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EFFECTS OF TRICLOSAN ON THE OYSTER PARASITE, PERKINSUS MARINUS

AND ITS HOST, THE EASTERN OYSTER, CRASSOSTREA VIRGINICA

FU-LIN E. CHU,* ERIC D. LUND AND JENNIFER A. PODBESEK

Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062

ABSTRACT Because temperature plays an important role on progression and transmission of disease caused by Perkinsus

marinus in the field, the effects of triclosan on the viability of P. marinusmeronts (trophozoites) and oyster hemocytes were tested

at a range of environmental relevant temperatures. Additionally, we examined the triclosan effect on reactive oxidative inter-

mediate production (ROI) by oyster hemocytes and tested the efficacy of treating infected oysters with triclosan in eliminating/

reducing P. marinus infection in a pilot experiment. When P. marinus cultivated at 13�C, 20�C, and 28�Cwas exposed to triclosan

at corresponding temperatures, 2–10 mM triclosan killed 10–30% at 20�C and $40% at 28�C, but #10% at 13�C.When exposure

of P. marinus cultivated at 28�C to triclosan at 26�C, similar mortality was noted as those recorded at 28�C. Treating hemocytes

from oysters maintained at 13�C, 20�C, or 26�C with 2, 5, 10 mM triclosan at corresponding temperatures, killed 2% to 13% at

13�C and 6 to16% at 20�C. No mortality occurred in hemocytes exposed to 2–10 mM triclosan at 26�C. However, at the highest

temperature and triclosan concentration tested (28�C, 10 mM triclosan), hemocyte mortality exceed 30%. Exposure of hemocytes

to triclosan concentrations of 2–10 mM for 4 h at 4�C significantly reduced the ROI production in hemocytes in a dose-dependent

response. Treating P. marinus infected oysters with 300 and 600 mg triclosan/oyster daily for 8 wk, significantly slowed the disease

progression.

KEY WORDS: Crassostrea virginica, hemocytes, oyster, oyster parasite, Perkinsus marinus, reactive oxidative intermediates,

triclosan

INTRODUCTION

The protozoan parasite Perkinsus marinus, causative agent

of Dermo disease, is presently the most prevalent and destruc-
tive parasite of the eastern oyster Crassostrea virginica (Gmelin
1791) in midAtlantic water of the United States. It has
decimated oyster populations along the Atlantic coast and the

Gulf of Mexico for at least 30 y. The impact of Dermo disease
on the Chesapeake Bay has been particularly devastating in that
current oyster populations are now less than 1% of historic

levels. The basis of P. marinus’s virulence is presently unclear.
One unusual aspect of P. marinus is that unlike other parasitic
protozoans, it is able to synthesize a range of saturated and

unsaturated fatty acids, including the essential fatty acid,
arachidonic acid (AA, 20:4n-6) (Chu et al. 2002), a precursor
for a series of eicosanoids involved in many biochemical and

physiological processes. Perkinsus marinus has a nonphotosyn-
thetic plastid in the biflagellate zoospore stage (Perkins 1996).The
presence of a plastid in Perkinsus spp. was recently confirmed
with molecular and ultrastructural evidence (Teles-Grilo et al.

2007, Stelter et al. 2007). The acyl elongation reaction in the
meront (trophozoite) stage of this parasite is catalyzed by a FAE1-
like ketoacyl-CoA synthase class of condensing enzyme pre-

viously only reported in higher plants and algae (Venegas-Caleron
et al. 2007). Thus, P. marinus likely uses type II fatty acid
synthase pathway for fatty acid synthesis.

Triclosan, a specific inhibitor of type II class of fatty acid
synthases, is a widely used and largely unregulated antimicro-
bicide. It is contained in many daily use household products
such as soap, shampoo, toothpaste, and mouthwash. Triclosan

inhibits the growth and disease progression of Plasmodium spp.
via inhibition of fatty acid synthesis (Surolia & Surolia 2001).
Our previous results revealed that whereas causing minimal

effect on oyster hemocyte viability, triclosan not only inhibits

growth and greatly reduces viability of in vitro cultured P.

marinus meronts, but it also inhibits the parasite’s fatty acid
synthetic ability (Lund et al. 2005).

Both field and laboratory studies have shown that temper-

ature plays an important role in Dermo disease progression and
transmission. Disease prevalence and intensity are positively
correlated with temperature (Chu 1996, Chu & Volety 1997,

Burreson & Ragone-Calvo 1996, Ragone-Calvo et al. 2003). In
vitro, P. marinus meronts proliferate and develop rapidly to
prezoosporangium stage at temperatures of 20�C to 30�C (Chu

& Greene 1989). Furthermore, temperature significantly affects
the lipid metabolism in the parasite. Relevant to rapid disease
progression and advancement at high temperature, fatty acid
synthesis rates and exogenous lipid incorporation and metab-

olism in P. marinus meronts are positively correlated with tem-
perature (Chu et al. 2003, Lund et al. 2004). The objective of
the present study was to test the influence of temperature on

effects of triclosan on the viability of P. marinus meronts. To
address concerns about potential toxic effect on host cells, the
effect of triclosan on oyster hemocyte viability at a range of

environmentally relevant temperatures and on hemocyte reac-
tive oxidative intermediate production were also examined.
Additionally, the efficacy of treating infected oysters with

triclosan in eliminating/reducingP.marinus infection was tested
in a pilot experiment.

MATERIALS AND METHODS

Experiments

Effects of Triclosan on Perkinsus marinus Meronts and Oyster

Hemocytes at Different Temperatures

Perkinsus marinus meronts were cultivated as previously
described (Chu et al. 2002) in medium defined by La Peyre et al.
(1993). Medium was prepared with artificial sea water (ASW)

and adjusted to an osmolarity of 590 (equivalent to a salinity of*Corresponding author. E-mail: chu@vims.edu
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20, Lund et al. 2004). Medium was then sterilized by 0.2-mm
filtration and stored at 4�C until use. Meronts were inoculated

at a concentration of 1 3 106/mL and cultivated in 10-mL
aliquots of medium in T-10 tissue culture flasks at 13�C, 20�C,
and 28�C. Meronts at exponential growth phase (7 days post
inoculation) were harvested to test the effect of triclosan on

their viability corresponding to their cultivation temperatures.
To test the effect of triclosan on oyster hemocyte’s viability

at different temperatures, oyster were maintained in a flow-

through flume with ambient estuarine water (York River, VA,
salinity ¼ 16–26 psu). A few days (5–6 days) after ambient
temperature reached 13�C, 20�C, or 26�C, 8–14 oysters were

selected from the flume randomly for hemolymph sampling.
Approximately 1.0 mL of hemolymph was withdrawn from
each oyster. All hemolymph samples were stored individually in
microtubes at 4�C and examined microscopically for any

contamination with bacteria or gametes. If contamination was
visible the sample was discarded. Non-contaminated hemo-
lymph samples were pooled and adjusted to a concentration of

2.0–3.0 3 106 cells/mL of hemolymph by centrifugation (1,000
rpm ¼ 200 3 g) for 20 min 4�C and hemocytes were tested for
viability after incubation with different concentrations of

triclosan. To test effect of triclosan on oyster hemocytes at the
temperature 28�C, oysters were acclimated to 28�C and main-
tained at the same temperature for up to 2 wk before hemocytes

were sampled from oysters for viability assays.
The effects of triclosan on the viability ofP. marinusmeronts

and oyster hemocytes were assessed using the MTS/PMS assay.
Briefly, 100 mL of 7 day old meront culture containing 3.0 3 106

cells/mL medium or 100 mL of pooled hemolymph contain-
ing 2.0–3.0 3 106 cells/mL of hemolymph was pipetted to each
well (n ¼ 8) of a 96-well microplate. Two and a half micro liters

of triclosan stock solution in EtOH (0 mM, 0.08 mM, 0.2 mM,
or 0.4 mM) were then added to each well (n ¼ 8 wells per
triclosan concentration) to achieve 4 triclosan treatment groups

with a final triclosan concentration of 0 mM, 2 mM, 5 mM, and 10
mMrespectively. The final ethanol concentration was 0.5%. The
96-well microplate was incubated at temperatures correspond-
ing to the oyster maintenance (13�C, 20�C, 26�C, and 28�C) and
P. marinus cultivation (13�C, 20�C, and 28�C) temperatures for
24 h in the dark. Additionally, triclosan effects on meronts
cultured at 28�C were also tested at 26�C and hemocytes from

oysters maintained at 26�C were also tested at 28�C. After 24 h
incubation, viability of P. marinus meronts and oyster hemo-
cytes were assessed employing the MTS/PMS assay. Briefly,

20 mL of the MTS/PMS working solution was added to each
well, mixed well and incubated again in the dark for 3 h at
corresponding temperatures (13�C, 20�C, 26�C, or 28�C). The
absorbance (optical density, OD) of formazan, the reduction
product of MTS/PMS, was measured at 450 nm using a Tecan
GENios microplate reader (Maennedorf, Switzerland). Instru-
ment control and data acquisition by MS-Excel was provided

by the computer softwareXFLUOR4V4.50 (Tecan,Maennedorf,
Switzerland). The percentage of viable cells is expressed as the
percentage of the OD measured for the control.

TheMTS/PMS assay assesses cell viability and proliferation
based on dehydrogenation of oxidizable substrates by dehy-
drogenase of live cells coupled with the reduction of the

tetrazolium dye. It indirectly measures the number of viable
cells, because the amount of mitochondrial dehydrogenase
present in the samples is directly proportional to the number

of viable cells. This assay has been applied to measure viability
of other cells, including P. marinus meronts and oyster hemo-

cytes (Dungan & Hamilton 1995, Volety et al. 1999, Soudant
et al. 2005).

The 3,(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethy-
phenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS)

was obtained from Promega (CellTiter 96 AQ, Cat.#G1111,
Madison, WI, USA) and phenazine methosulfate (PMS) was
obtained from Sigma (P9625, St. Louis, MO). MTS and PMS

reagents were prepared according to manufacturers’ instruc-
tions (Promega, CellTiter 96 Aqueous NonRadioactive Cell
Proliferation Assay, Technical Bulletin #169, Promega Corpo-

ration, Madison, WI).

Effect of Triclosan on Reactive Oxidative Intermediate (ROI)

Production in Oyster Hemocytes

The ROI production by triclosan treated hemocytes were

assessed employing a chemiluminescence assay modified from
Bramble and Anderson (1998). Briefly, hemocytes were first
treated with different concentrations of triclosan (0 mM, 2 mM,
5 mM, or 10 mM triclosan n ¼ 4 per triclosan concentration) at

4�C for 4 h, then the zymosan stimulated ROI production in
hemocytes was quantified by luminometry. Uncontaminated
pooled hemolymph drawn from 20 oystersmaintained in a flow-

through flume with ambient estuarine water (York River, VA,
salinity ¼ 16–26 psu) in January 2006 (temperature ¼ 4–8�C)
was centrifuged at 200 3 g for 10 min at 4�C. After carefully

removing the plasma, hemocytes were gently resuspended in
ASW of salinity 20. The resuspended hemocytes were dispensed
into 4 Eppendorf tubes and triclosan was added to each tube at
concentrations of 0 mM, 2 mM, 5 mM, or 10 mMusing ethanol as

a carrier. The final ethanol concentration was 0.5%. After
incubation at 4�C for 4 h the tubes containing the hemocytes
were centrifuged, the supernatant was removed and hemocytes

were resuspended in fresh ASW to a concentration of 7 3 106

hemocytes/mL. One hundred microliters of the hemocyte
suspension was added each well of a white flat bottomed 96

well microtiter plate (7 3 105 hemocytes/well, n ¼ 8 wells/
treatment) along with 70 mL luminol working solution. The
final luminol concentration was 5 mM. The plate was then read

on a GENios microplate reader in luminometry mode for 5
cycles (integration time¼ 1,000ms, gain¼ 150, kinetic interval¼
142 s) to determine baseline chemiluminescence. Afterward,
20 mL of zymosan working solution (1 mg/mL) was added to

4 wells of each treatment to stimulate an ROI response. The
remaining 4 wells from each treatment received 20 mLASW and
served as unstimulated controls. The microplate was then

returned to the plate reader and chemiluminescence was
recorded in kinetics mode for an additional 20 cycles (45 min).

Effects of Triclosan on Dermo Disease Progression in Infected Oysters

Triclosan is a relatively hydrophobic molecule that has low

solubility in sea water. Thus direct addition of triclosan to
seawater containing oysters may be an inefficient way to deliver
the drug. An experiment was designed to test whether algal feed

could be used as a delivery device for the drug by adding
triclosan dissolved in ethanol to algal feed used to maintain
oysters in closed circulation systems. Concentrated algae

(Instant Algae Shellfish diet 1800, ReedMariculture, Campbell,
CA) were used for delivering triclosan to the oysters. Triclosan
was dissolved in EtOH then added to algae (0.1% EtOH (v/w)
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in all treatment feeds) and stirred at room temperature (20�C)
overnight. The incorporation of triclosan into algae was

determined by gas chromatography equipped with a flame
ionization detector (GC/FID). Triclosan incorporation effi-
ciency was determined to be >85%. Three concentrations of
triclosan in algae, were fed to Perkinsus-infected oysters (Cras-

sostrea virginica, DEBBIE strain, shell length ¼ 40–70 mm).
The experimental oysters had been previously maintained in the
York River (VA) for more than a year before the start of the

experiment in July 2005. Oysters were maintained in 1 mm-
filtered 20�C York River water (YRW) at a density of 20 indi-
viduals per 40 L tank with three replicate tanks per treatment.

Water was changed three times per week and oysters were fed
0.2 g algae per individual daily. Oysters were treated with 0,
150, 300, or 600 mg triclosan per oyster daily by feeding them
a combination of triclosan-sorbed algae and nonsorbed algae

(a total of 0.2 g per oyster). Fifteen oysters were sampled prior
to the start of the experiment to determine initial P. marinus
infection levels. After 8 wk 10 oysters from each replicate tank

were sampled (30 per treatment group) for determination of P.
marinus body burden (# of parasite cells per g of wet oyster
tissue weight [g ww], Mean ± SE, n ¼ 30) and condition index.

To test whether long term triclosan exposure causes death in
oysters, triclosan exposure was extended an additional 5 wk.

Statistical Analysis

Analysis of Variance (ANOVA) was conducted on all data

to determine differences among treatments. When results were
significant (P < 0.05), Tukey’s test was used to determine sig-
nificant differences between each sampling point.

RESULTS

Effects of Triclosan on Perkinsus marinus Meronts and Oyster

Hemocytes: A Comparison at Different Temperatures

Temperature significantly affected the effect of triclosan on
the viability of Perkinsus marinus meronts. Perkinsus marinus
meront cells were more susceptible to the effect of triclosan at
higher temperatures (Table 1). A concentration of 2–10 mM
triclosan (0.6, 1.5, and 2.9 mg/mL) effectively killed 10% to 30%
of meronts at 20�C, and up to 40% at 26�C and 28�C (Table 1).
But, P. marinus has a better triclosan tolerance at 13�C: viability
was reduced only slightly (4% to 10%), whenP.marinusmeronts
were exposed to 2–10 mM triclosan at this temperature (Table 1).

The effect of triclosan on hemocyte viability did not changemuch
with temperature (Table 2). Exposure of oyster hemocytes to 2, 5,

or 10 mM triclosan at 13, and 20�C resulted in mortality of 2%
to16%.Nomortality occurred in hemocytes exposed to 2–10 mM
triclosan at 26�C. Only at the highest temperature and triclosan
concentration tested (28�C, 10 mM triclosan) did hemocyte

mortality exceed 30% (Table 2). Similarly, mortality of > 30%
occurred when hemocytes from oysters maintained at 26�C were
exposed to 10 mM triclosan at 28�C (data not shown).

Effect of Triclosan on Reactive Oxidative Intermediate (ROI)

Production in Oyster Hemocytes

In all treatments hemocytes stimulated with zymosan pro-
duced a significant chemiluminescence response (ROI burst)

relative to the unstimulated controls (Fig. 1). A dose-dependent
response of chemiluminescence production with significant
treatment effect was noted when hemocytes were exposed to
0 mM, 2 mM, 5 mM, or 10 mM triclosan at 4�C, a temperature

similar to the oyster maintenance temperature when the assays
were conducted. These results suggest that triclosan exposure
significantly reduced the ROI production as measured by

chemiluminescence assay.

Effects of Triclosan on Dermo Disease Progression in Infected Oysters

At the start of the experiment, the initial parasite burden in
infected oysters was 34,000 ± 44,000 cells/g ww (n¼ 15, Mean ±
SD). Although all of the triclosan treatment groups exhibited
higher body burdens relative to the initial sampling, treating P.

marinus infected oysters with triclosan concentrations of 300
and 600 mg/oyster daily for 8 wk, significantly slowed down the
disease progression (Fig. 2) as indicated by lower parasite

burdens in the groups treated with 300 and 600 mg triclosan/
oyster/day.

The control treatment had the highest body burden (252,513±
120,857 cells/g ww) of all treatments and the 300- and 600-mg
treatments (169,657 ± 63,825 and 213,785 ± 71,551 cells/g ww)
had significantly lower body burdens than the control. The 150
mg/day treatment body burdens (229,667 ± 53,957 cells/g ww)

were intermediate in intensity between the control and the
higher dosage treatments, but not significantly different from
either. Oyster mortality was low when triclosan exposure was

extended to 14 wk of exposure. Mortalities were 3.3%, 3.3%,
1.6%, and 8.3% for the control, 150 mg, 300 mg, and 600 mg

TABLE 1.

Effect of triclosan on the viability of Perkinsus marinus meronts

at 13�C, 20�C, 26�C and 28�C. Viability (Mean % SD, n$ 8) of

triclosan treated P. marinus meronts is expressed as the % of the

control (P.marinus meronts incubated with 0 mM triclosan).
Letters denote significant differences at the P < 0.05 level.

Viability

Triclosan

13�C
P. marinus

20�C
P. marinus

26�C
P. marinus

28�C
P. marinus

0 mM 100a 100a 100a 100a

2 mM 96.1 ± 13.0ab 89.5 ± 5.2b 54.2 ± 4.6b 55.5 ± 5.2b

5 mM 90.5 ± 8.5b 80.5 ± 6.5c 54.5 ± 4.6b 56.9 ± 5.4b

10 mM 90.3 ± 10.7b 69.7 ± 4.9d 62.9 ± 8.6b 60.8 ± 4.6b

TABLE 2.

Effect of triclosan on the viability of oyster hemocytes at 13, 20,

26 and 28�C. Viability (Mean % SD, n$ 8) of triclosan treated
hemocytes is expressed as the % of the control (hemocytes

incubated with 0 mM triclosan). Letters denote significant

differences at the P < 0.05 level.

Viability

Triclosan

13�C
Hemocytes

20�C
Hemocytes

26�C
Hemocytes

28�C
Hemocytes

0 mM 100a 100a 100a 100a

2 mM 97.8 ± 6.4a 93.7 ± 4.9ab 100a 100a

5 mM 89.5 ± 5.2b 88.6 ± 2.2bc 100a 100a

10 mM 86.9 ± 4.8b 84.1 ± 10.4c 100a 63.0 ± 20b
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treatments, respectively. No significant change in oyster condi-
tion index caused by triclosan exposure was observed. Condi-

tion indices for all treatments were not significantly different
from one another at the P < 0.05 level.

DISCUSSION

Results obtained from the present study are consistent with
our previous findings (Lund et al. 2005). Triclosan greatly

reduces cell viability of in vitro cultured Perkinsus marinus, but
it has much less effect on oyster hemocyte viability. These effects
are consistent with a mode of action in which triclosan acts as an

inhibitor of type II fatty acid synthases, which has been found in
bacteria and several Apicomplexan protists. Triclosan inhibits
the growth and disease progression of Plasmodium spp. via
inhibition of fatty acid synthesis (Surolia & Surolia 2001). Tri-

closan killed procyclic and bloodstream forms of Trypanosoma
brucei in culture and inhibited its fatty acid remodeling and

myristate exchange pathway (Paul et al. 2004). The in vitro tested
concentrations are 1,000 times lower than the level allowed by

FDA in daily use hygiene products such as toothpaste and
mouthwash (3 g/L versus 2.9 mg/L for 10 mM).

Temperature plays an important role in regulating the
interaction of Perkinsus marinus and its host, the eastern oyster,

Crassostrea virginica (Andrews 1988, Chu & La Peyre 1993,
Burreson & Ragone-Calvo 1996, Ragone-Calvo et al. 2003).
Disease progression and transmission in the field is positively

correlated with temperature (Andrews 1988, Burreson &
Ragone-Calvo 1996). High temperatures favor P. marinus
development at in vitro conditions (Chu & Greene 1989) and

a laboratory study has shown that disease prevalence and
intensity are positively correlated with experimental temper-
atures (Chu&La Peyre 1993). Previously, we tested the effect of
temperature on the uptake and metabolism of fluorescent lipid

analogs and fatty acid synthesis by P. marinus meronts (Chu
et al. 2003). It was found that: (1) low metabolism and
bioconversion of incorporated fluorescent lipid analogs at low

temperatures (10�C < 18�C < 28�C); (2) fatty acid synthesis rate
decreases with decreasing cultivation temperatures (10�C <
18�C < 28�C), and (3) the synthesis rate for the eicosanoid

precursor, arachidonic acid, is suppressed at 10�C (Lund et al.
2004). Surprisingly, results of the present study showed that
P. marinus meront cells were more susceptible to the effect of

triclosan at higher temperatures, but had a better triclosan
tolerance at 13�C. It is not known whether it is because of
temperature effects on the solubility of this hydrophobic
drug. Triclosan has a solubility in water of 10 mg/L at 20�C
(Yalkowsky & He 2003), over 3-fold higher than the highest
triclosan concentration tested in this study (10 mM¼ 2.9 mg/L).
The profound effect of triclosan at high temperature on P.

marinus may be good for infected oysters.
Triclosan exposure at concentrations 2–10 mM caused much

higher mortality in P. marinus meronts than in hemocytes at

20�C, 26�C, and 28�C. The high mortality recorded in hemo-
cytes derived from oysters maintained at 28�C and exposed to
10 mM triclosan is believed to be caused by a synergistic effect of
high triclosan concentration and temperature stress, because

hemocytes tested at 26�C and the same triclosan concentration
(10 mM) did not exhibit any mortality. It has been reported that
phagocytic activity of oyster hemocytes is reduced at temper-

atures greater than 25�C (Chu & LaPeyre 1993). Oysters lack a
specific immune response, but possess various humoral and
cellular factors important in defense against pathogenic

microbes. Cell-mediated defensemechanisms are mainly carried
out by hemocytes in oysters (Chu 2000). Hemocytes are
considered to be the primary cellular effectors because of their

ability to recognize, phagocytose and destroy a spectrum of
microbes including bacteria, yeast and Perkinsus marinus
meronts (La Peyre et al. 1995, Chu 2000). The synergistic effects
of lysosomal enzymes and cytotoxic oxygen metabolites (e.g.,

O2
–, H2O2,

1O2, NO) produced from respiration burst during
phagocytosis are critical for the killing of the phagocytosed or
encapsulated pathogens (see review: Chu 2000). Significant

reduction of ROI production in triclosan treated oyster hemo-
cytes at in vitro conditions suggests an effect of triclosan on
oyster physiological functions including immune defense sys-

tem. However, in the present study the effect of triclosan on
ROI response was tested only at a temperature (4�C) similar
to the oyster maintenance temperature at the time when

Figure 1. Reactive oxidative intermediate (ROI) production (chemilumi-

nescences) in unstimulated and zymosan stimulated oyster hemocytes after

4 h incubation with triclosan at 4�C (n$ 6). The arrow indicates the time

when zymosan was added to the hemocytes to stimulate ROI.

Figure 2. Perkinsus marinus body burdens of oysters treated with 0, 150,

300, and 600 mg triclosan/day for 8 wk. Values are mean %SE (n$ 30).

Different letters denote significant differences at the P < 0.05 level.
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hemolymph was sampled. Further studies are needed to test the
impact of triclosan on ROI production at a range of temper-

atures similar to the hemocyte viability studies in the present
study to determine whether temperatures influence the triclosan
effect on ROI production. Moreover, it would be interesting to
pursue in the future a study that follows the ROI response along

with Dermo progression at a range of temperatures.
Results of the present study suggest that treatment with

triclosan can reduce Perkinsus marinus infection intensities in

infected oysters relative to untreated oysters. The 300 mg
triclosan/day treatment appears to exhibit the most desirable
responses of the treatments tested: lowest P. marinus infection

level and lowest mortality. The in vivo tested concentrations,
150, 300, and 600 mg per day (0.52, 1.04, and 2.07 m mole
respectively) is 10–20 times lower than the allowed level by FDA
in daily use of toothpaste (7.5 mg/dose). However, further

experiments are needed to confirm these results and modifica-

tions to the protocol will probably be required to actually
reduce infection intensities, rather than just reduce the rate of

replication under conditions conducive to parasite prolif-
eration. Furthermore, it is necessary to determine if there is
any triclosan bioaccumulation in oysters after feeding with
triclosan sorbed algae. Therefore, although our results suggest

that this drug may be useful in treating infected oysters, further
toxicology studies utilizing infected and uninfected oysters will
be required to ultimately determine the utility of using triclosan

to treat Dermo infections in hatchery and research environs.
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