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A NEW IN SITU METHOD FOR MEASURING SESTON UPTAKE BY SUSPENSION-FEEDING

BIVALVE MOLLUSCS

RAYMOND E. GRIZZLE,'* JENNIFER K. GREENE,! MARK W. LUCKENBACH? AND
LOREN D. COEN?

Jackson Estuarine Laboratory and Department of Zoology, University of New Hampshire, Durham,
New Hampshire 03824; *Virginia Institute of Marine Science, College of William and Mary, Eastern
Shore Laboratory, Gloucester Point, Virginia 23062; 3Marine Resources Research Institute, South
Carolina Department of Natural Resources, Charleston, South Carolina 29412

ABSTRACT The most commonly used methods for measuring the amount of seston removed from the water column (uptake) by
populations of suspension-feeding bivalve molluscs involve taking discrete water samples followed by laboratory analyses. Here we
describe a new method based on in sifu fluorometry that provides rapid measurement of seston removal rates. The new system is
comprised of two identical units, each consisting of an in situ fluorometer, data logger and peristaltic pump with plastic tube attached
to a deployment device. The deployment device allows precise placement of the fluorometer probe and intake end of the plastic tube
so that in situ fluorescence (chlorophyll @) can be measured and water can be sampled for seston analyses in the laboratory from the
same height. The typical setup involves placing one unit upstream and the other downstream of the study area and sampling the water
at periodic intervals. Changes in seston concentration are revealed in the field by the fluorometers, and the sampled water can be
analyzed in the laboratory for various seston parameters. Comparisons of the in situ data with data from laboratory analyses of pumped
water samples were made for three species at four study sites: the eastern oyster (Crassostrea virginica), hard clam (Mercenaria
mercenaria), and blue mussel (Mytilus edulis). Comparisons of measured upstream versus downstream seston concentrations indicated
significant (#-tests, P < 0.05) differences (uptake) for six of eight trials based on in sifu fluorometry, but only marginally significant
(P < 0.10) differences at two of the four trials using laboratory chlorophyll ¢ measurements. These data demonstrate that compared
with sampling methods requiring laboratory analyses, the new in situ method provides much more rapid quantitative assessments and

may provide more accurate estimates.

KEY WORDS: bivalve, fluorometry, seston uptake, suspension-feeding, Crassostrea, Mercenaria, Mytilus

INTRODUCTION

Empirical and theoretical research demonstrates that popula-
tions of suspension-feeding bivalve molluscs can remove substan-
tial amounts of suspended particulates (seston) from the overlying
water column by their feeding activities (Ulanowicz & Tuttle
1992, Dame 1996, Newell, et al. 2005, Haamer & Rodhe 2000,
Cressman et al. 2003, Nelson et al. 2004). This has important
implications for shellfish aquaculture and more recently for water
quality management associated with shellfish restoration projects
(Luckenbach et al. 1999, 2005, Thayer et al. 2005). Field studies
on seston uptake typically involve laboratory analysis of discrete
water samples obtained manually or by pumps (Dame & Libes
1993, Newell & Shumway 1993, Cressman et al. 2003, Nelson et
al. 2004). This approach is effective and it allows the measurement
of multiple water parameters. However, there is a need to develop
in situ approaches that have the potential to greatly increase the
spatial and temporal resolution of measurements of the feeding/
seston uptake process.

A major impetus for development of the new method is the
need for quantitative success metrics for constructed shellfish
(mainly oysters) reefs that are part of ongoing restoration programs
in many areas. These projects often emphasize the ecological func-
tions of oysters, instead of or at least in addition to, their historical
role as a commercial resource (Luckenbach et al. 1999, 2005,
Brumbaugh et al. 2000, Coen & Luckenbach 2000). One of the
major ecological functions of oyster reefs is their potential influ-
ence on water quality because of their filtration capacity (Dame
1996, Dame et al. 2001, French McCay 2003, Peterson et al.
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2003). Field studies, however, typically have not demonstrated
measurable seston removal by natural (Dame & Libes 1993, Wil-
son-Ormond et al. 1997) or restored (Nelson et al. 2004) oyster
reefs. Cressman et al. (2003) is the only study we are aware of that
measured substantial (up to 25%) removal of seston by small in-
tertidal reefs. Hence, there is a need to critically assess this often-
cited reason for restoring shellfish reefs (Coen & Luckenbach
2000, Luckenbach et al. 2005). How much of an impact on water
quality should be expected from restored shellfish reefs?
Previous research has used in situ fluorometry to assess food
availability to cultured bivalves (Grant & Bacher 1998) and phy-
toplankton biomass as part of broader ecological studies (Gregor et
al. 2005). However, we are not aware of previous attempts to use
in situ fluorometry to measure seston uptake by benthic organisms
in the field. Here we describe a novel method for directly mea-
suring uptake rates, and the results of field trials involving three
bivalve species that compare measurements using the new in situ
method with laboratory analysis of pumped water samples.

DESCRIPTION OF IN SITU FLUOROMETRY APPARATUS

Each apparatus consists of a fluorometer (Seapoint Sensors
Model SCF,) with multimeter/datalogger (Extech Model 383,274),
and peristaltic pump (Masterflex Model 7533) with 1-cm ID plas-
tic tube attached to a custom-made deployment device (Fig. 1A, B,
C). The fluorometer probe is placed within a 5-cm ID PVC pipe
that is attached to the bottom plate. The probe and light shield are
held in position by a hose clamp on the outside of the PVC pipe;
loosening of the clamp allows the light shade and probe to be
moved up and down on the pipe and secured at any height above
the bottom plate. The bottom plate is designed to rest on the
bottom so the fluorometer probe remains at the same height
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Figure 1. New in situ fluorometer and water sampling apparatus. (A) Complete apparatus (one of two identical units); (B) close up oblique view
of fluorometer probe in deployment device; (C) close up face-on view; (D) deployment of two identical units over intertidal oyster reef in Florida.
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throughout the measurement period, but the entire apparatus can be
suspended at any height and moved up and down in the water
column as needed. A tail fin attached to the bottom plate orients
the probe so that water flows directly through the sensing chamber
as it is lowered to the bottom (Fig. 1C). The bottom plate is
constructed of 2-mm thick stainless steel sheet material and pro-
vides sufficient weight to hold the apparatus in position under most
flow conditions. The fluorometer probe and the end of the water
intake tube are placed at the same height so that comparisons can
be made between in situ fluorescence (chlorophyll @) and labora-
tory analysis of pumped water. Total cost of each unit is about
$5,000 (2006 USS$).

The typical setup involves placing one apparatus upstream and
another downstream of the study population and sampling the
water at periodic intervals (Fig. 1D). To be sure the downstream
apparatus is exposed to the same water mass as the upstream
apparatus, a floating object is released periodically from the up-
stream position to show the ambient water flow path across the
reef. Adjustments in location of either device, including raising the
apparatus to allow the tail fin to reorient the probe with respect to
water flow direction, can be made as needed. Changes in seston
concentration caused by bivalve feeding (“seston uptake”) are re-
vealed immediately by differences in the two fluorometer readings
(upstream vs. downstream), and the sampled water can be ana-
lyzed for various parameters to verify the fluorometry and provide
additional data on changes in seston characteristics.

MATERIALS AND METHODS

Populations of bivalve molluscs were studied at sites in New
Hampshire (a blue mussel, Mytilus edulis, reef), Virginia (hard
clam, Mercenaria mercenaria, beds at an aquaculture farm), South
Carolina (a restored eastern oyster, Crassostrea virginica, reef),
and midAtlantic Florida (several natural eastern oyster reefs).
Table 1 summarizes the environmental characteristics of the study
sites, and the measured seston uptake rates. Sites were chosen
because they met two criteria: (1) water less than ~1.5 m deep and
(2) water flow constrained laterally, or width-to-length ratio suf-
ficient to minimize lateral transport across the width of the
sampled area. Meeting these criteria would likely result in envi-
ronmental conditions (e.g., well mixed water column) that would
allow sampling at one height to be representative of the entire flow
field.

The general protocol for field studies consisted of making re-
peated measurements of environmental conditions and changes in
seston concentration upstream and downstream of each population
of bivalves based on in situ fluorometry and laboratory analysis of
pumped water samples (Table 1; Fig. 1C). Each of the fluorometer
probes and water intake tubes were set at 5-10 cm above the
bottom (either the top of the reef for mussels and oysters or the
sediment surface for clams). A set of measurements (each consist-
ing of 10-20 fluorometry readings recorded at 10-s intervals) was
made at 10-min intervals for the duration of each deployment at
each site (except for the South Carolina study, which consisted of
single readings recorded at 5-15-min intervals). The peristaltic
pumps required about 5 min to obtain each sample. Readings from
the two fluorometers also were compared side-by-side at the be-
ginning of each deployment and again after the last set of readings
was taken to be sure they gave similar readings.

Pumped water samples were stored in the dark on ice and
returned to the laboratory for filtration (Whatman GF/C or Gelman
GF/F filters) within 6 h of collection; the filters were further pro-

TABLE 1.

Summary of environmental characteristics, bivalve population data, and other information for all study sites.
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cessed immediately in most cases, or frozen until processed. The
New Hampshire, Florida and Virginia samples were analyzed
spectrophotometrically using acetone extraction and standard tech-
niques (APHA 1992). The South Carolina samples were analyzed
fluorometrically following a modified EPA Method 445.0 proce-
dure (Arar 1997, Rev. 1.2).

Bivalve densities were determined at most sites by sampling 5
to 10 of 0.16 m? quadrats, counting and measuring shell length or
height of all live bivalves collected to the nearest mm using cali-
pers. For the South Carolina oyster reef, data on bivalve size and
density available from previous samples taken at that site were
used. Flow length was the distance between the two fluorometers.
Water depth was measured at 10-min intervals using a marked rod.
Water flow speed was measured at the same height as the fluo-
rometer probes were placed (5-10 cm above the bottom) with a
Marsh-McBirney Model 201 electromagnetic current meter, with
10-20 replicate speeds recorded at 10-s intervals every 10 min for
the duration of the measurement period. Near-surface water speed
and flow direction were also estimated by releasing an orange at
the upstream site and recording travel time to the downstream site.
This provided a measurement of near-surface water flow speed to
compare with the near-bottom measurements and insured that the
sampling units were placed properly.

Data analysis consisted of comparisons of chlorophyll a con-
centrations, based on field data (in sifu fluorometry) with labora-
tory analysis of pumped water samples. Data were analyzed
graphically (scatterplots), and statistically (#-tests, regression and
correlation) using SYSTAT version 10 (2000) software. For the in
situ fluorometry data only, the #-tests were done using the means
of the mean values for each 10-min observation period.

RESULTS AND DISCUSSION

A total of eight trials of paired upstream versus downstream in
situ fluorometry measurements were taken at the four study areas;
pumped water samples were taken for laboratory chlorophyll a
analysis during four of the eight trials (Table 1). T-tests indicated
significant differences between mean upstream and downstream
fluorometry readings for six of the eight trials (Fig. 2), but only
marginally significant (P < 0.10) differences at two of the four
trials for laboratory measurements (Fig. 3). Both approaches, how-
ever, showed instances of seston uptake rates exceeding 25%.

A scatterplot of the full dataset comparing each in situ
flurorometry reading with its corresponding laboratory chlorophyll
measurement showed two distinct groupings (Fig. 4). Overall, this
assessment indicated that the two measurement techniques yield
comparable data, but their relationship is not simple.

Using In situ Fluorometry to Provide Rapid Measurement of
Seston Uptake

As already noted, field studies on seston uptake typically have
involved laboratory analysis of discrete water samples obtained
manually or by pumps using various sampling protocols (e.g.,
Dame & Libes 1993, Judge et al. 1993, Newell & Shumway 1993,
Cressman et al. 2003, Nelson et al. 2004). We obtained pumped
water samples for laboratory analysis as means of “ground truth-
ing” the in situ fluorometry data because in the long-term our goal
is to rely as much as possible on the latter. Most applications of in
situ fluorometry to date have been in the area of water quality
monitoring (e.g., Gregor et al. 2005), in some cases (e.g., Grant &
Bacher 1998) related to bivalve aquaculture. Our application es-
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sentially represents an ecological extension of the method, but it
required some important modifications to off-the-shelf fluorom-
eters. Ambient sunlight can strongly interfere with the sensor, so a
large aluminum plate was added to shade the probe (Fig. 1). It was
also necessary to construct a deployment apparatus that allowed
precise placement of the probe vertically, and it automatically
oriented the probe so the predominant water flow was directly
through the sensor chamber. These modifications have resulted in
an apparatus that is simple to deploy and appears to consistently
yield reliable data.

In situ fluorometry could become a fast, effective and nonde-
structive approach to quantifying the impacts of shellfish popula-
tions on seston removal but it needs further development, includ-
ing more comparisons with laboratory analysis of pumped water
samples. One of the issues that will need to be settled for some
applications concerns the relationship between the in situ fluorom-
etry data and laboratory-determined chlorophyll a concentrations.
Our data from four different areas showed two distinct groups,
with substantial disparity between the two in the relationship be-
tween fluorescence and chlorophyll a concentrations determined
by wet chemistry techniques (Fig. 4). Grant and Bacher (1998)
also reported substantial disparities between the two approaches.
Gregor et al. (2005) noted that differences between in situ fluoro-
metric methods and laboratory methods should be expected when
different analytical techniques (e.g., ethanol vs. acetone extraction)
are compared and phytoplankton taxonomic composition varies.
For our data, the pumped water samples were a composite taken
over about 5 min, as compared with multiple fluorometry reading
taken over about 2 min (see Methods section). Hence, although
both types of samples were taken at approximately the same time,
some of the differences (Fig. 4) could represent actual temporal
variability in seston concentrations.

Another potential limitation of in sifu fluorometry is that it does
not provide data on components of the seston other than phy-
toplankton that can be important food items for bivalves. However,
if chlorophyll a data alone are sufficient then in situ fluorometry
represents a much more effective approach compared with analysis
of pumped water samples because it provides rapid results, and if
fluorometers are deployed at multiple heights in the water column,
spatial variations in seston removal that are related to hydrody-
namical factors can be assessed. For example, a fully mixed water
column is not necessary for estimating uptake rates.

Seston Uptake by Oyster Reefs

As discussed earlier, the need to estimate the potential impact
of constructed or restored oyster reefs on water quality has driven
the development of the in situ fluorometers. The potential for
bivalve shellfish to control phytoplankton populations in coastal
areas such as San Francisco Bay was proposed over 20 y ago
(Cloern 1982, Officer et al. 1982). Subsequent studies in the Bay
documented a variety of ecological effects, including seston deple-
tion, attributable to dense infaunal bivalve populations (e.g., Al-
pine & Cloern 1992). In a widely cited paper, Newell (1988)
hypothesized that the historical depletion of oyster populations in
Chesapeake Bay has been a major factor in water quality degra-
dations and other ecological changes in the Bay (also see Heck
1987). Subsequent studies support this notion (Ulanowicz & Tuttle
1992, Newell 2004). Similar water quality impacts in some areas
of the Great Lakes by the invasive zebra mussel have also been
documented (Budd et al. 2001, Ackerman et al. 2001). Recent
research in mesocosms has further characterized the role that sus-



IN SiITU METHOD FOR MEASURING SESTON UPTAKE

Florida Oyster Reef #1
40 =
—&— Upstream, x = 182
3.5 { 9 Downstream, x = 161
: p = 0.00001
S 3.0 4
fod
E 25
5 %
S 18
3
£ 10
0.5 1
a0
055400 100400 101400 102400 103400 104400
Time
Florida Oyster Reef #3
40
—e— Upstream, x = 1,82
15 |0 Downstream, x = 161
) p=0.347
S 30
=
tg 25
g 20
a
w
= 18 % ::W E :
@
£ 10
0s
0.0 T T T T T
133000 135000 141000 143000 145000 151000 15300
Time
New Hampshire Blue Mussel Reef #1
A —e— Upstream, x = 0.58
15 —0— Downsiream. x = 0.43
p= 0002
2 30
£ s
§ 20 -
=
(™
E 154
& 10
05—~ "
oo
132000 13.40:00 14:00:00 142000 14 40:00
Time
Virginia Clam Bed #1
40
—e— Upstream, x = 306
35 |—O— Downstream, x = 197
p = 0,0006
S 30
g 25
g 20 W
=
"5 15
]
£ 10
05
o0
14:55.00 15:09:00 15:19:00 15:29.00 15:39.00
Time

647
Florida Oyster Reef #2
40 —#— Upsweam, x =246
as —o— Downsiream, x = 1,51
p=0023
E 30
g?&
]
5 20
]
[
s 15 Q-__‘'—-——c»———.__g__-————-—é
]
£ 10
05
oo - - v
15:49.00 15:59:00 16:09 00 161900
Time
Florida Oyster Reef #4
40 =
—e— Upstream, x = 1.78
15 |—0— Downswream, x = 1.29
p=0025
E 30
=]
e 25
% 20
F-]
[
1.5
3
£ 10
o5
00
120000 1220:00 124000 130000 13200
Time
South Carolina Oyster #1
40

—#— Upstream. x = 219
354 © Downsiream x=226
p=0208

w
<

In Situ Fluorometry (V)
X}
v

20

05

00
100000 110000 120000 13:0000 140000 150000 16000

Time

Virginia Clam Bed #2
40

—&— Upstream, x = 3.01
35 {—°— Downstream. x = 1.13
p=0005

30

25

20

In Situ Fluorometry (V)

05

oo
112900

11:34.00 11:39:00 11:44:00 11:45:00

Time

Figure 2. Upstream and downstream in situ fluorometry measurements for all study sites. P values from z-tests; error bars show 1 SD.

pension-feeding bivalves can play in controlling phytoplankton
populations (Cerrato et al. 2004, Porter et al. 2004). It seems
reasonable to expect measurable water quality effects from re-
stored oyster reefs, but empirical studies of the effects are needed.

Several field studies involving bivalves such as clams, mussels
and other taxa have demonstrated substantial seston uptake and in

some cases longer-term water quality changes caused by bivalve
feeding and filtration (e.g., Alpine & Cloern 1992, Haamer 1996,
Coen et al. 2000, Haamer & Rodhe 2000, Ackerman et al. 2001;
see reviews by Dame 1996 and Dame et al. 2001). Field studies on
oysters, however, typically have shown no measurable uptake or
very little (Dame & Libes 1993, Wilson-Ormond et al. 1997, Nel-
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Figure 3. Upstream and downstream laboratory measurements of chlorophyll a concentrations from pumped water samples for all study sites.
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son et al. 2004); Cressman et al. (2003) is the only field demon-
stration of substantial seston removal (up to 25% decreases in
chlorophyll a) we are aware of for oyster reefs. In the present
study, maximum measured seston uptake rates for the three bivalve
species ranged from 27.8% for Mytilus, 37.4% for Crassostrea, to
62.3% for Mercenaria. The differences in rates mainly reflected
differences in bivalve size and densities relative to water flow and
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Figure 4. In situ fluorometry compared with laboratory analysis of
pumped water samples for all study sites.

water depth (Table 1). Hence, it seems reasonable to conclude that
field studies on oysters should consistently yield quantitative mea-
sures of seston depletion if they are properly scaled. In any case,
our new in situ device would allow rapid assessments for future
studies on restored and natural oyster reefs.
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