium Arsenite	x		x				
Sodium Bichromate	x		x				
Sodium Bifluoride	x		x				
Sodium Bisulfite	х		×۰				
Sodium Chromate	х		x				
Sodium Cyanide	x		x				
Sodium Dodecylbenzene-Sulfonate	x						
Sodium Fluoride	x		x				
Sodium Hydrosulfide	x		x				
Sodium Hydroxide	x		x				
Sodium Hypochlorite	x		x				
Sodium Methylate	x		x				
Sodium Nitrite	x		x				
Sodium Pentachlorophenate				x			

.

TOXIC		L] SI	LST(S) UBSTANC	ON WHICH	l S		-	
SUBSTANCE	311	6521	Md.	STORET	EDBD	СВ		
Sodium Phosphate Dibasic	x		x					
Sodium Phosphate Monobasic	x							
Sodium Phosphate Tribasic	x							
Sodium Selenite	x		x					
Sodium Sulfide	x		x					
S, S, S-Tributyl Phosphoro- trithioate				x				
Stannous Fluoride	x		x					
Strobane, 2, 3, 6-Trichloro- pheylacetic Acid				x				
Strontium Chromate	x		x					
Strychnine	x		x					
Styrene	x		x					
Sulfuric Acid	x		x					
Sulfur Monochloride	x		x					
Systox				x				
TDE	x	x	x	x	x	x		
Tedion				x	x			
Telodrin				x	x			
TEPP				x				
Terrachlor, Pentachloronitro- benzene				. ^x				
Tetrachloroethylene		x		x				
Tetrachlorophenol				x				
Tetradifon				x	x			
Tetraethyl Lead	x		x					
Tetraethyl Pyrophosphate	x		x					
Thallium		x		x	x			

TOXIC		LIST(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB				
Thimet				x	x					
Thiodan	x	x	x	x	x					
Thorium-228	x	x	x	x	x	x				
Toluene	x	x	x	x						
Toxaphene	x	x	x	x	x	x				
Treflan				x						
Trichlorfon	x		x	x	x					
Trichloroethylene		x	x	x						
Trichlorofluoromethane		x		x						
Trichlorophenol	x		x							
Triethanolamine Dodecyl- Benzenesulfonate	x									
Triethylamine	x		x							
Trifluralin					x					
Trimethylamine	x		x							
Trithion				x	x					
Uranium Peroxide	x		x							
Uranyl Acetate	x		х							
Uranyl Nitrate	x		х							
Uranyl Sulfate	x		x							
Vanadium Pentoxide	x		x							
Vanady1 Sulfate	x									
Vegadex					x					
Vinyl Acetate	x		x	•						
Vinyl Chloride		x		x						
Vinyl Chloride Monomer			x							

I

Î

TOXIC		LIST(S) ON WHICH SUBSTANCE APPEARS								
SUBSTANCE	311	6521	Md.	STORET	EDBD	CB				
Xylene	x		x	x						
Xylenol	x									
Zectran	x		x							
Zinc		x		x	x	x				
Zinc Acetate	x		x							
Zinc Ammonium Chloride	x		x							
Zinc Bichromate	x		x							
Zinc Borate	x		x							
. Zinc Bromide	x		x							
Zinc Carbonate	x		x							
Zinc Chloride	x		x							
Zinc Cyanide	x		x							
Zinc Fluoride	x		x							
Zinc Formate	x									
Zinc Hydrosulfite	x		x							
Zinc Nitrate	x		x							
Zinc Phenosulfonate	x		x							
Zinc Phosphide	x		x							
Zinc Potassium Chromate	x		x							
Zinc Silicofluoride	x		x							
Zinc Sulfate	x		x							
Zinc Sulfate Monohydrate	x		x							
Zirconium Acetate	x		x							
Zirconium Nitrate	x		Х.							

TOXIC SUBSTANCE	LIST(S) ON WHICH SUBSTANCE APPEARS					
	311	6521	Md.	STORET	EDBD	СВ
Zirconium Oxychloride	x		x			
Zirconium Potassium Fluoride	x		x			
Zirconium Sulfate	x		x			
Zirconium Tetrachloride	x		x			
Zytron				x		

.

. •

-

ANNEX II

Directory of Researchers

Toxics in the Chesapeake Bay

.

This "Directory of Researchers" contains a listing of scientists who are presently working in the field of toxics, their affiliations and their specific research activities. The information was compiled from "A Chesapeake Bay Directory" by T. Lochen, M. Lynch, A. McErlean and K. Rutledge which was published as a partial fulfillment of this contract.

For researchers and research activities in other national and international areas the reader is referred to the "International Directory of Marine Scientists," issued by the Food and Agriculture Organization of the United Nations in 1977. Copies of this directory are available at the following locations:

EPA Region III Chesapeake Bay Program Office Curtis Building 6th and Walnut Streets Philadelphia, PA 19106

Chesapeake Research Consortium 1419 Forest Drive Suite 207 Annapolis, MD 21403

University of Maryland, Center for Environmental and Estuarine Studies ATTN: Karen Rutledge P.O. Box 775 Horn Point Rd. Cambridge, MD. 21613

Virginia Institute of Marine Science ATTN: Thomas Lochen Gloucester Pt., VA 23062

ANNEX II

Directory of Researchers Toxics in the Chesapeake Bay

Alden, R. W. Old Dominion University

Austin, J. Annapolis Field Office, U. S. Environmental Protection Agency

Barnes, L. National Bureau of Standards

Bass, M. L. Mary Washington College

Bell, C. E., Jr. Old Dominion University

Bellama, J. M. University of Maryland

Bender, M. E. Virginia Institute of Marine Science

Bieri, R. H. Virginia Institute of Marine Science

Birkner, F. B. University of Maryland

Boon, D. Marine Products Laboratory, University of Maryland

Brinckman, F. National Bureau of Standards

Bubeck, R. Annapolis Field Office, U. S. Environmental Protection Agency Heavy metals -Chesapeake Bay.

Herbicides -Chesapeake Bay.

Toxic metals and organics - Chesapeake Bay.

Chlorine effects on freshwater fauna.

Kepone and heavy metals in jellyfish.

Pathways of metals in water.

Pesticides, kepone, heavy metals - Chesapeake Bay.

Oil pollution.

Heavy metals in oysters.

Heavy metal concentrations in shellfish -Chesapeake Bay

Toxic metals and organics - Chesapeake Bay.

Heavy metal analysis -Chesapeake Bay. Buikema, A. L., Jr. Virginia Polytechnic Institute and State University

Burton, D. T. Benedict Estuarine Research Laboratory, Academy of Natural Sciences of Philadelphia

Cairns, J., Jr. Virginia Polytechnic Institute and State University

Church, T. University of Delaware

Correll, D. L. Chesapeake Bay Center for Environmental Studies, Smithsonian Institution

Cunningham, J. Horn Point Environmental Laboratory, University of Maryland

Eaton, A. Chesapeake Bay Institute, The Johns Hopkins University

Grant, V. Chesapeake Bay Institute, The Johns Hopkins University

Helz, G. University of Maryland

Hendricks, A. C. Virginia Polytechnic Institute and State University

Hershner, C., Jr. Virginia Institute of Marine Science Petroleum toxicity in invertebrates.

Chlorine and bromine effects on aquatic fauna.

Toxicity of metals to freshwater biota.

Inorganic toxic substances.

Herbicides and non-point source pollution -Chesapeake Bay.

Effects of herbicide manipulation on bay grass microcosms -Chesapeake Bay.

Biogeochemistry of trace metals - Chesapeake Bay.

Biogeochemistry of trace metals - Chesapeake Bay.

Geochemistry and analytical chemistry of trace organics and inorganics.

Toxicity of metals to freshwater biota.

Oil in salt marshes -Chesapeake Bay.

-4-

Hoffman, J. F. United States Naval Academy

Huggett, R. J. Virginia Institute of Marine Science

Johnson, P. Annapolis Field Office, U. S. Environmental Protection Agency

Munson, T. Annapolis Field Office, U. S. Environmental Protection Agency

Owen, B. Maryland Geological Survey

Phelps, H. Federal City College

Ponnamperuma, C. University of Maryland

Roberts, M. H. Virginia Institute of Marine Science

Roosenburg, W. Chesapeake Biological Laboratory, University of Maryland

Shimoyama, A. University of Maryland

Smith, C. L. Virginia Institute of Marine Science

Sommer, S. E. University of Maryland Metals in sediments -Chesapeake Bay.

Pesticides, kepone, oil pollution and heavy metals - Chesapeake Bay.

Heavy metals in sediments - Chesapeake Bay.

Pesticide analysis of water - Chesapeake Bay.

Trace metals and inorganic toxic substances -Chesapeake Bay.

Heavy metals, chelation, and adsorption of cadmium by shellfish -Chesapeake Bay.

Diagenesis of organic compounds in sediments.

Chlorine and bromine effects on aquatic fauna-Chesapeake Bay.

Biology and toxicology of shellfish - Chesapeake Bay.

Organic compounds in sediment and water.

Chemistry of oil pollution.

Geochemistry of sediments, environmental effects of metal loading
Su, C. W. Virginia Institute of Marine Science

Wester, H. National Ecological Services Laboratory, National Park Service

Wong, G. T. F. Old Dominion University

Wu, T. L. Chesapeake Bay Center for Environmental Studies, Smithsonian Institution

Young, R. Virginia Polytechnic Institute and State University Hydrocarbon chemistry.

Chlorine and submerged aquatic vegetation -Chesapeake Bay.

Heavy metals, radionuclides.

Herbicides and non-point source pollution -Chesapeake Bay.

Kepone in benthic fauna.

ANNEX III

Data Files

Toxics in the Chesapeake Bay

ANNEX III

Data Files

Part A

Data File Index-Listed by Key Word

Toxics in the Chesapeake Bay

This index contains an alphabetical listing by key word of the data files in Part B. After each key word is a number or series of numbers which reference the page numbers of the particular file(s) within this report. Most of the files are referenced by more than one key word. Underlined numbers indicate files generated after January 1, 1973.

The new data files identified during this study are not included in the key word listing. These will be available when EDS completes the coding.

Seven radioactive substances are referenced in this list. After a careful review the remaining sixty-one radioactive substances in the EDBD Parameter Thesaurus were found to be of no use to this study.

ANNEX III

Part A Data File Index-Listed by Key Word

Toxics in the Chesapeake Bay

```
2,4-D (sediment) - herbicide
     none
2,4-D (suspended)
     none
2,4-D (water)
     140
2,4-D in bio material (bottom)
     none
2,4-D in bio material (water)
     none
2,4,5-T (sediment) - herbicide
     none
2,4,5-T (suspended)
     none
2,4,5-T (water)
     140
2,4,5-T in bio material (sediment)
     none
2,4,5-T in bio material (suspended)
     none
2,4,5-T in bio material (water)
     none
ABS
     use surfactants
```

-4-

```
acaraben
     use chlorobenzilate
aldrin (sediment) - insecticide
     77
aldrin (water)
     35, 140
aldrin in bio material (bottom)
     none
aldrin in bio material (water)
     35, 77
aliphatic hydrocarbons (dissolved)
     none
aliphatic hydrocarbons (sediment)
     145
aliphatic hydrocarbons (water)
     54
aliphatic hydrocarbons in bio material (water)
     none
alpha B.H.C.
     use lindane
ametryne (water) - herbicide
     none
ammonia (dissolved)
     none
ammonia (interstitial)
     none
ammonia (sediment)
     none
ammonia (water)
     35
amphibol (sediment) - asbestos
     none
```

```
amphibol (water)
     none
antimony (dissolved)
     none
antimony (sediment)
     none
antimony (water)
    none
antimony in bio material (bottom)
     none
antimony in bio material (water)
     none
aromatic hydrocarbons (dissolved)
     none
aromatic hydrocarbons (suspended)
     none
aromatic hydrocarbons (water)
     none
aromatic hydrocarbons in bio material (water)
     39
arsenic (dissolved)
     140
arsenic (sediment)
     none
arsenic (suspended)
     none
arsenic (water)
     71, 147
arsenic in bio material (bottom)
    'none
arsenic in bio material (water)
     127
```

asbestos use amphibol. chrysotile. atrazine (water) - herbicide none atrazine in bio material (bottom) none atrazine in bio material (water) none benzopyrene (water) none beryllium (dissolved) none beryllium (sediment) none beryllium (suspended) none beryllium (water) 147 beryllium in bio material (bottom) none beryllium in bio material (water) none beta B.H.C. use lindane B.H.C. (sediment) - insecticide none B.H.C. (water) none B.H.C. in bio material (water) none cadmium (dissolved) 140

```
cadmium (interstitial)
     none
cadmium (sediment)
     60, 65, 67, 81, 86, 116, 121, 123, 162
cadmium (suspended)
     none
cadmium (water)
     35, 62, 71, 103, 116, 147, 153
cadmium in bio material (bottom)
     107, 162
cadmium in bio material (sediment)
     none
cadmium in bio material (water)
     29, 35, 43, 44, 46, 47, 69, 93, 110, 116, 127
captan (water) - fungicide
     none
caracide
     use chlorobenside
carbaryl (sediment) - pesticide
     none
carbaryl (water)
     none
carbofuran (water) - insecticide
     none
carbon tetrachloride (water)
     none
C.D.E.C. (water) - herbicide
     none
cerium -144 (sediment)
     49, 53
cesium -137 (sediment)
     49, 53
```

cesium -137 (water) 128, 135 chlordane (sediment) - insecticide 77 chlordane (water) 35, 140 chlordane in bio material (bottom) none chlordane in bio material (water) 35, 39, 75, 77 chlorinated hydrocarbons (sediment) - pesticides none chlorinated hydrocarbons (water) none chlorinated hydrocarbons in bio material (water) 125 chlorine (sediment) none chlorine (water) none chlorine in bio material (bottom) none chlorine in bio material (water) none chlorobenside (water) - pesticide none chlorobenzilate (water) - insecticide none chloroform (water) none chromium (dissolved) 140

```
chromium (interstitial)
     none
chromium (sediment)
     60, 65, 67, 81, 101, 116, 121, 123, 153, 162
chromium (suspended)
     none
chromium (water)
     35, 62, 71, 116, 147, 153
chromium in bio material (bottom)
     98, 162
chromium in bio material (sediment)
     none
chromium in bio material (water)
     35, 98, 116
chrysotile (water) - asbestos
     none
copper (dissolved)
     140
copper (interstitial)
     none
copper (sediment)
     50, 56, 58, 60, 65, 67, 81, 101, 116,
     121, 123, 150, 162
copper (suspended)
     none
copper (water)
     35, 62, 71, 103, 116, 147, 150
copper in bio material (bottom)
     98, 162
copper in bio material (sediment)
     none
                                  -10-
```

```
copper in bio material (water)
     29, 35, 43, 44, 46, 47, 88, 93, 98, 116, 119
cyanide (sediment)
     none
cyanide (water)
     35, 147
cyanide in bio material (water)
     35
dacthal (water) - herbicide
     none
DCPA
     use dacthal
DDA (sediment) - insecticide
     none
DDA (water)
     none
DDA in bio material (water)
     none
DDD (sediment) - insecticide
     77
DDD (water)
     35, 140
DDD in bio material (bottom)
     none
DDD in bio material (water)
     <u>29</u>, 35, 39, <u>41</u>, 75, 77, 91, <u>95</u>,
     110, 112, 114, 133
DDE (sediment) - insecticide
     77
DDE (water)
     35, 140
```

-11-

```
DDE in bio material (bottom)
     none
DDE in bio material (water)
     29, 35, 39, 41, 75, 77, 91, 95,
     \overline{110}, 112, 11\overline{4}, 133
DDT (dissolved) - insecticide
     none
DDT (sediment)
     77
DDT (water)
     35, 140
DDT in bio material (bottom)
     none
DDT in bio material (water)
     29, 35, 39, 41, 73, 75, 77, 91, 95,
     \overline{110}, 112, 11\overline{4}, 133
delta B.H.C.
     use lindane
detergents (water)
     none
diazinon (sediment) - pesticide
     none
diazinon (water)
     none
diazinon in bio material (bottom)
     none
diazinon in bio material (water)
     none
dicamba (water) - herbicide
     none
dicamba in bio material (water)
     none
```

-12-

dichlone (water) - herbicide none dicofol (sediment) - insecticide none dicofol (water) none dieldrin (dissolved) - insecticide none dieldrin (sediment) 77 dieldrin (water) 35, 140 dieldrin in bio material (bottom) none dieldrin in bio material (water) 35, 39, 77, 91, <u>95</u>, 110, 112, 114, 133 dilan (water) - insecticide none dilan in bio material (bottom) none dimethoate (water) - insecticide none dinitrophenol (water) - herbicide none dinitrophenol in bio material (water) none diquat (water) - herbicide none diquat in bio material (water) none diuron (water) - herbicide none

```
dylox
     use trichlorfon
dyrene (water) - fungicide
     none
endosulfan
     use thiodan
endrin (sediment)
     77
endrin (water)
     140
endrin in bio material (bottom)
     none
endrin in bio material (water)
     77
epsilon B.H.C.
     use lindane
ethion (sediment) - pesticide
     none
ethion (water)
     none
folpet (water) - fungicide
     none
fuel oil (water)
     none
fungicide
     use captan, dyrene, folpet
furadan
     use carbofuran
gamma B.H.C.
     use lindane
gasoline (water)
     none
```

```
grease
     use oils
guthion (water) - pesticide
     none
guthion in bio material (water)
     none
heavy metals
     use cadmium, copper, lead, mercury, nickel, zinc
heptachlor (sediment) - insecticide
     none
heptachlor (water)
     35, 140
heptachlor epoxide (sediment) - insecticide
     none
heptachlor epoxide (water)
     none
heptachlor epoxide in bio material (bottom)
     none
heptachlor epoxide in bio material (water)
     none
heptachlor in bio material (bottom)
     none
heptachlor in bio material (water)
     35
herbicide
     use 2,4-D, 2,4,5-T, ametryne, atrazine, CDEC, dacthal, dicamba,
     dichlone, dinitrophenol, diquat, diuron, hexachlorobenzene,
     neburon, paraquat, silvex, simazine, trifluralin
hexachlorobenzene (water) - herbicide
     none
hexachlorobenzene in bio material (water)
     none
```

```
hydrocarbons (dissolved)
     none
hydrocarbons (sediment)
     none
hydrocarbons (suspended)
     none
hydrocarbons (water)
     none
hydrocarbons in bio material (bottom)
     none
hydrocarbons in bio material (water)
     none
insecticide
     use aldrin, BHC, carbofuran, chlordane, chlorobenzilate, DDA,
     DDD, DDE, DDT, dicofol, dieldrin, dilan, dimethoate, heptachlor,
     heptachlor epoxide, kepone, lindane, methoxychlor, perthane,
     phosdrin, ronnel, tedion, thimet, thiodan, thoxaphene,
     trichlorfon
ionium
     use thorium -230
kelthane
     use dicofol
kepone (water) - insecticide
     none
kerosene (water)
     none
lead (dissolved)
     140
lead (interstitial)
     none
lead (sediment)
     50, 56, 58, 60, 65, 67, 81, 101, 116, 121,
     123, 150, 153, 162
```

-16-

lead (suspended) none lead (water) 62, 71, 103, 116, 147, <u>150</u>, <u>153</u> lead in bio material (bottom) 98, 162 lead in bio material (water) 29, 33, 69, 98, 110, 116, 127 lead -210 (water) 128 lindane (sediment) - insecticide 77 lindane (water) 140 lindane in bio material (bottom) none Lindane in bio material (water) 77 lubricating oil (water) none malathion (sediment) - pesticide none malathion (water) none malathion in bio material (bottom) none malathion in bio material (water) none MBAS use surfactants mercury (dissolved) 128, 140

```
mercury (interstitial)
     none
mercury (sediment)
     50, 56, 58, 65, 67, 116, 121, 123, 143, 150, 153
mercury (suspended)
     128
mercury (water)
     35, 71, 116, 128, 143, 147, 150, 153
mercury in bio material (bottom)
     98
mercury in bio material (water)
     29, 35, 69, 93, 98, 106, 110, 116, 119, 127, 131
methoxychlor (sediment) - insecticide
     none
methoxychlor (water)
     none
methoxychlor in bio material (water)
     none
methoxy DDT
     use methoxychlor
methyl mercury (water)
     none
methyl mercury in bio material (water)
     none
methylparathion (sediment) - pesticide
     none
methylparathion (water)
     none
methyltrithion (sediment) - pesticide
     none
methyltrithion (water)
     none
```

mevinphos use phosdrin mirex (sediment) - pesticide none mirex (water) none mirex in bio material (water) none mortality of amphibians (water) none mortality of benthic animals (bottom) 108, 160 mortality of benthic plants (bottom) none mortality of demersal fish (water) none mortality of mammals (water) none mortality of pelagic animals (water) none mortality of pelagic fish (water) 160 mortality of phytoplankton (water) none mortality of reptiles (water) none mortality of zooplankton (water) 153 neburon (water) - herbicide none nickel (dissolved) 140

nickel (interstitial) none nickel (sediment) 60, 65, 67, 116, 121, 123, <u>153</u>, <u>162</u> nickel (suspended) none nickel (water) 35, 62, 103, 116, 147, 153 nickel in bio material (bottom) 162 nickel in bio material (sediment) none nickel in bio material (water) 29, 116 oil degradation (sediment) none oil degradaton (water) none oil slick coverage (water) none oil slick occurrence (sediment) none oil slick occurrence (water) none oils (sediment) <u>150, 153</u> oils (water) 153 oils in bio material (bottom) none oils in bio material (water) none

```
ortho-para DDD
     use DDD
ortho-para DDE
     use DDE
ortho-para DDT
     use DDT
para-para DDD
     use DDD
para-para DDE
     use DDE
para-para DDT
     use DDT
paraquat (water) - herbicide
     none
parathion (sediment)
     none
parathion (water)
     none
parathion in bio material (bottom)
     none
parathion in bio material (water)
     none
PCB
     use polychlorinated biphenyls
perthane (water) - insecticide
     none
pesticide
     use carbaryl, chlorinated hydrocarbons, chlorobenside, diazinon,
     ethion, guthion, melathion, methylparathion, methyltrichion,
     mirex, trithion
phenols (dissolved)
     none
```

```
phenols (sediment)
     none
phenols (water)
     35, 147
phenols in bio material (water)
     35
phorate
     use thimet
phosdrin (water) - insecticide
     none
polychlorinated biphenyls (sediment)
     77
polychlorinated biphenyls (water)
     35, 52
polychlorinated biphenyls in bio material (bottom)
     none
polychlorinated biphenyls in bio material (water)
     29, 39, 75, 77, 95, 110, 112, 114
radium -226 (water)
     128, 135
radium -228 (water)
     128
ronnel (water) - insecticide
     none
ruthenium -106 (sediment)
     49, 53
selenium (dissolved)
     none
selenium (sediment)
     116
selenium (water)
     116
```

-22-

```
selenium in bio material (bottom)
     none
selenium in bio material (water)
     116
sevin
     use carbaryl
silver (dissolved)
     none
silver (interstitial)
     none
silver (sediment)
     162
silver (suspended)
     none
silver (water)
     none
silver in bio material (bottom)
     162
silver in bio material (water)
     none
silvex (sediment) - herbicide
     none
silvex (water)
     140
simazine (water) - herbicide
     none
soap
     use detergents
surfactants (water)
     140, 147
tar balls (water)
     none
```

```
TDE
     use DDD
tedion (water) - insecticide
     none
telodrin (sediment)
     none
telodrin (water)
     none
tetradifon
     use tedion
thallium (sediment)
     none
thallium (water)
     none
thallium in bio material (water)
     none
thimet (water) - insecticide
     none
thiodan (sediment) - insecticide
     none
thiodan (water)
     none
thorium -228 (water)
     128
total 2,4-D
     use 2,4-D
total 2,4,5-T
     use 2,4,5-T
toxaphene (sediment) - insecticide
     77
toxaphene (water)
     140
```

-24-

toxaphene in bio material (bottom) none toxaphene in bio material (water) 77 toxins in bio material (bottom) none toxins in bio material (water) none trichlorfon (water) - insecticide none trifluralin in bio material (bottom) - herbicide none trifluralin in bio material (water) none trithion (sediment) - pesticide none trithion (water) none vegadex use CDEC zinc (dissolved) 140 zinc in bio material (sediment) none zinc (sediment) 50, 56, 58, 60, 65, 67, 81, 86, 101, 116, 121, 123, 150, 153, 162 zince in bio material (water) <u>29,</u> 35, 43, 44, 46, 47, 69, 88, <u>93</u>, 98, 116 zinc (water) 35, 62, 71, 103, 116, 147, 150, 153 zinc in bio material (bottom) 98, 162

-25-

ANNEX III

Data Files

Part B

Data Files

Toxics in the Chesapeake Bay

•

The data files included in Part B are arranged by EDBD accession number. The new files identified during this study can be found at the end of this section since they will be the most recent received by EDS. These new files arranged by date of initiation, earliest first. More new files may be added later in the order that they are identified. A brief description of each new file indicates the title, the period and general location of sampling, an abstract, the person to contact for the actual data and the date that the complete file was submitted to EDS for processing. The remainder of this information will be available from EDS as the files are entered into the system.

Areas adjacent to the Chesapeake Bay such as North Carolina, Delaware, New Jersey and Pennsylvania have been included when encountered.

The page numbers assigned to these data files are unique to this report. These files are assigned an EDBD accession number which should be used in inquiries to EDBD or in specific citations of files.

-26-

ENDEX SYSTEM. ITS PURPOSE IS TO GUIDE USERS WITH REQUIREMENTS FOR HISTORICAL ENVIRONMENTAL DATA TO HOLDERS OF THESE DATA.

THIS OUTPUT WAS SELECTLD FROM THE ENTIRE FILE BASED ON CERTAIN CRITERIA SPECIFIED BY THE USER. THESE CRITERIA ARE REPEATED BELOW:

EDED

202

~1

THE OUTPUT IS IN TWO PARTS. FIRST IS A LISTING OF ALL THE EDBD'S SELECTED, PRINTED IN ID NUMBER ORDER. AT THE BACK OF EACH OUTPUT MAY BE A CROSS-INDEX, LISTING SUCH THINGS AS WHICH FILE DESCRIPTIONS DESCRIBE DATA COLLECTED ON EACH PLAFFORM TYPE, OR WHICH FILE DESCRIPTIONS HAVE DATA IN EACH GRID LOCATOR. THIS SECTION WILL VARY DEPENDING ON THE REQUIREMENTS OF THE USER. THE ID NUMBER IS IN THE UPPER LEFT CORNER OF EACH FILE DESCRIPTION. THE FOLLOWING IS AN EXPLANATION OF FIELDS ON EACH PAGE.

FILE NAME -- TOP CENTER OF PACE. IDENTIFIED BY DATA HOLDER. ALSO, TIME, RANGE OF DATA COLLECTION.

PROJECTS -- LIST OF PROJECTS UNDER WHICH DATA CONTAINED IN FILES MAY HAVE BEEN COLLECTED.

GENERAL GEOGRAPHIC AREA -- BECINS WITH CONTINENT OR OCEAN IN WHICH DATA WERE COLLECTED AND DESCRIBES SMALLER AND SMALLER AREAS TO GIVE USER A GENERAL AREA OF DATA COLLECTION.

ABSTRACT -- CONTAINS GENERAL INFORMATION ABOUT WHY THE DATA WERE COLLECTED AND WHERE, METHODS OF ANALYSIS AND PERTINENT CONCLUSIONS.

DATA AVAILABILITY -- CONTAINS RESTRICTIONS ON DATA USE, IF BLANK IT MEANS THERE AND KNOWN RESTRICTIONS.

PLATFORM TYPES -- LIST OF TYPES OF PLATFORMS (IF ANY) USED TO COLLECT DATA.

ARCHIVE MEDIA -- MEDIA ON WHICH DATA ARE STORED AND A ROUGH ESTIMATE OF THE SIZE OF THE FILE.

FUNDING -- ORGANIZATION FUNDING THE DATA COLLECTION (IF KNOWN).

INVENTORY -- WHEN DETAILED INFORMATION ON STATION LOCATIONS, COUNTS OF OBSERVATIONS/SAMPLES, ETC. ARE AVAILABLE. IT WILL BE DENOTED HERE.

PUBLICATIONS -- PUBLICATIONS RESULTING FROM THIS DATA SET (LIST IS SOMETIMES CONDENSED).

CONTACT -- NAME, ADDRESS AND PHONE NUMBER OF PERSON TO CONTACT TO OBTAIN FURTHER INFORMATION OR ACTUAL COPIES OF DATA.

GRID LOCATOR -- A SERIES OF NUMBERS USED TO MAKE GEOGRAPHIC RETRIEVAL

POSSIBLE ON A COMPUTER. LATITUDE AND LONGITUDE ARE COMBINED INTO A SINGLE NUMBER. THE WORLD METEOROLOGICAL ORGANIZATION (WMO) CODE IS USED TO IDENTIFY AREAS WHERE DATA WERE COLLECTED. THIS MAY BE A 4.6.8. OR 10 DIGIT NUMBER DEPENDING ON WHETHER THE DATA HOLDER CHOSE TO IDENTIFY AREAS DOWN TO 10-DEGREE SQUARES OF LATITUDE AND LONGITUDE OR TO 1-DEGREE, 10-MINUTE, OR 1-MINUTE SQUARES. FOR A 4-DIGIT GRID LUCATOR THE NUMBERS ARE AS FOLLOWS:

DIGIT 1 -- QUADRANE OF WORLD: 1=NE, 3=SE, 5=SW, 7=NW.

DIGIT 2 -- TENS DIGIT OF LATITUDL.

DIGITS 3/4 -- HUNDREDS AND TENS DIGITS OF LONGITUDE.

THUS 7408 WOULD BE THE 10-DEGREE SQUARE OF WHICH THE POINT 40N AND 080W IS THE LOWER RIGHT HAND CORMER.

FOR A SIX DIGIT NUBMER, DIGITS 5 AND 6 REPRESENT THE UNITS DIGITS OF LATITUDE AND LONGITUDE. THUS 746815 WOULD IDENTIFY THE 1-DEGREE SQUARE OF 42N AND CB5%.

WITH AN B-DIGIT NUMBER, 74082534 REPRESENTS THE SQUARE AT 42-DEGREES, 30-MINUTES NORTH AND 085-DEGREES, 40-MINUTES WEST, OR 10-MINUTE SQUARE. THE SMALLEST AREA IDENTIFIED IN THE SYSTEM IS A 1-MINUTE SQUARE, OR A 10-DIGIT GRID LOCATOR (E.G., 7408253415 IS 42-DEGRESS 31-MINUTES NORTH AND 085-DEGRESS, 45-MINUTES WEST). PARAMETER IDENTIFICATION SECTION -- THIS PORTION OF THE FILE DESCRIPTION CONTAINS A LIST OF PARAMETERS MEASURED, THE SPHERE IT WAS MEASURED IN, THE METHODS USED AND THE UNITS OF MEASUREMENT. IN ADDITION, SUCH INFORMATION AS THE NUMBER OF MEASUREMENTS OF EACH PARAMETER AND THE FREQUENCY (IF REGULARLY SPACED) ARE REPORTED. A SPECIALIZED ENDEX VOCABULARY IS AVAILABLE DEFINING THE PARAMETER, SPHERE, AND METHOD TERMS USED.

QUESTIONS CONCERNING THIS OUTPUT SHOULD BE RELAYED TO THE NODC OCEANOGRAPHIC SERVICES BRANCH (202) 634-7500 OR TO THE DATA INDEX BRANCH (202) 634-7298. PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., NORTH ATLANTIC, COASTAL, OUTER BANKS OF NORTH CAROLINA AND CHESAPEAKE BAY TRIBUTARIES

ABSTRACT:

SURVEY OF PESTICIDES, CBS, AND HEAVY METALS IN GONADS, MESENTERY FAT, LIVER, AND PEDUNCLE MUSCLE OF STRIPED BASS FROM THE OUTER BANKS, N C AND TRIBUTARY RIVERS TO LOWER CHESAPEAKE BAY. INTENDED AS BASELINE DATA ON THE MIGRANT SEGMENT OF THE COASTAL POPULATION.

J.

1

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

DATA SHEETS

4 AREAS, 10 FISH PER AREA, 72 OBS PER FISH.

.

FUNDING

BSFW AND VIRGINIA

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN V MERRINER 207 781 2330 MAINE AUDUBON SOCIETY GILSLAND FARM FALMOUTH MAINE USA 04105

GRID LOCATOR (LAT):

730755 730766 730776

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNIIS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP YMD	4 4	STATIONS STATIONS	1 TIME 1 TIME 1 TIME		•••••
SAMPLE OF DEMERSAL FISH	WATER	FORMALIN	10 TISH PER COLLECTION	80	035	1 TIME	BOTTOM	STRIPED BASS OBTAINED FROM COMMERCIAL CATCH, REPRESENTATIVE OF SIZE RANGE IN CATCH
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	80	OBS	1 T [ME	BOTTOM	ELECTRON CAPTURE TECHNIQUE, TISSUES INCLUDE LIVER,

) 3 6 PAGE 02

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNIIS	DATA 4	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • •
, ; ,	1							GONAD, MESENTERY FAT, AND MUSCLE FROM PEDUNCLE, RESIDUES
								SEX, AGE, LENGTH, AND WEIGHT OF FISH
DDD IN BIO MATERIAL	WATER	GAS CHROMATOGRAI Y	PH PARTS PER BILLION	80	OBS	1 TIME	BOTTOM	ELECTRON CAPTURE TECHNIQUE,
ł ,	4 1 1							TISSUES INCLUDE LIVER, GONAD,
	,							MESENTERY FAT, AND MUSCLE FROM PEDUNCLE,
		:						RESIDUES COMPARED TO SEX, AGE,
DDE IN BIO.	WATER	GAS CHROMATOGRA	PH PARTS PER	60	OBS	1 TIME	BOTTOM	LENGTH, AND WEIGHT OF FISH ELECIRON
MATERIAL		,	BILLION					CAPTURE TECHNIQUE, TISSUES
,		' i						GONAD, MESENTERY FAT,
		• 						FROM PEDUNCLE, RESIDUES
								SEX, AGE, LENGTH, AND WEIGHT DE EISH
LEAD IN BIO MATERIAL	WATER	ATOMIC ABSORPTIC SPECTROMETRY	DN PARTS PER BILLION	480	OBS	1 TIME	BOTTOM	CONCENTRATIONS IN GONAD, LIVER, MESENTERY FAT, AND PEDUNCLE MUSCLE RELATED TO AGE,
		, , , ,						LENGTH, WEIGHT, AND SEX OF STRIPED
POLYCHLORINATED BIPHENYLS IN	WATER	GAS CHROMATOGRAF Y	PH PARIS PER Billion	80	OBS	1 TIME	BOTTOM	ELECTRON

NAME	SPHERE	METHOD	UNITS	DATA AMOUN	т	FREQUENCY	HEIGHT/DEPTH	REMARKS
								GONAD, MESENTERY FAT, AND MUSCLE FROM PEDUNCLE, RESIDUES COMPARED TO SEX, AGE, LENGTH, AND WEIGHT OF FISH
MERCURY IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	80 0	₿S	1 TIME	ВОТТОМ	ELECTRON CAPTURE TECHNIQUE, TISSUES INCLUDE LIVER, GONAD, MESENFERY FAT, AND MUSCLE FROM PEDUNCLE, RESIDUES COMPARED TO SEX, AGE, LENGTH, AND WEIGHT OF FISH
ZINC IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARIS PER BILLION	80 0	BS	1 TIME	BOTTOM	ELECTRON CAPTURE TECHNIQUE, TISSUES INCLUDE LIVER, GONAD, MESENTERY FAT, AND MUSCLE FROM PEDUNCLE, RESIDUES COMPARED TO SEX, AGE, LENGTH, AND WEIGHT OF FISH
CADMIUM IN BIO Material	WATER	GAS CHROMATOGRAPH Y	PARIS PER BILLION	80 0	BS	1 TIME	BOTTOM	ELECTRON CAPTURE TECHNIQUE, TISSUES INCLUDE LIVER, GONAD, MESENTERY FAT, AND MUSCLE FROM PEDUNCLE, RESIDUES COMPARED TO SEX, AGE, LENGTH, AND WEIGHT OF FISH
COPPER IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	80 0	BS	1 TIME	BOTTOM	ELECTRON CAPTURE

PAGE 04		HEAVY METALS, PCBS, AND PESTICIDES IN STRIPED BASS TISSUES (CONT.)								000094		
								SECTION:	PARAMETER I			
KS	TH !	HEIGHT/DEPTH	FREQUENCY		AMOUNT	D.	UNITS	METHOD	SPHERE	NAME	I	
NIQUE, UES UDE LIVER, D, NTERY FAT, MUSCLE PEDUNCLE, DUES ARED TO AGE, TH, AND HT OF FISH RON URE NIQUE, UES UDE LIVER, D, NTERY FAT, MUSCLE PEDUNCLE, DUES ARED TO AGE, TH, AND HT OF FISH		воттом	1 TIME		OBS	8	PARTS PER BILLION	GAS CHROMATOGRAPH	WATER	NICKEL IN BIO Material		
				1						·		こうに

.

,

•

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:

BOTH AERIAL AND GROUND SURVEYS WERE USED TO ESTIMATE THE NUMBER OF WATERFOWL, INCLUDING THE NUMBER OF SICK OR DEAD INDIVIDUALS IN VARIOUS PONDS AND CREEKS OF QUEEN ANNE'S AND CECIL COUNTIES, MARYLAND, DURING AND AFTER A SEVERE OUT BREAK OF LEAD POISONING. IN THE SUMMARY REPORT THE FACTORS INVOLVED IN THE OUTBREAK OF LEAD POISONING ARE DISCUSSED.

٠

DATA AVAILABILITY:

PLATFORM TYPES:

AIRCRAFT; FIXED STATION

ARCHIVE MEDIA:

.

DATA SHEETS ONE FILE OF DATA SHEETS AND A SUMMARY REPORT

FUNDING:

INVENTORY:

PUBLICATIONS:

GRID LOCATOR (LAT):

SUMMARY REPORT AVAILABLE WILDLIFE MANAGEMENT ADMINISTRATIVE REPORT 73-4

CONTACT

. . .

VERNON STOTTS 301-267-5195 MARYLAND DEPARTMENT OF NATURAL RESOURCES TAMES STATE OFFICE BUILDING ANNAPOLIS MARYLAND USA 21401

033

~

730786 730785 730796 730795

FARAMETER IDENTIFICATION SECTION:

PAME		SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	POSITION	EARTH	FIXED POINT	MAP LUCATION	6	STATIONS		•••••	PONDSOR CREEKS WITH LARGE COLLECTIONS OF
	TIME COUNT OF BIRDS	EARTH AIR .	SAMPLING TIME VISUAL	YMD NUMBER OF INDIVIDUALS	11 315000	085 085			BOTH AERIAL AND GROUND SURVEYS USED TO ESTIMATE NUMBER; ALSO ESTIMATED NUMBER OF INDIVIDUALS

000167

· . • .

مر .

034

4) 251

NON-CONSUMPTIVE WATERFOWL SURVEYS (LEAD POISONING) III-4(SUPPLEMENT-A) (CONT.)

PAGE 02

۴.

PARAMETER IDENTIFICATION SECTION:

.

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • •		• • • • • • • • • • • • • • • •	•••••	SICK DR DEAD
LEAD IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPM	14	DBS			ALSO 33 CARCASSES FROM SEVERAL AREAS WERE NECROPSIED TO DETERMINE THE CAUSE OF DEATH
SPECIES DETERMINATION OF BIRDS	AIR	KEY	NUMBER OF SPECIES	2	OBS			
PROUECISE

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND

ABSTRACT:

REPORTED FISH KILLS IN MARYLAND WATERS, WATER ANALYSIS, ANALYSIS OF FISH FOR CAUSE OF DEATH, DATA FROM 221 KILLS, 72 IN 1973 THROUGH OCTOBER 11. COUNTS, SIZES, SPECIES LISTS, VALUES FOR FISHES INVOLVED. (SUMMARY SHEETS BY YEAR WITH DATE, LOCATION, SPECIES, PROBABLE CAUSE OF KILL)

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS; REPORTS 1 FILE CABINET DRAWER

FUNDING:

MO DEPT NAT RES

INVENTORY:

PUBLICATIONS:

CONTACT:

HOWARD KING 301-267-5783 MARYLAND DEPARTMENT OF NATURAL RESOURCES TAWES STATE OFFICE BUILDING ANNAPOLIS MARYLAND USA 21401

GRID LOCATOR (LAT):

730785 730787 730795 730797

NAME	SPHERE	METHOD	UNITS	DATA AMO	ТИГ	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP YMDHML	221 221	STATIONS STATIONS		•••••	•••••
TEMPERATURE	WATER	THERMISTOR	DEG C	500	OBS			USUALLY SURFACE, SOME PROFILES
TEMPERATURE	WATER	NON-REVERSING THERMOMETER	DEG C	500	OBS			USUALLY SURFACE, SOME PROFILES
DISSOLVED DXYGEN GAS	WATER	SPECIFIC ION ELECTRODE	PARTS PER MILLION	1000	OBS			YSI PROBE MODEL 51, PROFILE READINGS
DISSOLVED OXYGEN GAS	WATER	TITRATION	PARTS PER MILLION	1000	OBS		AZIDE MODIFICATION	PROFILES MADE

FISH KILL INVESTIGATIONS IN MARYLAND WATERS (CONT.)

.

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • •		••••	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •
									PROFILE READINGS
	SALINITY	WATER	CONDUCTIVITY	PARTS PER THOUSAND	1000	OBS			PROFILES MADE
	SALINITY	WATER	HYDROMETER	PARTS PER THOUSAND	100	OBS			PROFILES MADE
	РН	WATER	SPECIFIC ION ELECTRODE	PH UNITS	1000	OBS		- -	WATER RESOURCES ADMINISTRATION OF DEPARTMENT RUNS ANAYSES FOR PH, TOTAL ALKALINITY, HARCNESS, CYANIDE, PHENOLS, AMMONIA, METALS, PESTICIDES; SOME ANALYSES BY EPA
	TOTAL ALKALINITY	WATER	TITRATION	PARTS PER	1000	OBS			LABORATORY
				MILLION					
-	HARDNESS	WATER	EDTA TITRATION	PARTS PER MILLION	1000	OBS			
-	CYANIDE	WATER	TITRATION	COLORIMETRY	100	OBS			•
	PHENOLS	WATER	COLORIMETRY	COLORIMETRY	100	OBS			
	AMMONIA	WATER	SPECTROPHOTOMETRY	COLORIMETRY	.100	OBS			
0	ZINC	WATER	ATOMIC ABSORPTION SPECTROMETRY	COLORIMETRY	100	OBS			
5	NICKEL	WATER	ATOMIC ABSORPTION	COLORIMETRY	100	OBS			
-	L	WATER	ATOMIC ABSORPTION	COLORIMETRY	100	OBS			
	CHROALUM	WATER	ATOMIC ABSORPTION	COLORIMETRY	100	OBS			
	COPPER	WATER	ATOMIC ABSORPTION	COLORIMETRY	100	OBS			
	IRON	WATER	ATOMIC ABSORPTION	COLORIMETRY	100	DBS			
	MERCURY	WATER	ATOMIC ABSORPTION · SPECTROMETRY	COLORIMETRY	30	OBS			SPECIAL REQUEST IF SUSPECTED
	POLYCHLORINATED BIPHENYLS	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	30	OBS		·	SPECIAL REQUEST
	DDT	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	30	OBS			SPECIAL REQUEST IF SUSPECTED
	DOD	WATER	GAS CHROMATOGRAPH	PARTS PER	30	OBS			SPECIAL REQUEST

	NAME	SPHERE	METHOD	UNITS	DATA AMO	ТИС	FREQUENCY	HEIGHT/DEPTH	REMARKS
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••	••••	• • • • • • • • • •	•••••		• • • • • • • • • • • • • • • • • • • •
			Y	BILLION					IF SUSPECTED POLLUTANT
	000	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	OBS			SPECIAL REQUEST
	DDE	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	30	OBS			SPECIAL REQUEST IF SUSPECTED
	DIELDRIN	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	30	OBS			SPECIAL REQUEST IF SUSPECTED
	ALDRIN	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	30	OBS			SPECIAL REQUEST IF SUSPECTED
	CHLORDANE	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	DBS			SPECIAL REQUEST IF SUSPECTED
	HEPTACHLOR	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	OBS			SPECIAL REQUEST IF SUSPECTED
k r-	COUNT OF PELAGIC FISH	WATER	VISUAL	TOTAL NUMBER, Number per Species	221	OBS			COUNT ALL FISH IN AN AREA, EXPANDED TO TOTAL AREA OF KILL, SHORELINE AND WATER
うらい	COUNT OF Demersal fish	WATER	VISUAL	TOTAL NUMBER, Number Per Species	221	OBS			SURFACE COUNT COUNT ALL FISH IN AN AREA, EXPANDED TO TOTAL AREA OF KILL, SHORELINE AND WATER SURFACE COUNT
	SPECIES DETERMINATION OF PELAGIC	WATER	KEY	NUMBER OF Species in Kill	221	OBS			
	SPECIES DETERMINATION OF DEMERSAL	WATER	KEY	NUMBER OF SPECIES IN KILL	221	OBS			
	FISH LENGTH OF PELAGIC FISH	WATER	TOTAL LENGTH	ONE-TENTH INCH	221	OBS			SUMMARIZED IN 2 INCH GROUPS FOR VALUE
	LENGTH OF DEMERSAL FISH	WATER	TOTAL LENGTH	ONE-TENTH INCH	221	OBS			ESTIMATE SUMMARIZED IN 2 INCH GROUPS FOR VALUE ESTIMATE
	CYANIDE IN BIO MATERIAL	WATER	TITRATION	PARTS PER MILLION	30	OBS			GILLS, VISCERA, AND MUSCLE OF DEAD AND

FISH KILL INVESTIGATIONS IN MARYLAND WATERS (CONT.)

PAGE 04

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • •			•••••	• • • • • • • • • • • • • • • • • • • •
								MORIBUND FISH
PHENOLS IN BIO MATERIAL	WATER	COLORIMETRY	PARIS PER MILLION	30	OBS			
ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	30	DBS			
CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	30	OBS			
CHROMIUM IN BIO MATERIAL	WATER	GAMMA RAY SPECTROMETRY	PARTS PER MILLION	30	OBS			
IRON IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	30	OBS			
COPPER IN BID MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	30	OBS			
MERCURY IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	30	08S			
DDD IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	OBS			
DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARIS PER BILLION	30	OBS ;			
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	OBS			
DIELDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	OBS			
ALDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	30	CBS			
CHLORDANE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARIS PER	30	OBS			
HEPTACHLOR IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARIS PER BILLION	30	08\$			

αιυ

.

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, NANTICOKE AND CHOPTANK RIVERS

ABSTRACT:

PESTICIDES AND PCB'S IN STRIPED BASS EGGS. 24 FISH COLLECTED FROM NANTICOKE AND CHOPTANK RIVERS, MARYLAND DURING SPAWNING SEASON IN 1972 AND 1973. BACKGROUND LEVELS SOUGHT AND POSSIBLE EFFECTSON SUCCESS OF SPAWNING EVALUATED. (ANALYSES PERFORMED BY EPA GULFBREEZE LAB, USFW SERVICE LAB IN COLUMBIA MISSOURI, AND WESTINGHOUSE OCEAN ENGINEERING CENTER (SEE THOMAS MUNSON FILE))

DATA AVAILABILITY:

COST OF DUPLICATIO	N		ł
PLATFORM TYPES: Ship	1	1	1

1

ARCHIVE MEDIA: DATA SHEETS

1 NOTEBOOK 2 INCHES THICK

FUNDING:

MARYLAND DEPARTMENT OF NATURAL RESOURCES

4

INVENTORY:

PUBLICATIONS:

CONTACT:

UCSEPH BOONE 301-267-5785 MARYLAND DEPARTMENT OF NATURAL RESOURCES TAWES STATE OFFICE BUILDING ANNAPOLIS MARYLAND USA 21401

000

GRID LOCATOR (LAT): 730785 730786

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP 🛊 YMD	16 16	STATIONS STATIONS		• • • • • • • • • • • • • • • • • • • •	•••••
LENGTH OF DEMERSAL FISH	WATER	TOTAL LENGTH	ONE-TENTH INCHES PER FISH	24	OBS			FEMALES ON SPAWNING RUN FROM WHICH TISSUE TAKEN FOR ANALYSES, STRIPED BASS
WEIGHT OF DEMERSAL FISH	WATER	WET WEIGHT	ONE-TENTH POUNDS	24	OBS			FEMALES ON SPAWNING RUN FROM WHICH

i

-

n4n

PCB'S AND PESTICIDES IN STRIPED BASS (CONT.)

PAGE 02

.

NAME	SPHERE	METHOD	UNITS	DATA AMOU	NT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •	• • • • • • • • • • •	· · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •
			ţ					TISSUE TAKEN FOR ANALYSES, STRIPED BASS
AGE DATING OF DEMERSAL FISH	WATER	SCALES	YEARS	24	OBS			FEMALES ON SPAWNING RUN FROM WHICH TISSUE TAKEN FOR ANALYSES, STRIPED BASS
DDD IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER MILLION	24	OBS			STRIPED BASS EGGS
DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARIS PER MILLION	24	OBS			STRIPED BASS EGGS
DDT IN BIO MATERIAL	WATER	GAS CHROMATDGRAPH Y	DD1 FRACTION AND TOTAL RESIDUE IN PARTS PER MILLION	24	OBS			STRIPED BASS EGGS
POLYCHLORINATED BIPHENYLS IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARIS PER MILLION	24	OBS			STRIPED BASS EGGS
DIELDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARIS PER MILLION	15	OBS			STRIPED BASS EGGS
CHLORDANE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER MILLION	12	GBS			STRIPED BASS EGGS
AROMATIC HYDROCARBONS IN BIO MATERIAL	WATER	GAS CHROMATDGRAPH Y	PARTS PER MILLION	7	OBS	•		BENZINE HEXACHORIDE IN STRIPED BASS EGGS

PROJECTS:

```
GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, YORK RIVER
```

ABSTRACT:

DDD, DDE, DDT WERE MEASURED IN VARIOUS ORGANS OF BLUE CRABS FROM THE YORK RIVER. VIRGINIA.

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

SEVERAL DATA SHEETS ARE INCLUDED IN M S THESIS

FUNDING:

INVENTORY:

PUBLICATIONS:

M S THESIS PETER F SHERIDAN, 1973 PESTICIDE LEVELS IN BLUE CRABS OF THE YORK RIVER ARE INCLUDED IN THESIS

CONTACT:

Ŷ

81 24 LIBRARIAN 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP LOCATION YMD	1 5	STATIONS OBS	•••••		YORK RIVER
DDT IN BIO MATERIAL DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y GAS CHROMATOGRAPH	PARIS PER BILLION PARTS PER BILLION	7 7	OBS OBS			VIRGINIA CONCENIRATIONS IN GILLS. HEPATOPANCREAS, OVARIES OR TESIES, CLAW MUSCLE, BACKFIN MUSCLE, HEART OF BLUE CRABS CONCENTRATIONS IN GILLS,
								HEPATUPANCREAS,

1

.

n42

UPTAKE, METABOLISM. AND DISTRIBUTION OF DDT IN ORGANS OF THE BLUE CRAB, (CONT.) CALLINECTES SAPIDUS

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		;					OVARIES OR TESTES, CLAW MUSCLE, BACKFIN MUSCLE, HEART OF BLUE CRABS
DDD IN BID MATERIAL	WATER	GAS CHROMATOGRAPH 'Y	PARIS PER BILLION	7 OBS			CONCENTRATIONS IN GILLS, HEPATOPANCREAS, OVARIES OR
		· · ·					MUSCLE, BACKFIN MUSCLE, HEART OF BLUE CRABS
	,	, : : :					
	:						
	:						
		•					

PAGE 02

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, LOWER CHESAPEAKE BAY, VIRGINIA, JAMES RIVER, YORK RIVER

ABSTRACT:

ZINC, COPPER AND CADMIUM LEVELS WERE MEASURED IN HARD CLAMS (MERCENARIA MERCENARIA) COLLECTED AT 35 LOCATIONS IN THE LOWER CHESAPEAKE BAY OVER A ONE YEAR PERIOD BEGINNING MARCH 1972.

DATA AVAILABILITY:

THE RESULTS OF THE STUDY ARE AVAILABLE ON DATA SHEETS FROM VIMS.

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS 1200 OBS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. PETER LARSEN 207 633 5572 MAINE DEPARTMENT OF MARINE RESOURCES WEST BOUTHBAY HARBOR MAINE USA 04575

GRID LOCATOR (LAT):

730776 730766

N

PARAMETER IDENTIFICATION SECTION:

نہ	NAME	SPHERE	METHOD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
						CTATIONC	•••••	• • • • • • • • • • • • • • •	•••••
	PUSITION		FIALD PUINT		35	STATIONS			
	LIME	EARTH	STATION TIME	INDL	35	STATIONS			
	ZINC IN BID	WATER	ATOMIC ABSORPTION	PARIS PER	400	OBS			MERCENARIA
	MATERIAL		SPECTROMETRY	MILLION					MERCENARIA
	COPPER IN BIO	WATER	ATOMIC ABSORPTION	PARTS PER	400	OBS			MERCENARIA
	MATERIAL		SPECTROMETRY	MILLION					MERCENARIA
	CADMIUM IN BIO	WATER	ATOMIC ABSORPTION	PARIS PER	400	085			MERCENARIA
	MATERIAL		SPECTROMETRY	MILLION					MERCENARIA
	SPECIES	BOTTOM	KEY	NAME	1	OBS	•		MERCENARIA
	DETERMINATION								MERCENARIA
	OF BENTHIC								

ANIMALS

HEAVY METALS IN HARD CLAMS AND OYSTERS DATA COLLECTED: NOVEMBER 1972 TO DECEMBER 1972 PAGE 01 RECEIVED: MAY 16, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, LOWER JAMES RIVER, NEWPORT NEWS SHIPYARD

ABSTRACT:

130 OBSERVATIONS OF HEAVY METALS IN HARD CLAMS AND OYSTERS WERE OBSERVED AT 20 STATIONS IN THE NEWPORT NEWS SHIPYARD. COPPER, ZINC, AND CADMIUM WERE DETECTED BY ATOMIC ABSORPTION SPECTROMETRY

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS; REPORTS DATA SHEETS FOR 20 STATIONS MEASURED FOR 2 MONTHS

FUNDING:

INVENTORY:

PUBLICATIONS:

REPORT TO BE SENT TO NEWPORT NEWS SHIPBUILDING AND DRYDOCK COMPANY

CONTACT:

.

04

ŝ

ROBERT HUGGETT 703-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776 730766

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP LOCATIONS	20 20	STATIONS STATIONS	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	•••••
COPPER IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	130	OBS			CRASSOSTREA VIRGINICA, MERCENARIA MERCENARIA
ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	130	OBS			CRASSOSTREA VIRGINICA, MERCENARIA MERCENARIA
CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	130	OBS			CRASSOSTREA VIRGINICA, MERCENARIA MERCENARIA
SPECIES	BOTTOM	KEY	NAME	130	OBS			CRASSOSTREA

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • •
DETERMINATION OF BENTHIC	-	,					VIRGINICA, MERCENARIA MERCENARIA
ANIMALS		ł					MERCENARIA
,				,			`
, 5	1 1	1					
t		1 7	•				
,							
τ		, 1					
	!	1					v
	1						
1							
,	x						
	1						
	ι,						
	1						
		·					
	· · · ·						
	1						
		1					
,	1						
	1						
							/
							}

HEAVY METALS IN DYSTERS DATA COLLECTED: DECEMBER 1970 TO FEBRUARY 1971

PAGE 01 RECEIVED: MAY 16, 1973

.

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., CDASTAL, NORTH ATLANTIC. CHESAPEAKE BAY. VIRCINIA, JAMES RIVER, YORK RIVER, RAPPAHANNOCK RIVER, VIRGINIA

ABSTRACT:

HEAVY METALS IN DYSTERS (CRASSOSTREA VIRGINICA) WERE SAMPLED AT 95 STATIONS IN THE LOWER CHESAPEAKE BAY. DATA APPEARS IN WATER RESEARCH 1973. VOL 7 PP451-460

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS DATA SHEETS FOR 95 DAILY STATIONS

.

FUNDING:

INVENTORY:

PUBLICATIONS:

WATER RESEARCH 1973 VOL 7. 451-460

CONTACT:

ROBERT HUGGETT 703-642-2111 X83 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730766 730776

PARAMETER IDENTIFICATION SECTION:

V U	NAME	SPHERE	METHOD	UNIIS	DATA AMO	UNT	FREQUENCY	HE IGHT/DEPTH	REMARKS
5	POSITION	EARTH	FIXED POINT	MAP LOCATIONS	95	STATIONS	• • • • • • • • • • • • • •	•••••••••••••••	•••••
	COPFER IN BIO MATERIAL	EARTH WATER	STATION TIME ATOMIC ABSORPTION SPECTROMETRY	YMDL PARTS PER MILLION, BODY WET WEIGHT	450 450	OBS		воттом	CRASSOSTREA VIRGINICA
	CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION, BODY WET WEIGHT	450	OBS		BOTTOM	CRASSUSTREA VIRGINICA
	ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION, BODY WET WEIGHT	450	OBS		BOTTOM	CRASSOSTREA VIRGINICA
	SPECIES DETERMINATION OF BENTHIC	BOTTOM	KEY	NAME	450	OBS		BOTTOM	CRASSOSTREA VIRGINICA

ANIMALS

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC. CHESAPEAKE BAY. VIRGINIA, JAMES RIVER, RAPPAHANNOCK RIVER

ABSTRACT:

HEAVY METALS IN THE CLAM (RANGIA CUNEATA) AT 60 STATIONS FROM 1972 TO THE PRESENT IN THE JAMES AND RAPPAHANNOCK RIVERS

÷

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS DATA SHEETS FOR 7 PARAMETERS AT 60 STATIONS

FUNDING:

INVENTORY:

PUBLICATIONS:

VIMS SPECIAL SCIENTIFIC REPORT NO 44

CONTACT:

2

L I ROBERT CROONENBERG 703-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776 730787

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HE IGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	RIVER MILES	60	STATIONS	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	•••••
TIME -	EARTH	STATION TIME	YMDL	60	STATIONS			
COPPER IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	600	OBS			RANGIA CUNEATA
ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	600	083			RANGIA CUNEATA
CADMIUM IN BID MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	600	OBS			RANGIA CUNEATA
SIZE ANALYSIS	SEDIMENT	SETTLING/VISUAL	PERCENT SAND, SILT, CLAY	60	085			
LENGTH OF BENTHIC ANIMALS	BOTTOM	DIRECT	CENTIMETERS	600	OBS			RANGIA CUNEATA
BIOMASS OF BENTHIC ANIMALS	BOTTOM	WET WEIGHT	GRAMS	600	OBS			RANGIA CUNEATA

HEAVY METALS IN RANGIA CUNEATA (CONT.)

PAGE 02

	NAME	SPHERE		METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	SPECIES DETERMINATION DF BENTHIC ANIMALS	BOTTOM		KEY	NAME	60	OBS			RANGIA CUNEATA
	:	ţ	ł	;			i	k.		
		;								
		, ,	1	С						
			i.							
-			т							
04			1		,					
8				ł						
			ļ							

PROJECISE

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRCINIA, LOWER YORK RIVER

ABSTRACT:

CONCENTRATION OF SUSPENDED RADIOACTIVE WASTES IN BOTTOM DEPOSITS WERE MEASURED MONTHLY AT 1 STATION IN THE LOWER YORK RIVER FOR 6 MONTHS. DATA APPEAR IN PROGRESS REPORT TO AEC CONTRACT NO AT 401-2789 (ADSORPTION AND LEACHING OF RADIONUCLIDES FROM NATURAL AND ARTIFICIAL SEDIMENTS)

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

PROGRESS REPORT FOR 1 STATION COVERING A 6 MONTH PERIOD -100 OBS

FUNDING:

.

INVENTORY:

AEC

PUBLICATIONS: PROGRESS REPORT TO AEC CONTRACT NO AT 401-2789

CONTACT:

>

.

4

J E WARINNER 703-642-2111 X30 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

7307761340

NAME	SPHERE	METHOD	UNIES	DATA AMOL	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION	1	STATIONS		a • • • • • • • • • • • • • • • • • • •	••••••
TIME	EARTH	STATION TIME	YML	6	STATIONS			
CERIUM-144	SEDIMENT	GAMMA RAY SPECTROMETRY	SPECIFIC ACTIVITY	100	OBS			
CESIUM-137	SEDIMENT	GAMMA RAY SPECTROMETRY	SPECIFIC ACTIVITY	100	OBS			
RUTHENIUM-106	SEDIMENT	GAMMA RAY SPECTROMETRY	SPECIFIC ACTIVITY	100	OBS			

STUDY OF CHANNEL SEDIMENTS IN THE JAMES RIVER DATA COLLECTED: OCTOBER 1972 TO NOVEMBER 1972 PAGE 01 RECEIVED: MAY 16, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA: U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, JAMES RIVER

ABSTRACT:

CHEMICAL ANALYSIS OF 50 CORES IN THE CHANNEL OF THE JAMES RIVER.

DATA AVAILABILITY:

COST OF REPRODUCTION AND SMALL HANDLING CHARGE

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS 50 CORES

DO CURES

FUNDING:

INVENTORY:

PUBLICATIONS:

VIMS SPECIAL SCIENTIFIC REPORT NO 42

CONTACT:

ション

ROBERT HUGGETT 703-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776 730766

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION, RIVER MILES	 50	STATIONS		•••••	CENTER OF CHANNEL RED MARKER, BLACK
TIME	EARTH	STATION TIME	YMDI	148	STATIONS			WARKER
TOTAL SOLIDS	SEDIMENT	DRY WEIGHT	PER CENT	148	OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVERY	4
VOLATILE TOTAL SOLIDS	SEDIMENT	ASH WEIGHT	PER CENT	148	OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVERY	n r

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
CHEMICAL OXYGEN DEMAND	SEDIMENT	DIGESTION	PER CENT	148 085	S	TOP TO 15 FEET DEPENDI G ON WATER DEPTH AND	J
CHEMICAL OXYGEN DEMAND	SEDIMENT	TITRATION	PER CENT	148 065	S	CORE RECOVER TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	۲ ۱
ORGANIC NITROGEN	SEDIMENT	SPECTROPHOTOMETRY	PARIS PER MILLION	148 08	S	CORE RECOVERY TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	KJELDAHL N
PHOSPHORUS	SEDIMENT	SPECTROPHOTOMETRY	PARTS PER MILLION	148 08	S	CORE RECOVER TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	Y MOLYBDATE N
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	148 085	S	CORE RECOVERY TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	NITRIC ACID N DIGESTION
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	148 OB	S	TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	NITRIC ACID N DIGESTION
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	148 08	S '	TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	NITRIC ACID N DIGESTION
MERCURY	SEDIMENT	TITRATION	PARIS PER MILLION	148 085	S	TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVER	SULFURIC ACID N DIGESTION

.

1

051

1

1

.

.

RECEIVED: MAY 16. 1973

PAGE 01

PROJECTS:

GENERAL GEOGRAPHIC AREA: U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRCINIA, YORK RIVER

ABSTRACT:

A REPORT COMPARING THE CHLORINATED HYDROCARBONS IN 14 SURFACE AND 14 SUBSURFACE SAMPLES IN THE YORK RIVER.

DATA AVAILABILITY:

PLATFORM TYPES: SHIP

ARCHIVE MEDIA:

REPORTS A REPORT OF 14 STATIONS

•

FUNDING:

INVENTORY:

PUBLICATIONS:

DATA IN VIMS THESIS

CONTACT:

LIBRARIAN 703-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776

O

57	PARAMETER	IDENTIFICATION	SECTION:						
N	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	DM YMDL	14 14	STATIONS STATIONS		· · · · · · · · · · · · · · · · · · ·	
	POLYCHLORINATED BIPHENYLS	WATER	GAS CHROMATOGRAPH Y	PARIS PER TRILLION	28	OBS		SURFACE FILM AND ONE METER DEPTH	

PROUECISS

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRGINIA, LOWER YORK RIVER, GLOUCESTER POINT

ABSTRACT:

AN AEC PROGRESS REPORT BASED ON 500 MEASUREMENTS COLLECTED OVER 12 MOS. OF RADIO NUCLIDES IN BIO SEDIMENT AT ONE STATION IN THE YORK RIVER AT GLOUCESTER POINT, VA.

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS 500 Obs. In a report

FUNDING:

AEC

INVENTORY:

PUBLICATIONS:

AEC PROGRESS REPORT CONTRACT NO 40-12789 LEACHING OF RADIONUCLIDES FROM BIOSEDIMENT OF CRASSOSTREA VIRGINICA, BRANCHIDONTES RECURVUS, MOLGULA MANHATTENSIS AND BALANOIDES EBURNUS

.

CONTACT:

2

7

3

J E WARINNER 703-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

7307761340

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	· · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • •		*		• • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •
POSITION	EARTH	FIXED POINT	DM	1	STATIONS			
TIME	EARTH	STATION TIME	YNCL	1	STATIONS			
CERIUM-144	SEDIMENT	GAMMA RAY SPECTROMETRY	SPECIFIC ACTIVITY	500	OBS			
CESIUM-137	SEDIMENT	GAMMA RAY SPECTROMEIRY	SPECIFIC ACTIVITY	50 0	OBS			
RUTHENIUM-106	SEDIMENT	GAMMA RAY Spectrometry	SPECIFIC ACTIVITY	500	OBS			

\$

SEA WATER SURFACE FILM DATA DATA COLLECTED: JUNE 1970 TO NOVEMBER 1970

PAGE 01 RECEIVED: MAY 16, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, ATLANTIC, LOWER CHESAPEAKE BAY, VIRGINIA, LOWER YORK RIVER

ABSTRACT:

40 SEAWATER SURFACE FILM SAMPLES WERE COLLECTED IN THE LOWER YORK RIVER USING A DRUM-SKIMMING DEVICE IN CALM WATER IN A 6 MONTH PERIOD. FATTY ACIDS AND ALIPHATIC HYDROCARBONS WERE EACH TESTED BY THIN LAYER CHROMATOGRAPHY AND GAS CHROMATOGRAPHY FOR 2 SAMPLES AT EACH STATION.

(SAMPLES COLLECTED WITH DRUM-SKIMMING DEVICE AND OBSERVATIONS ARE LIMITED TO CALM SEA CONDITIONS)

DATA AVAILABILITY:

COST OF REPRODUCTION

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

. REPORTS

1 REPORT OF 40 BOTTLE STATIONS

FUNDING:

INVENTORY:

PUBLICATIONS:

VIMS THESIS

CONTACT:

703-642-2111 🛍 LIBRARIAN VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT): \Box 730776

ST -

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	 DMS	 40	STATIONS		• • • • • • • • • • • • • • •	,
TIME	EARTH	STATION TIME	YMDHL	40	STATIONS			
TEMPERATURE	WATER	NON-REVERSING THERMOMETER	DEG C	40	OBS			
FATTY ACIDS	WATER	THIN LAYER CHROMATOGRAPHY	MICRO GRAMS PER LITER	80	OBS		SURFACE TO SUB-SURFACE LESS THAN ONE METER	
FATTY ACIDS	WATER	CAS CHROMATOGRAPH Y	MICRO GRAMS PER LITER	80	OBS		SURFACE TO SUB-SURFACE LESS THAN ONE METER	

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	•••••	•••••
ALIPHATIC HYDROCARBONS	WATER	THIN LAYER CHROMATOGRAPHY	MICRO GRAMS PER LITER	80 OBS		SURFACE TO SUB-SURFACE LESS THAN ONE METER	
ALIPHATIC Hydrocarbons	WATER	GAS CHROMATOGRAPH Y	MICRO GRAMS PER LITER	80 085		SURFACE TO SUB-SURFACE LESS THAN ONE METER	

•

.

.

STUDY OF CHANNEL SEDIMENTS IN THE JAMES AND ELIZABETH RIVERS DATA COLLECTED: JUNE 1971 TO AUGUST 1971

PAGE 01 RECEIVED: MAY 30, 1973

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRCINIA, JAMES AND ELIZABETH RIVERS

ABSTRACT:

9 CHEMICAL ANALYSES WERE PERFORMED ON SEDIMENT SAMPLES TAKEN IN 15 FT CORES AT 227 MID CHANNEL LOCATIONS ALONG THE JAMES AND ELIZABETH RIVERS. FROM JUNE THROUGH AUGUST 1971. THE RESULTS OF THE STUDY ARE AVAILABLE IN THE FORM OF REPORTS FROM VIMS, AND HAVE BEEN PUBLISHED IN THE CORPS OF ENGINEERS REPORT, CONTRACT NO. DACW 65-71-C-0047.

```
DATA AVAILABILITY:
```

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS 5400 OBS

FUNDING:

CORP OF ENGINEERS REPORT CONTRACT NO. DACW 65-71-C-0047

INVENTORY:

PUBLICATIONS:

CONTACT:

ROBERT HUGGETT 703-642-2111 X83 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT): 730776 730766

)	NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION	EARTH	FIXED POINT	MAP LOCATION, RIVER MILES	227	STATIONS	• • • • • • • • • • • • • • • • • • •		CENTER OF CHANNEL, BLACK MARKER, RED MARKER
	TIME TOTAL SOLIDS	EARTH SEDIMENT	STATION TIME DRY WEIGHT	YMDL PERCENT	227 600	STATIONS OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	4
	VOLATILE TOTAL SOLIDS	SEDIMENT	ASH WEIGHT	PERCENT	600	OBS		CORE RECOVERY TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND	r J

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		• • • • • • • • • • • • • • • • • • •		• • • • • • • •			• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •
CHEMICAL OXYGEN DEMAND	SEDIMENT	DIGESTION	PERCENT	60 0	OBS		CORE RECOVER TOP TO 15 FEET DEPENDIN	r
				_	•		DEPTH AND CORE RECOVER	(
ORGANIC NITROGEN	SEDIMENT	SPECTROPHOTOMETRY	PARTS PER MILLION	600	OBS ,		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVER	KJELDAHL N
PHOSPHORUS	SEDIMENT	SPECTROPHOTOMETRY	PARTS PER MILLION	600	0BS		TOP TO 15 FEET DEPENDII G ON WATER DEPTH AND CORE RECOVER	MOLYBDATE
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	600	OBS		TOP TO 15 FEET DEPENDIE G ON WATER DEPTH AND CORE RECOVER	NITRIC ACID N DIGESTION
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	600	OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVER	NITRIC ACID N DIGESTION
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	600	OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVER	NITRIC ACID N DIGESTION
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	600	OBS		TOP TO 15 FEET DEPENDIN G ON WATER DEPTH AND CORE RECOVER	SULFURIC ACID N DIGESTION

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, VIRGINIA THIMBLE SHOAL CHANNEL, NEWPORT NEWS CHANNEL, NORFOLK HARBOR CHANNEL, RAPPAHANNOCK RIVER CHANNEL, CAPE HENRY SHOAL CHANNEL, YORK RIVER SPIT CHANNEL, YORK RIVER ENTRANCE CHANNEL

ABSTRACT:

A STUDY OF CHANNEL SEDIMENTS IN 7 LOWER CHESAPEAKE BAY RIVERS WAS MADE FROM THE SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVERY AND SENT IN A REPORT TO THE CORPS OF ENGINEERS.

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS

A REPORT OF 9 PARAMETERS AT 7 STATIONS - 200 OBS/PARAMETER

.

FUNDING:

- INVENTORY:
- PUBLICATIONS:

REPORT TO CORPS OF ENGINEERS

CONTACT:

.

0

л $\boldsymbol{\infty}$ ROBERT HUGGETT 703-642-2111 X83 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730776 730766

NAME	SPHERE	METHOD	UNITS	DATA AMO	IUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP POSITIONS YMDL	7 7	STATIONS STATIONS	••••••	• • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
TOTAL SOLIDS	SEDIMENT	DRY WEIGHT	PERCENT	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	4
VOLATILE TOTAL SOLIDS	SEDIMENT	ASH WEIGHT	PERCENT	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	Ŷ

NAME	SPHERE	METHOD	UNITS	DATA AMO	тиг	FREQUENCY	HE IGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • •	•••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • •
CHEMICAL DXYGEN Demand	SEDIMENT	DIGESTION	PERCENT	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND COPE DECOVED	v
ORGANIC NITROGEN	SEDIMENT	SPECTROPHOTOMETRY	PARTS PER MILLION	200	035		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND COPE BECOVED	KJELDAHL
PHOSPHORUS	SEDIMENT	SPECTROPHOTOMETRY	PARIS PER MILLION	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	MOLYBDATE
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	NITRIC ACID DIGESTION
ZINC	SEDIMENT	ATOMIC ABSORPTION Spectrometry	PARTS PER MILLION	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	NITRIC ACID DIGESTIGN
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	NITRIC ACID DIGESTION
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	200	OBS		SURFACE TO FIFTEEN FEET DEPENDING ON DEPTH OF WATER AND CORE RECOVER	SULFURIC ACID DIGESTION

1

5 1

-

ファウ

•

SEDIMENT ANALYSIS FOR HEAVY METALS DATA COLLECTED: OCTOBER 1969 TO PRESENT

PROJECTS:

GENERAL GEOGRAPHIC AREA: U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, POTOMAC RIVER

ABSTRACT:

ANALYSIS OF HEAVY METALS IN POTOMAC RIVER SEDIMENTS

DATA AVAILAEILITY:

PLATFORM TYPES: SHIP

```
ARCHIVE MEDIA:
```

```
REPORTS
```

384 SEDIMENT SAMPLES ANALYZED FOR 12 HEAVY METALS FOR 48 MONTHS

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DENNIS BURTON 301-274-3194 BENEDICT ESTUARINE LABORATORY BENEDICT MARYLAND USA 20612

GRID LOCATOR (LAT): 730786

~

	NAME	SPHERE	METHOD	UNITS	DATA AMO	IUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
0	POSITION	 EARTH	FIXED POINT	 DM	3	STATIONS	MGNTHLY		
5	TIME	EARTH	STATION TIME	YMDL	384	STATIONS	MONTHLY		
0	IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	384	OBS	MONTHLY		
	MANGANESE	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	384	OBS	MONTHLY		
	SODIUM	SEDIMENT	ATOMIC ABSURPTION SPECTROMETRY	PARTS PER MILLION	384	OBS	MONTHLY		
	POTASSIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	384	OBS	MONTHLY		
	COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	384	OBS	MONTHLY		
	LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	384	OBS	MONTHLY		
	ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	364	OBS	MONTHLY		
	CHROMIUM	SEDIMENT	ATOMIC ABSORPTION	PARTS PER	384	OBS	MONTHLY	•	

		4							
NAME	SPHERE		METHOD	UNITS	DATA AM	OUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
•••••	• • • • • • • • •	• • • • •	•••••	· · · · · · · · · · · · · · · · · · ·	•••••	• • • • • • • • • • •	••••••		•••••
í	ł	+	SPECTROMETRY	MILLION					
COBALT	SEDIMENT	1	ATOMIC ABSORPTION	PARIS PER	384	OBS	MONTHLY		
		Ì	SPECTROMETRY	MILLION					
CADMIUM	SEDIMENT	1	ATOMIC ABSORPTION	PARTS PER	384	OBS	MONTHLY		
			SPECTROMETRY	MILLION					
NICKEL	SEDIMENT		ATOMIC ABSORPTION	PARIS PER	384	OBS	MONTHLY		
		1	SPECTROMETRY	MILLION					•
STRONTIUM	SEDIMENT		ATOMIC ABSORPTION	PARTS PER	384	OBS	MONTHLY		
			SPECTROMETRY	MILLION					
BORÓN	SEDIMENT	,	COLORIMETRY	PARTS PER	384	OBS	MONTHLY		CARMINE DYE
	•	1		MILLION					

i

ł

.

) 3____

ļ

. . .

1

1

.

1

HYDROGRAPHIC, CHEMICAL, AND BACTERIOLOGICAL SURVEY DATA COLLECTED: OCTOBER 1969 TO PRESENT PAGE 01 RECEIVED: JULY 13, 1973

.

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, PATUXENT RIVER, POTOMAC RIVER, CALVERT CLIFFS AREA

ABSTRACT:

HYDROGRAPHIC, CHEMICAL, AND BACTERIOLOGICAL SURVEY OF PATUXENT RIVER, POTOMAC RIVER, CALVERT CLIFFS AREA, MARYLAND

DATA AVAILABILITY:

NOT ALL STATIONS AT SURFACE AND BOTTOM FOR HEAVY METALS. METALS ARE EXAMINED AT SURFACE AND BOTTOM ON CHESAPEAKE BAY AND POTOMAC RIVER, SURFACE ONLY ON PATUXENT RIVER

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS

38 PARAMETERS MEASURED MONTHLY

.

FUNDING:

```
INVENTORY:
```

PUBLICATIONS:

CONTACT:

DENNIS BURTON 301-274-3194 BENEDICT ESTUARINE LABORATORY BENEDICT MARYLAND USA 20612

GRID LOCATOR (LAT):

```
730787 730786
```

))	NAME	SPHERE	METHOD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
			• • • • • • • • • • • • • • • • • • •		• • • • • • • •		••••••	• • • • • • • • • • • • • • •	
	POSITION	EARTH	FIXED POINT	DM	16	STATIONS	MONTHLY		
	TIME	EARTH	STATION TIME	YMD	763	STATIONS	MONTHLY		
	IRON	WATER	ATOMIC ABSORPTION	PARTS PER	768	OBS	MONTHLY	SURFACE AND	
			SPECTROMETRY	MILLION				BOTTOM	
	MANGANESE	WATER	ATOMIC ABSORPTION	PARTS PER	768	OBS	MONTHLY	SURFACE AND	
			SPECTROMETRY	MILLION				BUTTOM	
	SODIUM	WATER	ATOMIC ABSORPTION	PARIS PER	768	OBS	MONTHLY	SURFACE AND	
			SPECTROMETRY	MILLION		_		BOTTOM	
	POTASSIUM	WATER	ATOMIC ABSORPTION	PARTS PER	763	085	MONTHLY	SURFACE AND	
			SPECTROMETRY	MILLION				BOTTOM	
	COPPER	WATER	ATOMIC ABSORPTION	PARIS PER	763	08S	MONTHLY	SURFACE AND	
			SPECTROMETRY	MILLION				BOTTOM	
	LEAD	WATER	ATOMIC ABSORPTION	PARIS PER	768	OBS	MONTHLY	SURFACE AND	
			SPECTROMETRY		,	0		BOTTOM	
	ZINC	WATED	ATOMIC ABSORPTION	HAUTS PER	768	085	MONTHLY	SURFACE AND	
	7 T NC	WAIER	ALONITC ADSURPTION	PARIS PER	108	065		JURFALE AND	

NAME	SPHERE	METHOD	UNITS	DATA AMO	DUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
•••••	· · · · · · · · · · · · · · · · ·			• • • • • • •		•••••	•••••	
CHROMIUM	WATER	SPECTROMETRY ATOMIC ABSORPTION	MILLION PARIS PER	768	OBS	MONTHLY	BOTTOM SURFACE AND	
COBALT	WATER	ATOMIC ABSORPTION	PARIS PER	768	OBS	MONTHLY	SURFACE AND	
CADMIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	768	CBS	MONTHLY	SURFACE AND BOTTOM	
NICKEL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
STRONTIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
BORON	WATER	COLORIMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	CARMINE DYE
DEPTH	WATER	WIRE LENGTH	METERS	768	OBS .	MONTHLY		
TEMPERATURE	WATER	THERMISTOR	DEG C	768	OBS	MONTHLY	SURFACE AND BOTTOM	
РН	WATER	SPECIFIC ION ELECTRODE	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
SALINITY	WATER	TITRATION	PARTS PER THOUSAND	768	OBS	MONTHLY	SURFACE AND BOTTOM	MOHR
CHLORIDE	WATER	TITRATION	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	MOHR
CALCIUM	WATER	TITRATION	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
SILICATE	WATER	SPECTROPHOTOMETRY	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	AMMONIUM MOLYBDATE
PHOSPHORUS	WATER	SPECTROPHOTOMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
ΟΚΤΉΟΡΗΟΥΡΗΑΤΕ	WATER	SPECTROPHOTOMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	.KJELDAHL NITROGEN S- WATER M- TITRATION U- PARTS PER MILLION T-OBS Q-768 F- MONTHLY H- SURFACE AND BOTTOM R- DISTILLATION, AUTOANALYZER
DISSOLVED DXYGEN GAS	WATER	TITRATION	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	WINKLER
BIOCHEMICAL OXYGEN DEMAND	WATER	TITRATION	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	5 DAY STABILITY METHOD
TOTAL CARBON DIOXIDE	WATER	CALCULATED	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
WEATHER	AIR	VISUAL	GENERAL OBSERVATIONS	768	OBS	MONTHLY		CBI DATA REPORT 18 REF 54-5
MAGNESIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
SULFATE	WATER	NEPHELOMETRY	PARIS PER MILLION	768	08\$	MONTHLY	SURFACE AND BOTTOM	BARIUM SULFATE
NITRITE	WATER	SPECTROPHOTOMETRY	PARIS PER	768	OBS	MONTHLY	SURFACE AND	ALPHA NAPTHLAMIN

い い

-

••

084

HYDROGRAPHIC, CHEMICAL, AND BACTERIOLOGICAL SURVEY (CONT.)

PAGE 03

PARAMETER IDENTIFICATION SECTION:

•

1

NAME	SPHERE		METHOD	UNITS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • • •	••••••	• • • • •	• • • • • • • • • • • • • • • • • • • •		••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • •
	i I	i -		MILLION				BOTTOM	E
NITRATE	WATER	i 1	SPECTROPHOTOMETRY	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	CADMIUM REDUCTION
AMMONIA	WATER		TITRATION	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	DISTILLATION, AUTOANALYZER
COUNT OF Microbiota	WATER	i I	FILTRATION	MILLIGRAMS PER LITER	768	OBS	MONTHLY	SURFACE AND BOTTOM	BACTERIAL COUNT
LIGHT ATTENUATIO N	WATER		SPECTROPHOTOMETRY	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
CARBONATE ION	WATER		CALCULATED	PARTS PER MILLION	768	085 -	MONTHLY	SURFACE AND BOTTOM	
BICARBONATE ION	WATER		CALCULATED	PARTS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	
CARBONATE ALKALINITY	WATER		TITRATION	PARIS PER MILLION	763	OBS	MONTHLY	SURFACE AND BOTTOM	,
HARDNESS	WATER		EDTA TITRATION	PARIS PER MILLION	768	OBS	MONTHLY	SURFACE AND BOTTOM	AS CALCIUM CARBONATE

.

PRUJECISE

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, DELAWARE BAY, DELAWARE, MURDERKILL RIVER, ST JONES RIVER

ABSTRACT:

SURVEY OF TRACE METAL CONCENTRATIONS IN THE SEDIMENTS OF THE MURDERKILL AND ST JONES RIVERS DELAWARE IN ORDER TO ESTABLISH BASELINES PRIOR TO OPERATION OF THE KENT COUNTY REGIONAL SEWARGE TREATMENT PLANT

DATA AVAILABILITY:

PLATFORM TYPES: SHIP	ł	ł		
ARCHIVE MEDIA: REPORTS 25 PAGES	1 	ţ		
ELIND INC:		1		

. . . .

FUNDING:

INVENTORY:

PUBLICATIONS:

DELAWARE BAY REPORT SERIES VOL 3 REPORT NO 3 UNIV OF DEL, NEWARK DELAWARE

CONTACT:

FREDERICK BOPP 302-738-2842 COLLEGE OF MARINE STUDIES UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

730795

20

PARAMETER IDENTIFICATION SECTION:

に

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HE IGHT/DEP TH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP LOCATION YML	56 STATIONS 1 STATIONS	· · · · · · · · · · · · · · · · · · ·		•••••
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER Million	5ĉ OBS			SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO- CHLORIC ACID EXTRACTION
MAGNESIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	56 DBS			SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO- CHLORIC ACID EXTRACTION

TRACE METAL STUDIES ON THE MURDERKILL AND ST JONES RIVERS DELAWARE COASTAL PLAIN (CONT.)

PAGE 02

.

	NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • •			••••••	
	ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	56	OBS			SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO- CHLORIC ACID
	CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	56	OBS			EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO-
	COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	56	OBS			EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO-
	LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	56	OBS			CHLORIC ACID EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO-
	CADMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	56	OBS			CHLURIC ACID EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO-
066	NICKEL	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	56	OBS			CHLORIC ACID EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRU-
	STRONTIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	56	OBS			EXTRACTION SEDIMENT FRACTION FINER THAN G3 MICRONS, HYDRO- CHLORIC ACID
	MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER BILLION	56	OBS			EXTRACTION SEDIMENT FRACTION FINER THAN 63 MICRONS, HYDRO- CHLORIC ACID EXTRACTION

PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, DELAWARE BAY, DELAWARE

ABSTRACT:

SURVEY OF TRACE METAL CONCENTRATIONS IN SEDIMENTS COLLECTED FROM THE DELAWARE BAY. REPORT CHARACTERIZED TRACE METALS TO THEIR PRIMARY SOURCE AND THE MAJOR FACTOR INFLUENCING THEIR DISTRIBUTION

1

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS

46 PAGES, MAPS ON THE DISTRIBUTION OF TRACE METALS

FUNDING:

INVENTORY:

PUBLICATIONS:

DELAWARE BAY REPORT SERIES VOL 3 REPORT NO 2 UNIV OF DEL, NEWARK, DEL

CONTACT:

)

I

FREDERICK BOPP 302-738-2842 CDLLEGE OF MARINE STUDIES UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

730785 730795 730794 730784

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	 DMT YML	ອ2 1	STATIONS STATIONS			• • • • • • • • • • • • • • • • • • • •
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	92	OBS			63 MICRON SEDIMENT FRACTION, HCL EXTRACTION
MAGNESIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	92	OBS			63 MICRON SEDIMENT FRACTION, HCL EXTRACTION
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	92	OBS			63 MICRON SEDIMENT FRACTION, HCL EXTRACTION

ンじつ

TRACE METAL ENVIRONMENTS NEAR SHELL BANKS IN DELAWARE BAY (CONT.)

PAGE 02

PARAMETER IDENTIFICATION SECTION:

.

+

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HE IGHT/DEPTH	REMARKS
•••••		•••••		•••••		•••••	• • • • • • • • • • • • • • • • •
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL
CADMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	92 OBS			63 M1CRON SEDIMENT FRACTION, HCL
NICKEL	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL
STRONTIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER BILLION	92 OBS			63 MICRON SEDIMENT FRACTION, HCL EXTRACTION

PROJECTST

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRCINIA, CRANEY ISLAND, BUCKROE BEACH

ABSTRACT:

COMPARATIVE STUDY OF BIOTIC AND ABIOTIC PARAMETERS OF CRANEY ISLAND AND BUCKROE BEACH AREAS. SURVEY OF FISH, INVERTEBRATES AND HEAVY METALS

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS

120 SAMPLING EFFORTS

FUNDING:

US ARMY CORPS OF ENGINEERS

INVENTORY:

PUBLICATIONS:

REPORT SENT TO U S ARMY CORPS OF ENGINEERS

ì

ł

CONTACT:

RAY BIRDSC	DNG 804-489-1	3000
OLD DOMINI	ION UNIVERSITY	
INSTITUTE	OF OCEANOGRAPH	HY .
NORFOLK	VIRGINIA USA	23508

GRID LOCATOR (LAT):

730776 730766

630

-

NAME	SPHERE	METHOD FIXED POINT	UNIIS MAP LOCATION	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH			2 STATIONS				
TIME	EARTH	STATION TIME	YMDHL	12	STATIONS	MONTHLY		
SALINITY	WATER	CONDUCTIVITY	PARIS PER THOUSAND	120	OBS	MONTHLY	SURFACE	
SALINITY	WATER	HYDROMETER	PARIS PER THOUSAND	120	OBS	MONTHLY	SURFACE	
TEMPERATURE	WATER	NON-REVERSING THERMOMETER	DEG C	120	OBS	MONTHLY	SURFACE	
SPECIES DETERMINATION OF DEMERSAL FISH	WATER	KEY	NUMBER OF SPECIES PER SAMPLE, NUMBER OF INDIVIDUALS PER SPECIES	120	OBS	MONTHLY	SURFACE	10 FOOT OTTER TRAWL, 1 INCH MESH, BEACH SEINE

HAMPTON ROADS, CRANEY ISLAND SURVEY (CONT.)

PAGE 02

.

1

.

PARAMETER IDENTIFICATION SECTION:

.

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	COUNT OF DEMERSAL FISH	WATER	VISUAL	NUMBER OF INDIVIDUALS PER STATION	120	OBS	MONTHLY	SURFACE	
	BIOMASS OF DEMERSAL FISH	WATER	WET WEIGHT	WEIGHT PER STATION	120	OBS	MONTHLY	SURFACE	10 FOOT OTTER TRAWL, 1 INCH MESH, BEACH SEINE
	LENGTH OF DEMERSAL FISH	WATER	STANDARD LENGTH	MILLIMETERS	120	OBS	MONTHLY	SURFACE	SUBSAMPLE FROM
	SPECIES DETERMINATION OF BENTHIC ANIMALS	BOTTOM	KEY	NUMBER OF SPECIES PER SAMPLE, NUMBER OF INDIVIDUALS PER SPECIES	120	OBS	MONTHLY	BOTTOM	BAG DREDGE, OTTER TRAWL, PETERSON GRAB
	COUNT OF BENTHIC ANIMALS	BOTTOM	VISUAL	NUMBER OF INDIVIDUALS PER STATION	120	OBS	MONTHLY	BOTTOM	
	CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	4	OBS			VARIETY OF SPECIES OF FISH, 4 SAMPLES PER YEAR
	ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	4	OBS			VARIETY OF SPECIES CF FISH, 4 SAMPLES PER YEAR
070	LEAD IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	4	OBS			VARIETY OF SPECIES OF FISH, 4 SAMPLES PER YEAR
	MERCURY IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	4	OBS			VARIETY OF SPECIES UF FISH, 4 SAMPLES PER YEAR
PROJECTS:

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, VIRGINIA, BIG SANDY RIVER BASIN, CLINCH RIVER BASIN, HOLSTON RIVER BASIN, NEW RIVER BASIN, RDANOKE RIVER BASIN, CHOWAN RIVER BASIN, SHENANDOAH RIVER BASIN, RAPPAHANNOCK RIVER BASIN, YORK RIVER BASIN, JAMES RIVER BASIN, CHESAPEAKE BAY, YADKIN RIVER BASIN, ALBEMARLE SOUND, POTOMAC RIVER BASIN

ABSTRACT:

REPORT CONTAINING HEAVY METAL CONCENTRATIONS IN THE MAJOR RIVER BASINS OF VIRGINIA INCLUDING CHESAPEAKE BAY AND TRIBUTARIES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

REPORTS

171 PAGES; 12,533 OBSERVATIONS FROM 700 SAMPLING LOCATIONS

FUNDING:

INVENTORY:

PUBLICATIONS:

BASIC DATA BULLETIN NO 40, AUGUST 1972 TECHNICAL SERVICES DIVISION. RICHMOND VA

CONTACT:

)

1

MICHAEL A BELLANCA 804-770-5518 VIRGINIA STATE WATER QUALITY CONTROL BOARD TECHNICAL SERVICES DIVISION RICHMOND VIRGINIA USA 23230

GRID LOCATOR (LAT):

730787 730777 730767 730788 730778 730768 730766 730776 730788

NAME	SPHERE EARTH	METHOD FIXED POINT	UNITS D MAP LOCATION, 7 RIVER MILE	DATA AMOUNT F		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION				700	STATIONS			NOT ALL STATIONS HAVE BEEN SAMPLED OVER REPORT
TIME	EARTH	STATION TIME	YMDL	2191	STATIONS			
CHROMIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG PER LITER	1890	OBS			
ZINC	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG PER LITER	1873	OBS			
LEAD	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG PER LITER	1589	OBS			
COPPER	WATER	ATOMIC ABSORPTION	MG PER LITER	1891	OBS			

HEAVY METAL DATA SUMMARY FOR STATE WATERS; WATER QUALITY MONITORING NETWORK (CONT.) 1968-1971

PARAMETER IDENTIFICATION SECTION:

	NAME	SPHERE	E.	METHOD	UNITS		DATA AMO	UNT	FREQUENCY	HE IGHT/DEPTH	REMARKS
				• • • • • • • • • • • • • • • • • • •		• • • • • • • • • • •	• • • • • • • •		*****	* * * * * * * * * * * * * * *	
	ł		1	COCCTOONSTON							
	IRON	WATER		ATOMIC ABSORPTION	MG PER	LITER	1589	OBS			
	MANGANESE	WATER	•	ATOMIC ABSORPTION SPECTROMETRY	MG PER	LITER	1549	OBS			
	ARSENIC	WATER		ATOMIC ABSORPTION	MG PER	LITER	52 3	OBS			
	MERCURY	WATER		ATOMIC ABSORPTION	MG PER	LITER	1094	OBS			
	CADMIUM	WATER		ATOMIC ABSORPTION SPECTROMETRY	MG PER	LITER	591	OBS			
	6 6										
			I.								
			ł								
			i								
	:		 								
			í								
••'、											
_				1							,
27				1		•					
N	•										
			•								
			I.	1							
	í										
			I								
	1										

, . PAGE 02

PROJECTS:

ANADROMOUS ALOSIDS

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, VIRCINIA, JAMES RIVER, RAPPAHANNOCK RIVER, POTOMAC RIVER

ABSTRACT:

SURVEY OF THE LEVEL OF CONTAMINATION DUE TO DDT AND ITS METABOLITES IN THE ALEWIFE, ALOSA PSEUDOHARENGUS AND A DESCRIPTION OF THE ROLE OF THE ANADROMOUS FISH IN PESTICIDE TRANSPORT

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS 34 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS: VIMS THESIS, T & BARNARD JR 1971

.

CONTACT:

LIBRARIAN 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

GRID LOCATOR (LAT):

730766 730776 730786

707

3	NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION	EARTH	FIXED POINT	MAP LOCATION	3	STATIONS		•••••	JAMES, RAPPAHANN OCK AND FOTOMAC RIVERS CONSIDERED AS ONE STATION
	TIME	EARTH	STATION TIME	YMDL	1	STATIONS			EACH SPAWNING RUN FROM 15 APR TO
	LENGTH OF Pelagic fish	WATER	FORK LENGTH	MILLIMETERS	96	OBS			ALEWIFE, ALOSA PSEUDOHARENGUS
	WEIGHT OF Pelagic fish	WATER	WET WEIGHT	GRAMS	96	OBS			ALEWIFE, ALOSA PSEUDOHARENGUS

THE ROLE OF AN ANADROMOUS FISH, THE ALEWIFE, ALOSA PSEUDOHARENGUS (WILSON) IN (CONT.) PESTICIDE TRANSPORT

+

PAGE 02

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
				• • • • • • • •			•••••	• • • • • • • • • • • • • • • • • •
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER MILLION	96	OBS			TOTAL DDT RESIDUES; DDE, DDD AND DDT; WHOLE FISH; ALEWIFE, ALOSA PSEUDOHARENGUS

PROJECISE

CHESTER RIVER STUDY

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, CHESTER RIVER

ABSTRACT:

SURVEY OF ZOOPLANKTON IN THE CHESTER RIVER, MARYLAND. STUDY INCLUDES HYDROGRAPHIC DATA, COMMUNITY STRUCTURE ANALYSES, BIOMASS ESTIMATES AND LEVELS OF CHLORINATED HYDROCARBON CONCENTRATIONS IN ZOOPLANKTON.

DATA AVAILABILITY:

PLATFORM TYPES: Ship

ARCHIVE MEDIA:

DATA SHEETS 192 SAMPLES PROCESSED

FUNDING:

WESTINGHOUSE, MARYLAND DEPT OF NATURAL RESOURCES

INVENTORY:

PUBLICATIONS:

CHESTER RIVER STUDY, WESTINGHOUSE, VOL 1, 2, 3

CONTACT:

707

UDSEPH FORNS 301-765-1000 WESTINGHOUSE ELECTRIC CORPORATION OCEAN RESEARCH LABORATORY, BOX 1771 ANNAPOLIS MARYLAND USA 21404

GRID LOCATOR (LAT):

730796

PARAMETER IDENTIFICATION SECTION:

2n METHOD DATA AMOUNT NAME SPHERE UNITS FREQUENCY HEIGHT/DEPTH REMARKS . MAP LOCATION STATIONS POSITION EARTH FIXED POINT 3 TIME EARTH SAMPLING TIME YMDHML 12 STATIONS THERMISTOR DEG C 24 OBS SURFACE AND 1 BECKMAN RS-5; TEMPERATURE WATER METER FROM RUNNING TIDE BOTTOM IN MORNING OBS SALINITY WATER CONDUCTIVITY PARTS PER 24 SURFACE AND 1 THOUSAND METER FROM BOTTOM COUNT OF WATER FIXED, UNSTAINED, NUMBER PER OBS 192 1 METER FROM 202 MICRON MESH ZOOPLANKTON WHOLE CUBIC METER SURFACE, 1 UNISCO METER FROM STANDARD 1/2

BOTTOM METER NET;

001286		Z	DOPLANKTON SURVEY		PAGE 02			
PARAMETER	IDENTIFICATION	SECTION:						
NAME	SPHERE	ME THOD	UNITS	DATA AM	тиис	FREQUENCY	HEIGHT/DEPTH	REMARKS
								1000 MICRON MESH; FLOW RATE AND EFFICIENCY CALCULATED, APPROXIMATELY 30 SPECIES
SPECIES DETERMINATION OF ZOOPLANKTON	WATER	KEY	NUMBER OF SPECIES, NUMBER OF INDIVIDUALS PER SPECIES, PERCENT COMPOSITION	192	OBS		1 METER FROM SURFACE, 1 METER FROM BOTTOM	
DIVERSITY INDEX OF ZOOPLANKTON	WATER	MARGALEF	UNITS	192	OBS			SPACIAL AND TEMPORAL DISTRIBUTIONS
COMMUNITY STRUCTURE ANALYSIS	WATER	CALCULATED	NUMBERS	192	OBS			COMPARISON OF STATIONS AND SAMPLE VARIATION AND CORRELATION
BIOMASS OF ZOOPLANKTON	WATER	WET WEIGHT	MILLICRAMS PER CUBIC METER	192	OBS			
BIOMASS OF ZOOPLANKTON	WATER	DRY WEIGHT	MILLICRAMS PER CUBIC METER	192	OBS			DRIED AT 60 DEGREES
VOLUME DETERMINA TION OF ZOOPLANKTON	WATER	SETTLING	MILLICRAMS PER LITER	192	OBS			
BIOMASS OF ZOOPLANKTON	WATER	ASH WEIGHT	MILLICRAMS ORGANIC CARBON PER CUBIC MILLIMETER	192	OBS			IGNITION AT 200 DEGREES C; WEIGHED
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	MILLICRAMS PER CUBIC METER	192	OBS			ZOOPLANKTON
DDE IN BID MATERIAL	WATER	GAS CHRDMATOGRAPH	MILLIDRAMS PER	192	OBS			ZOOPLANKTON
DDD IN BIO	WATER	GAS CHROMATOGRAPH	MILLICRAMS PER	192	OBS			ZOOPLANKTON
POLYCHLORINATED BIPHENYLS IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	MILLI.RAMS PER CUBIC METER	192	OBS			ZOOPLANKTON
CHLORDANE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	MILLIGRAMS PER CUBIC METER	192	OBS			ZOOPLANKTON

.

076

nik iki jey i

PROJECTS:

CHESTER RIVER STUDY

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, CHESTER RIVER

ABSTRACT:

THIS PORTION OF THE CHESTER RIVER, (MARYLAND) SIJDY WAS CONCERNED WITH THE PRESENCE OF CHLORINATED HYDROCARBONS IN THE BIDTA AND SEDIMENT IN THE RIVER. RESEARCH EFFORTS WERE DIRECTED TO DETERMINE THE EXISTING LEVELS OF CHLORINATED HYDROCARBONS. THEIR SOURCES, SINKS AND FLUCTUATIONS. CHLORINATED HYDROCARBONS FOUND IN SEDIMENT WERE CORRELATED TO MEAN GRAIN SIZE DIAMETER AND WITH RESPECT TO DISTRIBUTION ALONG THE MAIN RIVER COURSE.

1

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS

150 SEDIMENT SAMPLES; 100 SAMPLES OF THE BIOTA

FUNDING:

WESTINGHOUSE, MARYLAND DEPT OF NATURAL RESOURCES

INVENTORY:

```
PUBLICATIONS:
```

```
CHESTER RIVER STUDY, WESTINGHOUSE, VOL 1, 2, 3
```

CONTACT:

THOMAS MUNSON 301-765-1000 WESTINGHOUSE ELECTRIC CORPORATION OCEAN RESEARCH LABORATORY, BOX 1771 ANNAPOLIS MARYLAND USA 21404

```
GRID LOCATOR (LAT):
```

```
730796
```

 \mathbf{v}

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		DATA AMOUNT FREQUENCY HE		HE IGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MAP LOCATION YMDL	25 150	STATIONS STATIONS	QUARTERLY 25 STATIONS ON A QUARTERL Y BASIS		••••	
LINDANE	SEDIMENT	GAS CHROMATOGRAPH Y	PARTS PER BILLION	150	OB\$	25 STATIONS ON A QUARTERL Y BASIS	BOTTOM	CHLOR INATED HYDROCARBONS	
ALDRIN	SEDIMENT	GAS CHROMATOGRAPH Y	PARIS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL Y BASIS	BOTTOM		

	NAME	SPHERE	METHOD	UNITS	DATA AMO	DUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	• • • • • • • •			• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •
	DIELDRIN	SEDIMENT	GAS CHROMATOGRAPH Y	PARTS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL Y BASIS	BOTTOM	
	ENDRIN	SEDIMENT	GAS CHROMATOGRAPH	PARTS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
	DDT	SEDIMENT	GAS CHROMATOGRAPH	PARTS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
•	DDD	SEDIMENT	GAS CHROMATOGRAPH Y	PARTS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
	DDE	SEDIMENT	GAS CHROMATOGRAPH Y	PARIS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	, •
	TOXAPHENE	SEDIMENT	GAS CHROMATOGRAPH Y	PARIS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
	CHLORDANE	SEDIMENT	GAS CHROMATOGRAPH Y	PARIS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
	POLYCHLORINATED BIPHENYLS	SEDIMENT	GAS CHROMATOGRAPH Y	PARTS PER BILLION	150	OBS	25 STATIONS ON A QUARTERL	BOTTOM	
0	LINDANE IN BIO Material	WATER	GAS CHROMATUGRAPH Y	PARTS PER BILLION	100	OBS	A RUZIZ		MYA ARENARIA, SDFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS BILLE
78			:						CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH
	ALDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARIS PER BILLION	100	OBS			MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	ENDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PARTS PER BILLION	100	OBS			EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS. YELLOW PERCH MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES
- D	DDT IN BIO Material	WATER	GAS CHROMATDGRAPH Y	PARIS PER BILLION	100	OBS	,		SAPIDUS, BLUE CRAB; MOHONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS, BLUE
64	DDD IN BIO Material	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	100	OBS			CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH MYA ARENARIA. SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORONE
	DDE IN BIO Material	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	100	OBS			AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA,

	001287	INVENTORY OF CHLORINATED HYDROCARBONS IN THE CHESTER RIVER (CONT.)						PAGE 04	
	PARAMETER	IDENTIFICATION	SECTION:						
	NAME	SPHERE	METHOD	UNITS	DATA AMOL	JN T	FREQUENCY	HEIGHT/DEPTH	REMARKS
	TOXAPHENE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	100	OBS			OYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH MYA ARENARIA, SOFT SHELL
									CLAM: CRASSOSTR EA VIRGINICA, OYSTER, CALLINECTES SAPIDUS, BLUE CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH
080	CHLORDANE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	100	OBS			MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, OYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORCNE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH
	POLYCHLORINATED BIPHENYLS IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PARTS PER BILLION	100	035			MYA ARENARIA, SOFT SHELL CLAM; CRASSOSTR EA VIRGINICA, DYSTER; CALLINECTES SAPIDUS, BLUE CRAB; MORONE AMERICANA, WHITE PERCH; MORONE PERCAFLAVIS, YELLOW PERCH

.

PROJECISE CHESTER RIVER STUDY GENERAL GEOGRAPHIC AREA: U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, CHESTER RIVER 1 ABSTRACT: SURVEY OF TRACE METALS IN SEDIMENTS OF THE CHESTER RIVER, MARYLAND. CONCENTRATIONS OF METALS CORRELATED TO GRAIN-SIZE CHARACTERISTICS. DATA AVAILABILITY: · · · PLATFORM TYPES: SHIP ARCHIVE MEDIA: . PUNCHED CARDS 25 SEDIMENT SAMPLES; 6 TRACE METALS FUNDING: INVENTORY: PUBLICATIONS: CHESTER RIVER STUDY, WESTINGHOUSE VOL 1, 2, 3 CONTACT: HAROLD PALMER 301-765-1000 WESTINGHOUSE ELECTRIC CORPORATION OCEAN RESEARCH LABORATORY, BOX 1771 ANNAPOLIS MARYLAND USA 21404 \mathbf{O} ♥ GRID LOCATOR (LAT): 730796 PARAMETER IDENTIFICATION SECTION: UNITS DATA AMOUNT FREQUENCY HEIGHT/DEPTH NAME SPHERE METHOD REMARKS •••••••••••••••••• . MAP LOCATION 25 STATIONS POSITION EARTH FIXED POINT STATION TIME YMDL 25 STATIONS TIME EARTH SEDIMENT ATOMIC ABSORPTION PARTS PER 25 STATIONS CORRELATED 10 ZINC SPECTROMETRY MILLION GRAIN-SIZE CHARACTERISTICS 25 LEAD SEDIMENT ATOMIC ABSORPTION PARTS PER STATIONS CORRELATED TO SPECTROMETRY MILLION GRAIN-SIZE CHARACTERISTICS CADMIUM SEDIMENT ATCMIC ABSORPTION PARIS PER 25 STATIONS CORRELATED TO

 CADMIUM
 SEDIMENT
 ATOMIC ABSORPTION PARTS PER SPECTROMETRY
 25
 STATIONS
 CORRELATED TO GRAIN-SIZE

 COPPER
 SEDIMENT
 ATOMIC ABSORPTION PARTS PER SPECTROMETRY
 25
 STATIONS
 CORRELATED TO CHARACTERISTICS

 COPPER
 SEDIMENT
 ATOMIC ABSORPTION PARTS PER SPECTROMETRY
 25
 STATIONS
 CORRELATED TO GRAIN-SIZE

001290			TRACE METAL	CONCENTRATIONS IN	N SEDIM	ENTS OF CHEST	ER RIVER (CONT.	.)	PAGE 02
P#	ARAMETER	IDENTIFICATION	SECTION:					• •	
NAME		SPHERE	METHOD	UNITS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
CHROMIUM		SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	25	STATIONS			CHARACTERISTICS CORRELATED TO GRAIN-SIZE CHARACTERISTICS
IRON		SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	25	STATIONS			CORRELATED TO GRAIN-SIZE CHARACTERISTICS

.

.

GENERAL GEOGRAPHIC AREA: NJRTH ATLANTIC, U.S., COASTAL. CHESAPEAKE BAY, WARE RIVER, SEVERN RIVER

ABSTRACT:

TWO TIDAL MARSHES ALONG THE SEVERN AND WARE RIVERS, VIRGINIA ARE SAMPLED MONTHLY OVER A TWO YEAR PERIOD TO DETERMINE FAUNAL POPULATION SIZES AND FLORAL PRODUCTIVITY. RESPIRATION RATES ARE MEASURED ON BOTH MACROFAUNA AND BENTHOS. COMPARISONS ARE MADE BETWEEN ONE CONTROL MARSH AND ONE MARSH TREATED WITH OIL. (AVAILABLE AS VIMS PH D DISSERTATION, JUNE 1975)

٠

ŝ

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

DATA SHEETS SIX NOTEBOOKS OF 25 TO 50 DATA SHEETS EACH

FUNDING:

THE VIRGINIA INSTITUTE OF MARINE SCIENCE

.

INVENTORY:

PUBLICATIONS:

CONTACT:

CARL HERSHNER 804 642 2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

SRID LOCATOR (LAT):

730776

ン

PARAMETER IDENTIFICATION SECTION:

•									
NAME		SPHERE	METHOD U	UNITS	DATA AMO	unt	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION	EARTH	FIXED POINT	MAP LOCATION	2	STATIONS		•••••••••	TWO TIDAL MARSHES USED
	t i me	EARTH	STATION TIME	YMDH	96	OBS	MONTHLY		FUR SAMPLING STUDY WILL CONTINUE FOR AN APPROXIMATE TWO YEAR PERIOD
	COUNT OF	LAND	VISUAL	NUMBER PER Species	240	OBS	MONTHLY		TEN OBSERVATIONS PER MONTH
	SPECIES DETERMINATION	LAND	KEY	NUMBER PER SPECIES	240	OBS	MONTHLY		TEN OBSERVATIONS PER MONTH

OF INSECTS

RESPONSE OF SALT MARSH CONTUNITY CHRONIC HY CHOCARBON PULLUTION (CUNT.)

NAME	SPHERE	METHOD	UNITS	DATA AMO	DUNT	FREQUENCY HEIGHT/DEPTH	REMARKS
COUNT OF Demersal FISH	WATER	VISUAL	NUMBER PER SPECIES AND POPULATION SIZE	190	OBS	MONTHLY	SEVERAL OBSERVATIONS IN EACH MARSH PER MONTH; MADY OBCARTURE
SPECIES DETERMINATION OF DEMERSAL FISH	WATER	KEY	NUMBER PER SPECIES AND POPULATION SIZE	190	OBS	MONTHLY	SEVERAL OBSERVATIONS IN EACH MARSH PER MONTH;
LENGTH DF	WATER	TOTAL LENGTH	MILLIMETERS	190	OBS	MONTHLY	MARK RECAPIONE
DEMERSAL FISH COUNT OF BENTHIC ANIMALS	BOTTOM	VISUAL	NUMBER PER Species and Population Size	96	OBS	MONTHLY	SEVERAL OBSERVATIONS IN EACH MARSH PER MONTH; MARK-RECAPTURE; MARSH DECAPODS ONLY
SPECIES DETERMINA TION OF BENTH IC ANIMALS	BOTTOM	KEY .	NUMBER PER SPECIES AND POPULATION SIZE	96	OBS	MONTHLY .	SEVERAL OBSERVATIONS IN EACH MARSH PER MONTH; MARK-RECAPTURE; MARSH DECAPODS ONLY
COUNT OF BENTHIC Animals	BOTTOM	VISUAL	NUMBER PER SPECIES AND POPULATION SIZE	96	OBS	MONTHLY	QUADRAT COUNTS OF MARSH GASTROPODS
SPECIES DETERMINATION OF BENTHIC	80110 M	KEY	NUMBER PER SPECIES AND POPULATION SIZE	96	OBS	MONTHLY	QUADRAT COUNTS OF MARSH GASTROPODS
COUNT OF BENTHIC ANIMALS	80T TOM	VISUAL	NUMBER PER SPECIES AND POPULATION SIZE	96	OBS	MONTHLY	CORE SAMPLING OF MARSH MACRO- AND MEIO- FAUNA; COMMUNITY DIVERSITY INDICES CALCULATED
SPECIES DETERMINATION OF BENTHIC ANIMALS	BOTTOM	KEY	NUMBER PER SPECIES AND POPULATION SIZE	96	OBS	MONTHLY	CORE SAMPLING OF MARSH MACRO- AND MEIO- FAUNA; COMMUNITY DIVERSITY INDICES CALCULATED
RICHARS OF	90770W	NOV WEIGHT	CDANS DED NO	04	085	MONTHEV	PRODUCTIVITY OF

•••••	• • • • • • • • • • • • • •			• • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • •	•••••	•••••
COUNT OF BIRDS	AIR	VISUAL	NUMBER PER SPECIES	96	085	MONTHLY		QUADRAT Sightings of Birds inhabitin
SPECIES DETERMINATION OF BIRDS	AIR	KEY	NUMBER PER Species	96	OBS	MONTHLY		G MARSH AREA Sightings Of Birds Inhabitin G Marsh Area

.

~

1

٠

•

ELEMENTAL ANALYSES OF C AND D CANAL SEDIMENTS DATA COLLECTED: JULY 1972 TO JULY 1972 PAGE 01 RECEIVED: APRIL 29, 1974

PROJECTS:

ENLARGEMENT OF THE CHESAPEAKE AND DELAWARE CANAL

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, U.S., CHESAPEAKE BAY, CHESAPEAKE AND DELAWARE CANAL

ABSTRACT:

DATA PRESENTED FOR 19 STATIONS IN THE C AND D CANAL. SAMPLE ANALYSIS BY X-RAY ACTIVATION AND REPORTED AS A PLOT FOR EACH SAMPLE.

(IN APPENDIX 13 FINAL REPORT, NRI REFERENCE NUMBER 73-112, METHODS OF F.C. YOUNG, M.L. ROUSH, AND P.G. BERMAN, TECHNICAL REPORT 72-098, DEPT. PHYSICS AND ASTRONOMY. UNIVERSITY OF MD.)

DATA AVAILABILITY: WRITTEN REQUEST		' :	н. 1
PLATFORM TYPES: Ship	1 1 1		
ARÇHIVE MEDIA: REPORTS 19 PAGES IN REPOR	T	,	
FUNDING: U.S. ARMY CORPS O	FENGINEERS	CONTRACT NO DAC	W 61-71-C-0062
INVENTORY:	1	3.	
PUBLICATIONS:			
CONTACT:		•	1

LIBRARIAN 301 326 4281 CHESAPEAKE BIOLOGICAL LABORATORY SOLOMONS MARYLAND USA 20688

GRID LOCATOR (LAT):

730795

NAME	SPHERE	METHOD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	 МАР	19	STATIONS	• • • • • • • • • • • • • • •	•••••	•••••
TIME	EARTH	STATION TIME	YMD	19	STATIONS			
ALUMINUM '	SEDIMENT	X-RAY FLUORESCENC	COUNTS	19	STATIONS			
CADMIUM	SEDIMENT	X-RAY FLUDRESCENC	COUNTS	19	STATIONS			
IRON	SEDIMENT	X-RAY FLUORESCENC	COUNTS	19	STATIONS			
MANGANESE	SEDIMENT	X-RAY FLUORESCENC	COUNTS	19	STATIONS			
POTASSIUM	SEDIMENT	X-RAY FLUORESCENC	COUNTS	19	STATIONS			

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • • •	· · · · • • • • • • • • • • • • • • • •	••••	• • • • • • • • • •	* * • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
STRONTIUM	SEDIMENT	E X-RAY FLUORESCENC	COUNTS	19	STATIONS			
TITANIUM	SEDIMENT	X-RAY FLUDRESCENC	COUNTS	19	STATIONS			
YTTRIUM	SEDIMENT	X-RAY FLUDRESCENC	COUNTS	19	STATIONS			
ZINC	SEDIMENT	X-RAY FLUDRESCENC	COUNTS	19	STATIONS			
ZIRCONIUM	SEDIMENT	X-RAY FLUORESCENC E	COUNTS	19	STATIONS			

.

•

`

|

.

.

.

BLUE CRAE BLOODASERUM DATA COLLECTED: FEBRUARY 1969 TO AUGUST 1972

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, U.S., COASTAL, CHESAPEAKE BAY, TRIBUTARIES, EASTERN SHORE OF VIRGINIA

ABSTRACT:

VARIATION OF BLOOD SERUM CHLORIDE, MAJOR CATIONS. OSMOTIC CONCENTRATION, PROTEIN, GLUCOSE, TOTAL NINHYDRIN POSITIVE SUBSTANCES, AND TRACE METALS WERE DETERMINED IN NATURE BLUE CRABS. CALLINECTES SAPIDUS, TAKEN FROM A RANGE OF ENVIRONMENTAL CONDITIONS IN TIDAL WATERS OF VIRGINIA.

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP: FIXED STATION

ARCHIVE MEDIA:

PUNCHED CARDS SEVERAL THOUSAND PUNCHED CARDS

FUNDING:

NATIONAL MARINE FISHERIES SERVICE, SEA GRANT, U.S. PUBLIC HEALTH SERVICE

INVENTORY:

PUBLICATIONS:

LYNCH, M.P., K.L. WEBB, W.A. VAN ENGLE 1973. COMP. BIOCHEM. PHYSIOL 44A: 719-734; LYNCH, M.P. AND K.L. WEBB. 1973. COMP. BIOCHEM. PHYSIOL. 44A. 1237-1249; LYNCH, M.P. AND K.L. WEBB. 1973. COMP. BIOCHEM. PHYSIOL. 45A:127-139; COLVOCORESSES, J., M.P. LYNCH, K.L. WEBB 1974. COMP. BIOCHEM. PHYSIOL. 49A:787-803; COLVOCORESSES, J. AND M.P. LYNCH 1974. COMP. BIOCHEM. PHYSIOL. 50A:135-139.

CONTACT:

MAURICE P. LYNCH, PHD 604 642 2111 X71 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT VIRGINIA USA 23062

CO GRID LOCATOR (LAT):

 \bigcirc

 ∞

730766 730776 730775

NAME		SPHERE	METHOD	₩, UNITS	DATA AMOUNT		FREQUENCY	HE IGHT/DEPTH	REMARKS	
	POSITION		FIXED POINT	ΜΑΡ ΙΟΟΑΤΙΟΝ		STATIONS		· · · · · · · · · · · · · · · · · · ·		
	TIME	EARTH	STATION TIME	YMD	100	OBS			SOME STATIONS SAMPLED MONTHLY OTHERS	
						ı			ONLY DURING SUMMER, OTHERS ONCE	
	SALINITY	WATER	CONDUCTIVITY	PARTS PER THOUSAND	100	OBS		SURFACE		
	TEMPERATURE	WATER	NON-REVERSING	DEG C	100	OBS		SURFACE		

	NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	•••••	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••••••	••••••	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • •	
	CHLORIDE IN BIO MATERIAL	WATER	THERMOMETER TITRATION	MILLI-EQUIVALENT S PER LITER	1400 OBS			IN BLOOD SERUM OF BLUE CRAB, CALL INECTES
	GLUCOSE IN BIO MATERIAL	WATER	COLORIMETRY	MG PER 100 ML	1200 OBS			SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	PROTEIN IN BIO MATERIAL	WATER	COLORIMETRY	MG PER ML	1400 OBS			SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	AMINO ACIDS IN BIO MATERIAL	WATER	COLORIMETRY	MICROMOLES PER ML	30 OBS			SAPIDUS FREE AMINO ACIDS IN BLOOD SERUM OF BLUE CRAB, CALLINECT
¢	NINHYDRIN PLUS SUBSTANCES IN BIO MATERIAL	WATER	COLORIMETRY	MICROMOLES PER ML	800 OBS			ES SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES SAPIDUS
ł	SCDIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	800 OBS			IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	POTASSIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	800 OBS			SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	CALCIUM IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER MILLION	800 OBS			SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	MAGNESIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	800 OBS			IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	LIPIDS IN BIO MATERIAL	WATER	COLORIMETRY	PARTS PER MILLION	500 OBS			IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	COPPER IN BID MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	900 OBS			IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER MILLION	900 DBS			SAPIDUS IN BLOOD SERUM OF BLUE CRAB, CALLINECTES
	DSMOTIC CONCENTRATION OF BIO	WATER	FREEZING POINT DEPRESSION	MILLIOSMOLES	1000 OBS			IN BLOOD SERUM OF BLUE CRAB, CALLINECTES

001705				BLUE CRAB B	LOOD SERUM (CONT.)			PAGE 03
	PARAMETER	IDENTIFICATION	SECTION:					
NAME		SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
••••	• • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		*		•••••	•••••

MATERIAL

SAPIDUS

FROUECISC

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, EASTERN SHORE, YORK, RAPPAHANNOCK, JAMES, ELIZABETH RIVERS, LYNNHAVEN BAY

.

ABSTRACT:

RESULTS OF PESTICIDE ANALYSES PERFORMED BY THE VIRCINIA INSTITUTE OF MARINE SCIENCE AND THE VIRGINIA STATE WATER CONTROL BOARD ON OYSTERS OBTAINED FROM THE LOWER CHESAPEAKE BAY AND TRIBUTARIES ARE ON FILE AT THE BUREAU OF SHELLFISH SANITATION (ANALYSES WERE PERFORMED BY THE VIRGINIA INSTITUTE OF MARINE SCIENCE AND THE VA. STATE WATER CONTROL BOARD)

DATA AVAILABILITY:

GENERALLY AVAILABLE TO ANY CITIZEN OR AGENCY IN THE COMMONWEALTH UPON DECISION OF THE DIRECTOR

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

DATA SHEETS

25 DATA SHEETS

FUNDING:

STATE OF VIRGINIA

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804 770 7937 BUREAU OF SHELLFISH SANITATION JAMES MADISON BLDG., 109 GOVERNOR STREET RICHMOND VIRGINIA USA 23219

GRID LOCATOR (LAT):

730776 730766 **7**30775

NAME	SPHERE	METHOD	UNITS	DATA AMOL	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION	10	STATIONS	· · · · · · · · · · · · · · · · · · ·		•••••
T I ME	EARTH	STATION TIME	DMY	680	OBS	MONTHLY UNTIL 1970, QUARTERLY FROM 1971- 1972		1 OBS PER STATION
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	РРМ	680	OES	MONTHLY UNTIL 1970, QUARTERLY FROM 1971- 1972		WET WEIGHT IN Oyster flesh
DDD IN BIO	WATER	GAS CHROMATOGRAPH	РРМ	680	OBS	MONTHLY UNTIL		WET WEIGHT IN

PESTICIDE DATA (CONT.)

PAGE 02

PARAMETER IDENTIFICATION SECTION:

1

1

1

ı.

NAME	SPHERE	METHOD	UNITS	DATA AMO	IUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
MATERIAL		Ŷ		• • • • • • • •		1970, QUARTERLY		DYSTER FLESH
DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	₽ <i>₽</i> М	680	DBS	FROM 1971- 1972 MONTHLY UNTIL 1970, QUARTERLY		WET WEIGHT IN OYSTER FLESH
DIELDRIN IN BIO Material	WATER	GAS CHROMATOGRAPH	PPM	530	OBS	FROM 1971- 1972 MONTHLY UNTIL 1970, OUARTERLY		WET WEIGHT IN Oyster flesh
		· .				FROM 1971- 1972		

;

.

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, JAMES, YORK, POTOMAC, ELIZABETH RIVERS, WILLOBY BAY

.

ABSTRACT:

SAMPLES OF OYSTERS ARE OBTAINED FROM FORTY STATIONS IN THE LOWER CHESAPEAKE BAY AND ITS TRIBUTARIES AND ANALYSED FOR CU. CD, ZN, HG AT SIX MONTH INTERVALS. THE PROGRAM ATTEMPTS TO MONITOR SHELLFISH CONTAMINATION IN VIRGINIA WATERS BY HEAVY METALS

DATA AVAILABILITY:

GENERALLY AVAILABLE TO ANY CITIZEN OR AGENCY IN THE COMMONWEALTH UPON DECISION OF THE DIRECTOR

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

DATA SHEETS 100 DATA SHEETS PER YEAR

FUNDING:

VA DEPARTMENT OF HEALTH

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804 770 7937 BUREAU OF SHELLFISH SANITATION JAMES MADISON BLDG., 109 GOVERNOR STREET RICHMOND VIRGINIA USA 23219

3

GRID LOCATOR (LAT):

730766 730776 730786

NAME	SPHERE	METHOD	UNITS	DATA AMO	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION	40	STATIONS			•••••
TIME	EARTH	STATION TIME	YMD	160	OBS	TWICE A YEAR		
COPPER IN BIO	WATER	ATOMIC ABSORPTION	PPM	160	OBS	TWICE A YEAR		3 OBS PER
MATERIAL		SPECTROMETRY						STATION FROM A
								MIXTURE OF 10
								OYSTERS; WET
								WEIGHT IN
								OYSTER TISSUE
CADMIUM IN BIO	WATER	ATOMIC ABSORPTION	PPM	160	OBS	TWICE A YEAR		3 DBS PER
MATERIAL		SPECTROMETRY						STATION FROM A
								MIXTURE OF 10
								OYSTERS: WET
								WEIGHT IN

いい

.

1

PAGE 02

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	НЕ IGHT/DEPTH	REMARKS
•••••		••••••	• • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • •
ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРМ	160	OBS	TWICE A YEAR		OYSTER TISSUE 3 OBS PER STATION FROM A MIXTURE OF 10 OYSTERS; WET
MERCURY IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPM	36	OBS	TWICE A YEAR		OYSTER TISSUE SAMPLES FROM ONLY 9 STATIONS

PRUJELISI

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY, EASTERN SHORE, VA TIDAL RIVERS AND BAYS

ABSTRACT:

OYSTERS OBTAINED AT SIX MONTH INTERVALS FROM STATIONS LOCATED IN TIDAL TRIBUTARIES AND BAYS OF VIRGINIA ARE ANALYSED FOR DDT, DDD, DDE, DIELDRIN, PCB. THE DATA IS USED TO MONITOR SHELLFISH CONTAMINATION BY THE CHEMICALS.

DATA AVAILABILITY:

GENERALLY AVAILABLE TO ANY CITIZEN OR AGENCY IN THE COMMONWEALTH UPON DECISION OF THE DIRECTOR

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

DATA SHEETS 20 DATA SHEETS PER YEAR

FUNDING:

STATE OF VIRGINIA

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804 770 7937 BUREAU OF SHELLFISH SANITATION JAMES MADISON BLDG., 109 GOVERNOR STREET RICHMOND VIRGINIA USA 23219

GRID LOCATOR (LAT):

O 730776 730766 730775

CT

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		TA AMOUNT FREQUENCY H		REMARKS
POSITION		FIXED POINT	MAP LOCATION	 1ປ	STATIONS			•••••
TIME	EARTH	STATION TIME	YMD	36	OBS	TWO SAMPLINGS PER YEAR		
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	M9 Q	36	OBS	TWO SAMPLINGS PER YEAR		14 STATIONS EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 30 OYSTERS FROM EACH STATION:

.

4 STATIONS EACH SAMPLED BY ONE

002011			PESTICIDE MONI	TORING	PROGRAM (CON	Τ.)		PAGE 02
PARAMETER	IDENTIFICATION	SECTION:						
NAME	SPHERE	METHOD	UNITS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••	• • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • •
DDD IN BIO	WATER	GAS CHROMATOGRAPH	РРМ	36	OBS	TWO SAMPLINGS		ANALYSIS OF A MIXTURE OF 10 OYSTERS FROM EACH STATION 14 STATIONS
MATERIAL		Y				PER YEAR		EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 30 OYSTERS FROM EACH STATION; 4 STATIONS EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 10 OYSTERS FROM
DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	РРМ	36	OBS	TWO SAMPLINGS PER YEAR		EACH STATION 14 STATIONS EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 30 OYSTERS FROM EACH STATION; 4 STATIONS EACH SAMPLED
D DIELDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PPM	33	OBS	TWO SAMPLINGS PER YEAR		BY ONE ANALYSIS OF A MIXTURE OF 10 OYSTERS FROM EACH STATION 14 STATIONS EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 30 OYSTERS FROM EACH STATION; 4 STATIONS
POLYCHLORINATED BIPHENYLS IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	РРМ	36	OBS	TWO SAMPLINGS PER YEAR		EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 10 OYSTERS FROM EACH STATION 14 STATIONS EACH SAMPLED BY ONE

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
4 		! }					4 STATIONS EACH SAMPLED BY ONE ANALYSIS OF A MIXTURE OF 10 OYSTERS FROM EACH STATION
;							
		· :	1				
09							
-1							
			;				
	i Internet internet			ini ining kanit			;

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., DELAWARE BAY

ABSTRACT:

FINFISH, BLUE CRAB, SHRIMP, OYSTERS, MUD CRABS, MUSSELS WERE OBTAINED FROM LOCATIONS IN THE DELAWARE RIVER, NEAR THE E.I. DUPONT CHAMBERS WORKS, AND WERE ANALYSED FOR HEAVY METALS. THE RESULTS ARE PRESENTED IN A REPORT WHICH IS AVAILABLE FROM E.I. DUPONT DENEMOURS AND COMPANY (CONTRACT WORK DONE FOR E.I. DUPONT DENEMOURS AND COMPANY)

DATA AVAILABILITY:

REPORT AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS ONE 50 PAGE REPORT

FUNDING:

E.I. DUPONT DENEMOURS AND COMPANY

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. CLYDE E. GOULDEN 215 567 3700 THE ACADEMY OF NATURAL SCIENCES NINETEENTH AND THE PARKWAY PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):

730795

800

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNIIS	DATA AMOL	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POIN STATION TIME	MAP LOCATION YMD	3 10	STATIONS OBS	• • • • • • • • • • • • • • • • •	•••••	
MERCURY IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	UG PER G	130	OBS			FISH COLLECTED USING SEMI- BALLOON TRAWL; 10 SPECIMENS OF 4 DOMINANT SPECIES AT EACH STATION ANALYSED FOR

CONCENTRATIONS

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •		••••	•••••		••••••••	• • • • • • • • • • • • • • • • • • • •
						,			IN GUT AND
									FLESH TISSUE
	MERCURY IN BIO	BOTTOM	ATOMIC ABSORPTION	UG PER G	100	085			CUNCENTRATIONS
	MATERIAL		SPECTRUMETRY			,			DETERMINED IN
						1			FLESH UF BLUE
									OVETEDS MUD
			•						CRABS MUSSELS
									TAKEN AT EACH
									STATION
	COPPER IN BID	WATER	ATOMIC ABSORPTION	UG PER G	40	OBS			CONCENTRATIONS
	MATERIAL		SPECTROMETRY						IN FLESH OF
									VARIOUS
									SPECIES OF
									FINFISH TAKEN
									AI EACH
	CODDED IN DIO	DOTTOM	ATOMIC ARCORDION	UC DER C	20	085			
	MATEDIAL		SPECTDOMETRY	UG FER G	20	000 ,			IN FIESH OF
	MATERIAL		ST EET KOME TRY						SHRIMP.
									OYSTERS.
									MUSSELS
	CHROMIUM IN BIO	WATER	ATOMIC ABSORPTION	UG PER G	40	OBS			CONCENTRATIONS
	MATERIAL		SPECTROMETRY						IN FLESH OF
									VARIOUS
									SPECIES OF
									FINEISH LAKEN
2									
5	CHROMIUM IN BIO	BOTTOM	ATOMIC ABSORPTION	UG PER G	20	OBS			CONCENTRATIONS
5	MATERIAL	00110	SPECTROMETRY		20	000			IN FLESH OF
4									SHRIMP.
									OYSTERS,
						1			MUSSELS
	LEAD IN BIO	WATER	ATOMIC ABSORPTION	UG PER G	40	OBS			CONCENTRATIONS
	MATERIAL		SPECTROMETRY						IN FLESH OF
									VARIOUS
									SPECIES OF
									AT EACH
									STATION
	LEAD IN BID	BOTTOM	ATOMIC ABSORPTION	UG PER G	20	OBS '			CONCENTRATIONS
	MATERIAL	20110	SPECTROMETRY						IN FLESH OF
									SHRIMP.
									OYSTERS,
									MUSSELS
	ZINC IN BID	WATER	ATOMIC ABSORPTION	UG PER G	40	OBS			CONCENTRATIONS
	MATERIAL		SPECTROMETRY						IN FLESH OF
		r				ł			VARIOUS
									SPECIES OF
									AT EACH
									STATION
									JINI LUN

00

HEAVY METALS STUDIES FOR THE E.I. DUPONT DENEMOURS AND CO. JAN 1971 (CONT.)

PAGE 03

NAME	SPHERE	METHGD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · ·	••••••		• • • • • • • • •		• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •
ZINC IN BIO MATERIAL	BCTTOM	ATOMIC ABSORPTION SPECTROMETRY	UG PER G	40	085			CONCENTRATIONS IN FLESH OF SHRIMP, OYSTERS, MUSSELS
ALUMINUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	UG PER G	40	OBS			CONCENTRATIONS IN FLESH OF VARIOUS SPECIES OF FINFISH TAKEN AT EACH STATION
ALUMINUM IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	UG PER G	40	GBS			CONCENTRATIONS IN FLESH OF SHRIMP, OYSTERS, MUSSELS

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., DELAWARE BAY

ABSTRACT:

TRACE METAL CONDITIONS OF THE BOTTOM SEDIMENTS IN THE DELAWARE BAY NEAR EXISTING OYSTER BANKS WERE INVESTIGATED IN ORDER TO LOCATE AREAS SUITABLE FOR THE LOCATION OF CULTURED OYSTER BANKS. (UNPUBLISHED M.S. THESIS OF FREDERICK BOPP III, JUNE 1973)

DATA AVAILABILITY:

INTERLIBRARY LOAN

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS ONE 135 PAGE THESIS

FUNDING:

UNIVERSITY OF DELAWARE

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 302 738 2455 MORRIS LIBRARY UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

3

GRID LOCATOR (LAT): 730795 730794 730785 730784

NAME	SPHERE	METHOD	UNIIS	DATA AMO	ATA AMOUNT FREQUENCY H		HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	 МАР ҮМО	119 119	STATIONS OBS			•••••
SIZE ANALYSIS	SEDIMENT	SIEVE	PERCENT	119	OBS			SAND, SILT, OR Clay
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	119	OBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY
MAGNESIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	119	OBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY

TRACE METAL ENVIRONMENTS NEAR SHELL BANKS IN DELAWARE BAY (CONT.)

PAGE 02

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • •			• • • • • • • •		• • • • • • • • • • • • • • •	•••••	, · · · · · · · · · · · · · · · · · · ·
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	119	OBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	119	CBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	119	OBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	ррм	119	OBS			GREATER THAN 63U FRACTION OF SEDIMENT ONLY

ŧ

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:

WATER SAMPLES OBTAINED MONTHLY FROM STATIONS IN THE VICINITY OF THE PROPOSED NUCLEAR GENERATING STATION AT CALVERT CLIFFS, MARYLAND ARE ANALYSED FOR A NUMBER OF CHEMICAL, BACTERIOLOGICAL AND PHYSICAL PARAMETERS. THE RESULTS OF THESE ANALYSES ARE AVAILABLE FROM THE BALTIMORE GAS AND ELECTRIC COMPANY IN THE FORM OF YEARLY CONTRACT REPORTS BY THE PHILA. ACADEMY. (CONTRACT WORK DONE FOR THE BALTIMORE GAS AND ELECTRIC COMPANY)

DATA AVAILABILITY:

REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

+

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

YEARLY REPORTS EACH APPROXIMATELY 100 PAGES

FUNDING:

EALTIMORE GAS AND ELECTRIC COMPANY

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. CLYDE E. GOULDEN 215 567 3700 THE ACADEMY OF NATURAL SCIENCES NINETEENTH AND THE PARKWAY PHILADELPHIA PENNSYLVANIA USA 19103

🗢 GRID LOCATOR (LAT):

C 730786

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	мар	5	STATIONS		····	LOCATED ALONG 30 FT DEPTH CONTOUR NEAR SHORE
TIME	EARTH	STATION TIME	YMD	350	OBS	MONTHLY		
TEMPERATURE	WATER	THERMISTOR	DEG C	700	OBS	MONTHLY	SURFACE AND BOTTOM	
CHLORIDE	WATER	TITRATION	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURF

.

CHEMICAL, BACTERIOLOGICAL AND PHYSICAL STUDY ON THE CHESAPEAKE BAY IN THE (CONT.) VICINITY OF CALVERT CLIFFS, MARYLAND

PAGE 02

•

	NAME	SPHERE	METHOD	UNIIS	DATA AM	OUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	рн	WATER	SPECIFIC ION ELECTRODE	PH UNITS	700	OBS	MONTHLY	SURFACE AND BOTTOM	BECKMAN ZEROMATIC METER
	SALINITY	WATER	CONDUCTIVITY	PPT	700	OBS	MONTHLY	SURFACE AND BOTTOM	
	SILICATE	WATER	COLORIMETRY	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	SULFATE	WATER	GRAVIMETRY	PPM	700	CBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	OR THOPHOSPHATE	WATER	COLORIMETRY	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	PHOSPHATE	WATER	COLORIMETRY	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS FROCEDURE
	NITRATE	WATER	COLORIMETRY	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	NITRITE	WATER	COLORIMETRY	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	AMMONIA	WATER	TITRATION	PPM	700	OBS	MONTHLY .	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	HARDNESS	WATER	TITRATION	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	TOTAL, CALCIUM, MAGNESIUM
1	PHENOLPHTHALEIN ALKALINITY	WATER	TITRATION	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
04	TOTAL ALKALINITY	WATER	TITRATION	PPM	700	OBS	MONTHLY	SURFACE AND	METHYL PURPLE
-	BIDCHEMICAL OXYGEN DEMAND	WATER	TITRATION	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	DISSOLVED OXYGEN GAS	WATER	TITRATION	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDARD METHODS PROCEDURE
	LIGHT ATTENUATIO N	WATER	SPECTROPHOTOMETRY	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	STANDAKD METHODS PROCEDURE
	CALCIUM	WATER	TITRATION	РРМ	700	OBS	MONTHLY	SURFACE AND BOTTOM	CALCULATED FROM CA HARDNESS VALUES
	MAGNESIUM	WATER	TITRATION	PPM	700	OBS	MONTHLY	SURFACE AND BOTTOM	CALCULATED FROM MG HARDNESS VALUES
	CARBONATE	WATER	TITRATION	PPM	700	08\$	MONTHLY	SURFACE AND	CALCULATED FROM

PARAMETER IDENTIFICATION SECTION:

,

.

.

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	•••••••••••••••		• • • • • • • • • • • • • • • • • • •		• • • • •	• • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • •
	ALKALINITY							BOTTOM	METHYL PURPLE Alkalinity
	COUNT OF MICROBIOTA	WATER	VISUAL	NUMBER PER 100 ML	350	OBS	MONTHLY	SURFACE	TOTAL COLIFORM AND PRESUMPTIVE COLIFORM
	IRON ·	WATER	SPECTROPHOTOMETRY	PPM	350	085	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	MANGANESE	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOWB SPECTRONIC 100
	SODIUM	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	POTASSIUM	WATER	SPECTROPHOTOMETRY	PPM	350	085	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTPONIC 100
	STRONTIUM	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	COBALT .	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB Spectronic 100
	COPPER	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	NICKEL	WATER	SPECTROPHOTCMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	LEAD	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	ZINC	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	CALCIUM	WATER	SPECTROPHOTOMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
	CADMIUM	WATER	COLORIMETRY	PPM	350	OBS	MONTHLY	SURFACE	BAUSCH AND LOMB SPECTRONIC 100
05	BORON	WATER	COLORIMETRY	PPM	350	OBS	MONTHLY	SURFACE	

.

.

GOLD AND MERCURY IN DYSTERS BY NEUTRON ACTIVATION DATA COLLECTED: APRIL 1970 TO APRIL 1970

PAGE 01 RECEIVED: SEPTEMBER 04, 1974

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, U.S., CHESAPEAKE BAY, PATAPSCO RIVER, COASTAL

ABSTRACT:

ANALYSIS OF OYSTER MEATS FROM PATAPSCO RIVER, MARYLAND FOR GOLD AND MERCURY BY NEUTRON ACTIVATION ANALYSIS. SINGLE STATION SOURCE OF OYSTERS. PROGRAM INTENT WAS TO PROVIDE BASELINE DATA AND EVALUATE ANALYTIC TECHNIQUE. DATA FILE INCLUDES ENERGY SPECTRA FOR EACH SAMPLE. (MS THESIS, R. T. MOHR, 1971)

DATA AVAILABILITY:

INTERLIBRARY LOAN

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS 97 PAGES

FUNDING:

UNIVERSITY OF MARYLAND

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301 454 3011 MCKELDIN LIBRARY UNIVERSITY OF MARYLAND COLLEGE PARK MARYLAND USA 20742

GRID LOCATOR (LAT):

5 730796

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	мар Умо	1	STATIONS		• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
GOLD IN BIO MATERIAL	WATER	GAMMA RAY SPECTROMETRY	PPM DRY WEIGHT	14	OBS			OYSTER MEAT
MERCURY IN BIO MATERIAL	WATER	GAMMA RAY SPECTROMETRY	PPB DRY WEIGHT	14	OBS			OYSTER MEAT
	PROJECTS:	I						
-------------	---	--	--	--	------------------------------------	------------------	------------------	-------------------------------------
	GENERAL GEOGRAPHI NORTH ATLANI	C AREA: IC, U.S., CHES	APEAKE BAY, COASTA	L				
	ABSTRACT: SAMPLES OF C AND EVALUATE (MS THESIS E	DYSTERS TAKEN FO TECHNIQUE FOR BY P.H. GRAHAM,	COM 4 SITES IN MAR ANALYSIS. 1971, DEPARTMENT (YLAND WATERS ANALY DF CIVIL ENGINEERI	ZED FOR CADMIUM. IN	NTENT OF STUDY N	NAS TO PROVIDE E	BASELINE DATA
	DATA AVAILABILITY INTERLIBRARY	LDAN	1					
,	PLATFORM TYPES: Ship		, I	,				
	ARCHIVE MEDIA; REPORTS 45 PAGES	- - -	1 1 1 1					~
	FUNDING: University (F MARYLAND		1				
	INVENTORY:		;	,				
•	CONTACT: LIBRARIAN MCKELDIN LIE UNIVERSITY C COLLEGE PARH	301 454 3011 Brary Of Maryland (Maryland USA	20742	r.				
ا مب	GRID LOCATOR (LA1 730786	·);						
01	PARAMETER	IDENTIFICATION	SECTION:					
~	NAME	SPHERE	METHOD	UNIIS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION TIME CADMIUM IN BIO MATERIAL WEIGHT OF	EARTH EARTH BOTTOM	FIXED POINT STATION TIME ATOMIC ABSORPTION SPECTROMETRY WET WE GHT	MAP YMD PPM WET WEIGHT	4 STATIONS 4 STATIONS 16 OBS			OYSTERS ANALYZED DYSTERS MEAT
	BENTHIC		WET WEIGHT	Gin				ONLY

.

. .

> . İ

:

.

í

CHESAPEAKE BAY OYSTER TRAY STUDIES DATA COLLECTED: MAY 1970 TO JUNE 1973

RECEIVED: SEPTEMBER 04, 1974

PAGE D1

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, COASTAL, U.S., CHESAPEAKE BAY

ABSTRACT:

AT THE REQUEST OF THE BALTIMORE GAS AND ELECTRIC COMPANY A PROGRAM OF STUDIES WAS INITIATED IN 1970 TO DETERMINE THE GROWTH, MORTALITY AND FOULING ASSOCIATED WITH OYSTERS AT VARIOUS LOCATIONS IN THE CALVERT CLIFFS AREA OF CHESAPEAKE BAY. RESULTS ARE AVAILABLE IN ANNUAL REPORTS TO THE BALTIMORE GAS AND ELECTRIC COMPANY. (CONTRACT WORK DONE FOR THE BALTIMORE GAS AND ELECTRIC COMPANY)

1

DATA AVAILABILITY:

REPORTS AVAILABLE ONLY FROM CONTRACT AGENCY

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

FOUR YEARLY REPORTS APPROXIMATELY 25 PAGES EACH

FUNDING:

BALTIMORE GAS AND ELECTRIC COMPANY

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. CLYDE E. GOULDEN 215 567 3700 THE ACADEMY OF NATURAL SCIENCES NINETEENTH AND THE PARKWAY PHILADELPHIA PENNSYLVANIA USA 19103

GRID LOCATOR (LAT):

20 730786

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AM	DUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT		3	STATIONS		• • • • • • • • • • • • • • •	••••••
TIME	EARTH	STATION TIME	YMD	36	OBS	QUARTERLY		6 OYSTER TRAYS
			•					CONTAINING 40
								DYSTERS PER
						•		TRAY ARE
								LOCATED AT
			•					EACH STATION
								AND ARE
								REMOVED AND
								EXAMINED 4
								TTMES DED VEAD

.

CARANCIER INFILL FORLEDIE DEDITOR

•

.

NAME	SPHERE	METHOD	UNITS	DATA AMO)UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
MORPHOMETRIC Measure of Benthic Antmals	BOTTOM	DIRECT	MM	36	085	QUARTERLY		LENGTH AND WIDTH OF ALL LIVING OYSTERS ON TRAYS
COUNT OF PERIPHYTON	WATER	VISUAL .	NUMBER PER Species	36	OBS	QUARTERLY		ORGANISMS ADHERING TO DYSTER TRAYS; ORGANISMS INSIDE TRAYS
COUNT OF PERIPHYTON ON BENTHIC ANIMALS	BOTTOM	VISUAL	NUMBER PER Species	36	OBS	QUARTERLY		WITH OYSTERS ORGANISMS Adhering TO Oysters
MORTALITY OF BENTHIC ANIMALS	BOTTOM	VISUAL	PERÇENT	36	08\$	QUARTERLY		OYSTERS IN TRAYS
BIOLOGICAL CONDITION OF BENTHIC ANIMALS	BOTTOM	VISUAL	SCALE	36	085	QUARTERLY		VISUAL DPACITY OF OYSTER MEAT DUE TO GLYCOGEN CONTENT IS BASED ON A

.

.

. .

.

.

SCALE OF 1 TO

`.

.

OSPREY REPRODUCTION AND POLLUTION IN THE CHESAPEAKE BAY DATA COLLECTED: JANUARY 1969 TO DECEMBER 1972 PAGE 01 RECEIVED: JANUARY 06, 1975

.

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH AMERICA, COASTAL, U.S., CHESAPEAKE BAY, POTOMAC RIVER

+

1

1

ABSTRACT:

CONTINUING STUDY TO DETERMINE THE FACTORS AFFECTING THE DSPREY REPRODUCTIVE SUCCESS. EGGS FROM CLUTCHES WERE ANALYZED FOR ORGANOCHLORINE PESTICIDES, PCB, LEAD, CADMIUM AND MERCURY.

.

.

DATA AVAILABILITY:

COST OF REPRODUCTION

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS 100 PAGES

FUNDING:

US BUREAU OF SPORT FISHERIES AND WILDLIFE

INVENTORY:

PUBLICATIONS:

SUMMARY IN: PATUXENT WILDLIFE RESEARCH CENTER ANNUAL REPORT, 1972. P. 60-61

CONTACT:

*--

R. I. SMITH, DIRECTOR 301 776 4880 PATUXENT WILDLIFE RESEARCH CENTER MIGRATORY BIRD AND HABITAT RESEARCH LABORATORY LAUREL MARYLAND USA 20810

GRID LOCATOR (LAT):

730786

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	DM	16	STATIONS			LATITUDE AND LONGITUDE
TIME	EARTH	STATION TIME	YMD	16	STATIONS			
SPECIES DETERMINATION OF BIRDS	AIR	KEY		16	STATIONS			OSPREY TISSUE AND EGGS
COUNT OF BIRDS	AIR	VISUAL		16	STATIONS			OSPREY
FECUNDITY OF BIRDS	AIR	VISUAL	OSPREY EGGS AND PERCENT HATCHLINGS	16	STATIONS			OSPREY
DDD IN BIO Material	WATER	GAS CHROMATOGRAPH	P PM	16	STATIONS			OSPREY TISSUE AND EGGS

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	••••	• • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • •
DDE IN BIO MATERIAL	WATER	GAS CHROMAIDGRAPH	PPM	16	STATIONS			OSPREY FISSUE AND EGGS
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	РРМ	16	STATIONS			OSPREY TISSUE AND EGGS
DIELDRIN IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PPM	16	STATIONS			OSPREY TISSUE AND EGGS
LEAD IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPM	16	STATIONS			OSPREY TISSUE AND EGGS
CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECIROMETRY	РРМ	16	STATIONS			OSPREY TISSUE AND EGGS
MERCURY IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРМ	16	STATIONS			OSPREY TISSUE AND EGGS
POLYCHLORINATED BIPHENYLS IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPM	16	STATIONS			OSPREY FISSUE AND EGGS

.

•

;

.

OSPREY REPRODUCTION IN RELATION TO PESTICIDE RESIDUES IN EGGS DATA COLLECTED: JANUARY 1968 TO DECEMBER 1969

PAGE 01 RECEIVED: JANUARY 06, 1975

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH AMERICA, COASTAL, U.S., CONNECTICUT AND MARYLAND

ABSTRACT:

OSPREY TISSUES, EGGS AND FISH FROM MARYLAND AND CONNECTICUT WERE ANALYZED FOR ORGANOCHLORINE PESTICIDES AND PCB.

DATA AVAILABILITY:

COST OF REPRODUCTION

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

100 PAGES

FUNDING:

US BUREAU OF SPORT FISHERIES AND WILDLIFE

INVENTORY:

```
PUBLICATIONS:
     SUMMARY IN: PATUXENT WILDLIFE RESEARCH CENTER ANNUAL REPORT. 1972. P. 60.
```

CONTACT:

-

R. I. SMITH, DIRECTOR 301 776 4880 PATUXENT WILDLIFE RESEARCH CENTER MIGRATORY BIRD AND HABITAT RESEARCH LABORATORY \mathbf{N} LAUREL MARYLAND USA 20810

GRID LOCATOR (LAT):

730786 740702

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	DM	· · <i>·</i> · · · · · 2	STATIONS		•••••	LATITUDE AND LONGITUDE
TIME	EARTH	STATION TIME	YMD	2	STATIONS			
SPECIES DETERMINATION DF BIRDS	AIR	KEY		2	STATIONS			OSPREY AND OSPREY EGGS
DDD IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	PPM	2	STATIONS			OSPREY, FISH TISSUES, AND OSPREY EGGS
DDE IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH Y	РРМ	2	STATIONS			OSPREY, FISH TISSUES, AND OSPREY EGGS
DDT IN BIO	WATER	GAS CHROMATOGRAPH	PPM	2	STATIONS			OSPREY, FISH

NAME	SPHERE	1	METHOD	UNITS	DATA AMO	JUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •		• • • • • • • • • • • • •	•••••	•••••
MATERIAL			Y						TISSUES, AND
DIELDRIN IN BIO MATERIAL	WATER		GAS CHROMATOGRAPH	I PPM	2	STATIONS			OSPREY, FISH TISSUES, AND
POLYCHLORINATED BIPHENYLS IN	WATER		GAS CHROMATOGRAPH	H PPM	2	STATIONS			OSPREY, FISH TISSUES, AND
MORPHOMETRIC MEASUREMENT OF BIRDS	AIR		VISUAL	MICRONS	2	STATIONS			EGG SHELL THICKNESS
· · ·		4 1	г (

.

1

1

t t .

i

,

1 1 3

EFFECTS OF PESTICIDES AND ENVIRONMENTAL POLLUTANTS ON RAILS AND SHOREBIRDS DATA COLLECTED: JANUARY 1972 TO DECEMBER 1973

PAGE 01 RECEIVED: JANUARY 06, 1975

.

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA, COASTAL, U.S., NEW JERSEY TO SOUTH CAROLINA

ABSTRACT:

THE EGGS OF CLAPPER RAIL, WILLET, AND AMERICAN DYSTER CATCHER WERE COLLECTED FROM NEW JERSEY TO SOUTH CAROLINA AND MEASURED FOR THICKNESS AS WELL AS ORGANOCHLORINES AND PCB. 3500 EGGS WERE MEASURED AND 30 EGGS ANALYZED FOR ORGANOCHLORINE PESTICIDES AND PCB.

DATA AVAILABILITY:

COST OF REPRODUCTION

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS 4000 PAGES

FUNDING:

US BUREAU OF SPORT FISHERIES AND WILDLIFE

INVENTORY:

PUBLICATIONS:

SUMMARY IN: PATUXENT WILDLIFE RESEARCH CENTER ANNUAL REPORT. 1972. P. 78-79.

CONTACT:

R. I. SMITH, DIRECTOR 301 776 4880 PATUXENT WILDLIFE RESEARCH CENTER MIGRATORY BIRD AND HABITAT RESEARCH LABORATORY LAUREL MARYLAND USA 20810

GRID LOCATOR (LAT):

730820 730829 730738 730739 730746 730747 730748 730749 730755 730756 730765 730766 730775 730776 730785 730786 730795 730796 740705 740706

NAME	SPHERE	METHOD	UNITS	DATA AMOU	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	DM	15	STATIONS			LATITUDE AND LONGITUDE
TIME SPECIES DETERMINATION OF BIRDS	EARTH AIR	STATION TIME Key	YMD	15 3500	STATIONS OBS			3500 RAIL AND SHOREBIRD EGGS WERE MEASURED
MORPHOMETRIC MEASUREMENT OF BIRDS	AIR	VISUAL	MICRONS	3500	OBS			SHOREBIRD EGGS WERE MEASURED

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
••••••••••••••••••	· • • • • • • • • • • • • • • •			•••••	••••		••••••••••••••••	
000 TH 010			0.014	20	0.05			FOR THICKNESS
MATERIAL	WAIER	Y Y	PPW	30	UB2			SHOREBIRD EGGS
DDE IN BIO	WATER	GAS CHROMATOGRAPH	PPM	30	OBS			30 RAIL AND
MATERIAL		Y						SHOREBIRD EGGS
DDT IN BIO MATERIAL	WATER	GAS CHROMATOGRAPH	PPM	30	OBS			30 RAIL AND SHOREBIRD EGGS
DIELDRIN IN BIO	WATER	GAS CHROMATOGRAPH	PPM	30	OBS -			30 RAIL AND
MATERIAL		Y			4			SHOREBIRD EGGS
POLYCHLORINATED	WATER	GAS CHROMATOGRAPH	PPM	30	OBS			30 RAIL AND
BIPHENYLS IN		Y						SHOREBIRD EGGS
BIO MATERIAL								

.

C.

. F

, 1

ROLE OF SEWAGE EFFLUENT AND HEAVY METALS INTO MARINE ECOSYSTEMS DATA COLLECTED: JANUARY 1972 TO AUGUST 1976

PAGE 01 RECEIVED: FEBRUARY 07, 1975

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., NORTH CAROLINA. CALICO CREEK

ABSTRACT:

SURVEY OF THE EFFECTS OF SEWAGE EFFLUENTS AND HEAVY METALS ON AGRICULTURAL AND MARINE ECOSYSTEMS OF NORTH CAROLINA (INTENSIVE SURVEY OF 15 STATIONS ON CALICO CREEK AND STATIONS IN 20 OTHER COASTAL CITIES.)

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA: REPORTS; DATA SHEETS 200 PAGES

FUNDING:

UNIVERSITY OF NORTH CAROLINA; NORTH CAROLINA OFFICE OF WATER RESOURCES RESEARCH PROGRAM

1

INVENTORY:

PUBLICATIONS:

CONTACT:

à

2

RICHARD BARBER 919 728 2111 DUKE UNIVERSITY MARINE LABORATORY BEAUFORT NORTH CAROLINA USA 28516

GRID LOCATOR (LAT):

730748 730747 730746 730756 730755 730765

NAME	SPHERE		METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	•••	FIXED POINT	DM	35	STATIONS			LATITUDE & LONGITUDE
TIME	EARTH		STATION TIME	YMD	35	STATIONS .	BIANNUAL		
MERCURY	WATER		ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
CADMIUM	WATER	1	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
SELENIUM	WATER		ATOMIC ABSURPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
LEAD	WATER		ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
COPPER	WATER		ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
ZING	WATER		ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		OUTFALL PIPE

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • •		•••••		• • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • •
IRON	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
CHROMIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
NICKEL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
CADMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
SELENIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		OUTFALL PIPE
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
NICKEL	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OUTFALL PIPE
MERCURY IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	P98	35	STATIONS	BIANNUAL.		OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET, PENEAUS
CADMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPB	35	STATIONS	BIANNUAL		OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET, PENFAUS
SELENIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET,
LEAD IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		DYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET, DENE AUS
COPPER IN BID	WATER	ATOMIC ABSORPTION	PPB	35	STATIONS	BIANNUAL		DYSTERS,

+ - 0

ROLE OF SEWAGE EFFLUENT AND HEAVY METALS INTO MARINE ECOSYSTEMS (CONT.)

PAGE 03

PARAMETER IDEN	ITIF	ICATIO	N SECTION:
----------------	-------------	--------	------------

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HE IGHT/DEPTH	REMARKS	
MATERIAL		SPECIROMETRY		••••			· · · · · · · · · · · · · · · · · · ·	LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET.	
ZINC IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		PENEAUS DYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET,	
IRON IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		PENEAUS OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET,	
CHROMIUM IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		PENEAUS OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLET, DEDICAUS	
NICKEL IN BIO Material	WATER	ATOMIC ABSORPTION SPECTROMETRY	РРВ	35	STATIONS	BIANNUAL		OYSTERS, LITTERINA, NASSERIA, SPARTINA, ULVA, UCA, MULLEF, DENEAUS	
PRECIPITATION	AIR	RAIN GAGE	INCHES	35	STATIONS	BIANNUAL		TENEROS	
WATER TRANSPORT PARTICULATE MATTER	WATER WATER	FLOW METER GRAVIMETRY		35 35	STATIONS STATIONS	BIANNUAL BIANNUAL			

PRUJECISE

GENERAL	GEOGRAPHIC	AREA:

NORTH ATLANTIC, COASTAL, U.S., NORTH CAROLINA

ABSTRACT:

HEAVY METAL SURVEY OF NORTH CAROLINA COASTAL FISHES

+

1

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS 900 PAGES

FUNDING:

NSFI AND DUKE U.

INVENTORY:

PUBLICATIONS:

CONTACT:

RICHARD BARBER 919 728 2111 DUKE UNIVERSITY MARINE LABORATORY BEAUFORT NORTH CAROLINA USA 28516

GRID LOCATOR (LAT):

730766 730765 730755 730756 730746 730747 730748

NAME	SPHERE	METHOD	UNITS	DATA AN	DUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS	
POSITION	EARTH	FIXED POINT	DM	1	STATIONS		• • • • • • • • • • • • • • • •	LATITUDE AND LONGITUDE	
TIME	EARTH	STATION TIME	YMD	1	STATIONS			· · · · · · ·	
SPECIES DETERMINATION OF PELAGIC FISH	WATER	ΚΕΥ		1	STATIONS			50 BLUEFISH, 100 SPINY DOGFISH, 100 FALSE ALBACORE, 100 NOLOMOLA, 100 CONGERS, 100 AMBERJACK, 100 KING MACKEREL, 200 LAGODON RHOMBOIDES	
LENGTH OF	WATER	STANDARD LENGTH	MM	1	STATIONS			50 BLUEFISH,	

100

HEAVY METALS IN COASTAL FISHES OF NORTH CAROLINA (CONT.)

PAGE 02

PARAMETER	IDENTIFICATION	DN SECTION:								
NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS		
PELAGIC FISH								100 SPINY DOGFISH, 100 FALSE ALBACORE, 100 NOLOMOLA, 100 CONGERS, 100 AMBERJACK, 100 KING		
WEIGHT OF Pelagic fish	WATER	WET WEIGHT	GRAMS	1	STATIONS			MACKEREL. 200 LAGODON RHOMBOIDES 50 BLUEFISH, 100 SPINY DOGFISH, 100 FALSE ALBACORE, 100 NOLOMOLA, 100 CONGERS, 100 AMBERJACK,		
COPPER IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPT	1	STATIONS			100 KING MACKEREL, 200 LAGODON RHOMBOIDES AXAL AND LATERAL MUSCLE, LIVER,		
MANGANESE IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPT	1	STATIONS	·		TISSUE AXAL AND LATERAL MUSCLE, LIVER, KIDNEY, BRAIN		
MERCURY IN BIO MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPT	1	STATIONS			TISSUE AXAL AND LATERAL MUSCLE, LIVER, KIDNEY, BRAIN TISSUE		

```
PROJECTS:
```

GENERAL GEOGRAPHIC AREA: NORTH AMERICA, U.S., COASTAL, DELAWARE, DELAWARE BAY, MURDERKILL AND ST. JONES RIVERS

ABSTRACT:

THE PRINCIPAL PURPOSE OF THIS STUDY TO ESTABLISH A TRACE METAL BASELINE FOR THE MURDERKILL RIVER PRIOR TO COMMENCEMENT OF OPERATION OF THE KENT COUNTY REGIONAL SEWAGE TREATMENT PLANT. BASELINES ARE ESTABLISHED FOR IRON, MAGNESIUM, ZINC, CHROMIUM, COPPER, LEAD, CADMIUM, MERCURY, NICKEL AND STRONTIUM. IN ADDITION TO THE ESTABLISHMENT OF THESE BASELINES. THE SECOND PURPOSE OF THIS STUDY IS TO CONTRAST THE MURDERKILL RIVER BASELINE WITH A SIMILARLY ESTABLISHED BASELINE FOR THE ST. JONES RIVER, WHICH HAS BEEN THE RECIPIENT OF DOMESTIC SEWAGE AND INDUSTRIAL AND OTHER ORGANIC WASTES FOR A NUMBER OF YEARS. BY COMPARING THE RESULTS OF THESE TWO RIVER SYSTEM'S BASELINES, IT IS HOPED THAT SOME PROJECTION MAY BE MADE OF THOSE METALS. SAMPLES WERE TAKEN AT 56 STATIONS, APPROXIMATELY EVERY HALF-TO THREE-QUARTERS OF A MILE FROM THE MOUTH OF THE RIVERS TO ABOVE THE LIMIT OF SALT INTRUSION.

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

THE DATA OCCURS IN A TECHNICAL REPORT WHICH IS 31 PAGES IN LENGTH. THERE ARE 3 TABLES AND 10 GRAPHS IN THE REPORT.

FUNDING:

NDAA, OFFICE OF SEA GRANT, NO. 2-35223

INVENTORY:

د ت

PUBLICATIONS:

BOPP, F., III, LEPPLE, F. K., AND BIGGS, R. B., 1972, TRACE METAL BASELINE STUDIES ON THE MURDERKILL AND ST. JONES RIVERS, DELAWARE COASTAL PLAIN, COLLEGE OF MARINE STUDIES, UNIVERSITY OF DELAWARE, DEL-SG-10-72, 31 PGS.

CONTACT:

DR. ROBERT B. BIGGS 302 738 2842 DEPARTMENT OF GEOLOGY, UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

730795

NAME	SPHERE	METHOD	UNITS	DATA AMO	ТИГ	FREQUENCY	HEIGHT/DEPTH	REMARKS	
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	DMT	56 56	STATIONS STATIONS		• • • • • • • • • • • • • • • • •	•••••	
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	56	STATIONS .			HYDROCHLORIC ACID EXTRACTION FROM SILT AND CLAY FRACTION	

TRACE METAL BASELINE STUDIES ON THE MURDERKILL AND ST. JONES RIVERS, DELAWARE (CONT.) COASTAL PLAIN

PAGE 02

PARAMETER IDENTIFICATION SECTION:

	NAME	SPHERE	METHOD L	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •			
	MAGNESIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM	56	STATIONS			HYDROCHLORIC ACID EXTRACTION
									FROM SILT AND
	77.00	CERTMENT		0.000	5.0	CTATIONC			CLAY FRACTION
	ZINC	SEDIMENT	ATUMIC ABSURPTION	PPM	р о	STATIONS			HYDRUCHLURIC
			SPECTRUMETRY						
			1						CLAY FRACTION
	CHROMIUM	SEDIMENT	ATOMIC ABSORPTION	PPM	56	STATIONS			HYDROCHLORIC
		o co imert	SPECTROMETRY	1 1 101	÷0	01///10/10			ACID EXTRACTION
									FROM SILT AND
									CLAY FRACTION
	COPPER	SEDIMENT	ATOMIC ABSORPTION	РРМ	56	STATIONS			HYDROCHLORIC
	f		SPECTROMETRY						ACID EXTRACTION
		,							FROM SILT AND
,	,				_				CLAY FRACTION
	LEAD	SEDIMENT	ATOMIC ABSORPTION	PPM	56	STATIONS			HYDROCHLORIC
			SPECTROMETRY						ACID EXTRACTION
									FROM SILT AND
	0.0	OF DIMENT	170410 1000007100	7.044	5.0	CTATIONS			CLAY FRACTION
	CADMIUM	SEDIMENI	ATUMIC ABSURPTION	РРМ	56	STATIONS			HYDRUCHLURIC
		I	SPECTRUMETRY						ACID EXTRACTION
2									CLAY EPACTION
	MERCURY	SEDIMENT	ATOMIC ABSORPTION	PPR	56	STATIONS			
		JEDIMENT	SPECTROMETRY	110		51411043			ACID EXTRACTION
			0, 20, KOMETKI						EROM SILT AND
									CLAY FRACTION
N	NICKEL	SEDIMENT	ATOMIC ABSORPTION	PPM	56	STATIONS			HYDROCHLORIC
N		· · · · · · · · · · · · · · · · · · ·	SPECTROMETRY						ACID EXTRACTION
•									FROM SILT AND
									CLAY FRACTION
	STRONTIUM	SEDIMENT	ATOMIC ABSORPTION	PPM	56	STATIONS			HYDROCHLORIC
			SPECTROMETRY						ACID EXTRACTION
									FROM SILT AND
		I							CLAY FRACTION

PRUJECISE

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA. U.S., COASTAL, DELAWARE, DELAWARE BAY

ABSTRACT:

THE PRIMARY OBJECTIVE WAS TO TYPIFY THE TRACE METAL GEOCHEMICAL ASPECTS OF THE SEDIMENTARY ENVIRONMENTS WHICH SUPPORT DYSTERS IN DELAWARE BAY. THESE RESULTS PROVIDE BASELINE INFORMATION TO BE USED IN THE OYSTER EARLY-WARNING POLLUTION MONITORING SYSTEM BEING DEVELOPED BY THE STATE OF DELAWARE AND THE UNIVERSITY OF DELAWARE. IN ADDITION. A FURTHER OBJECTIVE IS TO CHARACTERIZE THE TRACE METALS DETERMINED WITH RESPECT TO THEIR DENERALIZED SOURCE, AND THE PRIMARY FACTORS CONTROLLING THEIR DISTRIBUTION. SAMPLES WERE COLLECTED FROM 118 DISCRETE LOCATIONS IN DELAWARE BAY. BASELINES ARE ESTABLISHED FOR IRON, MAGNESIUM, ZINC, CHROMIUM, COPPER, LEAD, CAOMIUM, MERCURY, NICKEL, AND STRONTIUM.

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS THE DATA OCCURS IN A TECHNICAL REPORT 47 PAGES IN LENGTH.

FUNDING:

NOAA, OFFICE OF SEA GRANT

INVENTORY:

PUBLICATIONS:

BOPP, F., III, 1972, TRACE METAL ENVIRONMENTS NEAR SHELL BANKS IN DELAWARE BAY, COLLEGE OF MARINE STUDIES. UNIVERSITY OF DELAWARE. DEL-SG-9-72, 47 PGS.

CONTACT:

م ق

> DR. ROBERT B. BIGGS 302 738 2842 DEPARTMENT OF GEOLOGY, UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

730795

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HE IGHT/DEPTH	REMARKS	
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	DMT	118 118	STATIONS STATIONS	, • • • • • • • • • • • • • • • • • • •		•••••••••••••••	
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMEIRY	PPM	118	STATIONS			HYDROCHLORIC ACID EXTRACTION FROM SILT AND CLAY FRACTION	
MAGNESIUM	SEDIMENNIT	ATOMIC ABSORPTION SPECTROMETRY	PPM	118	STATIONS			HYDROCHLORIC ACID EXTRACTION FROM SILT AND	

701

TRACE METAL ENVIRONMENTS NEAR SHELL BANKS IN DELAWARE BAY (CONT.)

PAGE 02

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT F		FREQUENCY	HEIGHT/DEPTH	REMARKS	
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
CADMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРВ	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
NICKEL	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	РРМ	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND	
STRONTIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM	118	STATIONS			CLAY FRACTION HYDROCHLORIC ACID EXTRACTION FROM SILT AND CLAY FRACTION	

\$

PROVECISE

COOPERATIVE BLUE CRAB STUDY-SOUTH ATLANTIC STATES

1

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA, U.S., NORTH CAROLINA TO FLORIDA, COASTAL

1

ABSTRACT:

A STUDY TO DETERMINE CAUSES OF BLUE CRAB MORTALITIES IN THE SOUTH ATLANTIC STATES. HYDROLOGICAL CHARACTERISTICS, DISEASES, PARASITES, AND RESIDUAL PESTICIDES ARE FACTORS CONSIDERED.

DATA AVAILABILITY:

PLATFORM TYPES: SHIP

ARCHIVE MEDIA:

REPORTS ONE 32 PAGE REPORT

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

-

U

ROBERT K. MAHOOD 912 265 1550 GEORGIA GAME AND FISH COMMISSION CDASTAL FISHERIES DIVISION BRUNSWICK GEORGIA USA 31520

GRID LOCATOR (LAT):

720759 720769 720779 720789 720850 720860 720870 720880 720890 720891 730729 730737 730738 730739 730745 730746 730747 730755 730765 730800 730801 730810 730811 730820

1

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS	
POSITION		FIXED POINT		20	STATIONS	• • • • • • • • • • • • • •		•••••	
TIME	EARTH	STATION TIME	YMD	20	OBS	MONTHLY			
TEMPERATURE	WATER	NON-REVERSING THERMOMETER	DEG C	20	OBS	MONTHLY	BOTTOM		
DISSOLVED OXYGEN GAS	WATER	TITRATION	PARIS PER MILLION	20	OBS	MONTHLY	BOTTOM	WINKLER	
РН	WATER	PH METER		20	OBS	MONTHLY			
SALINITY	WATER	INDEX OF REFRACTION	PARIS PER THOUSAND	20	OBS	MONTHLY			
SECCHI DISC DEPTH	WATER	DISAPPEARING DEPTH	CENTIMETERS	20	OBS	MONTHLY			
CHLORINATED HYDROCARBONS	WATER	GAS CHROMATOGRAPH	PARTS PER MILLION	20	OBS	MONTHLY		ALDRIN, LINDANE,	

	C															
003292			A	REPORT (ON THE	CODPERAT	TIVE BL	UE CRAB	STUDY-S	DUTH ATL	ANTIC S	TATES	(CONT.;	-	PAGE	02

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
IN BIO MATERIAL			·					DIELDRIN, DDT, DDE, DDD, ENDRIN, HEPTACHLOR EPOXIDE, METHOXYCHLOR, MIREX, TOXAPHENE, CHLORDANE WERE ANALYZED IN TISSUES OF BLUE CRABS
SPECIES DETERMINATION OF BENTHIC ANIMALS	BOTTOM	KEY		20	OBS	MONTHLY		BLUE CRABS CAPTURED FOR PESTICIDE, DISEASE, PARASITE, AND LABORATORY ANALYSIS
SPECIES DETERMINATION OF PARASITES	WATER	KEY		20	OBS	MONTHLY		FOUND ON BLUE CRABS
COUNT OF PARASITES	WATER	VISUAL		20	OBS	MONTHLY		FOUND ON BLUE CRABS

.

.

~

.

-

۵

PROJECTSE

```
GENERAL GEOGRAPHIC AREA:
NORTH ATLANTIC, COASTAL, U.S., NORTH CAROLINA
```

ABSTRACT:

MONITORING OF COMMERCIAL AND GAME FISH FOR MERCURY, LEAD, CADNIUM AND ARSENIC.

DATA AVAILABILITY:

PLATFORM TYPES: FIXED STATION

ARCHIVE MEDIA:

DATA SHEETS 120 PAGES

FUNDING:

NC DOA

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. W.Y. COBB, DIRECTOR 919 829 7366 FOOD AND DRUG PROTECTION DIVISION. NORTH CAROLINA DEPARTMENT OF AGRICULTURE. P.O. BOX 27647 RALEIGH NORTH CAROLINA USA 27611

GRID LOCATOR (LAT):

730766 730756 730746 730747 730737 730738 730755

t O L

٠

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS		
		• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		
POSITION	EARTH	FIXED POINT	DM	10	STATIONS					
TIME	EARTH	SAMPLING TIME	YMD	10	OBS					
MERCURY IN BIO	WATER	ATOMIC ABSORPTION	PARIS PER	10	OBS					
MATERIAL		SPECTROMETRY	MILLION							
LEAD IN BIO	WATER	ATOMIC ABSORPTION	PARTS PER	10	OBS					
MATERIAL		SPECTROMETRY	MILLION							
CADMIUM IN BIO	WATER	ATOMIC ABSORPTION	PARTS PER	10	OBS					
MATERIAL		SPECTROMETRY	MILLION							
ARSENIC IN BIO	WATER	ATOMIC ABSORPTION	PARTS PER	10	OBS					
MATERIAL		SPECTROMETRY	MILLION							

ţ

.

EASTWARD CRUISE NO. E-19B-72 DATA COLLECTED: JANUARY 1972 TO NOVEMBER 1972 PAGE 01 RECEIVED: AUGUST 01, 1975

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, MID-ATLANTIC, DELAWARE, NORTH CAROLINA

ABSTRACT:

THIS STUDY INCLUDES DATA TAKEN AT 14 OCEANOGRAPHIC STATIONS ALONG A 600 MILE CRUISE TRACK RUNNING ROUGHLY SE FROM DELAWARE BAY, CAPE HENLOPEN TO THE SARGASSO SEA JUST BEYOND THE GULF STREAM AND THEN NW FROM THE SARGASSO SEA TO A POINT CLOSE TO THE MOUTH OF THE CHESAPEAKE BAY AND INTO BEAUFORT NORTH CAROLINA. DATA TAKEN INCLUDES SURFACE AND PROFILE SALINITY, TEMPERATURE, NITRATE, NITRITE, PHOSPHATE, SILICATE, CHLOROPHYLL A, PHAEOPHYTIN, CS-137, RADIUM-228, RADIUM-226, THORIUM-228, LEAD-210, POLONIUN-210, PARTICULATE AND DISSOLVED MERCURY AS WELL AS REGULAR WIND, WAVE AND METEOROLOGICAL OBSERVATIONS. (CRUISE BEGAN AT LEWES DELAWARE PROCEEDED OUT TO THE SARGASSO SEA TERMINATING AT BEAUFORT NORTH CAROLINA)

DATA AVAILABILITY:

AT COST OF REPRODUCTION

•

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS

16 PAGES

FUNDING:

NATIONAL SCIENCE FOUNDATION NO. GA-28752

INVENTORY:

PUBLICATIONS:

CONTACT:

NOSTUART KUPFERMAN3027381212NOUNIVERSITY OF DELAWARECOLLEGE OF MARINE STUDIESNEWARKDELAWAREUSA19711

GRID LOCATOR (LAT): 73078530 73076543

NAME	SPHERE		METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	• • • •	FIXED POINT	DM	14	STATIONS		SURFACE TO 980M	•••••
TIME	EARTH	•1	SAMPLING TIME	YMDHM	14	OBS	1 OBS/STATION/ DEPTH		
TEMPERATURE	WATER		VARIOUS	DEG C	1500	OBS	2-3 OBS/ STATION/ DEPTH	SURFACE TO 980M	CONTINUOUS SURFACE TEMPERATURE TAKEN BY THERMISTOR AND

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		· • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •		• • • • •	• • • • • • • • • • • •	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	•••••
						,	٠		BUCKET AT EACH STATION 2 OR 3 DIFFERENT METHODS EMPLOYED, SURFACE TEMPERATURE BY BUCKET, STD, XBT DEPTH BY NANSEN/NISKIN REVERSING THERMOMETER,
	SALINITY	WATER	CONDUCTIVITY	PARTS PER THOUSAND	500	OBS	2 OBS/DEPTH/ STATION AND 1 OBS/HALF HR UNDERWAY	SURFACE TO 980M	SALINITY WAS CROSSED CHECK ON STATION STD AGAINST INDUCTIVE SALINOMETER WHILE UNDERWAY ONLY INDUCTIVE SALINOMETER USED
	NITRATE	WATER	SPECTROPHOTOMETRY	MICROGRAM ATOMS	84	OBS	1 OBS/DEPTH/	SURFACE TO	
	NITRITE	WATER	SPECTROPHOTOMETRY	MICROLRAM ATOMS	84	OBS	1 OBS/DEPTH/	SURFACE TO	
-				PER LITER			STATION	100 M	
5	PHOSPHATE	WATER	SPECTROPHOTOMETRY	MICRUCRAM ATOMS	84	OBS	1 OBS/DEPTH/	SURFACE TO	
C	SILICATE	WATER	SPECTROPHOTOMETRY	MICROURAM ATOMS	84	OBS	1 OBS/DEPTH/ STATION	SURFACE TO 100 M	
	CHLOROPHYLL A	WATER	SPECTROPHOTOMETRY	MICROCRAMS PER LITER	84	OBS	1 OBS/DEPTH/ STATION	SURFACE TO 100 M	CONTINUOUS CHLOROPHYLL ALSO WAS TAKEN TO CORRELATE WITH STATION DATA
	PHAEOPHYTIN A	WATER	SPECTROPHOTOMETRY	MICROCRAMS PER	84	OBS	1 OBS/DEPTH/	SURFACE TO	
	MERCURY	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER BILLION	84	OBS	2 OBS/DEPTH/ STATION AND 1 OBS/HALF HR UNDERWAY	SURFACE TO 100 M	
	MERCURY	SUSPENDED	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER BILLION	84	OBS	2 OBS/DEPTH/ STATION AND 1 OBS/HALF HR UNDERWAY	SURFACE TO 100 M	
	MERCURY	DISSOLVED	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER BILLION	84	OBS	2 OBS/DEPTH/ STATION AND 1 OBS/HALF HR UNDERWAY	SURFACE TO 100 M	
	CESIUM-137	WATER	GAMMA RAY SPECTROMETRY	COUNTS PER MINUTE	85	OBS	1 OBS/DEPTH/ STATION	10-980 M	

.

EASTWARD CRUISE NO. E-19B-72 (CONT.)

PAGE 03

1

NAME	SPHERE		METHOD	UNIIS	DATA AM	OUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
•••••	• • • • • • • •	• • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • •	•••••	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
CESIUM-137	WATER	1	GAMMA RAY Spectrometry	COUNTS PER MINUTE	9	OBS	1 OBS/DEPTH/ STATION	10-980 M	
RADIUM-228	WATER	1	GAMMA RAY SPECTROMETRY	COUNTS PER MINUTE	9	OBS	1 OBS/DEPTH/ STATION	SURFACE	SURFACE SAMPLE TAKEN AT EACH OF 9 STATIONS FROM WATER
RADIUM-226	WATER		GAMMA RAY Spectrometry	COUNTS PER MINUTE	9	OBS	1 OBS/DEPTH/ STATION	SURFACE	SURFACE SAMPLE TAKEN AT EACH OF 9 STATIONS FROM WATER
LEAD-210	WATER		GAMMA RAY Spectrometry	COUNTS PER MINUTE	9	OBS	1 OBS/DEPTH/ STATION	SURFACE	SURFACE SAMPLE TAKEN AT EACH OF 9 STATIONS FROM WATER
THORIUM-228	WATER	,	GAMMA RAY Spectrometry	COUNTS PER MINUTE	9	OBS	1 OBS/DEPTH/ STATION	SURFACE	SURFACE SAMPLE TAKEN AT EACH OF 9 STATIONS FROM WATER
WIND SPEED	AIR	1	ANEMOMETER	NAUTICAL MILES PER HOUR	250	OBS	1 OBS/HALF HOUR		DATA TAKEN FROM SHIP MAST
WIND DIRECTION	AIR	I	DIRECTION VANE	COMPASS DEGREES	250	OBS	1 OBS/HALF HOUR		DATA TAKEN FROM Ship Masi
WAVE AMPLITUDE	WATER		VISUAL	FEET	250	OBS	1 OBS/HALF HOUR	SURFACE	DATA TAKEN FROM SHIP MAST
WAVE PERIOD	WATER		VISUAL	WAVE PER MINUTE	250	OBS	1 OBS/HALF HOUR	SURFACE	MEASURED AS WAVES ACROSS BOW PER MINUTE

```
PROJECTS:
```

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC, U.S., DELAWARE BAY, MISPILLION RIVER. COASTAL

ABSTRACT:

OYSTERS, CRASSOSTREA VIRGINICA WERE EXPOSED FOR 3 DAYS TO 203HGCL2 OR CH3 203HGCL ADDED DIRECTLY TO ARTIFICIAL SEA WATER OR ADDED PRECONCENTRATED ON THE MARINE DIATOM. PHAEODACTYLUM TRICORNUTUM. THE CONCENTRATION OF 203HG IN FIVE TISSUES WAS MEASURED FOR 45 DAYS AFTER MERCURY WAS REMOVED FROM THE AMBIENT WATER. TO STUDY THE KINETICS OF MERCURY UPTAKE IN OYSTERS, ADULT CRASSOTREA VIRGINICA (GMELIN) WERE HELD IN SEA WATER CONTAINING EITHER 10PPB OR 100PPB MERCURY FOR 45 DAYS. MERCURY CONCENTRATIONS IN TISSUES WERE DETERMINED BY ANALYSIS OF INDIVIDUALLY HOMOGENIZED DYSTER MEATS USING WET DIGESTION AND FLAMELESS ABSORPTION SPECTROPHOTOMETRY.

DATA AVAILABILITY:

LIBRARY LOAN

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA: REPORTS ONE 147 PAGE THESIS

FUNDING:

INVENTORY:

```
PUBLICATIONS:
```

DATA INCLUDED IN UNPUBL. PHD. DISSERTATION, 1974. BY PATRICIA ANN CUNNINGHAM

CONTACT:

2

LIBRARIAN 302 645 667 UNIVERSITY OF DELAWARE, MARINE STATION LIBRARY LEWES DELAWARE USA 19958

GRID LOCATOR (LAT): 7307855270

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	ТИГ	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	EARTH EARTH	FIXED POINT STATION TIME	MIN YM	1 70	STATIONS OBS	• • • • • • • • • • • • • • • • •		••••
MERCURY IN BID MATERIAL	WATER	ATOMIC ABSORPTION SPECTROMETRY	PPB	350	OBS			MERCURY MEASURED IN TISSUES OF

TISSUES OF OYSTERS AND IN HOMOGINIZED OYSTERS AND FROM THIS DATA

100

FACTORS AFFECTING ACCUMULATION, TISSUE DISTRIBUTION, AND ELIMINATION OF MERCURY (CONT.) IN THE AMERICAN OYSTER, CRASSOSTREA VIRGINIA (GMELIN)

1

PAGE 02

NAME	SPHERE	METHOD	UNITS	AMOUNT	FREQUENCY	·····	····
							THE UPTAKE, DISTRIBUTION IN TISSUES AND DEPURATION OF MERCURY IN CRASSOSTREA VIRGINICA WAS CALCULATED

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., DELAWARE, INDIAN RIVER AND REHOBOTH BAYS AND LEIPSIC. SIMONS, MISPILLION AND BROADKILL RIVERS AND BOWER'S BEACH

ABSTRACT:

DATA ON THE LEVELS OF DDD, DDE, DDT AND DIELDRIN IN THE GENERAL TISSUES OF THREE SHELLFISH. CRASSOSTREA VIRGINICA. MODIOLUS DEMISSUS AND MERCENARIA MERCENARIA, COLLECTED FROM OCTOBER 1966 THROUGH AUGUST 1969 FROM VARIOUS COASTAL WATERS ADJACENT TO THE STATE OF DELAWARE ARE PRESENTED IN REPORT FORM. (ANALYSES CONDUCTED AT BUREAU OF COMMERCIAL FISHERIES BIOLOGICAL LABORATORY-GULF BREEZE, FLORIDA)

DATA AVAILABILITY:

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS

52 PAGES

FUNDING:

UNITED STATES DEPARTMENT OF INTERIOR FISH AND WILDLIFE SURFACE, BUREAU OF COMMERCIAL FISHERIES

INVENTORY:

PUBLICATIONS:

CONTACT:

•

3

LAWRENCE CURTIS 302 738 2794 MARINE LABORATORIES, UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

7307853097 7307853150 7307854015 7307854075 7307854184 7307855168 7307950233 7307951234 7307951244

NAME	SPHERE		METHOD	UNITS	DATA AMOL	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	· · · · ·	FIXED POINT	MAP LOCATION	9	STATIONS	• • • • • • • • • • • • • • • • • • •	••••••	3 STATIONS FOR CRASSOSTREA VIRGINIA, 3 STATIONS FOR MERCENARIA, 3 STATIONS FOR MODIOLUS
TIME	EARTH	;	STATION TIME	YMD	282	OBS ·	1 OBS PER STATION PER MONTH		DEMISSUS

124

A THREE YEAR SURVEY OF THE PESTICIDE CONTENT OF SHELLFISH IN DELAWARE'S TIDAL (CONT.) WATERS

PAGE 02

.

PARAMETER	IDENT	IFICATION	SECTION:
-----------	-------	-----------	----------

SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
•••••	•••••		••••		• • • • • • • • • • • • •	•••••	•••••
WATER	GAS CHROMATOGRAPH Y	PARTS PER MILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION	282	OBS	1 OBS PER STATION PER MONTH		
WATER	GAS CHROMATOGRAPH Y	PARTS PER MILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION	282	OBS	1 OBS PER STATION PER MONTH		
WATER	GAS CHROMATOGRAPH Y	PARTS PER MILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION	282	OBS	1 OBS PER STATION PER MONTH		
WATER	GAS CHROMATOGRAPH Y	PARTS PER MILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION	282	OBS	1 OBS PER STATION PER MONTH		
	SPHERE WATER WATER WATER WATER	SPHERE METHOD WATER GAS CHROMATOGRAPH WATER GAS CHROMATOGRAPH WATER GAS CHROMATOGRAPH Y WATER GAS CHROMATOGRAPH Y WATER GAS CHROMATOGRAPH	SPHEREMETHODUNITSWATERGASCHROMATOGRAPHPARTSPERYMILLIONPERYSHELLFISHSPECIESTISSUESAMPLEPEROBSPEFSTATIONPARTSPERWATERGASCHROMATOGRAPHPARTSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSWATERGASCHROMATOGRAPHPARTSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPERWATERGASCHROMATOGRAPHPARTSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYMILLIONPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYSHELLFISHSPECIESTISSUESAMPLEPEROBSPERSHELLFISHSPECIESTISSUESAMPLEPEROBSPERYSHELLFISHSPECIESSHELLFISHSPECIESTISSUESAMPLE	SPHEREMETHODUNITSDATA AMONWATERGAS CHROMATOGRAPHPARTS PER282YMILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282WATERGAS CHROMATOGRAPHPARTS PER PARTS PER282YMILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282WATERGAS CHROMATOGRAPHPARTS PER PER STATION282WATERGAS CHROMATOGRAPHPARTS PER PER STATION282YMILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282WATERGAS CHROMATOGRAPHPARTS PER PER STATION282YMILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282WATERGAS CHROMATOGRAPHPARTS PER PER STATION282YMILLION PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282	SPHEREMETHODUNITSDATA AMOUNTWATERGAS CHROMATOGRAPHPARTS PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PEP STATION282OBSWATERGAS CHROMATOGRAPHPARTS PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282OBSWATERGAS CHROMATOGRAPH YPARTS PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282OBSWATERGAS CHROMATOGRAPH PARTS PER YPARTS PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282OBSWATERGAS CHROMATOGRAPH PARTS PER SHELLFISH SPECIES TISSUE SAMPLE PER OBS PER STATION282OBS	SPHEREMETHODUNITSDATA AMOUNTFREQUENCYWATERGAS CHROMATOGRAPHPARTS PER282OBS1 OBS PERYMILLION PERSHELLFISHSTATION PERSAMPLE PER OBSPER STATION282OBS1 OBS PERWATERGAS CHROMATOGRAPHPARTS PER282OBS1 OBS PERYMILLION PERSTATIONSTATION PERSTATION PERYMILLION PERSTATIONSTATION PERSTATION PERWATERGAS CHROMATOGRAPHPARTS PER282OBS1 OBS PERWATERGAS CHROMATOGRAPH PARTS PER282OBS1 OBS PERWATERGAS CHROMATOGRAPH PARTS PER282OBS1 OBS PERYMILLION PERSTATIONSTATION PERWATERGAS CHROMATOGRAPH PARTS PER282OBS1 OBS PERWATERGAS CHROMATOGRAPH PARTS PER282OBS1 OBS PERYMILLION PERSAMPLE PER OBSPER STATIONWATERGAS CHROMATOGRAPH PARTS PER282OBS1 OBS PERYMILLION PERSAMPLE PER OBSPER STATIONSTATION PERYMILLION PERSHELLFISHMONTHSHELLFISHSPECIES TISSUESAMPLE PER OBSSTATION PERYMILLION PERSHELLFISHMONTHSHELLFISHSPECIES TISSUESHELLFISHMONTHSHELLFISHSPECIES TISSUESHELLFISHMONTHSHELLFISHSPECIES TISSUESAMPLE PER OBSSHELLFISH<	SPHEREMETHODUNITSDATA AMOUNTFREQUENCYHEIGHT/DEPTHWATERGAS CHROMATOGRAPH PARTS PER Y282DBS1 OBS PER STATION PER SPECIES TISSUE SAMPLE PER 0BS PER STATION1 OBS PER STATION PER SPECIES TISSUE SAMPLE PER 0BS PER STATION1 OBS PER STATION PER STATION PER STATION PER SHELLFISH MONTHWATERGAS CHROMATOGRAPH PARTS PER Y282DBS1 OBS PER STATION PER MONTHWATERGAS CHROMATOGRAPH PARTS PER SHELLFISH SAMPLE PER OBS PER STATION282DBS1 OBS PER STATION PER MONTH

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC OCEAN, U.S., COASTAL, MID-ATLANTIC, NORTH CAROLINA, DELAWARE

ABSTRACT:

THIS CRUISE REPORT INCLUDES OCEANOGRAPHIC DATA TAKEN AT 40 STATIONS ALONG A 600 MILE CRUISE TRACK RUNNING ROUGHLY NE FROM BEAUFORT, NORTH CAROLINA ACROSS THE GULF STREAM, NW TO THE MOUTH OF THE CHESEPEAKE BAY, NE OUT TO THE GULF STREAM, AND NW INTO CAPE HENLOPEN, AT THE MOUTH OF DELAWARE BAY. DATA TAKEN INCLUDES SURFACE AND PROFILE SALINITY, TEMPERATURE, DISSOLVED OXYGEN, DISSOLVED ORGANIC CARBON, PARTICULATE ORGANIC CARBON, NITRATE, NITRITE, TOTAL REACTIVE PHOSPHATE, TOTAL SILICATE, CHLOROPHYLL A, CARBON-14, PHAEOPHYTON PIGMENT, PARTICULATE CHITIN, CHITINOCLYTIC BACTERIA, AND PARTICULATE LIGHT SCATTERING INFORMATION. IN ADDITION FOR WATER MASS TRACING, SURFACE AND PROFILE CS-137 AND RADIUM-228 USED BULK WATER SAMPLE TECHNIQUES AND SPECIAL CAST SAMPLER TECHNIQUE(CS-137). REGULAR WIND, WAVE, AND METEOROLOGICAL OBSERVATION WERE ALSO TAKEN. (NSF NORTH ATLANTIC RESIDENCE TIME BY CS-137 TRACER; CRUISE BEGAN AT BEAUFORT, NORTH CAROLINA PROCEEDED OUT ACROSS THE GULF STREAM TERMINATING BACK AT LEWES, DELAWARE)

DATA AVAILABILITY:

AT COST OF REPRODUCTION

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

DATA SHEETS 50 PAGES

FUNDING:

NSF NO. GA-28752, UNIVERSITY OF DELAWARE

INVENTORY:

w PUBLICATIONS:

CONTACT:

STUART KUPEERMAN 302 738 1212 UNIVERSITY OF DELAWARE COLLEGE OF MARINE STUDIES NEWARK DELA USA 19711

GRID LOCATOR (LAT);

730765 730766 730767 730768 730769 730770 730771 730780 730781 730782 730783 730784 730785

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION TIME	E AR TH E AR TH	FIXED POINT SAMPLING TIME	DMS YMDHM	40 40	STATIONS OBS	1 OBS/DEPTH/	•••••	
TEMPERATURE	WATER	XBT	DEG C	900	OBS	2 OBS/STATION/ DEPTH PLUS 1 OBS/HALF-	SURFACE TO 980M	

PAGE 02

PARAMETER IDENTIFICATION SECTION:

	NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • •		•••••	•••••	• • • • • • • • • • • • • • •	•••••
	. 1					HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THERMISTOR RECORDS		
	SALINITY	WATER	CONDUCTIVITY	PARIS PER THOUSAND	900 OBS	2 OBS/STATION/ DEPTH PLUS 1 OBS/HALF- HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THERMISTOR EFCORDS	SURFACE TO 980M	INDUCTIVE SALINOMETER USFD FOR CONDUCTIVITY MEASUREMENTS AND CROSS CHECKED AGAINST STD
I	LIGHT EXTINCTION	WATER	TRANSMISSOMETER LOWERING	RECIPROCAL METERS	28 OBS	1 OBS/STATION	0-80 METERS	EXTINCTION COEFFICIENTS WERE MEASURED AT EACH OF 2B STATIONS PLUS 2 VERFICAL DEPTH PROFILE WERE TAKEN AT SPECIES STATIONS
126	LIGHT SCATTERING COEFFICIENT	WATER	SMALL ANGLE FORWARD SCATTERING METER	RECIPROCAL METERS	28 OBS	1 OBS/STATION	0-80 METERS	VOLUME SCATTERIN G COEFFICIENT FOR EOTH 2 DEGREE AND 90 DEGREE SCATTERING METERS WERE TAKEN AT A 633 U WAVELENGTH AT 28 STATIONS AND AT VERTICAL PROFILE FOR 2 SPECIFIC STATIONS
	WIND SPEED	AIR	ANEMOMUTER	MILES PER HOUR	250 OBS	1 OBS/HALF- HOUR		WIND SPEED MEASURED AT SHIPS MAST
	WIND DIRECTION	AIR	DIRECTION VANE	COMPASS DEGREES	250 OBS	1 OBS/HALF-		
	WAVE AMPLITUGE	WATER	VISUAL	FEET	250 OBS	1 OBS/HALF-	SEA SURFACE	
	WAVE DIRECTION	WATER	VISUAL	COMPASS	250 OBS	1 OBS/HALF-	SEA SURFACE	
	NITRATE	WATER	SPECTROPHOTOMETRY	MICROURAM-ATOMS	201 OBS	1 UBS/STATION/	SURFACE TO	NUTRIENT

	NAME	SPHERE	METHOD	UNIIS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • •				••••	••••	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •
									EACH PARTICULAR WATER SAMPLE BOTTLE DEPTH
	NITRITE	WATER	SPECTROPHOTOMETRY	MICROGRAM-ATOMS PER LITER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 100 METERS	
	SILICATE	WATER	SPECTROPHOTOMETRY	MICROCRAM-ATOMS PER LITER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 100 METERS	
	REACTIVE	WATER	SPECTROPHOTOMETRY	MICROCRAM-ATOMS PER LITER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 100 METERS	
	TOTAL PHAEOPHYTI	WATER	SPECTROPHOTOMETRY	MICROLRAM-ATOMS PER LITER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 100 METERS	
	CHITIN	SUSPENDED	SPECTROPHOTOMETRY	MICROGRAM PER Liter	44	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	PARTICULATE CHITIN DATA TAKEN AT EACH OF 11 STATIONS AT THE VARIOUS BOTTLE DEPTHS PLUS SURFACE SAMPLE
	COUNT OF MICROBIOTA	WATER	MICROSCOPE	COLONIES	34	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	CHITINOCLYTIC BACTERIA WERE DETERMINED AT EACH WATER SAMPLE BOTTLE DEPTH AT EACH OF 11 STATIONS PLUS SURFACE SAMPLES
•	ORGANIC CARBON	DISSOLVED	AUTOANALYZER	MILLICRAMS PER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	
2 1	ORGANIC CARBON	SUSPENDED	AUTOANALYZER	MILLICRAMS PER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	
	DISSOLVED OXYGEN GAS	WATER	TITRATION	MILLILITERS PER	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	
	CARBON-14	WATER	MASS SPECTROMETRY	MILLIJRAM PER METER CUBED PER DAY	201	OBS	1 OBS/STATION/ DEPTH	SURFACE TO 600 METERS	
	CESIUM-137	WATER • `` • `	GAMMA RAY SPECTROMETRY	COUNTS PER MINUTE	41	OBS	1 OBS/STATION/ DEPTH	0-980 METERS	17 CESIUM-137 SAMPLES AT ONE STATION WITH SPECIAL CAST TECHNIQUE WHILE OTHERS TAKEN FROM BULK WATER SAMPLE AT 0 AND 50 METERS AT 2 OBS/ STATION
	RADIUM-226	WATER	GAMMA RAY SPECTROMETRY	COUNTS PER MINUTE	24	OBS	2 OBS/STATION	O TO 50 METERS	RADIUM-226 DATA TAKEN 2 OBS/ STATION AT 0 AND 50 METERS

PARAMETER IDENTIFICATION SECTION:

	NAME	SPHERE	METHOD	UNITS	DATA AMOU	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	TEMPERATURE	WATER	THERMISTOR	DEG C	900	OBS	2 OBS/STATION/ DEPTH PLUS 1 OBS/HALF- HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THERMISTOR	SURFACE TO 980M	
	TEMPERATURE	WATER	MECHANICAL BT	DEG C	900	OBS	RECURDS 2 OBS/STATION/ DEPTH PLUS 1 OBS/HALF- HOUR UNDERWAY AND SOME CONT INUOUS SURFACE THERMISTOR RECORDS	SURFACE TO 980M	
	TEMPERATURE	WATER	RESISTANCE THERMOMETER	DEG C	900	OBS	2 OBS/STATION/ DEPTH PLUS 1 OBS/HALF- HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THLRMISTOR RECORDS	SURFACE TO 980M	
138	TEMPERATURE	WATER	REVERSING THERMOMETER	DEG C	900	OBS	2 OUS/STATION/ DEPTH PLUS 1 OBS/HALF- HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THERMISTOR PECORDS	SURFACE TO 980M	
	SALINITY	WATER	STD	PARTS PER THOUSAND	900	OBS	2 OBS/STATION/ DEPTH PLUS 1 OB'S/HALF- HOUR UNDERWAY AND SOME CONTINUOUS SURFACE THERMISTOR RECORDS	SURFACE TO 980M	INDUCTIVE SALINOMETER USED FOR CONDUCTIVITY MEASUREMENTS AND CROSS CHECKED AGAINST STD
	LIGHT SCATTERING COEFFICIENT	WATER	RIGHT ANGLE FORWARD SCATTERING METER	RECIPROCAL METERS	28	OBS	1 OBS/STATION	0-80 METERS	VOLUME SCATTERIN G COEFFICIENT FOR BOTH 2 DEGREE AND 90 DECREE

NAME	SPHERE		METHOD		UNITS	DATA A	MOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • • • • •	••••		••••	•••••		• • • • • • • • • • •	• • • • • • • • • • • • • • • • •	•••••	•••••
3		t I	ļ							U WAVELENGTH AT 28 STATIONS
,		, I								AND AT VERTICAL
ť	1	ļ		1						PROFILE FOR 2 SPECIFIC
COUNT OF	WATER	I	VISUAL		COLONIES	34	OBS	1 OBS/STATION/	SURFACE TO	STATIONS
MICROBIOTA			l t	,	••••	•••		DEPTH	600 METERS	BACTERIA WERE
		+		,						EACH WATER
, ,	ı.			5						DEPTH AT EACH
			1	i.						OF 11 STATIONS PLUS SURFACE
i	1	ł								SAMPLES
	·	,	1		20					
,		i I		1						
		1					,			
	I I	1								
i			Т							
4	1	I	1			t				
		1								
			1			L				
,										
		;								
							r			
										/
		i			1					,

WATER RESOURCES DATA FOR PENNSYLVANIA, PART TWO, WATER QUALITY RECORDS DATA COLLECTED: 1964 TO PRESENT

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH AMERICA, U.S., PENNSYLVANIA

ABSTRACT:

THIS IS AN ONGOING STUDY OF THE QUALITY OF SURFACE WATERS OF PENNSYLVANIA. THERE ARE APPROXIMATELY 250 STATIONS FROM WHICH DATA ARE COLLECTED, MOST OF WHICH MONITOR STREAM DISCHARGE, TEMPERATURE, SPECIFIC CONDUCTIVITY AND DISSOLVED OXYGEN. IN ADDITION, ABOUT 200 STATIONS REPORT BIOCHEMICAL OXYGEN DEMAND, DISSOLVED CA, MG, NA, K, CL, F, SULFATE, NITRATE, ORTHOPHOSPHATE, CARBON DIOXIDE, BICARBONATE, AND CARBONATE, AS WELL AS PH, ALKALINITY, HARDNESS, NONCARBONATE HARDNESS AND COLOR. ABOUT 50 STATIONS ADDITIONALLY MONITOR DISSOLVED SILICA, FE AND MN, COLIFORM AND STREPTOCCI. SPGT CHECKS ARE MADE FOR SURFACTANTS, TURBIDITY, AND DISSOLVED AMMONIA, AL, AS, CD, CR, CU, PB, HG, NI, ZN AND A VARIETY OF PESTICIDES IN WATER AND SEDIMENTS. THE DATA ARE PRINTED ANNUALLY IN SUMMARY REPORTS. DETAILED DATA FROM MANY INDIVIDUAL STATIONS ARE AVAILABLE. (AVAILABLE AS ANNUAL REPORTS FOR ALL STATEWIDE MONITORS OR AS REPORTS FROM EACH STATION)

DATA AVAILABILITY:

ALSO IN ALL USGS OFFICIAL REPOSITORY LIBRARIES

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA: REPORTS 300 PAGE INHOUSE REPORT

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

5

0

P. DEMARTE 717 782 4514 UNITED STATES GEOLOGICAL SURVEY 228 WALNUT STREET HARRISBURG PENNSYLVANIA USA 17108

GRID LOCATOR (LAI):

730794 730795 730796 730797 730798 730799 740704 740705 740706 740707 740708 740709 740714 740715 740716 740717 740718 740719 740724 740725 740726 740726 740728 740729

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS	
POSITION	EARTH	FIXED POINT		250	STATIONS			MAP, VERBAL DESCRIPTION AND LATITUDE AND LONGITUDE GIVEN	
TEMPERATURE	WATER	UNKNOWN UNKNOWN	DEG C MILLIGRAMS PER	250 250	STATIONS STATIONS				

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •		••••	• • • • • • • • • •	· • • • • • • • • • • • • • •		•••••
OXYGEN GAS ELECTRICAL CONDUCTIVITY	WATER	UNKNOWN	LITER MICROMHOS	250	STATIONS .			
BIOCHEMICAL OXYGEN DEMAND	WATER	UNKNOWN	MILLICRAMS PER	200	STATIONS		•	
CALCIUM	DISSOLVED	UNKNOWN	MILLICRAMS PER	200	STATIONS			
MAGNESIUM	DISSOLVED	UNKNOWN	MILLICRAMS PER	200	STATIONS			
SODIUM	DISSOLVED	UNKNOWN	MILLICRAMS PER	200	STATIONS			
POTASSIUM	DISSOLVED	UNKNOWN	MILLICRAMS PER	200	STATIONS			
FLUORIDE	DISSOLVED	UNKNOWN	MILLIGRAMS PER	200	STATIONS			
NITRATE	DISSOLVED	UNKNOWN	MILLIGRAMS PER	200	STATIONS			
DISSOLVED CARBON DIOXIDE GAS	WATER	UNKNOWN	MILLICRAMS PER LITER	200	STATIONS			
BICARBONATE ION	WATER	UNKNOWN	MILLICRAMS PER	200	STATIONS			
TOTAL ALKALINITY	WATER	UNKNOWN	MILLICRAMS CACO3 PER LITER	200	STATIONS			
SULFATE	WATER	UNKNOWN	MILLICRAMS PER	200	STATIONS			
CHLORIDE	WATER	UNKNOWN	MILLICRAMS PER	200	STATIONS			
ORTHOPHOSPHATE	WATER	UNKNOWN	MILLIGRAMS PER	200	STATIONS			
HARDNESS	WATER	UNKNOWN	MILLICRAMS CA AND MG PER	200	STATIONS			ALSO NONCARBONAT E HARDNESS
COLOR	WATER	PLATINUM-COBALT		200	STATIONS			
РН	WATER	UNKNOWN	PH UNITS	200	STATIONS			
SILICATE	DISSOLVED	UNKNOWN	MILLIERAMS PER	50	STATIONS			
IRON	DISSOLVED	UNKNOWN	MICROCRAMS PER LITER	50	STATIONS			
MANGANESE	DISSOLVED	UNKNOWN	MICROCRAMS PER LITER	50	STATIONS			
CARBONATE ION	WATER	UNKNOWN	MILLI_RAMS PER LITER	50	STATIONS			
COUNT OF MICROBIOTA	WATER	UNKNOWN	NUMBER PER 100 ML	50	STATIONS			IMMEDIATE COLIFORM, FECAL COLIFORM, AND STREPTOCOC
ORGANIC CARBON	WATER	UNKNOWN	MILLICRAMS PER	50	STATIONS			C1
LIGHT ATTENUATIO	WATER	UNKNOWN	JTU	10	STATIONS			

1 / 1

C V V

WATER RESOURCES DATA FOR PENNSYLVANIA, PART TWO, WATER QUALITY RECORDS (CONT.)

PAGE 03

PARAMETER IDENTIFICATION SECTION:

	NAME	SPHERE	METHOD	UNITS	DATA AM	OUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	SURFACTANTS	WATER	บทหุกบพห		10	STATIONS			METHYLENE BLUE ACTIVE SUBSTANCE
	ALUMINUM	DISSOLVED	UNKNOWN	MILLIGRAMS PER	10	STATIONS			
	ARSENIC	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	CADMIUM	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
ł	CHROMIUM	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	COPPER	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	LEAD	DISSOLVED	UNKNOWN	MICHOURAMS PER	10	STATIONS			
	MERCURY	DISSOLVED	UNKNOWN	MICHOGRAMS PER	10	STATIONS			
;	NICKEL	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	ZINC	DISSOLVED	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	AMMONIA	WATER	UNKNOWN	MILLICRAMS PER	10	STATIONS			
	CHLOROPHYLL A	WATER	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	T T MAC	CADTU	CAMPLING TIME		250	STATIONS			
		WATER	UNKNOWN	MICHO PAMS PER	250	STATIONS			
•	ACONTA	HOICK	U and U an	LITER		3,411003			
•	CHLORDANE	WATER	UNKNOWN	MICRO_RAMS PER	10	STATIONS			
	DOT	WATER	UNKNOWN	MICHOLRAMS PER	10	STATIONS			
	DDD	WATER	UNKNOWN	MICPOGRAMS PER	10	STATIONS			
	DDE	WATER	UNKNOWN	MICROCRAMS PER	10	STATIONS			
	DIELDRIN	WATER	UNKNOWN	MICRULRAMS PER	10	STATIONS			
	ENDRIN	WATER	UNKNOWN	MICROLRAMS PER	10	STATIONS			
	HEPTACHLOR	WATER	UNKNOWN	MICRO_RAMS PER	10	STATIONS			
	LINDANE	WATER	UNKNOWN	MICROURAMS PER	10	STATIONS			
	2,4,5-T	WATER	UNKNOWN	MICRO_RAMS PER	10	STATIONS			
	2,4-D	WATER	UNKNOWN	MICROURAMS PER	10	STATIONS			
	TOXAPHENE	WATER	UNKNOWN	MICROCRAMS PER	10	STATIONS			
```
GENERAL GEOGRAPHIC AREA:
NDRTH ATLANTIC, COASTAL, U.S., DELAWARE BAY
```

ABSTRACT:

THE FIRST SECTION OF THIS TWO-PART REPORT REVIEWS BASIC PROPERTIES OF MERCURY AND ITS COMPOUNDS AS RELATED TO THEIR EFFECT ON VARIOUS FACETS OF THE ENVIRONMENT. AMONG THE TOPICS DISCUSSED ARE THE CHEMICAL FORMS AND HAZARDS OF MERCURY, INCIDENTS OF MERCURY CONTAMINATION, GOVERNMENTAL STANDARDS AND TOLERANCE LIMITS, LEVELS OF MERCURY IN THE ATMOSPHERE, BIOSPHERE, LITHOSPHERE AND HYDROSPHERE, AND THE FLUX THROUGH EACH SEGMENT. THE REALITY OF THE MERCURY PROBLEM GLOBALLY AND LOCALLY IS EVALUATED. A COMPREHENSIVE REVIEW OF THE ACCEPTED METHODS OF ANALYSES FOR MERCURY AND ITS COMPOUNDS IS ALSO PRESENTED. THE SECOND SECTION REPORTS ON RECENT STUDIES OF MERCURY LEVELS IN THE DELAWARE BAY REGION AND COMPARES THE CONCENTRATIONS FOUND IN THE WATERS AND SEDIMENTS TO VALUES FROM OTHER AREAS.

1

(DETAILED DELAWARE BAY MERCURY DATA INCLUDED AS PART OF A MORE GENERAL SEA GRANT REPORT)

DATA AVAILABILITY:

FOR SMALL FEE UNIVERSITY OF DELAWARE COLLEGE OF MARINE STUDIES

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS

75 PAGES

FUNDING:

SEA GRANT NO. 2-35223

INVENTORY:

PUBLICATIONS:

LEPPLE, FREDERICK K. 1973. MERCURY IN THE ENVIRONMENT. SEA GRANT REPORT DEL-SG-8-73. 75 P.

CONTACT:

- DIRECTOR 302 738 1212
- COLLEGE OF MARINE STUDIES
 - ROBINSON HALL, UNIVERSITY OF DELAWARE Newark Delaware USA 19711

GRID LOCATOR (LAT):

73078433 73079533

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	DM	41	STATIONS		SURFACE TO BOTTOM	SURFACE WATER SAMPLES DEPTH PROFILES AMD BOTTOM SEDIMENTS WERE TAKEN AND
								1

MERCURY IN THE ENVIRONMENT (CONT.)

PAGE 02

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		• • • • • • • • • • • • • • • • • • • •		••••				• • • • • • • • • • • • • • • • •
				•				ANALYZED
TIME	EARTH	SAMPLING TIME	YMDHM	41	082			
MERCURY	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER BILLION	41	OBS		SURFACE	ANALYSIS WAS BY FLAMELESS ATOMIC ABSORPTION
MERCURY	WATER	ATOMIC ABSORPTION SPECTROMETRY	PARTS PER BILLION	7	OBS		1 M ABOVE BOTTOM	PROFILE DEPTHS VARY FROM 01M, 6M, 12M, 14M, 47M
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PARIS PER BILLION	3	OBS		BOTTOM	
LIGHT EXTINCTION	WATER	CALCULATED	METERS	41	OBS	1 OBS/STATION		SECCHI DEPTH MEASURED TO RELATE TO PARTICULATE LOADING

.

,

}

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA, U.S., DELAWARE TIDAL MARSH REGION

ABSTRACT:

DATA FROM THE EXAMINATION OF FREE FATTY ACIDS AND ALIPHATIC HYDROCARBONS IN A 4-METER CORE FROM THE GREAT SALT MARSH NEAR LEWES, DELAWARE AND IN ESTUARINE, TIDAL CREEK AND SURFACE MARSH SEDIMENTS ARE PRESENTED AND DISCUSSED IN REPORT FORM. THE SEDIMENT CORES ARE DIVIDED FOR ANALYSIS INTO 20 CM INTERVALS.

DATA AVAILABILITY:

PLATFORM TYPES: FIXED STATION ARCHIVE MEDIA: REPORTS 97 PAGES

FUNDING:

INVENTORY:

PUBLICATIONS:

SWETLAND, P.J., 1975. LIPID GEOCHEMISTRY OF DELAWARE SALT MARSH ENVIRONMENTS. MASTER'S THESIS, UNIVERSITY OF DELAWARE, 97 P.

CONTACT:

PAUL J. SWETLAND 302 645 2869 GEDLOGY DEPARTMENT, UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT):

Э 730785

-

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION	8	STATIONS			3 DELAWARE BAY STATIONS, 2 BROADKILL RIVER STATIONS, 2 MARSH SURFACE STATIONS, 1 MARSH SEDIMENT CODE
TIME	EARTH	STATION TIME	YMD	8	OBS			00112
SAND FRACTION	SEDIMENT	SETTLING/ WEIGHING	PERCENT BY WEIGHT	16	OBS			DELAWARE BAY SAMPLES NOT ANALYZED
CLAY FRACTION	SEDIMENT	SETTLING/	PERCENT BY	16	OBS			DELAWARE BAY

LIPID GEOCHEMISTRY OF DELAWARE SALT MARSH ENVIRONMENTS (CONT.)

PAGE 02

.

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNIIS	DATA AMO	IUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
		WEIGHING	WEIGHT	•••••				SAMPLES NGT
SILT FRACTION	SEDIMENT	SETTLING/ WEIGHING	PERCENT BY WEIGHT	16	OBS .		•	DELAWARE BAY SAMPLES NOT
ALIPHATIC HYDROCARBONS	SEDIMENT	COLUMN CHROMATOGR APEY	MICROURAMS PER GM	27	OBS	_		MARSH CORE SAMPLE NOT
FATTY ACIDS	SEDIMENT	COLUMN CHROMATOGR APHY	MICRO_RAMS PER GM	20	OBS	_		MARSH CORE SAMPLE NOT INCLUDED
ALIPHATIC HYDROCARBONS	SEDIMENT	GAS CHROMATOGRAPH Y	PERCENT BY VOLUME OF CARBON NUMBER SPECIES PER TOTAL SPECIES	270	OBS			
FATTY ACIDS	SEDIMENT	GAS CHROMATOGRAPH Y	PERCENT BY VOLUME OF CARBON NUMBER SPECIES PER TOTAL SPECIES	176	OBS			
SEDIMENT STRUCTURE	SEDIMENT	VISUAL	DESCRIPTIVE WORD RANGES	1	OBS			

•

.........

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, DELAWARE BAY, LOWER BAY ESTUARINE REGION, MARCUS HOOK PENNSYLVANIA TO TRENTON, NEW JERSEY

ABSTRACT:

SINCE JULY 9, 1962. THE WATER DEPARTMENT HAS CONDUCTED A WEEKLY SURVEY BY BOAT OF THE QUALITY OF THE ESTUARINE WATERS OF THE DELAWARE RIVER FROM MARCUS HOOK, PA, TO TRENTON, NJ. THE PROGRAM CONSISTS OF A WEEKLY COLLECTION OF GRAB SAMPLES FROM THE CENTER OF THE NAVIGATION CHANNEL AT EACH OF 23 STATIONS. EACH LOCATION IS FIXED BY THE PILOT OF THE BOAT BY REFERENCE TO BUOYS, RANGE LIGHTS, AND OTHER NAVIGATION AIDS. ANALYSES INCLUDE: MERCURY, ALUMINUM, TEMPERATURE, PH, ALKALINITY, TURBIDITY, DISSOLVED OXYGEN, BOD, COD, SPECIFIC CONDUCTANCE, CHLORIDES, ORTHO-AND POLY-PHOSPHATES, AMMONIA, NITRATE, NITRITE, PHENOLS, METHYLENE BLUE ACTIVE SUBSTANCES, CYANIDE, TOTAL COLIFORMS, FECAL COLIFORMS AND STREPTOCOCCI, ZINC, CALCIUM, MAGNESIUM, IRON, NICKEL, CADMIUM, COPPER, CHROMIUM, ARSENIC, MANGANESE, LEAD, AND BERYLLIUM. (DATA FROM 1965 TO 1972 IS AVAILABLE IN STORET. ACCESS: A=PHILWDPT)

DATA AVAILABILITY:

WITH PERMISSION OF WATER COMMISSIONER. OR ON IBM CARDS AT COST OF REPRODUCTION

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA:

REPORTS; DATA SHEETS 500 Page Report or 9 Page Summary

FUNDING:

PHILADELPHIA WATER DEPT

```
INVENTORY:
```

PUBLICATIONS:

CONTACT:

DENNIS D. BLAIR 215 686 1776 PHILADELPHIA WATER DEPT., RESEARCH AND DEVELOPMENT DIV. 1270 MSB 15TH AND JFK BLVD PHILADELPHIA PENNSYLVANIA USA 19107

GRID LOCATOR (LAT):

7307954285 7307950058 7307950078 7307950084 7307950085 7307950086 7307950093 7307951005 7307950120 7307950200 7407040478 7407040485 7407040528 7407040523 7407040544 7407040546 7407040551 7407001415 7407001436 7407050002 7407050003 7407050011

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	DMS	23	STATIONS	1 STATION/WK	• • • • • • • • • • • • • • • • • • •	ACCURACY WITHIN
TIME	EARTH	STATION TIME		23	STATIONS	1 STATION/WK		200 11
TIDAL PHASE	WATER	TABLES		23	STATIONS	1 STATION/WK		
TEMPERATURE	WATER	THERMISTOR	DEG C	23	STATIONS	1 STATION/WK	SLIGHTLY	

PAGE 02

	NAME	SPHERE	METHOD	UNITS	DATA AMO	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • • •	••••	•••••		• • • • • • • •		•••••	• • • • • • • • • • • • • • •	•••••
	\$;						SURFACE	
	PH	WATER	PH METER	STANDARD PH	23	STATIONS	1 STATION/WK	SLIGHTLY	
		1		UNITS				BELOW	
			TITRATION		0.0	STATIONS		SURFACE	
	IUTAL ALKALINITT	WAIER	TITRATION	MU/L AS CACUS	23	STATIONS	I STATION/WK	BELOW	
					·			SURFACE	
	LIGHT SCATTERING	WATER	MULTISPECTRAL	JACKSON	23	STATIONS	1 STATION/WK	SLIGHTLY	
	COEFFICIENT	1	SCANNER	TURBIDITY				BELOW	
	FLECTRICAL	WATED		UNITS MICCOMHOS PER	0 2	STATIONS	1 STATION/WK	SURFACE	
	CONDUCTIVITY	WAICK	CONDUCTIVITY	CM AT 25 DEG C	2.3	STATIONS	I STATION/WK	BELOW	
			CELL/TEMPERATURE					SURFACE	
			CORRECTED						
	SURFACTANTS	WATER	COLORIMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY	
		i						SURFACE	
	CHEMICAL OXYGEN	WATER	TITRATION	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY	
	DEMAND							BELOW	
	0100000000000		00501510 101					SURFACE	
	BIUCHEMICAL OVVGEN DEMAND	WATER	SPECIFIC IUN	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY	
	DATOLA DEMAND	1 1	LECTROPE					SURFACE	
	COUNT OF	WATER	FILTRATION	COLONIES PER	23	STATIONS	1 STATION/WK	SLIGHTLY	REPORTED AS
	MICROBIOTA			100 MG				BELOW	TOTAL COLIFORMS
								SURFACE	FECAL
-									EECAL STREPTOCO
ji na									CCI
∞	DISSOLVED	WATER	TITRATION	MG/L	23	STATIONS	1 STATIGN/WK	SLIGHTLY	
	OXYGEN GAS							BELOW	
	MERCURY	WATER	ATOMIC ABSORDTION	MG	93	STATIONS	1 STATION /WK	SURFACE	
			SPECTROMETRY		÷	514,1005	1 STATION/HA	BELOW	
								SURFACE	
	ALUMINUM	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY	
								BELOW	
	CHLORIDE	WATER	AUTOANALYZER	MG/I	23	STATIONS	1 STATION/WK	SLIGHTLY	
					-0	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		BELOW	
								SURFACE	
	ORTHOPHOSPHATE	WATER	AUTOANALYZER	MG/L AS PO4	23	STATIONS	1 STATION/WK	SLIGHTLY	
								SUPEACE	
	UNREACTIVE	WATER	AUTOANALYZER	MG/L AS PO4	23	STATIONS	1 STATION/WK	SLIGHTLY	
	PHOSPHATE	·			-			BELOW	
			000000000000000000000000000000000000000		• -			SURFACE	
	AMMUNIA	WATER	SPECIFIC IUN	MG/L AS N	23	STATIONS	1 STATION/WK	SLIGHTLY	
			LECIKUDE					SURFACE	

NAME	SPHERE	METHOD	UNITS	DATA AMOL	JNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	· • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	• • • • • • • • •			•••••	•••••
NITRITE	WATER	AUTOANALYZER	MG/L AS N	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW SUBFACE	
PHENOLS	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
ARSENIC	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
BERYLLIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
CALCIUM	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
CADMIUM	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
COPPER	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW SUBFACE	
CHROMIUM	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW SURFACE	
IRON	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW SURFACE	
LEAD	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
MAGNESIUM	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
MANGANESE	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SLIGHTLY BELOW	
NICKEL	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SURFACE SLIGHTLY BELOW	
ZINC	WATER	SPECTROPHOTOMETRY	MG/L	23	STATIONS	1 STATION/WK	SURFACE SLIGHTLY BELOW	
CYANIDE	WATER	COLORIMETRY	MG/L	23	STATIONS	1 STATION/WK	SURFACE SLIGHTLY BELOW SURFACE	

i N

AN ENVIRONMENTAL INVENTORY OF THE QUEEN ANNE'S HARBOR TRACT DATA COLLECTED: SEPTEMBER 1973 TO DECEMBER 1973 PAGE 01 RECEIVED: JULY 26, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH AMERICA, U.S., MARYLAND, ANNE ARUNDEL COUNTY, BOOKIN NECK AREA

ABSTRACT:

BIOLOGICAL, PHYSICAL, AND CHEMICAL PARAMETERS WERE COLLECTED FROM SEPTEMBER THROUGH DECEMBER, 1973 TO PRODUCE A DATA BASELINE FOR THE QUEEN ANNE'S HARBOR, BROOKIN NECK AREA, MARYLAND, PARAMETERS INCLUDE SPECIES COUNT OF PLANTS, ANIMALS, AND FISH, NUTRIENTS, TEMPERATURE, SALINITY, METALS, TURBIDITY, AND DISSOLVED SOLIDS AND GASES. (PROJECT CARRIED OUT BY JACK MCCORMICK AND ADDOCIATES FOR STATE OF MARYLAND)

.

DATA AVAILABILITY:

AVAILABLE UPON REQUEST FROM JACK MCCORMICK AND ASSOCIATES OFFICE IN BERWYN, PENNSYLVANIA

PLATFORM TYPES:

FIXED STATION

ARCHIVE MEDIA:

REPORTS 85 PAGES

PAGES

FUNDING:

STATE OF MARYLAND, DEPARTMENT OF NATURAL RESURCES

INVENTORY:

PUBLICATIONS:

CONTACT:

4

1

5

JACK MCCORMICK 215 647 9000 JACK MCCORMICK AND ASSOCIATES 511 OLD LANCASTER ROAD BERWYN PENNSYLVANIA USA 19312

GRID LOCATOR (LAT):

7307963100

NAME	SPHERE	METHOD	UNITS	DATA AMOUNT		FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATIONS	13	STATIONS	1 SURVEY	•••••••••••••••	•••••
TIME	EARTH	STATION TIME	YMD	13	STATIONS	1 SURVEY		
OF LAND PLANTS	LAND	NET	QUALITATIVE	1	STATIONS	1 SURVEY		
COUNT OF BIRDS	AIR	VISUAL	QUALITATIVE	6	STATIONS	1 SURVEY		
SPECIES DETERMINATION OF BIRDS	AIR	KEY	QUALITATIVE	6	STATIONS	1 SURVEY		
CDUNT OF AMPHIBIANS	WATER	VISUAL	QUALITATIVE	6	STATIONS	1 SURVEY		
SPECIES	WATER	KEY	QUALITATIVE	6	STATIONS	1 SURVEY		

NAME	SPHERE	METHOD	UNITS	DATA AMOL	тис	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	• • • • • • • • • •		• • • • • • • • • • • • • • •	•••••
DETERMINATION OF AMPHIBIANS								
SPECIES DETERMINATION	LAND	KEY	QUALITATIVE	6	STATIONS	1 SURVEY		
COUNT OF MAMMALS	LAND	VISUAL	QUALITATIVE	6	STATIONS	1 SURVEY		
TEMPERATURE	WATER	RESISTANCE THERMOMETER	DEG C	13	STATIONS	1 SURVEY		
SALINITY ELECTRICAL CONDUCTIVITY	WATER	CONDUCTIVITY LAB CONDUCTIVITY CELL	PARTS/THOUSAND MHOS/CENTIMETER	13 13	STATIONS STATIONS	1 SURVEY 1 SURVEY		
PH DISSOLVED OXYGEN GAS	WATER	PH METER TITRATION	PH_UNITS MILLICRAM/LITER	13 13	STATIONS STATIONS	1 SURVEY 1 SURVEY		,
ORGANIC CARBON	WATER	AUTOANALYZER SPECTROPHOTOMETRY	MILLICRAM/LITER	13 13	STATIONS	1 SURVEY		
NITROGEN .	WATER	SPECTROPHOTOMETRY		10	STATIONS			
SULEATE	WATER	SPECTROPHOTOMETRY	MILLICRAM/LITER	13	STATIONS			
SULFIDE	WATER	TITRATION	MILLICRAM/LITER	13	STATIONS	1 SURVEY		
LIGHT ATTENUATIO	WATER	COLORIMETRY	FTU	13	STATIONS	1 SURVEY		
COLOR	WATER	COLORIMETRY	PLATINUM-COBALT UNITS	39	OBS	3 OBS/STATION		
ZINC	WATER	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
MERCURY	WATER	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
COPPER	WATER	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
IRON	WATER	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
LEAD	WATER	ATOMIC ABSORPTION SPECTROMETRY	MILLICRAM/LITER	39	OBS	3 OBS/STATION	•	
KJELDAHL NITROGEN	SEDIMENT	SPECTROPHOTOMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
SULFIDE	SEDIMENT	TITRATION	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
PHOSPHATE	SEDIMENT	SPECTROPHOTOMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
DEMAND	SEDIMENT	DIGESTION	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
OILS	SEDIMENT	EXTRACTION/ WEIGHT	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
COPPER	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	MILLICRAM/LITER	39	OBS	3 OBS/STATION		
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		/ i

. . .

ゴリン

PAGE 03

.

PARAMETER IDENTIFICATION SECTION:

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
• • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	••••	•••••	•••••	•••••	•••••
COUNT OF PELAGIC FISH	WATER	VISUAL	NUMBER/1000 Square foot Seine area	20	OBS	5 OBS/SURVEY		
SPECIES DETERMINATION OF PELAGIC FISH	WATER	КЕҮ .	NUMBER/1000 SQUARE FOOT SEINE AREA	20	OBS	5 OBS/SURVEY		
COUNT OF BENTHIC ANIMALS	BOTTOM	VISUAL	NUMBER/SQUARE FOOT	13	STATIONS	1 SURVEY		
SPECIES DETERMINATION DF BENTHIC ANIMALS	BOTTOM	KEY	NUMBER/SQUARE FOUT	13	STATIONS	1 SURVEY		
COUNT OF ZOOPLANKTON	WATER	VISUAL	NUMBER/CUBIC METER	3	OBS	1 SURVEY		
SPECIES DETERMINATION OF ZOOPLANKTON	WATER	KEY	NUMBER/CUBIC METER	3	OBS	1 SURVEY		
COUNT OF PHYTOPLANKTON	WATER	VISUAL	NUMBER/CUBIC METER	3	OBS	1 SURVEY		
SPECIES DETERMINATION OF PHYTOPLANKTO N	WATER	KEY	NUMBER/CUBIC METER	3	OBS	1 SURVEY		
COUNT OF MICROBIOTA	WATER	VISUAL	NUMBER/100 MILLILITER	39	OBS	3 OBS/STATION		TOTAL BACTERIA; FECAL BACTERIA; TOTAL COLIFORM; TOTAL STREPTOCO CCI
TOTAL DISSOLVED SOLIDS	DISSOLVED	DESICCATION WEIGHT	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		
PARTICULATE MATTER	WATER	MEMBRANE FILTRATION	MILLIGRAM/LITER	39	OBS	3 OBS/STATION		

ENLARGEMENT OF THE CHESAPEAKE AND DELAWARE CANAL

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., DELMARVA PENINSULA, CHESAPEAKE AND DELAWARE CANAL

ABSTRACT:

DATA COLLECTED ON THE PLANKTONIC AND BENTHIC ORGANISMS FOUND IN THE CHESAPEAKE AND DELAWARE CANAL AND ADJACENT WATERS DURING THE 1974 ECOLOGICAL STUDY OF THE AQUATIC ENVIRONMENT IN THE VICINITY OF THE PROPOSED SUMMIT POWER STATION ARE PRESENTED IN REPORT FORM. SPECIES DETERMINATIONS AND DISTRIBUTIONS OF PHYTOPLANKTON, ZOOPLANKTON AND BENTHIC ORGANISMS ARE GIVEN IN ORDER TO OBTAIN INFORMATION ABOUT DAILY AND SEASONAL CHANGES IN POPULATION STRUCTURE. VITALITY STUDIES ON THE ZOOPLANKTON ARE INCLUDED. THE RESULTS OF A COMPREHENSIVE ANALYSIS OF THE PHYSICAL/CHEMICAL ENVIRONMENT IN THE CANAL WATERS DURING THE BICLOGICAL SAMPLING PROGRAM ARE ALSO AVAILABLE. MEASURED PARAMETERS INCLUDE COLIFORM COUNTS, NUTRIENTS, PIGMENTS. HEAVY METALS, OIL AND GREASE, TEMPERATURE, SALINITY, DISSOLVED OXYGEN GAS, PH, TURBIDITY AND TRANSPARENCY, HARDNESS, TOTAL ALKALINITY, CARBONATE ALKALINITY, SULFATE, TOTAL DISSOLVED SOLIDS. SUSPENDED SOLIDS, TOTAL PHOSPHORUS, DISSOLVED PHOSPHORUS, NITRATE-NITROGEN, NITRITE-NITROGEN, AMMONIA, ORGANIC NITROGEN, MAGNESIUM, CALCIUM AND TOTAL SILICA.

4

DATA AVAILABILITY:

UPON PERMISSION FROM DELMARVA POWER AND LIGHT COMPANY

PLATFORM TYPES:

SHIP; FIXED STATION

ARCHIVE MEDIA:

REPORTS 103 PAGES

FUNDING:

DELMARVA POWER AND LIGHT COMPANY

INVENTORY:

PUBLICATIONS:

INTERPRETIVE REPORT 1974 BY RAYTHEON COMPANY FOR UNITED ENGINEERS AND CONSTRUCTORS INC., CLIENT: DELMARVA POWER AND LIGHT COMPANY; COMPLETE REPORT OF RAW DATA IN ANNUAL DATA REPORT

CONTACT:

л

HUDSON HOEN 302 479 3205 DELMARVA POWER AND LIGHT COMPANY 800 KING STREET WILMINGTON DELAWARE USA 19899

GRID LOCATOR (LAT):

DELMARVA ECOLOGICAL SURVEY PLANKTONIC AND BENTHIC ORGANISMS (CONT.)

PAGE 02

	NAME	SPHERE	:	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	POSITION TIME	EARTH EARTH	· • • • • • • • • • • • • • • • • • • •	FIXED POINT STATION TIME	MAP LOCATION YMD	· · · · · · · · · · · · 7 7 7	STATIONS STATIONS		• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	TEMPERATURE	WATER		THERMISTOR	DEG F	686	OBS	BIWEEKLY TO MONTHLY	SURFACE, BOTTOM	1 SAMPLE PER OBS; 7 STATIONS; TAKEN WITH ALL BIOLOGICAL SAMPLINGS; JANUARY- DECEMBER
1 1 1	SALINITY	WATER		TITRATION	РРТ	686	OBS	BIWEEKLY TO Monthly	SURFACE, BOTTOM	1 SAMPLE PER OBS; 7 STATIONS; TAKEN WITH ALL BIOLOGICAL SAMPLINGS; JANUARY- DECEMBER
	DISSOLVED OXYGEN GAS	WATER	· · · · ·	SPECIFIC ION ELECTRODE	MG/L	686	OBS	BIWEEKLY TO MONTHLY	SURFACE, BOTTOM	1 SAMPLE PER OBS; 7 STATIONS; TAKEN WITH ALL BIOLOGICAL SAMPLINGS; JANUARY- DECEMBER
154	РН	WATER	-	PH METER	PH UNITS	686	OBS	BIWEEKLY TO MONTHLY	SURFACE, BOTTOM	1 SAMPLE PER OBS; 7 STATIONS; TAKEN WITH ALL BIOLOGICAL SAMPLINGS; JANUARY- DECEMBER
	LIGHT ATTENUATIO N	WATER		COLOR IME TRY	PERCENT TRANSMITTANCE, JTU	686	OBS ·	BIWEEKLY TO Monthly	SURFACE, BOTTOM	1 SAMPLE PER OBS; 7 STATIONS; TAKEN WITH ALL BIOLOGICAL SAMPLINGS; JANUARY- DECEMBER
	HARDNE SS	WATER		EDTA TITRATION	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
	TOTAL ALKALINITY	WATER		TITRATION	MG/I	80	OBS	MONTHLY -	SURFACE.	1 SAMPLE PER

CARBONATE ALKALINITY WATER TITRATION NG/L 80 085 UNFACE, SUPPACE, STATIONS SULFATE WATER NEPHELOMETRY MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL DISSOLVED DESICCATION MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER COLORIMETRY MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER COLORIMETRY MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS STATIONS TOTAL SOLIDS WATER TOTAL SOLIDER SUBFACE, STATIONS STATIONS TOTAL SOLIDS WATER DRY WEIGHT MG/L 80 085 MONTHLY - SUBFACE, STATIONS STATIONS TOTAL SOLIDS WATER TOTAL SOLIDER SUBFACE, STATIONS STATIONS TOTAL SOLIDS WATER TOTAL SOLIDER SUBFACE, STATIONS STATIONS STATIONS TOTAL SOLIDS WATER TOTAL SOLIDER SUBFACE, STATIONS S		NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
CARBONATE ALKALINITYWATERTITRATIONNG/LB0QUSMONITUR MOLINITYSUFACE, FEBRUARY, MOLVEMER, DECEMBER, DOTOM1 SAMPLE PER OBS; 2 STATIONSSULFATEWATERNEPHELOMETRYMG/LB0QBSMONITURY FEBRUARY, MONITURYSURFACE, BOTTOM1 SAMPLE PER OBS; 2 STATIONSTOTAL DISSOLVEDDISSOLVEDDESICCATION WEIGHTMG/LB0QBSMONITURY MOLINITYSURFACE, BOTTOM1 SAMPLE PER OCTOBER DOTOMJTOTAL DISSOLVEDDESICCATION WEIGHTMG/LB0QBSMONITURY MOLINITY BOTTOMSURFACE, BOTTOM1 SAMPLE PER OBS; 2 STATIONSJTOTAL DISSOLVEDDESICCATION WEIGHTMG/LB0QBSMONITURY MOLINITY BOTTOMSURFACE, BOTTOM1 SAMPLE PER DESICCATION STATIONSJTOTAL SOLIDSWATERORY WEIGHTMG/LB0QBSMONITURY MOLINITY BOTTOM1 SAMPLE PER DECEMBER, BOTTOM1 SAMPLE PER DESICE STATIONSJPHOSPHORUSWATERORY WEIGHTMG/LB0QBSMONITURY MOLINITY BOTTOM1 SAMPLE PER DECEMBER, BOTTOM1 SAMPLE PER DESICE STATIONSJPHOSPHORUSVATERCOLORIMETRYMG/LB0QBSMONITURY MOLINITY BOTTOM1 SAMPLE PER DECEMBER, BOTTOM1 SAMPLE PER DECEMBER, BOTTOM1 SAMPLE PER DISC 2 STATIONSJPHOSPHORUSDISSOLVEDCOLORIMETRYMG/LB0QBSMONITURY MARCH<				• • • • • • • • • • • • • • • • • • • •				DECEMBER. BIWEEKLY - MARCH-		
SULFATE WATER NEPHELOMETRY MG/L B0 OBS MONTHLE - NOVEMBER, BLIKERLY - MARCH SURFACE, FEDBUARY, DECEMBER, BLIKERLY - MARCH SURFACE, BOTTOM I SAMPLE PER DEST SATIONS TOTAL DISSOLVED DISSOLVED DESICCATION WEIGHT MG/L 80 08S MONTHLY - MARCH SURFACE, BLIKERLY - MARCH I SAMPLE PER DECEMBER, BLIKERLY - MARCH I SAMPLE PER DEST MARCH I SAMPLE PER DEST DEST MARCH I SAMPLE PER DEST MARCH I SAMPLE PER DEST DEST DEST DEST DEST DEST DEST DEST		CARBONATE ALKALINITY	WATER	TITRATION	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
TOTAL DISSOLVED SOLIDSDESICCATION WEIGHTMG/L8008SMONTHLY- JAMINAY. FEBRUARY. BUIMARY. BUI		SULFATE	WATER	NEPHELOMETRY	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
JA TOTAL SOLIDS WATER DRY WEIGHT MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER JANUARY, BOTTOM OBS; 2 FEBRUARY, STATIONS STATIONS NOVEMBER, BLWEEKLY - MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER PHOSPHORUS WATER COLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER PHOSPHORUS WATER COLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER PHOSPHORUS DISSOLVED COLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER PHOSPHORUS DISSOLVED COLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER OCTOBER OCSOLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER OBSPHORUS DISSOLVED COLORIMETRY MG/L B0 OBS MONTHLY - SURFACE, 1 SAMPLE PER OCTOBER JANUARY, BOTTOM	-1 Л	TOTAL DISSOLVED SOLIDS	DISSOLVED	DESICCATION WEIGHT	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
PHOSPHORUSWATERCOLORIMETRYMG/LB0OBSMONTHLY -SURFACE,1 SAMPLE PERJANUARY,BOTTOMOBS; 2FEBRUARY,BOTTOMOBS; 2PHOSPHORUSDISSOLVEDCOLORIMETRYMG/LB0OBSMONTHLY -SURFACE,1 SAMPLE PERPHOSPHORUSDISSOLVEDCOLORIMETRYMG/LB0OBSMONTHLY -SURFACE,1 SAMPLE PEROCTOBERDISSOLVEDCOLORIMETRYMG/LB0OBSMONTHLY -SURFACE,1 SAMPLE PEROCTOBERDISSOLVEDCOLORIMETRYMG/LB0OBSMONTHLY -SURFACE,1 SAMPLE PERMARCH-DISSOLVEDCOLORIMETRYMG/L80OBSMONTHLY -SURFACE,1 SAMPLE PERAMMONIAWATERTITRATIONMG/L80OBSMONTHLY -SURFACE,1 SAMPLE PER	л	TOTAL SOLIDS	WATER	DRY WEIGHT	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
PHOSPHORUS DISSOLVED COLORIMETRY MG/L 80 OBS MONIHLY SURFACE, 1 SAMPLE PER JANUARY, BOTTOM OBS; 2 FEBRUARY. STATIONS NOVEMBER. DECEMBER. BIWEEKLY MARCH- OCTOBER AMMONIA WATER TITRATION MG/L 80 OBS MONTHLY SURFACE, 1 SAMPLE PER		PHOSPHORUS	WATER	COLORIMETRY	MG∕L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCIDBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
AMMONIA WATER TITRATION MG/L 80 OBS MONTHLY - SURFACE, 1 SAMPLE PER		PHOSPHORUS	DISSOLVED	COLORIMETRY	MG/L	80	OBS	MON (HLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
		AMMONIA	WATER	TITRATION	MG/L	80	085	MONTHLY -	SURFACE,	1 SAMPLE PER

DELMARVA ECOLOGICAL SURVEY PLANKTONIC AND BENTHIC ORGANISMS (CONT.)

PAGE 04

	NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	•••••		•••••		••••	• • • • • • • • • • • • • •			•••••
			·			,	JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	BOTTOM	OBS; 2 Stations
	DRGANIC NITROGEN	WATER	TITRATION	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
	NITRATE	WATER	COLORIMETRY	MG/L	80	OBS	MONIFILY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
156	NITRITE	WATER	COLORIMETRY	MG/L	80	OBS	MONTHLY ~ JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY ~ MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
	OILS	WATER	EXTRACTION/ WEIGHT	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE . BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
	MAGNESIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	UG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
	CALCIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	UG/L	80	OBS	MONTHLY - JANUARY, EFBRUARY.	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS

NAME	SPHERE	METHOD	UNITS	DATA AN	NOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
•••••• ,		••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	•••••	••••••	MARCH-	••••••••••••••••	•••••
ALUMINUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	UG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY,	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
!	:		1			NOVEMBER. DECEMBER. BIWEEKLY - MARCH- DCIDBER		
SILICON	WATER	COLORIMETRY	MG/L	80	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	1 SAMPLE PER OBS; 2 STATIONS
DILS	SEDIMENT	EXTRACTION/ WEIGHT	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE PER OBS
BIOCHEMICAL	WATER	TITRATION	MG/L	16	OBS	MONTHLY	SURFACE	4 STATIONS; APRIL, JUNE, AUGUST, OCTOBER; 1 SAMPLE PER OBS
	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER OBS
CHROMIUM	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PEP OBS
NICKEL	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER OBS
LEAD	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER OBS
ZINC	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER OBS
IRON	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER DBS
MERCURY	WATER	ATOMIC ABSORPTION SPECTROMETRY	MG/L	5	OBS	MONTHLY	SURFACE	5 STATIONS; JULY; 1 SAMPLE PER OBS
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	UG/K G	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE PER OBS
NICKEL	SEDIMENT ,	ATOMIC ABSORPTION SPECTROMETRY	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY: 1 SAMPLE PER OBS
	,							

1

 DELMARVA ECOLOGICAL SURVEY PLANKTONIC AND BENTHIC ORGANISMS (CONT.)

PAGE 06

•

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE
ZINC	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE
IRON	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE PER DBS
MERCURY	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	UG/KG	5	OBS	MONTHLY		5 STATIONS; JULY; 1 SAMPLE PER OBS
COUNT OF MICROBIOTA	WATER	VISUAL	COLONIES PER 100 ML	64	OBS	MONTHLY	SURFACE. BOTTOM	TOTAL AND FECAL COLIFORM CDUNT: 4 STATIONS: APRIL, JUNE, AUGUST, OCTOBER: 2 SAMPLES PER OBS
CHLOROPHYLL A	WATER	FLUOROMETRY	MG/M3	4	STATIONS	MONTHLY	SURFACE, BOTTOM	4 STATIONS; JANUARY, MARCH- OCTOBER; 2 SAMPLES PER OBS
TOTAL PHAEOPHYTI N	WATER	FLUOROMETRY	MG/M3	4	STATIONS	MONTHLY	SURFACE, BOTTOM	4 STATIONS; JANUARY, MARCH- OCTOBER; 2 SAMPLES PER DBS
COUNT OF PHYTOPLANKTON	WATER	FILTRATION	NUMBER PER SPECIES PER ML PER SAMPLE	560	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	7 STATIONS; 2 SAMPLES PER OBS
SPECIES DETERMINATION OF PHYTOPLANKTO N	WATER	KEY	SPECIËS PER ML PER SAMPLE	560	08\$	MONTHLY - JANUARY. FEBRUARY. NOVEMBER. DECEMBER. BIWEEKLY - MARCH- OCTOBER	SURFACE, BOTTOM	7 STATIONS; 2 SAMPLES PER DBS
COUNT OF ZOOPLANKTON	WATER	FIXED, STAINED, ALIQUOT	NUMBER PER SPECIES PER M3 PER SAMPLE	560	OBS	MONTHLY - JANUARY, EEBRUARY,	SURFACE. BOTTOM	7 STATIONS; 2 SAMPLES PER OBS: 5-TENTHS

NAME	SPHERE	METHOD	UNITS	DATA AM	TAUC	FREQUENCY	HEIGHT/DEPTH	REMARKS
	· · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		•••••	• • • • • • • • • • •	•••••	• • • • • • • • • • • • • • •	•••••
						MARCH- OCTOBER		DAY SAMPLING
SPECIES DETERMINATION OF ZOOPLANKTON	WATER	KEY	SPECIES PER M3 PER SAMPLE	560	OBS	MONTHLY - JANUARY, FEBRUARY, NOVEMBER, DECEMBER, BIWEEKLY - MARCH- OCTOBER	SURFACE, Bottom	COUNT OF ZOOPLANKTON
MORTALITY OF , ZOOPLANKTON	WATER	VISUAL	PERCENT OF TOTAL INDIVIDUA LS PER SPECIES DEAD AT TIME OF SAMPLING PER SAMPLE	16	OBS	MONTHLY	SURFACE, BOTTOM	2 STATIONS; 1 SAMPLE PER OBS; MARCH, JULY, SEPTEMBER , NOVEMBER
SPECIES DETERMINATION OF BENTHIC ANIMALS	ВОТТОМ	KEY	SPECIES PER Sample	135	OBS	MONTHLY		5 STATIONS; 3 SAMPLES PER OBS; APRIL- NOVEMBER; 523 CM2 PONAR SAMPLER
COUNT OF BENTHIC ANIMALS	ВОТТОМ	MICROSCOPE	NUMBERS PER SPECIES PER SAMPLE	135	OBS	MONTHLY		5 STATIONS; 3 SAMPLES PER OBS; APRIL~ NOVEMBER; 523 CM2 PONAR SAMPLER
REACTIVE PHOSPHATE	WATER	COLORIMETRY	UG/L	72	OBS	MONTHLY	SURFACE, Bottom	, ,

.

.

.

.

RECEIVED: AUGUST 27, 1976

PROJECTS:

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA, U.S., DELAWARE, NEWARK, PORT MAHON MARSH

ABSTRACT:

PRESENTED IN REPORT FORM ARE DATA COLLECTED DURING A STUDY CONDUCTED IN DELAWARE DURING 1967 AND 1968 TO EVALUATE THE EFFECTS OF CERTAIN POTENTIAL CANDIDATE MOSQUITO CONTROL INSECTICIDES ON THREE NON-TARGET SALT MARSH ORGANISMS: THE COMMON KILLIFISH (FUNDULUS HETEROCLITUS). THE GRASS SHRIMP (PALAEMONETES PUGIO) AND THE FIDDLER CRAB (UEA PUGNAX). EMPHASIZED ARE THE CUMULATIVE AND/OR ACUTE EFFECTS OF CERTAIN GRANULAR AND LIQUID FORMULATIONS OF MOSQUITO INSECTICIDES ON THE NON-TARGET SALT MARSH ORGANISMS IN SMALL SCALE FIELD TESTS. THE PERSISTENCE OF CERTAIN INSECTICIDES IN THE HABITAT WATER AND THE PERCENT REDUCTION OF THE SALT MARSH MOSQUITO BY ULTRA-LOW VOLUME APPLICATIONS OF INSECTICIDE IN LARGE SCALE FIELD TESTS.

	DATA AVAILABILITY:				
	PLATFORM TYPES: FIXED STATION			i ,	
	ARCHIVE MEDIA: REPORTS 80 PAGES		;	F L	
5	FUNDING:		١		
	INVENTORY:	1	i.		

PUBLICATIONS:

ZIMMERMAN, J.H., 1969. TOXICITY OF PARIS GREEN. METHOXYCHLOR AND NEW ORGANOPHOSPHATE INSECTICIDES TO SALT MARSH KILLIFISH AND CRUSTACEANS. MASTER'S THESIS, UNIVERSITY OF DELAWARE, 80 P.

CONTACT:

MORRIS LIBRARY 302 738 2455 UNIVERSITY OF DELAWARE NEWARK DELAWARE USA 19711

GRID LOCATOR (LAT): 730785

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
POSITION	EARTH	FIXED POINT	MAP LOCATION	2	STATIONS			UNIVERSITY OF DELAWARE EXPERIMENTAL FARM, NEWARK; PORT MAHON MARSH
TIME MORTALITY OF PELAGIC FISH	EARTH WATER	SAMPLING TIME VISUAL	Y PERCENT MORTALITY PER	2 72	STATIONS OBS			

TARAMETER IDENTITION TON SECTION

٠

NAME	SPHERE	METHOD	UNITS	DATA	AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
			SPECIES					
MORTALITY OF BENTHIC ANIMALS	BOTTOM	VISUAL	PERCENT MORTALITY PER SPECIES	74	OBS			
MORTALITY OF Insects	LAND	VISUAL	PERCENT MORTALITY OF MOSQUITO LARVAE	97	OBS			
SPECIES DETERMINATION OF PELAGIC FISH	WATER	KEY		72	OBS			KILLFISH
SPECIES DETERMINATION OF BENTHIC	BOTTOM	KEY		74	OBS			FIDDLER CRAB, GRASS SHRIMP
SPECIES DETERMINATION OF INSECTS	LAND	KEY		37	OBS			MOSQUITOES

•

.

•

•

OCEAN DISPOSAL GITE OFF THE COAST OF MARYLAND DATA COLLECTED: MARCH 1974 TO PRESENT

PAGE 01 RECEIVED: MARCH 04, 1977

PROJECTS:

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC OCEAN

ABSTRACT:

THE ENVIRONMENTAL PROTECTION AGENCY, ENVIRONMENTAL RESEARCH LABORATORY, HAS BEEN COLLECTING DATA SINCE MARCH 1974 FROM TWO OCEAN DISPOSAL SITES APPROXIMATELY 60 MILES OFF THE COAST OF MARYLAND. THE PARAMETERS INCLUDED IN THIS STUDY ARE: ALUMINUM, CADMIUM, CHROMIUM, COBALT, COPPER, IRON, LEAD, MANGANESE, NICKEL, SILVER, TITANIUM, VANADIUM AND ZINC IN BOTH THE SEDIMENT AND ORGANISMS. MEASUREMENTS OF METALS IN CLAMS AND SCALLOPS ARE SEPARATED BY MUSCLE AND ORGANS. OTHER PARAMETERS INCLUDED ARE: SPECIES DETERMINATION OF BENTHIC ANIMALS, WEIGHT OF BENTHIC ANIMALS AND LENGTH OF BENTHIC ANIMALS. CONTACT DR. D.K. PHELPS, SCIENTIFIC AND TECHNICAL DIRECTOR, EPA ENVIRONMENTAL RESEARCH LABORATORY, SOUTH FERRY ROAD, NARRAGANSETT, RHODE ISLAND 02882.

DATA AVAILABILITY:

PLATFORM TYPES:

SHIP

ARCHIVE MEDIA: MAGNETIC DISC 1 DISC (531200 BYTES)

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

۵

3

3

DR. D.K. PHELPS 401 789 1071 ENVIRONMENTAL PROTECTION AGENCY - REGION 1 ENVIRONMENTAL RESEARCH LABORATORY SOUTH FERRY ROAD NARRAGANSETT RHODE ISLAND USA 02882

GRID LOCATOR (LAT):

730773 730774 730783 730784

NAME	SPHERE	METHOD	UNITS	DATA AMO	UNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
 TIMF	 E ARTH	STATION TIME	YMD	.	STATIONS			
POSITION	EARTH	LONG RANGE NAVIGATIONAL NET	DMS	30	STATIONS			
ALUMINUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30	STATIONS			
CADMIUN	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30	STATIONS			
CHROMIUM	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30	STATIONS			
COBALT	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30	STATIONS			

	NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
			•••••••••••		•••••	•••••		•••••
	COPPER	SEDIMENT	SPECTROMETRY ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	IRON	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			·. · ·
	LEAD	SEDIMENT	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			
,	MANGANESE	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	NICKEL	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	SILVER	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEICHT	30 STATIONS			
	TITANIUM	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	VANADIUM	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	ZINC	SEDIMENT	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			
	ALUMINUM IN BIO Material	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			AMDUNTS IN Organs And
								MUSCLE DETERMINED SEDADATELY
1	CADMIUM IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			AMOUNTS IN ORGANS AND MUSCLE
	CHROMIUM IN BIO	BOTTOM	ATOMIC ABSORPTION	PPM DRY WEIGHT	30 STATIONS			DETERMINED SEPARATELY AMOUNTS IN
	MATERIAL	· ·	SPECTROMETRY					ORGANS AND MUSCLE DETERMINED
	COBALT IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	JO STATIONS			SEPARATELY Amounts in Drgans and
								MUSCLE DETERMINED SEPARATELY
	MATERIAL	BOLLOW	SPECIROMETRY	PPM DRY WEIGHT	30 STATIONS			AMOUNTS IN ORGANS AND MUSCLE DETERMINED
	IRÓN IN BIO Material	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND
				·				MUSCLE DETERMINED SEPARATELY
	LEAD IN BID MATERIAL	MOTION	AIOMIC ABSORPTION SPECTROMEIRY	PPM DRY WEIGHT	30 STATIONS			AMDUNTS IN ORGANS AND MUSCLE
				Υ.	T			DETERMINED

OCEAN DISPOSAL SITE OFF THE COAST OF MARYLAND (CONT.)

PAGE 03

.

	NAME	SPHERE	METHOD	UNITS	DATA AMOUNT	FREQUENCY	HEIGHT/DEPTH	REMARKS
	• • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •
	MANGANESE IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND MUSCLE DETERMINED
	NICKEL IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND MUSCLE DETERMINED
	SILVER IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND MUSCLE DETERMINED
	TITANIUM IN BIO MATERIAL	воттом	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARAFELY AMOUNTS IN ORGANS AND MUSCLE DETERMINED
C	VANADIUM IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND MUSCLE DETERMINED
164	ZINC IN BIO MATERIAL	BOTTOM	ATOMIC ABSORPTION SPECTROMETRY	PPM DRY WEIGHT	30 STATIONS			SEPARATELY AMOUNTS IN ORGANS AND MUSCLE
	SPECIES DETERMINATION OF BENTHIC	BOTTOM	KEY		30 STATIONS			SEPARATELY CLAMS AND SCALLOPS
	ANIMALS LENGTH OF BENTHIC	BOTTOM	DIRECT		30 STATIONS			
	WEIGHT OF BENTHIC	BOTTOM	WET WEIGHT		30 STATIONS			
	POSITION	EARTH	SHORT RANGE NAVIGATIONAL NET	DMS	30 STATIONS			MINI RANGER III

NPDES PERMIT COMPLIANCE MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U. S., VIRGINIA

ABSTRACT:

THIS FILE CONTAINS POINT DISCHARGE TESTING DATA FROM AS EARLY AS 1946. BY THE MID-1960'S, THE STATE WATER CONTROL BOARD HAD DEVELOPED A REGULAR MONITORING PROGRAM. IN 1972 NPDES UNDER PL92-500 REPLACED THIS PROGRAM. EACH MAJOR DISCHARGER IS TESTED BY VSWCB AT LEAST ANNUALLY TO VERIFY THE DATA FROM THE DISCHARGER MONITORING REPORTS. MINOR DISCHARGES SHOULD BE TESTED ANNUALLY. SOME PARAMETERS TESTED INCLUDE NUTRIENTS, HEAVY METALS, KEPONE AND OILS. THESE REPORTS ARE ON FILE WITH EACH OF THE RESPECTIVE DMR'S WHICH TOTAL APPROXIMATELY 4000 FILES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF APPLIED TECHNOLOGY VIRGINIA STATE WATER CONTROL BOARD 2111 N. HAMILTON STREET RICHMOND, VIRGINIA 23230

GRID LOCATOR:

OBSERVATIONS ON THE COPPER AND MANGANESE CONTENT IN THE OYSTER IN THE UPPER CHESAPEAKE BAY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, SEVERN RIVER, HACKETTS POINT, TOLLYS POINT

ABSTRACT:

THE PURPOSE OF THIS STUDY WAS TO DETERMINE THE CONCENTRATION OF COPPER AND MANGANESE IN THE OYSTER, <u>CRASSOSTREA</u> <u>VIRGINICA</u>, AND IN THE WATER SURROUNDING THE OYSTER BAR. TWO LOCATIONS WERE SAMPLED AT THE MOUTH OF THE SEVERN RIVER. COLLECTIONS WERE DONE BIMONTHLY DURING 1952.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN, MARYLAND ROOM 301-454-3035 McKELDIN LIBRARY UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND 20742

GRID LOCATOR:

VIRGINIA STATE FISH KILL CASE FILES

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA

ABSTRACT:

THE VIRGINIA STATE WATER CONTROL BOARD IS RESPONSIBLE FOR INVESTIGATING ALL FISH KILLS. THE CAUSE, EXTENT AND COSTS OF DAMAGE MUST BE DETERMINED. ONLY SPARSE COVERAGE WAS GIVEN TO FISH KILLS FROM 1955 TO 1970 (286 CASES). STARTING IN 1970, COVERAGE INCREASED CONSIDERABLE (979 CASES TO DATE), AS DID THE QUALITY OF THE REPORTS. ONLY ABOUT 10% OF THE REPORTS INCLUDE WATER AND/OR TISSUE ANALYSES FOR HEAVY METALS, PESTICIDES, CHLORINE AND NUTRIENTS AND THESE METHODS HAVE VARIED OVER THE YEARS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF SURVEILLANCE AND FIELD STUDIES VIRGINIA STATE WATER CONTROL BOARD 211 N. HAMILTON STREET RICHMOND, VIRGINIA 23230

GRID LOCATOR:

FIELD TESTS OF HERBICIDE TOXICITY TO CERTAIN ESTUARINE ANIMALS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, POTOMAC RIVER, WICOMICO RIVER, PATUXENT RIVER

ABSTRACT:

FROM 1960-1963 CAGED BLUE CRABS (CALLINECTES SAPIDUS), EASTERN OYSTERS (CRASSOSTREA VIRGINICA), SOFTSHELL CLAMS (MYA ARENARIA), AND VARIOUS SPECIES OF FISH WERE EXPOSED EXPERIMENTALLY TO DIFFERENT CONCENTRATIONS OF HERBICIDES IN THE FIELD IN MARYLAND AND VIRGINIA TIDEWATERS TO DETERMINE POSSIBLE TOXICITY EFFECTS. HERBICIDES TESTED WERE PRINCIPALLY 2,4-D FORMULATIONS WHICH SHOWED PROMISE OF EFFECTIVELY CONTROLLING EURASIAN WATERMILFOIL. EMPIRICAL COMPARISONS OF CLAM POPULATIONS IN TREATED AND CONTROL PLOTS WERE MADE IN 1961, 1962 AND 1963.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-326-4281 UNIVERSITY OF MARYLAND CHESAPEAKE BIOLOGICAL LABORATORY P.O. BOX 38 SOLOMONS, MD 20688

GRID LOCATOR:

FIELD STUDIES OF SHELL REGROWTH AS A BIOINDICATOR OF EASTERN OYSTER RESPONSE TO 2,4-D BEE

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, PATUXENT RIVER, WICOMICO RIVER, POTOMAC RIVER

ABSTRACT:

NEW GROWTH WAS FILED FROM EASTERN OYSTER SHELLS AND WIRE TRAYS HOLDING 25 OYSTERS EACH WERE EXPOSED TO 2,4-D BEE AT RATES OF EITHER 22.5, 33.75 OR 67.5 KGAE (ACID EQUIVALENT)/H (20, 30 OR 60 LB AE/ACRE). REGENERATED SHELL GROWTH WAS MEASURED TO DETERMINE THE EFFECT OF HERBICIDE APPLICATION ON THE OYSTER. TWO SITES WERE USED: A DOUBLE-POND AREA WITH NARROW INLET AND OUTLET (COATIGUN RUN ON PATUXENT RIVER), AND AN OPEN BAY (CHAPTICO BAY OFF THE WICOMICO RIVER, A TRIBUTARY TO THE POTOMAC RIVER).

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-326-4281 UNIVERSITY OF MARYLAND CHESAPEAKE BIOLOGICAL LABORATORY BOX 38 SOLOMONS, MD 20688

GRID LOCATOR:

GREENING AND COPPER ACCUMULATION IN THE AMERICAN OYSTER IN THE VICINITY OF A STEAM ELECTRIC GENERATING STATION

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, PATUXENT RIVER

ABSTRACT:

THIS REPORT SUMMARIZES DATA ON THE GREEN COLOR AND COPPER UPTAKE IN OYSTERS IN THE PATUXENT RIVER ESTUARY. THE DATA COVERS THE PERIOD FROM MAY 1964 TO NOVEMBER 1967 AND FROM MARCH 1969. SIX STATIONS, BOTH UPSTREAM AND DOWNSTREAM OF THE CHALK POINT STEAM ELECTRIC STATION, WERE MONITORED MONTHLY WHENEVER POSSIBLE.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

170

INVENTORY:

PUBLICATIONS:

CONTACT:

WILLEM ROOSENBURG 301-326-4281 POST OFFICE BOX 38 CHESAPEAKE BIOLOGICAL LABORATORY SOLOMONS, MD 20688

GRID LOCATOR:

ORGANOCHLORINE RESIDUES IN ESTUARINE MOLLUSKS, 1965-1972 - NATIONAL PESTICIDE MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, VIRGINIA

ABSTRACT:

THE PROGRAM IS A NATIONAL PROGRAM FOR MONITORING ESTUARINE MOLLUSKS IN 15 COASTAL STATES. FIFTEEN ORGANOCHLORINE COMPOUNDS ARE ANALYZED FOR THEIR CONCENTRATIONS IN FIVE SPECIES OF ESTUARINE MOLLUSKS FROM 1965-72. THE RESIDUE DATA FOR THE INDIVIDUAL STATES IS PRESENTED AS WELL AS A GENERAL SUMMARY AND CONCLUSIONS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

PHILIP BUTLER 904-932-5311 EPA ENVIRONMENTAL RESEARCH LABORATORY SABINE ISLAND GULF BREEZE, FLORIDA 32561

GRID LOCATOR:

DATA COLLECTED: 1966 - 1976

PROJECTS:

MORGANTOWN STEAM ELECTRIC STATION

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, POTOMAC RIVER, MARYLAND, MORGANTOWN

ABSTRACT:

THIS REPORT (VOLUMES I AND II) SUMMARIZES THE RESULTS OF A 10-YEAR PERIOD (1966-1976) OF STUDIES. THEY WERE DONE BY THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA ON THE AQUATIC ECOSYSTEM OF THE POTOMAC RIVER IN THE VICINITY OF THE MORGANTOWN STEAM ELECTRIC STATION. THE REPORT INCLUDES HYDROTHERMAL DATA, CHEMICAL AND PHYSICAL DATA (SALINITY, TEMPERATURE, NUTRIENTS, DISSOLVED OXYGEN, PH, FREE DISSOLVED CARBON DIOXIDE, HEAVY METALS), PHYTOPLANKTON AND BACTERIOLOGICAL DATA, MACROINVERTEBRATE SURVEYS AND FISH SURVEYS. THE APPENDICES INCLUDE TWO STUDIES (1971 AND 1976) ON METALS IN OYSTERS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

172

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 215-567-3700 THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA DIVISION OF LIMNOLOGY AND ECOLOGY 19TH AND THE PARKWAY PHILADELPHIA, PA 19103

GRID LOCATOR:

THE ACCUMULATION AND LOSS OF FIELD-APPLIED BUTOXYETHONAL ESTER OF 2,4-D IN EASTERN OYSTERS CRASSOSTREA VIRGINICA AND SOFT-SHELLED CLAMS, MYA ARENARIA

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, WESTERN SHORE, WICOMICO RIVER

ABSTRACT:

FIELD STUDIES IN THE WICOMICO RIVER WERE MADE IN 1966 TO DETERMINE THE ACCUMULATION AND LOSS OF 2,4-D RESIDUES IN EASTERN OYSTERS AND SOFT-SHELLED CLAMS. FOUR ONE-ACRE PLOTS, ABOUT 209 FEET TO A SIDE, WERE MEASURED. THREE WERE TREATED AND ONE WAS USED AS A CONTROL. THE EFFECT OF 2,4-D WAS MEASURED BECAUSE IT HAD BEEN USED AS A CONTROL FOR EURASIAN WATERMILFOIL PREVIOUSLY. OYSTERS AND CLAMS WERE PLACED AT THE CENTER OF EACH PLOT IN CAGES. 2,4-D WAS ADMINISTERED IN DIFFERENT CONCENTRATIONS TO THE PLOTS. OYSTERS AND CLAMS WERE BIOASSAYED AT DIFFERENT INTERVALS OVER A 2 MONTH PERIOD TO STUDY THE RATE OF RESIDUE LOSS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-326-4821 CHESAPEAKE BIOLOGICAL LABORATORY P.O. BOX 38 SOLOMONS, MARYLAND 20688

GRID LOCATOR:

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, CALVERT CLIFFS

ABSTRACT:

THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM BEGAN IN 1970 TO MONITOR THE AREA AROUND THE CALVERT CLIFFS NUCLEAR POWER PLANT ON THE CHESAPEAKE BAY. EACH YEAR APPROXIMATELY 1500 ANALYSES ARE PERFORMED ON 800 ENVIRONMENTAL SAMPLES FROM THE AQUATIC, ATMOSPHERIC AND TERRESTRIAL ENVIRONMENTS. SOME OF THE PARAMETERS MEASURED INCLUDE TRITIUM, STRONTIUM-89, STRONTIUM-90 AND GROSS ALPHA, BETA AND GAMMA EMITTING NUCLIDES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

174

INVENTORY:

PUBLICATIONS:

CONTACT:

STEVEN LONG 301-269-2261 MARYLAND DEPT. OF NATURAL RESOURCES POWER PLANT SITING PROGRAM TAWES BLDG. - 580 TAYLOR AVENUE ANNAPOLIS, MARYLAND 21401

GRID LOCATOR:

WATER QUALITY CONDITIONS IN THE CHESAPEAKE BAY SYSTEM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY

ABSTRACT:

THIS IS A COMPILATION AND ANALYSIS OF WATER QUALITY DATA OF THE CHESAPEAKE BAY IN 1972. THE DATA, AND ANALYSIS OF IT, IS DIVIDED BY GEOGRAPHIC AREA AND FURTHER SUBDIVIDED BY RIVER BASIN. PARAMETERS ANALYZED INCLUDE CHLOROPHYLL A, DISSOLVED OXYGEN, NITROGEN, PHOSPHORUS, COLIFORM BACTERIA, HEAVY METALS AND PESTICIDES, WHERE THE DATA EXISTS. DATA WAS GATHERED FROM THE ANNAPOLIS FIELD OFFICE, NATIONAL MARINE FISHERIES SERVICE, U.S. GEOLOGICAL SURVEY, MARYLAND DEPARTMENT OF WATER RESOURCES, UNIVERSITY OF MARYLAND, THE JOHNS HOPKINS UNIVERSITY, VIRGINIA WATER CONTROL BOARD, VIRGINIA INSTITUTE OF MARINE SCIENCE, THE DISTRICT OF COLUMBIA DEPARTMENT OF ENVIRONMENTAL SERVICES, MARYLAND DEPARTMENT OF HEALTH AND MARYLAND ENVIRONMENTAL SERVICE.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN - 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III, ENVIRONMENTAL PROTECTION AGENCY ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MARYLAND 21401

GRID LOCATOR:

METALS IN BALTIMORE HARBOR AND UPPER CHESAPEAKE BAY AND THEIR ACCUMULATION BY OYSTERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THIS STUDY BEGAN IN MAY 1970. IT SURVEYED TRACE METAL CONCENTRATIONS IN THE SEDIMENTS OF BALTIMORE HARBOR AND UPPER CHESAPEAKE BAY AT 45 STATIONS. FIELD STUDIES WERE CONDUCTED AT 3 STATIONS ON THE EFFECTS OF SEDIMENTS AND SALINITY ON TRACE METAL UPTAKE BY OYSTERS. PRELIMINARY LABORATORY STUDIES OF THE UPTAKE OF ESTUARINE SHELLFISH OF TRACE METALS FROM SEDIMENTS WERE INITIATED. THIS WAS A JOINT EFFORT OF THE MARYLAND BOARD OF PUBLIC WORKS, THE MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE AND THE MARYLAND DEPARTMENT OF NATURAL RESOURCES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-338-8255 CHESAPEAKE BAY INSTITUTE - JOHNS HOPKINS UNIVERSITY 34TH AND CHARLES STREETS BALTIMORE, MARYLAND 21218

GRID LOCATOR:

HEAVY METALS ANALYSES OF BOTTOM SEDIMENT IN THE POTOMAC RIVER ESTUARY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESPEAKE BAY, POTOMAC RIVER

ABSTRACT:

THIS PROGRAM WAS A COORDINATED EFFORT BETWEEN THE ANNAPOLIS FIELD OFFICE AND THE RESEARCH AND DEVELOPMENT LABORATORY OF THE U.S. NAVAL ORDINANCE STATION IN INDIAN HEAD, MARYLAND. SAMPLES WERE COLLECTED IN AUGUST AND SEPTEMBER 1970, AND AGAIN IN APRIL 1971. THEY WERE ANALYZED FOR LEAD, COPPER, CALCIUM, BARIUM, SILVER, IRON, STRONTIUM, LITHIUM, COBALT, MAGNESIUM, MANGANESE, ALUMINUM, POTASSIUM, ZINC, VANADIUM, CADMIUM, CHROMIUM AND NICKEL. STATIONS WERE LOCATED FROM CHAIN BRIDGE IN WASHINGTON, D.C. TO THE MOUTH OF THE POTOMAC RIVER.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III, U.S. EPA ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MD 21401

GRID LOCATOR:

SHELLFISH SANITATION PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THIS ONGOING SHELLFISH MONITORING PROGRAM BEGAN IN 1971. SAMPLING IS DONE AT 1500 STATIONS AROUND THE CHESAPEAKE BAY AND ITS TRIBUTARIES AT LEAST ONCE A MONTH. SAMPLES ARE ANALYZED FOR TEMPERATURE, SALINITY, DISSOLVED OXYGEN, FECAL COLIFORM AND TOTAL COLIFORM. SHELLSTOCK AND FINFISH ARE COLLECTED ROUTINELY AND ANALYZED FOR HEAVY METAL, PESTICIDE, CHLORINATED HYDROCARBON, BACTERIAL AND ORGANIC CHEMICAL CONCENTRATIONS. BOATS ARE COLLECTING SAMPLES FOUR DAYS A WEEK, 50 WEEKS A YEAR.

DATA AVAILABILITY:

PLATFORM TYPES:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

MAX EISENBERG 301-383-2365 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE 201 W. PRESTON STREET, P.O. BOX 13387 BALTIMORE, MD 21201

GRID LOCATOR:
PROCESSES AFFECTING THE COMPOSITION OF ESTUARINE WATERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, SUSQUEHANNA RIVER

ABSTRACT:

THIS STUDY INVOLVES HEAVY METAL BEHAVIOR IN WATER FROM THE UPPER CHESAPEAKE BAY AND SUSQUEHANNA RIVER. THE PARAMETERS INCLUDE IRON, ZINC, COPPER, NICKEL, COBALT, CHROMIUM AND CADMIUM. ALL OF THE DATA IS SUMMARIZED ON GRAPHS. DATA FROM 1961, 1965, 1966 AND 1971 IS INCLUDED.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-338-8255 CHESAPEAKE BAY INSTITUTE, THE JOHNS HOPKINS UNIVERSITY 34TH AND CHARLES STREETS BALTIMORE, MARYLAND 21218

GRID LOCATOR:

IRON, ZINC, MAGNESIUM AND COPPER CONCENTRATIONS IN BODY MEAT OF THE BLUE CRAB

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY

ABSTRACT:

THIS STUDY ANALYZES THE BODY MEAT OF THE BLUE CRAB, <u>CALLINECTES</u> <u>SAPIDUS</u>, FOR IRON, ZINC, MAGNESIUM AND COPPER BY ATOMIC ABSORPTION. SAMPLES WERE COLLECTED BIWEEKLY FROM MAY 5, 1971 TO APRIL 19, 1972. TWENTY-SIX SAMPLES OVER THE ONE YEAR PERIOD WERE TAKEN.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DAVID BOON 301-968-1655 BOX 351 UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL AND ESTUARINE STUDIES MARINE PRODUCTS LABORATORY CRISFIELD, MD 21817

GRID LOCATOR:

THE DYNAMICS OF METALS IN THE AMERICAN OYSTER, CRASSOSTREA VIRGINICA -- SEASONAL EFFECTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, RHODE RIVER

ABSTRACT:

THE SEASONAL EFFECTS OF METALS IN THE AMERICAN OYSTER, <u>CRASSOSTREA</u> <u>VIRGINICA</u>, WERE STUDIED USING A GENETICALLY SIMILAR POPULATION. SAMPLES WERE COLLECTED MONTHLY FROM SEPTEMBER 1971 THROUGH MAY 1973 IN THE RHODE RIVER. THE SAMPLES WERE ANALYZED FOR Mn, Fe, Zn, Cu, AND Cd IN THE SOFT TISSUE AS WELL AS IN THE SHELL.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN FRAZIER 301-955-3045 SCHOOL OF HYGIENE AND PUBLIC HEALTH THE JOHNS HOPKINS UNIVERSITY 615 N. WOLFE STREET BALTIMORE, MD 21205

GRID LOCATOR:

CHESTER RIVER STUDY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, CHESTER RIVER

ABSTRACT:

THE MAJOR OBJECTIVES OF THE CHESTER RIVER STUDY WERE TO DETERMINE THE EFFECTS OF CHLORINATED HYDROCARBONS AND OTHER POLLUTANTS UPON SHELLFISH AND BIOTA IN THE CHESTER RIVER, AND IDENTIFICATION OF THE SOURCES, DISTRIBUTION, AND MODES OF TRANSPORT OF THESE POLLUTANTS WITHIN THE RIVER SYSTEM. LABORATORY TOXICITY STUDIES ON SHELLFISH WERE CONDUCTED AND A FIELD SAMPLING PROGRAM MEASURED POLLUTANT LEVELS IN BIOTA, SEDIMENTS AND WATER. HYDROLOGICAL AND METEROLOGICAL PARAMETERS WERE CONSTANTLY MEASURED IN ORDER TO DETERMINE WATER CIRCULATION AND TRANSPORT OF POLLUTANTS THROUGH THE RIVER.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-765-1000 WESTINGHOUSE OCEAN RESEARCH LABORATORY BOX 1488 ANNAPOLIS, MARYLAND 21404

GRID LOCATOR: COMPLETE FILE DESCRIPTION SUBMITTED TO EDS IN JUNE 1978.

DISCHARGER MONITORING REPORTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U. S., VIRGINIA

ABSTRACT:

THESE REPORTS ARE REQUIRED AS PART OF THE NPDES PROGRAM UNDER PL 92-500 INITIATED IN 1972. MUNICIPAL AND INDUSTRIAL DISCHARGERS SELF-TEST THEIR OWN EFFLUENT TO MONITOR SUCH PARAMETERS AS NUTRIENTS, HEAVY METALS, KEPONE AND OILS WITH VARYING FREQUENCIES ASSIGNED EACH PARAMETER. APPROXIMATELY 4000 FILES ARE NOW ACTIVE AND ARE ADMINISTERED BY THE STATE FOR EPA.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF APPLIED TECHNOLOGY VIRGINIA STATE WATER CONTROL BOARD 2111 N. HAMILTON STREET RICHMOND, VIRGINIA 23230

GRID LOCATOR: COMPLETE FILE DESCRIPTION SUBMITTED TO EDS IN JUNE 1978.

TRACE METALS IN THE CHESAPEAKE BAY - BIOLOGICAL ASPECTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, RHODE RIVER, SOUTH RIVER

ABSTRACT:

THIS PROJECT GENERATED DATA FROM 1972 THROUGH 1975. MOST OF THE SAMPLING WAS DONE IN THE RHODE RIVER. HOWEVER, DATA ON METAL CONCENTRATIONS IN MOLLUSKS WAS COLLECTED IN THE SOUTH RIVER (1972-73), PATUXENT RIVER (1973), MAGOTHY RIVER (1973) AND IN STONEY CREEK (1973) WHICH IS A TRIBUTARY OF THE PATAPSCO RIVER. SEDIMENTS WERE ANALYZED FOR Mn, Cu, Zn, Fe, Cd, Pb, Co, N1 AND Cr. THE AMERICAN OYSTER, <u>CRASSOSTREA VIRGINICA</u>, AND 5 OTHER MOLLUSKS WERE ANALYZED FOR CONCENTRATIONS OF Mn, Zn, Fe, Cd and Cu. SHELLS WERE ALSO ANALYZED. INVERTEBRATES WERE COLLECTED AND ANALYZED IN 1972 AND 1973 FOR Mn, Zn, Cu, Cd AND Fe. NINE SPECIES OF FISH WERE SAMPLED DURING 1972, 1973 AND 1974 AND ANALYZED FOR THE 5 HEAVY METALS ABOVE.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN FRAZIER 301-955-3045 SCHOOL OF HYGIENE AND PUBLIC HEALTH THE JOHNS HOPKINS UNIVERSITY 615 N. WOLFE STREET BALTIMORE, MD 21205

GRID LOCATOR:

COMDIETE ETTE DECORTETAN CURMITER TO EDO IN HINE 1070

HEAVY METALS IN COASTAL FISHES OF NORTH CAROLINA

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, COASTAL, U.S., NORTH CAROLINA

ABSTRACT:

HEAVY METAL SURVEY OF NORTH CAROLINA COASTAL FISHES

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

RICHARD BARBER 919-728-2111 DUKE UNIVERSITY MARINE LABORATORY BEAUFORT, N.C. 28516

GRID LOCATOR:

DATA COLLECTED: SEPTEMBER 1972 - AUGUST 1973

PROJECTS:

THE DYNAMICS OF METALS IN THE AMERICAN OYSTER, CRASSOSTREA VIRGINICA--ENVIRONMENTAL EFFECTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, RHODE RIVER, MAGOTHY RIVER, STONEY CREEK

ABSTRACT:

THE CONCENTRATIONS OF Mn, Fe, Zn, Cu AND Cd WERE STUDIED IN OYSTER SAMPLES FROM SEPTEMBER, 1972 UNTIL AUGUST, 1973. GENETICALLY SIMILAR POPULATIONS WERE LOCATED IN THREE AREAS IN THE RHODE RIVER INCLUDING TWO IN CADLE CREEK AND ONE OFF THE DOCK OF THE SMITHSONIAN CENTER FOR ENVIRONMENTAL STUDIES. THESE AREAS REPRESENTED WATERSHEDS IMPACTED BY DIFFERENT LAND USE. SAMPLES WERE COLLECTED MONTHLY WITH 10 OYSTERS FROM EACH STATION. HEAVY METAL CONCENTRATIONS, AND MEASUREMENTS OF SOFT TISSUE DRY WEIGHT, SHELL DIMENSIONS AND SHELL WEIGHT WERE TAKEN. SEDIMENT ANALYSES FOR METALS WERE USED TO EVALUATE ENVIRONMENTAL CONTAMINATION.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN FRAZIER 301-955-3045 SCHOOL OF HYGIENE AND PUBLIC HEALTH THE JOHNS HOPKINS UNIVERSITY 615 N. WOLFE STREET BALTIMORE, MD 21205

GRID LOCATOR:

DISTRIBUTION OF METALS IN BALTIMORE HARBOR SEDIMENTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, BALTIMORE HARBOR

ABSTRACT:

THIS STUDY WAS AN INVENTORY OF METALS CONTAMINATION OF BALTIMORE HARBOR. SAMPLES WERE TAKEN IN 1973 AT 176 STATIONS AND ANALYZED FOR Cd, Cu, Cr, Hg, Pb, Zn, Ni and Mn. ATOMIC ABSORPTION SPECTROPHOTOMETRY WAS USED. DISTRIBUTION PATTERNS OF THE METALS WERE RELATED TO INDUSTRIAL AND MUNICIPAL INPUTS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDINC:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III, U.S. EPA ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MD 21401

GRID LOCATOR:

UPPER BAY SURVEY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THE UPPER BAY SURVEY WAS AN EXTENSION AND EXPANSION OF THE EARLIER CHESTER RIVER STUDY. ITS PURPOSE WAS TO ASSESS THE NATURE OF THE SOURCES, ROUTES, AND SINKS OF CHLORINATED HYDROCARBONS AND BACTERIA DAMAGING AQUATIC SPECIES. STATIONS (24) WERE LOCATED ACROSS 11 TRANSECTS FROM THE MOUTH OF THE SUSQUEHANNA TO THE MOUTH OF THE SEVERN RIVER. LABORATORY AND FIELD PROGRAMS WERE CARRIED OUT IN SIX FIELDS INCLUDING MARINE BIOLOGY, MICROBIOLOGY, BIOCHEMISTRY, ESTUARINE SEDIMENTOLOGY, HYDROLOGY AND METEOROLOGY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-765-1000 WESTINGHOUSE ELECTRIC CORPORATION - OCEANIC DIVISION BOX 1488 ANNAPOLIS, MARYLAND 21404

GRID LOCATOR:

TREND AMBIENT SURFACE WATER QUALITY MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

WATER QUALITY MONITORING HAS BEEN DONE THROUGHOUT THE CHESAPEAKE BAY AND ITS TRIBUTARIES SINCE 1974 TO ESTABLISH TRENDS. SAMPLES ARE COLLECTED MONTHLY AND ANALYZED FOR APPROXIMATELY 20 WATER QUALITY PARAMETERS. THERE ARE 150 STATIONS WITH 16 OF THEM RUNNING LONGITUDINALLY UP THE CENTER OF THE BAY. PRINTOUTS OF THE DATA ARE AVAILABLE IN ANNUAL TREND DATA REPORTS FROM 1975 THROUGH THE PRESENT. A SUMMARY REPORT FOR DATA FROM 1966-1974 IS AVAILABLE. ALSO AVAILABLE IS A PRINTOUT SUMMARIZING THE MASTER SAMPLING STATIONS AND WATER QUALITY DATA INVENTORY. THE DATA FROM 1966-1974 WAS NOT COLLECTED OR ANALYZED ON A REGULAR BASIS FOR THE 20 PARAMETERS. LITTLE DATA EXISTS ON HEAVY METALS, PESTICIDES AND OIL AND GREASE. IT IS POSSIBLE THAT THESE PARAMETERS MAY BE MEASURED ON AN ANNUAL BASIS IN THE FUTURE.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 301-269-3677 MARYLAND WATER RESOURCES ADMINISTRATION, WATER QUALITY SERVICES 416 CHINQUAPIN ROUND ROAD ANNAPOLIS, MD 21401

GRID LOCATOR:

REGIONAL DISTRIBUTION OF Zn, Cu, Cd and Hg IN SHELLFISH IN NORTH CHESAPEAKE

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THIS PAPER WAS DEVELOPED FROM 130 ANALYSES ON OYSTERS AND 41 ANALYSES ON CLAMS THAT WERE COLLECTED FROM THE UPPER CHESAPEAKE BAY DURING 1975 AND 1976. THE SAMPLES WERE ANALYZED FOR ZINC, COPPER, CADMIUM AND MERCURY. THEY WERE COLLECTED DURING THE HARVESTING SEASON BY THE MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE.

DATA AVAILABILITY:

PLATFORM TYPES:

190

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

GEORGE HELZ 301-454-3872 UNIVERSITY OF MARYLAND DEPARTMENT OF CHEMISTRY COLLEGE PARK, MARYLAND 20742

GRID LOCATOR:

DISTRIBUTION OF METALS IN ELIZABETH RIVER SEDIMENTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, ELIZABETH RIVER

ABSTRACT:

THIS STUDY PROVIDES BASELINE DATA OF CONDITIONS RELATING TO METALS CONTAMINATION OF ELIZABETH RIVER SEDIMENTS. SAMPLES WERE COLLECTED AT 96 STATIONS AND ANALYZED FOR Cd, Cu, Cr, Hg, Pb, Zn, A1, AND Fe USING ATOMIC ABSORPTION SPECTROPHOTOMETRY. SEWAGE TREATMENT PLANT LOCATIONS, INDUSTRIAL DISCHARGES AND TABLES CONCERNING TOXICITY OF METALS TO MARINE LIFE ARE INCLUDED.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III, EPA ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MD 21401

GRID LOCATOR:

DATA COLLECTED: APRIL 1974

PROJECTS:

LITTLE CREEK BOTTOM SEDIMENTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, LOWER CHESAPEAKE BAY, LITTLE CREEK

ABSTRACT:

TWENTY SEDIMENT SAMPLES TAKEN BY ENVIROPLAN WERE ANALYZED BY VIRGINIA INSTITUTE OF MARINE SCIENCE FOR NUTRIENTS, OILS, AND HEAVY METALS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR:

HEAVY METAL ANALYSES OF OYSTERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, CALVERT CLIFFS

ABSTRACT:

BEGINNING IN SEPTEMBER 1975, 5 OYSTER SAMPLES (CRASSOSTREA VIRGINICA) FROM 3 LOCATIONS AROUND THE CALVERT CLIFFS NUCLEAR POWER PLANT WERE COLLECTED QUARTERLY. THEY WERE ANALYZED FOR ZINC, MANGANESE, IRON, CHROMIUM, COPPER AND NICKEL BY ATOMIC ABSORPTION SPECTROPHOTOMETRY.

DATA AVAILABILITY:

ARCHIVE MEDIA:

PLATFORM TYPES:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

RANDY ROIG 301-269-2261 MARYLAND DEPARTMENT OF NATURAL RESOURCES POWER PLAN SITING PROGRAM TAWES BUILDING, 580 TAYLOR AVENUE ANNAPOLIS, MD 21401

GRID LOCATOR:

WHITE PERCH PROJECT

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, JAMES RIVER

ABSTRACT:

THIS STUDY EXAMINES THE DRASTIC POPULATION REDUCTION OF WHITE PERCH IN THE JAMES RIVER DURING THE SPRING OF 1975. ABOUT 30-40 SAMPLES WERE TAKEN FROM 4 STATIONS AND ANALYZED FOR HEAVY METALS BUT THE STUDY WAS TERMINATED WHEN THE POPULATION RETURNED TO NORMAL. NO REPORT WAS WRITTEN.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF SURVEILLANCE AND FIELD STUDIES VIRGINIA STATE WATER CONTROL BOARD 211 N. HAMILTON STREET RICHMOND, VIRGINIA 23230

GRID LOCATOR:

SEDIMENT-METAL ELUTRIATES ANALYSIS, "TRANSCO" SITE, ELIZABETH RIVER

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, ELIZABETH RIVER

ABSTRACT:

TWENTY-FOUR STATIONS WERE SAMPLED AS PART OF A STUDY BY NUS CORPORATION TO DETERMINE THE ENVIRONMENTAL IMPACT OF DREDGING OPERATIONS FOR THE "TRANSCO" SITE IN THE ELIZABETH RIVER. SEDIMENT AND ELUTRIATE SAMPLES WERE ANALYZED FOR WATER QUALITY AND HEAVY METALS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR:

DATA COLLECTED: MAY 1975

PROJECTS:

LYNNHAVEN BAY BOTTOM SEDIMENTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, LOWER CHESAPEAKE BAY, LYNNHAVEN BAY

ABSTRACT:

SIX SEDIMENT SAMPLES TAKEN BY ENVIROPLAN WERE ANALYZED BY VIRGINIA INSTITUTE OF MARINE SCIENCE FOR SOLIDS, COD, AND HEAVY METALS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR:

INVESTIGATION OF HEAVY METAL CONCENTRATIONS OF SEDIMENT AND BIOTA IN THE VICINITY OF THE MORGANTOWN STEAM ELECTRIC GENERATING STATION

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, POTOMAC RIVER, MORGANTOWN

ABSTRACT:

MEASUREMENTS OF COPPER, NICKEL AND ZINC IN SEDIMENTS WERE TAKEN OVER A LARGE AREA IN THE VICINITY OF THE MORGANTOWN STEAM ELECTRIC GENERATING STATION. LEVELS OF THESE METALS IN THE BODY TISSUE OF TWO BIVALVES, <u>RANGIA CUNEATA</u> AND <u>MACOMA BALTHICA</u>, WERE MEASURED. APPROXIMATELY 42 STATIONS WERE SAMPLED ONCE IN JUNE 1975.

.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

RANDY ROIG 301-269-2261 MARYLAND DEPT. OF NATURAL RESOURCES POWER PLANT SITING PROGRAM TAWES BUILDING, 580 TAYLOR AVENUE ANNAPOLIS, MD 21401

GRID LOCATOR:

LOWER CHESAPEAKE BAY BOTTOM SEDIMENTS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, JAMES AND BACK RIVERS, SKIFFE'S AND DEEP CREEKS

ABSTRACT:

NINETEEN SEDIMENT SAMPLES, SEVEN ELUTRIATE SAMPLES AND SIX WATER COLUMN SAMPLES TAKEN BY THE ARMY CORPS OF ENGINEERS WERE ANALYZED FOR HEAVY METALS UNDER FOUR SEPARATE CONTRACTS BY VIRGINIA INSTITUTE OF MARINE SCIENCE.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR:

BIOLOGICAL AND CHEMICAL STUDIES OF DREDGED CANALS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, BACK RIVER, TOPPING CREEK.

ABSTRACT:

THIS STUDY CONCERNING A DEVELOPMENT OF INLAND HOUSING DEVELOPMENT CANALS AT THE MOUTH OF TOPPING CREEK WAS SUBMITTED TO THE ARMY CORPS OF ENGINEERS. EIGHT STATIONS WERE SAMPLED ONCE IN JULY AND ONCE IN OCTOBER. PARAMETERS MEASURED INCLUDED GRAIN SIZE, WATER QUALITY, HEAVY METALS AND OILS. IN ADDITION, BENTHIC BIOTA POPULATIONS WERE STUDIED EXTENSIVELY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23062

GRID LOCATOR:

THE FATE OF PETROLEUM HYDROCARBONS FROM AN EXPERIMENTAL OIL SPILL IN A SEMINATURAL ESTUARINE ENVIRONMENT.

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, YORK RIVER, CHEATHAM ANNEX, PENNIMAN SPIT.

ABSTRACT:

TWO LARGE PENS (576 m² EACH) WERE BUILT OUT FROM THE SHORE TO CONTAIN THE FRESH #2 FUEL OIL (85 1 SPILLED IN ONE, 28 1 IN THE OTHER). A CONTROL AREA WAS ESTABLISHED 50 m AWAY FROM THE PENS. SAMPLES OF OYSTERS, CLAMS, SEDIMENT AND WATER WERE TAKEN FROM EACH OF THE THREE AREAS BEFORE THE SPILL AND IMMEDIATELY (6 HRS.) AFTERWARDS FOR ABOUT A MONTH. LEVELS OF PETROLEUM HYDROCARBONS WERE ANALYZED USING GAS CHROMATOGRAPHY AND A COMPUTERIZED GC-MS SYSTEM.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. RUDOLF H. BIERI 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER POINT, VIRGINIA 23062

GRID LOCATOR:

EXPERIMENTAL OIL SPILL IN CUB CREEK, VIRGINIA

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, YORK RIVER, CHEATHAM ANNEX, QUEEN'S CREEK, CUB CREEK

ABSTRACT:

FIVE LARGE PENS (810 m² EACH) WERE BUILT TO ENCLOSE SOME OF THE CREEK ITSELF AND A LARGE AREA OF INTERTIDAL MARSH. FRESH OIL (570 1 EACH) WAS SPILLED INTO 2 PENS, WEATHERED OIL (760 1 EACH) INTO 2 OTHER PENS AND 1 PEN SERVED AS A CONTROL. ANOTHER CONTROL WAS ESTABLISHED OUTSIDE THE PENS. MEASUREMENTS WERE MADE TO DETERMINE THE EFFECTS OF THE OIL SPILL ON WATER QUALITY, MARSH GRASS, BENTHIC BIOTA, FISH, PLANKTON, FUNGI AND BACTERIA. PETROLEUM HYDROCARBON LEVELS WERE MEASURED IN SEDIMENT, WATER, FISH, CLAMS, OYSTERS AND ORGANIC DETRITUS. SAMPLING CONTINUES FOR MOST PARAMETERS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR: COMPLETE FILE DESCRIPTION SUBMITTED TO EDS IN JUNE 1978.

KEPONE MONITORING STUDY IN VIRGINIA WATERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, CHESAPEAKE BAY

ABSTRACT:

THE VIRGINIA STATE WATER CONTROL BOARD IS MONITORING KEPONE LEVELS IN SEDIMENT, WATER AND FISH. WATER AND SEDIMENT SAMPLES ARE TAKEN FROM 55-60 STATIONS IN THE JAMES RIVER AND ITS TRIBUTARIES WHILE THE FISH ARE SAMPLED FROM 15 ZONES IN THE JAMES AND LOWER CHESAPEAKE BAY - ALL WITH VARYING FREQUENCY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF SURVEILLANCE AND FIELD STUDIES VIRGINIA STATE WATER CONTROL BOARD 2111 N. HAMILTON STREET RICHMOND, VIRGINIA 23230

GRID LOCATOR:

KEPONE MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, JAMES RIVER, LOWER CHESAPEAKE BAY

ABSTRACT:

THIS PROGRAM MONITORS KEPONE LEVELS IN SHELLFISH AND CRABS IN THE JAMES RIVER AND LOWER CHESAPEAKE BAY ON A MONTHLY BASIS. SAMPLING OF SHELLFISH AT 10 STATIONS BEGAN IN DECEMBER 1975. SAMPLING OF CRABS AT 15-20 STATIONS AND 15 CRAB PLANTS BEGAN IN SPRING 1976.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804-786-7937 BUREAU OF SHELLFISH SANITATION DEPARTMENT OF HEALTH 109 GOVENOR STREET RICHMOND, VIRGINIA 23219

GRID LOCATOR:

HERBICIDES AND SUBMERGED PLANTS IN CHESAPEAKE BAY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, RHODE RIVER, POPLAR ISLANDS

ABSTRACT:

THIS PAPER IS PART OF AN ONGOING STUDY IN THE UPPER CHESAPEAKE BAY, MARYLAND INITIATED IN THE SPRING OF 1976. ITS PURPOSE IS TO STUDY THE EFFECTS THAT 6 HERBICIDES, SEDIMENTS AND NUTRIENTS HAVE ON ROOTED AQUATIC PLANTS. DOSE RESPONSE BIOASSAYS OF ATRAZINE TOXICITY WERE CARRIED OUT IN THE LABORATORY ON ZANICHELLIA PALUSTRIS, HORNED PONDWEED.

FOUR WATERSHEDS WERE MONITORED ALONG THE RHODE RIVER FOR RUNOFF. TWO OF THE ESTUARINE STATIONS WERE LOCATED ON THE RHODE RIVER AND ONE WAS LOCATED IN A TIDAL MUD FLAT NEAR THE POPLAR ISLANDS ON THE EASTERN SHORE OF MARYLAND. NO AGRICULTURE IS PRACTICED ON THE ISLANDS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DAVID CORRELL 301-261-4190 SMITHSONIAN INSTITUTION CHESAPEAKE BAY CENTER FOR ENVIRONMENTAL STUDIES ROUTE 4, BOX 622 EDGEWATER, MD 21037

GRID LOCATOR:

INPUT OF TRACE METALS TO MID-CHESAPEAKE BAY FROM SHORE EROSION

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THE PURPOSE OF THE STUDY WAS TO ASSESS THE TRACE METAL FLUX FROM SHORE EROSION TO THE BAY. SEDIMENT SAMPLES (48) WERE TAKEN FROM MID-BAY AND THE NORTHERN BAY AND ANALYZED FOR CONCENTRATIONS OF Si, A1, Fe, Ca, K, Ti, Cr, Mn, Co, Ni, Cu, Zn, Cd AND Pb. A MODEL IS PROPOSED THAT TRACES METAL INPUT INTO THE BAY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN, MARYLAND ROOM 301-454-3035 McKELDIN LIBRARY UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND 20742

GRID LOCATOR:

DATA COLLECTED: 1976

PROJECTS:

KEPONE: CHRONIC EFFECTS ON EMBRYO, FRY, JUVENILE, AND ADULT SHEEPSHEAD MINNOWS (CRYRINODON VARIEGATUS)

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY

ABSTRACT:

THE TOXICITY OF KEPONE TO THE EMBRYO, FRY, JUVENILE, AND ADULT SHEEPSHEAD MINNOW (CYPRINODON VARIEGATUS) WAS INVESTIGATED. FISH WERE EXPOSED IN 28-DAY AND 36-DAY TIME SPANS AND ANALYZED FOR KEPONE CONCENTRATIONS AND ABNORMALITIES.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 301-326-4281 CHESAPEAKE BIOLOGICAL LABORATORY P.O. BOX 38 SOLOMONS, MD 20688

GRID LOCATOR:

RURAL NON-POINT POLLUTION STUDIES IN MARYLAND

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, RHODE RIVER, SEVERN RIVER, CHOPTANK RIVER, POPLAR ISLANDS.

ABSTRACT:

ACTIVITIES BEGAN IN 1976. DATA ON HERBICIDE AND FERTILIZER APPLICATION, SOIL CHEMISTRY, VOLUME AND COMPOSITION OF RUNOFF WATERS, RAINFALL, SOIL MOISTURE AND TEMPERATURE, PLANT GROWTH, NUTRIENT REMOVAL, SOIL COVERAGE BY PLANTS, SOIL EROSION RATES, SOIL MINERALOGY AND PARTICLE SIZE DISTRIBUTION WAS OBTAINED. RUNOFF SAMPLES FROM 8 BASIN-SIZED WATERSHEDS WERE ANALYZED FOR CATION AND HERBICIDE CONCENTRATIONS. HERBICIDE CONCENTRATIONS IN WATER, SUSPENDED SEDIMENTS AND BOTTOM SEDIMENTS WERE MEASURED AS WELL AS TURBIDITY, SALINITY, PHYTOPLANKTON CHLOROPHYLL CONCENTRATIONS AND BOTTOM SEDIMENT CHARACTERISTICS. SUBMERGED VEGETATION POPULATION STUDIES WERE DONE IN THE FIELD. LAB ASSAYS WERE PERFORMED ON LINURON AND ATRAZINE TOXICITY EFFECTS ON SUBMERGED VEGETATION. FIVE FIELD STATIONS WERE SAMPLED MONTHLY ON THE RHODE RIVER, 8 STATIONS ON THE CHOPTANK RIVER AND 4 STATIONS AROUND THE POPLAR ISLANDS WERE SAMPLED FOUR TIMES A YEAR. DATA AVAILABILITY: SIX STATIONS ON THE SEVERN RIVER WERE SAMPLED ONCE.

```
207
```

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DAVID CORRELL 301-261-4190 SMITHSONIAN INSTITUTION CHESAPEAKE BAY CENTER FOR ENVIRONMENTAL STUDIES ROUTE 4, P.O. BOX 622 EDGEWATER, MD 21037

GRID LOCATOR:

THE DETERMINATION OF TRACE AMOUNTS OF CADMIUM IN OYSTERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, JAMES RIVER, GREAT WICOMICO RIVER

ABSTRACT:

OYSTER SAMPLES WERE TAKEN IN JUNE AND JULY 1976 FROM TWO LOCATIONS IN THE CHESAPEAKE BAY--FROM THE MOUTH OF THE GREAT WICOMICO RIVER AND FROM THE TIP OF MULBERRY ISLAND IN THE JAMES RIVER. THE SAMPLES WERE ANALYZED FOR CADMIUM CONCENTRATIONS BY ATOMIC ABSORPTION SPECTROMETRY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN, McKELDIN LIBRARY 301-454-3035 MARYLAND ROOM UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND 20742

GRID LOCATOR:

HERBICIDE ANALYSIS OF CHESAPEAKE BAY WATERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

ELEVEN STATIONS ALONG A LONGITUDINAL AXIS OF THE CHESAPEAKE BAY WERE SAMPLED DURING THE FIRST WEEK OF JUNE 1976. THE WATER SAMPLES WERE TESTED FOR THE HERBICIDES ALOCHLOR, ATRAZINE, AND SIMAZONE BY GAS CHROMATOGRAPY.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN AUSTIN 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III, U.S. EPA ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MARYLAND 21401

GRID LOCATOR: COMPLETE FILE DESCRIPTION SUBMITTED TO EDS IN JUNE 1978.

BIOGEOCHEMISTRY OF TRACE METALS IN CHESAPEAKE BAY

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY

ABSTRACT:

THIS ONGOING PROJECT CONCERNS BIOGEOCHEMICAL CYCLING OF TRACE ELEMENTS IN THE CHESAPEAKE BAY. IT ATTEMPTS TO QUANTIFY THE INPUTS OF METALS SUCH AS IRON, MANGANESE, ZINC AND COPPER INTO THE BAY AND STUDY THEIR DISTRIBUTION AND BEHAVIOR. THERE ARE FOUR SECTIONS TO THE PROGRESS REPORT. THEY ARE THE FATE OF PARTICLE - ASSOCIATED METALS IN THE CHESAPEAKE BAY, THE BEHAVIOR OF IRON IN THE POTOMAC RIVER ESTUARY, INVESTIGATIONS OF BOTTOM SEDIMENT COMPOSITION IN THE CHESAPEAKE BAY, AND INTERSTITIAL WATER INVESTIGATIONS. THE REPORT SUMMARIZES PAST RESEARCH IN THE FIELD AS WELL AS PRESENTS NEW DATA GENERATED FROM THE STUDY. SAMPLES ARE TAKEN FROM THE SUSQUEHANNA FLATS DOWN THE VERTICAL AXIS OF THE CHESAPEAKE BAY TO THE YORK RIVER.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

ANDREW EATON 301-338-8255 THE JOHNS HOPKINS UNIVERSITY, CHESAPEAKE BAY INSTITUTE 34TH AND CHARLES ST. BALTIMORE, MD 21218

GRID LOCATOR:

EFFECTS OF CHANNEL MAINTENANCE DREDGING OF CONTAMINATED SEDIMENTS ON ACCUMULATION OF THE PESTICIDE KEPONE BY BLUEGILL SUNFISH, CHANNEL CATFISH, AND A MACTRID CLAM.

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, JAMES RIVER

ABSTRACT:

THE STUDY WAS CONDUCTED IN THE JAMES RIVER NEAR THE BAY. TWO CONSECUTIVE 28-DAY LIVE-BOX STUDIES WERE CONDUCTED AT 5 STATIONS: ONE UPSTREAM FROM THE DREDGING, TWO NEAR THE DREDGING, AND TWO DOWNSTREAM FROM THE DREDGING. SAMPLES OF SEDIMENT, WATER AND THE BIOTA WERE TAKEN AT FOUR DAY INTERVALS. REPORT INCLUDES SEDIMENT AND WATER DATA FROM VIRGINIA STATE WATER CONTROL BOARD AND ARMY CORPS OF ENGINEERS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

211

INVENTORY:

PUBLICATIONS:

CONTACT:

LIBRARIAN 804-786-0000 VIRGINIA COMMONWEALTH UNIVERSITY 910 WEST FRANKLIN STREET RICHMOND, VA 23230

GRID LOCATOR:

KEPONE IN SOME DEEP CREEK SEDIMENT

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, LOWER CHESAPEAKE BAY, DEEP CREEK

ABSTRACT:

EIGHT SEDIMENT SAMPLES TAKEN BY THE ARMY CORPS OF ENGINEERS WERE ANALYZED BY VIRGINIA INSTITUTE OF MARINE SCIENCE FOR KEPONE LEVELS.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DR. MICHAEL E. BENDER 804-642-2111 VIRGINIA INSTITUTE OF MARINE SCIENCE GLOUCESTER PT., VA 23062

GRID LOCATOR:

MONITORING OF THE UPPER CHESAPEAKE BAY FOR THE SYMETRICAL TRAZINE HERBICIDES ATRAZINE AND SIMAZINE

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, SUSQUEHANNA RIVER, POTOMAC RIVER

ABSTRACT:

THIS PROGRAM COLLECTED AND ANALYZED SURFACE WATER SAMPLES FROM THE UPPER CHESAPEAKE BAY AND THE POTOMAC RIVER ESTUARY FOR ATRAZINE AND SIMAZINE HERBICIDES. SAMPLES WERE COLLECTED MONTHLY DURING THE 1977 SEASON TO MEASURE SEASONAL VARIATIONS OF HERBICIDE CONCENTRATIONS IN SURFACE RUNOFF. SAMPLING WILL CONTINUE THROUGH THE 1978 APPLICATION SEASON. SAMPLES WERE COLLECTED ALONG THE LONGITUDINAL AXIS OF THE CHESAPEAKE BAY AT STATIONS ALONG THE EPA ANNAPOLIS FIELD OFFICE WATER QUALITY MONITORING NETWORK. USING THE MEAN DAILY FLOWS, DAILY LOADINGS WERE COMPUTED.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOHN AUSTIN, JR. 301-224-2740 ANNAPOLIS FIELD OFFICE, REGION III ENVIRONMENTAL PROTECTION AGENCY ANNAPOLIS SCIENCE CENTER ANNAPOLIS, MARYLAND 21401

GRID LOCATOR:

PATUXENT RIVER PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, PATUXENT RIVER

ABSTRACT:

THIS PROGRAM CONTAINS 21 TASKS AND WILL INCLUDE SUCH AREAS AS FISH DISTRIBUTION, BENTHIC MACROINVERTEBRATE DISTRIBUTION, SEDIMENT ANALYSES, WATER QUALITY, NON-POINT SOURCE ASSESSMENT OF POLLUTANT LOADINGS, BIOACCUMULATION OF TOXIC ORGANIC COMPOUNDS AND HEAVY METALS IN ESTUARINE ORGAINISMS, AND FECAL COLIFORM DISTRIBUTIONS. DATA COLLECTED WILL BE DURING 1978. THE PROGRAM WILL GENERATE A SET OF DATA THAT REPRESENTS SEASONAL AND SPATIAL CHANGES IN THE PATUXENT RIVER SYSTEM. A LITERATURE AND DATA BASE SURVEY WILL BE CONDUCTED FOR THE PATUXENT RIVER.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

PETER G. ROBERTSON 301-269-3677 MARYLAND DEPARTMENT OF NATURAL RESOURCES WATER RESOURCES ADMINISTRATION, WATER QUALITY SERVICES 416 CHINQUAPIN ROUND ROAD ANNAPOLIS, MARYLAND 21403

GRID LOCATOR:
ANNEX IV

Monitoring Programs

Toxics in the Chesapeake Bay

The 22 monitoring programs identified for toxics in the Chesapeake Bay form two categories, as follows:

> Continuous monitoring programs presently active in the Chesapeake Bay - 21 files.

Continuous monitoring programs initiated after January 1967 that have operated five (5) years or longer, but are presently not operational - 0 files.

Continuous monitoring programs initiated prior to January 1967 that have operated ten (10) years or longer and are presently not operational - 1 file.

The programs are arranged by date of initiation, earliest first.

MONITORING PROJECTS: NPDES PERMIT COMPLIANCE MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA

ABSTRACT:

THIS FILE CONTAINS POINT DISCHARGE TESTING DATA FROM AS EARLY AS 1946. BY THE MID-1960'S THE STATE WATER CONTROL BOARD HAD DEVELOPED A REGULAR MONITORING PROGRAM. IN 1972 NPDES UNDER PL 92-500 REPLACED THIS PROGRAM. EACH MAJOR DISCHARGER IS TESTED BY VSWCB AT LEAST ANNUALLY TO VERIFY THE DATA FROM THE DISCHARGER MONITORING REPORTS. MINOR DISCHARGERS SHOULD BE TESTED ANNUALLY. SOME PARAMETERS TESTED INCLUDE NUTRIENTS, HEAVY METALS, KEPONE AND OILS. THESE REPORT ARE ON FILE WITH EACH OF THE RESPECTIVE DMR'S WHICH TOTAL APPROXIMATELY 4000 FILES.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF APPLIED TECHNOLOGY VIRGINIA STATE WATER CONTROL BOARD 2111 N. HAMILTON STREET RICHMOND, VA 23230

GRID LOCATOR: COMPLETE FILE DESCRIPTION SUBMITTED TO EDS IN JUNE 1978.

DELAWARE ESTUARY WATER QUALITY SURVEILLANCE PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC, DELAWARE BAY, LOWER BAY ESTUARINE REGION, MARCUS HOOK PENNSYLVANIA TO TRENTON NEW JERSEY

ABSTRACT:

SINCE JULY 9, 1962, THE WATER DEPARTMENT HAS CONDUCTED A WEEKLY SURVEY BY BOAT OF THE QUALITY OF THE ESTUARINE WATERS OF THE DELAWARE RIVER FROM MARCUS HOOK, PA. TO TRENTON, NJ. THE PROGRAM CONSISTS OF A WEEKLY COLLECTION OF GRAB SAMPLES FROM THE CENTER OF THE NAVIGATION CHANNEL AT EACH OF 23 STATIONS. EACH LOCATION IS FIXED BY THE PILOT OF THE BOAT BY REFERENCE TO BUOYS, RANGE LIGHTS, AND OTHER NAVIGATION AIDS. ANALYSES INCLUDE: MERCURY, ALUMINUM, TEMPERATURE, PH, ALKALINITY, TURBIDITY, DISSOLVED OXYGEN, BOD, COD, SPECIFIC CONDUCTANCE, CHLORIDES, ORTH- AND POLY-PHOSPHATES, AMMONIA, NITRATE, NITRITE, PHENOLS, NICKEL, CADMIUM, COPPER, CHROMIUM, ARSENIC, MANGANESE, LEAD, AND BERYLLIUM. (DATA FROM 1965 TO 1972 IS AVAILABLE IN STORET. ACCESS: A=PHILWDPT)

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

4

INVENTORY:

PUBLICATIONS:

CONTACT:

DENNIS D. BLAIR 215-686-1776 PHILADELPHIA WATER DEPARTMENT RESEARCH AND DEVELOPMENT DIVISION 1270 MSB 15TH AND JFK BLVD. PHILADELPHIA, PENNSYLVANIA USA 19107

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 147.

WATER RESOURCES DATA FOR PENNSYLVANIA, WATER QUALITY RECORDS

GENERAL GEOGRAPHIC AREA:

NORTH AMERICA, U.S., PENNSYLVANIA

ABSTRACT:

THIS IS AN ONGOING STUDY OF THE QUALITY OF SURFACE WATERS OF PENNSYLVANIA. THERE ARE APPROXIMATELY 250 STATIONS FROM WHICH DATA ARE COLLECTED, MOST OF WHICH MONITOR STREAM DISCHARGE, TEMPERATURE, SPECIFIC CONDUCTIVITY AND DISSOLVED OXYGEN. IN ADDITION, ABOUT 200 STATIONS REPORT BIOCHEMICAL OXYGEN DEMAND, DISSOLVED CA, MG, NA, K, CL, F, SULFATE, NITRATE, ORTHOPHOSPHATE, CARBONDIOXIDE, BICARBONATE, AND CARBONATE, AS WELL AS PH, ALKALINITY, HARDNESS, NONCARBONATE HARDNESS AND COLOR. ABOUT 50 STATIONS ADDITIONALLY MONITOR DISSOLVED SILICA, FE AND MN, COLIFORM AND STREPTOCCI. SPOT CHECKS ARE MADE FOR SURFACTANTS, TURBIDITY, AND DISSOLVED AMMONIA, AL, AS, CD, CR, CU, PB, HG, NI, ZN AND A VARIETY OF PESTICIDES IN WATER AND SEDIMENTS. THE DATA ARE PRINTED ANNUALLY IN SUMMARY REPORTS. DETAILED DATA FROM MANY INDIVIDUAL STATIONS ARE AVAILABLE. (AVAILABLE AS ANNUAL REPORTS FOR ALL STATEWIDE MONITORS OR AS REPORTS FROM EACH STATION) DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

P. DEMARTE 717-782-4514 UNITED STATES GEOLOGICAL SURVEY 228 WALNUT STREET HARRISBURG PENNSYLVANIA USA 17108

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 140.

FISH KILL INVESTIGATIONS IN MARYLAND WATERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND

ABSTRACT:

REPORTED FISH KILLS IN MARYLAND WATERS ARE INVESTIGATED. WATER ANALYSES AND ANALYSES OF FISH FOR CAUSE OF DEATH ARE CONDUCTED. COUNTS, SIZES, SPECIES LISTS AND VALUES FOR FISHES INVOLVED ARE RECORDED. (SUMMARY SHEETS BY YEAR WITH DATE, LOCATION, SPECIES, PROBABLE CAUSE OF KILL)

.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

HOWARD KING 301-269-3783 MARYLAND DEPARTMENT OF NATURAL RESOURCES FISHERIES ADMINISTRATION TAWES STATE OFFICE BUILDING ANNAPOLIS, MARYLAND USA 21401

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III DACE 35

MORGANTOWN STEAM ELECTRIC STATION

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, POTOMAC RIVER, MARYLAND, MORGANTOWN

ABSTRACT:

THIS REPORT (VOLUMES I AND II) SUMMARIZES THE RESULTS OF A 10-YEAR PERIOD (1966-1976) OF STUDIES. THEY WERE DONE BY THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA ON THE AQUATIC ECOSYSTEM OF THE POTOMAC RIVER IN THE VICINITY OF THE MORGANTOWN STEAM ELECTRIC STATION. THE REPORT INCLUDES HYDROTHERMAL DATA, CHEMICAL AND PHYSICAL DATA (SALINITY, TEMPERATURE, NUTRIENTS, DISSOLVED OXYGEN, PH, FREE DISSOLVED CARBON DIOXIDE, HEAVY METALS), PHYTOPLANKTON AND BACTERIOLOGICAL DATA, MACROINVERTEBRATE SURVEYS AND FISH SURVEYS. THE APPENDICES INCLUDE TWO STUDIES (1971 AND 1976) ON METALS IN OYSTERS.

DATA AVAILABILITY:

PLATFORM TYPE:

1

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 215-567-3700 THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA DIVISION OF LIMNOLOGY AND ECOLOGY 19TH AND THE PARKWAY PHILADELPHIA, PA 19103

GRID LOCATOR:

DATA COLLECTED: 1967 - PRESENT

MONITORING PROJECTS:

ENVIRONMENTAL CONTAMINANT MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, JAMES RIVER, POTOMAC RIVER, SUSQUEHANNA RIVER

ABSTRACT:

THIS ONGOING MONITORING PROGRAM IS A SUBPROGRAM OF THE NATIONAL PESTICIDE MONITORING PROGRAM AND HAS BEEN IN EXISTENCE SINCE 1967. THERE ARE THREE STATIONS ON TRIBUTARIES OF THE CHESAPEAKE BAY. THEY ARE ON THE POTOMAC RIVER, THE SUSQUEHANNA RIVER AND THE JAMES RIVER. PRIMARILY, FRESHWATER FISH ARE COLLECTED. THIS IS DONE ONCE A YEAR. SPECIES ARE ANALYZED FOR RESIDUES OF DDT, DDE, DDD, ENDRIN, DIELDRIN, ALDRIN, CHLORDANE, LINDANE, HEPTACHLOR, HEPTACHLOR EPOXIDE, AND TOTAL PCBS. FIVE METALS INCLUDING SELENIUM, ARSENIC, LEAD, CADMIUM AND MERCURY ARE ALSO ANALYZED.

DATA AVAILABILITY:

PLATFORM TYPE:

 $\mathbf{0}$

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

LARRY LUDKE 314-442-3101 COLUMBIA NATIONAL FISHERIES RESEARCH LABORATORY U.S. FISH AND WILDLIFE SERVICE ROUTE 1 COLUMBIA, MISSOURI 65201

GRID LOCATOR:

CHEMICAL, BACTERIOLOGICAL AND PHYSICAL STUDY ON THE CHESAPEAKE BAY IN THE VICINITY OF CALVERT CLIFFS, MARYLAND

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, CALVERT CLIFFS

ABSTRACT:

WATER SAMPLES OBTAINED MONTHLY FROM STATIONS IN THE VICINITY OF THE CALVERT CLIFFS NUCLEAR GENERATING STATION, MARYLAND ARE ANALYZED FOR A NUMBER OF CHEMICAL, BACTERIOLOGICAL AND PHYSICAL PARAMETERS. THE RESULTS OF THESE ANALYSES ARE AVAILABLE FROM THE BALTIMORE GAS AND ELECTRIC COMPANY (BGE) IN THE FORM OF YEARLY CONTRACT REPORTS BY THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY.

DATA AVAILABILITY:

PLATFORM TYPE:

Q

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

301-274-3134 N. G. LASSAHN DIRECTOR ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY BENEDICT MARYLAND USA 20612

301-234-6188 BALTIMORE GAS AND ELECTRIC COMPANY 1020 GAS AND ELECTRIC BUILDING LEXINGTON AND LIBERTY STREETS BALTIMORE MARYLAND USA 21203

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III PAGE 103.

HYDROGRAPHIC, CHEMICAL AND BACTERIOLOGICAL SURVEY

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, PATUXENT RIVER, POTOMAC RIVER, CALVERT CLIFFS AREA, MARYLAND

ABSTRACT:

HYDROGRAPHIC, CHEMICAL AND BACTERIOLOGICAL SURVEYS ARE CONDUCTED BY THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY IN THE VICINITY OF THREE POWER GENERATING STATIONS IN MARYLAND. THEY ARE THE CHALK POINT STATION ON THE PATUXENT RIVER, THE MORGANTOWN GENERATING STATION ON THE POTOMAC RIVER AND THE CALVERT CLIFFS NUCLEAR GENERATING STATION ON THE CHESAPEAKE BAY. THE CONTRACT AGENCIES ARE THE BALTIMORE GAS AND ELECTRIC COMPANY (BGE) FOR THE CALVERT CLIFFS STATION AND THE POTOMAC ELECTRIC POWER COMPANY (PEPCO) FOR BOTH THE CHALK POINT AND THE MORGANTOWN STATIONS.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 301-274-3134 ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY BENEDICT MARYLAND USA 20612

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 62.

SEDIMENT ANALYSES FOR HEAVY METALS

GENERAL GEOGRAPHIC AREA:

U.S., COASTAL, NORTH ATLANTIC, CHESAPEAKE BAY, MARYLAND, POTOMAC RIVER, MORGANTOWN

ABSTRACT:

THIS ONGOING PROGRAM MONITORS HEAVY METALS IN POTOMAC RIVER SEDIMENTS NEAR THE MORGANTOWN STEAM ELECTRIC GENERATING STATION. WORK IS DONE BY THE ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY FOR THE POTOMAC ELECTRIC POWER COMPANY (PEPCO).

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 301-274-3134 ACADEMY OF NATURAL SCIENCES OF PHILADELPHIA BENEDICT ESTUARINE RESEARCH LABORATORY BENEDICT MARYLAND USA 20612 STEVEN GUILAND 202-872-2543 POTOMAC ELECTRIC POWER COMPANY 1900 PENNSYLVANIA AVENUE, N.W. WASHINGTON, D.C. USA 20006

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 60.

DATA COLLECTED: 1970 - PRESENT

MONITORING PROJECTS:

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, CALVERT CLIFFS

ABSTRACT:

THE RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM BEGAN IN 1970 TO MONITOR THE AREA AROUND THE CALVERT CLIFFS NUCLEAR POWER PLANT ON THE CHESAPEAKE BAY. EACH YEAR APPROXIMATELY 1500 ANALYSES ARE PERFORMED ON 800 ENVIRONMENTAL SAMPLES FROM THE AQUATIC, ATMOSPHERIC AND TERRESTRIAL ENVIRONMENTS. SOME OF THE PARAMETERS MEASURED INCLUDE TRITIUM, STRONTIUM-89, STRONTIUM-90 AND GROSS ALPHA, BETA AND GAMMA EMITTING NUCLIDES.

•

DATA AVAILABILITY:

ARCHIVE MEDIA:

PLATFORM TYPE:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

STEVEN LONG 301-269-2261 MARYLAND DEPARTMENT OF NATURAL RESOURCES POWER PLANT SITING PROGRAM TAWES BUILDING, 580 TAYLOR AVENUE ANNAPOLIS, MD 21401

GRID LOCATOR:

SHELLFISH SANITATION PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

THIS ONGOING SHELLFISH MONITORING PROGRAM BEGAN IN 1971. SAMPLING IS DONE AT 1500 STATIONS AROUND THE CHESAPEAKE BAY AND ITS TRIBUTARIES AT LEAST ONCE A MONTH. SAMPLES ARE ANALYZED FOR TEMPERATURE, SALINITY, DISSOLVED OXYGEN, FECAL COLIFORM AND TOTAL COLIFORM. SHELLSTOCK AND FINFISH ARE COLLECTED ROUTINELY AND ANALYZED FOR HEAVY METAL, PESTICIDE, CHLORINATED HYDROCARBON, BACTERIAL AND ORGANIC CHEMICAL CONCENTRATIONS. BOATS ARE COLLECTING SAMPLES FOUR DAYS A WEEK, 50 WEEKS A YEAR.

5 1

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

MAX EISENBERG 301-383-2365 MARYLAND DEPARTMENT OF HEALTH AND MENTAL HYGIENE 201 W. PRESTON STREET, P.O. BOX 13387 BALTIMORE, MD 21201

GRID LOCATOR:

DATA COLLECTED: 1972 TO PRESENT

MONITORING PROJECTS: DISCHARGER MONITORING REPORTS

GENERAL GEOGRAPHIC AREA: NORTH ATLANTIC OCEAN, U.S., VIRGINIA

ABSTRACT:

THESE REPORTS ARE REQUIRED AS PART OF THE NPDES PROGRAM UNDER PL 92-500 INITIATED IN 1972. MUNICIPAL AND INDUSTRIAL DISCHARGERS SELF-TEST THEIR OWN EFFLUENT TO MONITOR SUCH PARAMETERS AS NUTRIENTS, HEAVY METALS, KEPONE AND OILS WITH VARYING FREQUENCIES ASSIGNED EACH PARAMETER. APPROXIMATELY 4000 FILES ARE NOW ACTIVE AND ARE ADMINISTERED BY THE STATE FOR EPA.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF APPLIED TECHNOLOGY VIRGINIA STATE WATER CONTROL BAORD 2111 N. HAMILTON STREET RICHMOND, VA 23230

GRID LOCATOR:

HEAVY METALS IN COASTAL FISHES OF NORTH CAROLINA

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, COASTAL, U.S., NORTH CAROLINA

ABSTRACT:

HEAVY METAL SURVEY OF NORTH CAROLINA COASTAL FISHES.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

RICHARD BARBER 919-728-2111 DUKE UNIVERSITY MARINE LABORATORY BEAUFORT, NORTH CAROLINA 28516

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 119.

PCB'S AND PESTICIDES IN STRIPED BASS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, MARYLAND, NANTICOKE AND CHOPTANK RIVERS

ABSTRACT:

PESTICIDES AND PCB'S IN STRIPED BASS EGGS WERE ANALYZED. 24 FISH WERE ALSO COLLECTED FROM THE NANTICOKE AND CHOPTANK RIVERS, MARYLAND DURING SPAWNING SEASON IN 1972 AND 1973. BACKGOUND LEVELS WERE SOUGHT AND POSSIBLE EFFECTS ON SUCCESS OF SPAWNING WERE EVALUATED. SPORADIC SAMPLING HAS BEEN DONE SINCE. (ANALYSES PERFORMED BY EPA GULF BREEZE LAB, USFW SERVICE LAB IN COLUMBIA MISSOURI, AND WESTINGHOUSE OCEAN ENGINEERING CENTER)

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

JOSEPH BOONE 301-269-3785 MARYLAND DEPARTMENT OF NATURAL RESOURCES FISHERIES ADMINISTRATION TAWES STATE OFFICE BUILDING ANNAPOLIS, MARYLAND USA 21401

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 39.

NATIONAL ESTUARINE MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY

ABSTRACT:

THIS PROGRAM MONITORS TRENDS OF HEAVY METALS AND PESTICIDE CONTAMINATION IN JUVENILE FISH. TRAWLS ARE LOCATED AT THE MOUTHS OF MAJOR TRIBUTARIES TO THE BAY INCLUDING THE FOLLOWING RIVERS: SUSQUEHANNA, PATUXENT, PATAPSCO, CHOPTANK, POTOMAC, RAPPAHANNOCK, YORK, JAMES, SOUTH, MAGOTHY AND ELK. SAMPLES ARE TAKEN AT 6 MONTH INTERVALS AND AT LEAST 2 SPECIES OF FISH ARE COLLECTED. SAMPLES ARE ANALYZED FOR CHLORINATED PESTICIDES, ORGANO-PHOSPHATE PESTICIDES, PCB'S, PHENOXYHERBICIDES, LEAD, CADMIUM AND MERCURY. THE PROGRAM WILL RESUME IN FY 1978.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

PHILIP BUTLER 904-932-5311 EPA ENVIRONMENTAL RESEARCH LABORATORY SABINE ISLAND GULF BREEZE, FLORIDA 32561

GRID LOCATOR:

TREND AMBIENT SURFACE WATER QUALITY MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND

ABSTRACT:

WATER QUALITY MONITORING HAS BEEN DONE THROUGHOUT THE CHESAPEAKE BAY AND ITS TRIBUTARIES SINCE 1974 TO ESTABLISH TRENDS. SAMPLES ARE COLLECTED MONTHLY AND ANALYZED FOR APPROXIMATELY 20 WATER QUALITY PARAMETERS. THERE ARE 150 STATIONS WITH 16 OF THEM RUNNING LONGITUDINALLY UP THE CENTER OF THE BAY. PRINTOUTS OF THE DATA ARE AVAILABLE IN ANNUAL TREND DATA REPORTS FROM 1975 THROUGH THE PRESENT. A SUMMARY REPORT FOR DATA FROM 1966-1974 IS AVAILABLE. ALSO AVAILABLE IS A PRINTOUT SUMMARIZING THE MASTER SAMPLING STATIONS AND WATER QUALITY DATA INVENTORY. THE DATA FROM 1966-1974 WAS NOT COLLECTED OR ANALYZED ON A REGULAR BASIS FOR THE 20 PARAMETERS. LITTLE DATA EXISTS ON HEAVY METALS, PESTICIDES AND OIL AND GREASE. IT IS POSSIBLE THAT THESE PARAMETERS MAY BE MEASURED ON AN ANNUAL BASIS IN THE FUTURE.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 301-269-3677 MARYLAND WATER RESOURCES ADMINISTRATION, WATER QUALITY SERVICES 416 CHINQUAPIN ROUND ROAD ANNAPOLIS, MD 21401

GRID LOCATOR:

OCEAN DISPOSAL SITE OFF THE COAST OF MARYLAND

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN

ABSTRACT:

THE ENVIRONMENTAL PROTECTION AGENCY HAS BEEN COLLECTING DATA SINCE MARCH 1974 FROM TWO OCEAN DISPOSAL SITES APPROXIMATELY 60 MILES OFF THE COAST OF MARYLAND. THE PARAMETERS INCLUDED IN THIS STUDY ARE: ALUMINUM, CADMIUM, CHROMIUM, COBALT, COPPER, IRON, LEAD, MANGANESE, NICKEL, SILVER, TITANIUM, VANADIUM AND ZINC IN BOTH THE SEDIMENT AND ORGANISMS. MEASUREMENTS OF METALS IN CLAMS AND SCALLOPS ARE SEPARATED BY MUSCLE AND ORGANS. OTHER PARAMETERS INCLUDED ARE: SPECIES DETERMINATION OF BENTHIC ANIMALS, WEIGHT OF BENTHIC ANIMALS AND LENGTH OF BENTHIC ANIMALS. THE PROJECT WAS INITIATED BY DR. D. K. PHELPS OF THE EPA ENVIRONMENTAL RESEARCH LABORATORY IN NARRAGANSETT, RHODE ISLAND BUT WAS TRANSFERRED TO THE EPA ANNAPOLIS FIELD OFFICE IN 1977.

DATA AVAILABILITY:

PLATFORM TYPE:

19

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DON LEAR 301-224-2740 ENVIRONMENTAL PROTECTION AGENCY, REGION III ANNAPOLIS FIELD OFFICE ANNAPOLIS SCIENCE CENTER ANNAPOLIS MARYLAND USA 21401

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 162.

DATA COLLECTED: JUNE 1974 TO PRESENT

MONITORING PROJECTS:

HEAVY METALS MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, JAMES, YORK, POTOMAC RIVERS, WILOBY BAY

ABSTRACT:

SAMPLES OF OYSTERS ARE OBTAINED FROM 40 STATIONS IN THE LOWER CHESAPEAKE BAY AND ITS TRIBUTARIES AND ANALYZED FOR CU, CD, ZN, HG AT SIX MONTH INTERVALS. THE PROGRAM ATTEMPTS TO MONITOR SHELLFISH CONTAMINATION IN VIRGINIA WATERS BY HEAVY METALS.

•

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804-786-7937 BUREAU OF SHELLFISH SANITATION DEPARTMENT OF HEALTH 109 GOVERNOR STREET RICHMOND, VA 23219

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III. PAGE 93.

MONITORING PROJECTS: PESTICIDE MONITORING PROGRAM

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, COASTAL, U.S., CHESAPEAKE BAY, EASTERN SHORE, VA. TIDAL RIVERS AND BAYS

ABSTRACT:

OYSTERS OBTAINED AT SIX MONTH INTERVALS FROM 18 STATIONS LOCATED IN TIDAL TRIBUTARIES AND BAYS OF VIRGINIA ARE ANALYZED FOR DDT, DDE, DDD, DIELDRIN, PCB'S. THE DATA IS USED TO MONITOR SHELLFISH CONTAMINATION BY THE CHEMICALS.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804-786-7937 BUREAU OF SHELLFISH SANITATION DEPARTMENT OF HEALTH 109 GOVERNOR STREET RICHMOND, VA 23219

GRID LOCATOR:

COMPLETE FILE DESCRIPTION LOCATED IN ANNEX III, PAGE 95.

DATA COLLECTED: DECEMBER 1975 TO PRESENT

MONITORING PROJECTS:

KEPONE MONITORING STUDY IN VIRGINIA WATERS

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, CHESAPEAKE BAY

ABSTRACT:

THE VIRGINIA STATE WATER CONTROL BOARD IS MONITORING KEPONE LEVELS IN SEDIMENT, WATER AND FISH. WATER AND SEDIMENT SAMPLES ARE TAKEN FROM 55-60 STATIONS IN THE JAMES RIVER AND ITS TRIBUTARIES WHILE THE FISH ARE SAMPLED FROM 15 ZONES IN THE JAMES AND LOWER CHESAPEAKE BAY - ALL WITH VARYING FREQUENCY.

DATA AVAILABILITY:

PLATFORM TYPE:

ARCHIVE MEDIA:

22

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DIRECTOR 804-257-0056 BUREAU OF SURVEILLANCE AND FIELD STUDIES VIRGINIA STATE WATER CONTROL BOARD 2111 N. HAMILTON STREET RICHMOND, VA 23230

GRID LOCATOR:

MONITORING PROJECTS: KEPONE MONITORING

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., VIRGINIA, JAMES RIVER, LOWER CHESAPEAKE BAY

ABSTRACT:

THIS PROGRAM MONITORS KEPONE LEVELS IN SHELLFISH AND CRABS IN THE JAMES RIVER AND LOWER CHESAPEAKE BAY ON A MONTHLY BASIS. SAMPLING OF SHELLFISH AT 10 STATIONS BEGAN IN DECEMBER 1975. SAMPLING OF CRABS AT 15-20 STATIONS AND 15 CRAB PLANTS BEGAN IN SPRING 1976.

DATA AVAILABILITY:

PLATFORM TYPES:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

CLOYDE W. WILEY, DIRECTOR 804-786-7937 BUREAU OF SHELLFISH SANITATION DEPARTMENT OF HEALTH 109 GOVERNOR STREET RICHMOND, VA 23219

GRID LOCATOR:

DATA COLLECTED: APRIL 1976 - PRESENT

MONITORING PROJECTS:

RURAL NON-POINT POLLUTION STUDIES IN MARYLAND

GENERAL GEOGRAPHIC AREA:

NORTH ATLANTIC OCEAN, U.S., COASTAL, CHESAPEAKE BAY, MARYLAND, RHODE RIVER, SEVERN RIVER, CHOPTANK RIVER, POPLAR ISLANDS

ABSTRACT:

ACTIVITY BEGAN IN 1976. DATA ON HERBICIDE AND FERTILIZER APPLICATION, SOIL CHEMISTRY, VOLUME AND COMPOSITION OF RUNOFF WATERS, RAINFALL, SOIL MOISTURE AND TEMPERATURE, PLANT GROWTH, NUTRIENT REMOVAL, SOIL COVERAGE BY PLANTS, SOIL EROSION RATES, SOIL MINERALOGY AND PARTICLE SIZE DISTRIBUTION WAS OBTAINED. RUNOFF SAMPLES FROM 8 BASIN-SIZED WATERSHEDS WERE ANALYZED FOR CATION AND HERICIDE CONCENTRATIONS. HERBICIDE CONCENTRATIONS IN WATER, SUSPENDED SEDIMENTS AND BOTTOM SEDIMENTS WERE MEASURED AS WELL AS TURBIDITY, SALINITY, PHYTOPLANKTON CHLORPHYLL CONCENTRATIONS AND BOTTOM SEDIMENT CHARACTERISTICS. SUBMERGED VEGETATION POPULATION STUDIES WERE DONE IN THE FIELD. LAB ASSAYS WERE PERFORMED ON LINURON AND ATRAZINE TOXICITY EFFECTS ON SUBMERGED VEGETATION. FIVE FIELD STATIONS WERE SAMPLED MONTHLY ON THE RHODE RIVER, 8 STATIONS ON THE CHOPTANK RIVER AND 4 STATIONS AROUND THE POPLAR ISLANDS WERE SAMPLED FOUR TIMES A YEAR. SIX STATIONS ON THE SEVERN RIVER WERE SAMPLED ONCE.

PLATFORM TYPE:

ARCHIVE MEDIA:

FUNDING:

INVENTORY:

PUBLICATIONS:

CONTACT:

DAVID CORRELL 301-261-4190 SMITHSONIAN INSTITUTION, CHESAPEAKE BAY CENTER FOR ENVIRONMENTAL STUDIES ROUTE 4, P.O. BOX 622 EDGEWATER, MD 21037

GRID LOCATOR: