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MOLECULAR DETECTION OF HEMATODINIUM SP. INFECTING THE BLUE CRAB,

CALLINECTES SAPIDUS

HAMISH J. SMALL,1,2* JEFFREY D. SHIELDS,1 KAREN L. HUDSON1 AND

KIMBERLY S. REECE1

1Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062;
2Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Weymouth Laboratory, Barrack
Road, The Nothe, Weymouth, Dorset DT4 8UB, United Kingdom(present address)

ABSTRACT Species of Hematodinium are endoparasitic dinoflagellates of crustaceans. Certain stages of the parasites can be

very difficult to detect in the hemolymph of their hosts, because the trophic stages resemble hemocytes, and they can occur at

relatively low densities, making diagnosis by microscopy difficult. We developed a polymerase chain reaction (PCR) assay to

detect theHematodinium sp. infecting the blue crab, Callinectes sapidus, based on the amplification of the parasite’s first internal

transcribed spacer region (ITS1) of the ribosomal RNA (rRNA) gene complex. The PCR assay was combined with a restriction

endonucleases digestion (Bsg I) of the amplification products to differentiate between different forms of Hematodinium from

different hosts. The assay had a limit of detection equivalent to 0.3 parasites per 100-mL hemolymph. In addition, two

oligonucleotide DNA probes were designed to target the 18S rRNA gene sequence of the parasite, facilitating detection in situ in

crustacean tissues. These probes appear to target several, if not all species within the genus, because they labeled all isolates of

Hematodinium tested in this study, whereas they were not hybridizing to other parasite species. The PCR-RFLP assay will be

invaluable for future studies investigating parasite prevalence, the existence of secondary hosts or environmental reservoirs, and

modes of transmission, whereas the DNA probes will be useful for confirming and localizing Hematodinium parasites in

crustacean tissues.

KEY WORDS: Hematodinium, Callinectes sapidus, PCR-RFLP, DNA Probe

INTRODUCTION

Blue crabs, Callinectes sapidus, from the eastern seaboard of

the United States are seasonally infected by a species of para-
sitic dinoflagellate in the genus Hematodinium. The parasite is
pathogenic, and in most cases, kills its crab host by energy

depletion or tissue disruption (Shields & Squyars 2000, Shields
et al. 2003). The disease is prevalent inC. sapidus fromDelaware
to Florida and those in the Gulf of Mexico, but it is limited
to salinities greater than 12 ppt (Newman & Johnson 1975,

Messick & Shields 2000). Epizootics show a distinct seasonality,
with outbreaks most frequent in fall months (Messick 1994,
Messick & Shields 2000). During outbreaks, disease prevalences

can reach 100% in juvenile crabs and up to 70% inmature crabs
(Messick 1994).

At present, there are only two described species of Hema-

todinium. The type species H. perezi was originally described
from the shore crab, Carcinus maenas, and the harbor crab,
Liocarcinus depurator, from France (Chatton & Poisson 1931).
A second species,H. australis, was described from the sand crab,

Portunus pelagicus, from Australia (Hudson & Shields 1994).
Hematodinium perezi was subsequently identified as the species
infecting C. sapidus (Newman & Johnson 1975, MacLean &

Ruddell 1978); however, recent DNA sequence data suggests
otherwise (Small et al. 2006b). There are numerous reports of
Hematodinium-like species infecting other crustaceans (see

Stentiford & Shields 2005, for review), many of which support
commercially important fisheries.

Diagnosis of Hematodinium infection in C. sapidus has

previously relied on microscopic observation of fixed and
stained (hematoxylin and eosin/giemsa) hemolymph samples

and tissue sections for the presence of parasites (Messick 1994,
Messick & Shields 2000) or the use of neutral red dye to
stain parasite lysosomes in fresh hemolymph preparations
(Chatton & Poisson 1931, Small 2004, Stentiford & Shields 2005).

Increasingly, molecular diagnostics are being developed and
used in assessments of many different fish and shellfish diseases
(for review see Cunningham 2002), and this is also the case for

Hematodinium species. Hudson and Adlard (1994) developed a
generic primer set for theHematodinium spp. infectingC. sapidus,
the Norway lobster, Nephrops norvegicus, the snow crab,

Chionoecetes opilio, and the tanner crab, C. bairdi. However,
in our hands this primer set produces multiple amplification
products usingHematodiniumDNA preparations from various

crustaceans, making its use as a diagnostic assay unreliable
(H. Small, personal observation). Recently, Gruebl et al. (2002)
andFrischer et al. (2006) developed a polymerase chain reaction
(PCR) and Real Time PCR assay, respectively, to detect

Hematodinium infections in C. sapidus; however, both primer
sets used in these assays anneal to regions within the highly
conserved 18S rRNA gene, and as such, these assays are most

likely only genus-specific. Given the ability of many marine
pathogens and strains to vary in their virulence and pathoge-
nicity (e.g., Bushek & Allen 1996, Wang et al. 1999, Stewart

et al. 2004) there is an obvious need for a species-specific
diagnostic assay for this economically significant pathogen.

In this study, the first internal transcribed spacer region
(ITS1) of the ribosomal rRNA gene complex was amplified and

sequenced from theHematodinium sp. infecting C. sapidus from
Virginia, USA. Our objective was to analyze the ITS1 region
sequence as a target for the development of a species-specific

PCR-based diagnostic assay. In addition, the 18S rRNA gene
from the parasite was also sequenced, and informative regions
of that sequence were used for the design and development of

in situ DNA probes for Hematodinium spp.*Corresponding author. E-mail: hamish.small@cefas.co.uk
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MATERIALS AND METHODS

Collection of Experimental Animals

Naı̈ve, uninfected C. sapidus were obtained from the VIMS
trawl and dredge surveys in low salinity waters outside enzootic
locations. Infected crabs were obtained from high-salinity

waters on the Delmarva Peninsula, and from the lower reaches
of Chesapeake Bay (VIMS surveys, a commercial waterman,
and our own trawl effort). Crabs were placed in plastic bags

on newspaper-covered ice and transported to the laboratory.
Infected C. sapidus were identified using smears of fresh

hemolymph mixed with neutral red, as described by Stentiford

and Shields (2005). Briefly, approximately 1 mL of crab
hemolymph was removed from the fifth walking leg using a
sterile syringe and a 27 ga. needle. Ethanol (70%) was used to

sterilize the surface of the crab prior to removal of hemolymph.
An equal volume of neutral red (0.04% (w/v) in 1 3 phosphate
buffered saline (PBS) was mixed with a subsample of hemo-
lymph, and the sample placed on a glass slide and viewed under

light microscopy to assess the presence of parasites. Selected
samples were also placed on a hemocytometer to estimate
parasite density prior to DNA extraction (see below). Dissec-

tions were performed on a subset of infected animals. For
histological preparations, various tissues (hepatopancreas,
heart, gill) were dissected and fixed in Davidson’s seawater

fixative (Shaw & Battle 1957, 20 mL formalin [40% v/v], 10 mL
glycerol, 10 mL glacial acetic acid, 30 mL 100% ethanol, 30 mL
seawater), then processed through routine paraffin procedures.
Davidson’s fixed-tissue sections, and ethanol preserved hemo-

lymph and tissue samples from other crustaceans infected with
Hematodinium spp. were also obtained from colleagues.

DNA Extraction

Total DNA was isolated from crab tissue (50–100 mg) and
whole hemolymph (100 mL) samples (both ethanol preserved

and fresh) using a DNeasy Tissue Kit (Qiagen Inc., Valencia,
CA) according to the manufacturer’s instructions. The DNA
was quantified using a Hoefer DyNA Quant 200 fluorometer

(Pharmacia Biotech Inc., Piscataway, NJ) and stored at –20�C.

Polymerase Chain Reaction Amplifications

The 18S region from the Hematodinium sp. infecting the
C. sapidus was amplified from a single genomic DNA sample
using ‘‘universal’’ eukaryotic primers (Medlin et al. 1988) and

conditions previously described (Flores et al. 1996, Moss et al.
2006). To identify unique DNA sequences specific to the
parasite infecting C. sapidus, and to assess intraspecific varia-
tion, the ITS1 region was amplified from two genomic DNA

samples (isolated from two different infected crabs) using the
forward primer 5# GTTCCCCTTGAACGAGGAATTC 3#
and reverse primer 5# CGCATTTCGCTGCGTTCTTC 3#,
which have been described previously (Hudson & Adlard
1994). Amplification reactions were carried out in a DNA
Engine thermocycler (MJ Research Inc., Waltham, MA) and

contained 60 mM Tris-SO4 (pH 8.9), 18 mM (NH4)2SO4, 2 mM
MgSO4, 25 ng genomic DNA, 0.2 mM each dNTP, 2.5 mM
each primer, 1 unit Platinum high fidelity Taq polymerase
(Invitrogen, Carlsbad, CA), and sterile deionized water to a

final volume of 20 mL. Thermocycling conditions were as

follows: denaturation at 94�C for 1 min; primer annealing at
52�C for 30 sec; chain extension at 72�C for 90 sec; repeated

for 35 cycles, with a final 5-min extension at 72�C.

Cloning and Sequencing

Amplification products from the 18S rRNA PCR were

cloned into the pCR 2.1 vector using a TA Cloning Kit
(Invitrogen) following the recommended protocol. To generate
the consensus 18S sequence, four clones were sequenced by

cycle sequencing using the Thermo Sequenase kit (Amersham
Biosciences, Piscataway, NJ), and IRD41-labeled M13 forward
and reverse primers (LI-COR, Lincoln, NE). Reactions were
run on a LI-COR automated sequencer (Model 4200).

Amplification products from the ITS1 region PCR reactions
were visualized by agarose gel electrophoresis (2%w/v), stained
with ethidium bromide and viewed under a UV light source.

Amplification products of approximately 680-bp were excised
from the gel using a sterile scalpel and purified using a QIA-
quick gel extraction kit (Qiagen). Two independent ITS1

region PCR reactions were performed for both genomic DNA
samples. The purified 680-bp amplification products for each
sample were then combined prior to adenine (A)-tailing, to
ensure efficient ligation into the plasmid vector. The A-tail

reactions contained 10 mL of the purified amplification product,
10 mM Tris-HCl, pH 8.3, 50 mMKCl, 1.5 mMMgCl2, 0.001%
(w/v) gelatine, 30 mM dATP, 1 U Taq polymerase (Applied

Biosystems, Foster City, CA), and sterile deionized water to a
final volume of 15 mL. Samples were then incubated at 72�C for
10 min. A-tail reaction products were ligated into the pCR4-

TOPO vector (Invitrogen) and used to transform Escherichia
coli (Top 10 chemically competent) by heat shock according to
the manufacturer’s instructions. Recombinant plasmids were

purified using a miniprep kit (Qiagen) according to the manu-
facturer’s instructions. To assess sequence variation in the ITS1
region, plasmid inserts in five clones from each sample were
bidirectionally sequenced in triplicate using the Big Dye Ter-

minator v3.1 Cycle Sequencing Kit (Applied Biosystems) with
M13 sequencing primers using 1/8 of the recommended reaction
size dictated in the manufacturer’s protocols. Thermocycling

parameters were as follows: 25 cycles of 96�C for 1 min, 96�C
for 10 sec, 50�C for 5 sec, 60�C for 4 min, followed by a final
incubation at 4�C. The sequencing reaction products were

precipitated using ethanol/sodium acetate (ABI User Bulletin,
April 11, 2002). Precipitated sequencing reactions were resus-
pended in 20 mL of Hi-Di formamide (Applied Biosystems) and
10 mL of each was electrophoresed on an 3130 Prism genetic

analyzer (Applied Biosystems).

Development and Application of PCR-RFLP Assay

Hematodinium ITS1 region sequences obtained from
infected C. sapidus were aligned and compared with published

Hematodinium spp. sequences (Hudson & Adlard 1996, Gruebl
et al. 2002, Small et al. 2006a) and other ITS1 region Hema-
todinium spp. sequences from L. depurator, N. norvegicus, the

Chinese swimming crab, Portunus trituberculatus, the edible
crab, Cancer pagurus, and the hermit crab, Pagurus bernhardus,
(H. Small, unpublished data) using the Clustal-W algorithm in

the MacVector versus 8.0.2 DNA sequence analysis package
(Accelrys Inc., San Diego, CA). The Hematodinium spp.
sequences from C. sapidus, L. depurator, and P. trituberculatus
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were so similar that designing primers to specifically amplify
DNA from a single parasite species from the one host was not

feasible. Therefore, aligned sequences were subjected to virtual
digestion using the restriction enzyme analysis option in the
MacVector sequence analysis package to identify restriction
enzymes that could be used to distinguish theHematodinium sp.

infecting C. sapidus from the others. Potentially useful restric-
tion endonucleases identified by the virtual digestion analyses
were then tested by PCR amplification of the ITS1 region and

subsequent restriction digestion of amplification products in
multiple samples from each host species. The digested products
were separated by 2% agarose (w/v) gel electrophoresis and

visualized as described earlier.
PCR primers (HITS1F 5#-CATTCACCGTGAACCTTAG-

CC-3# and HITS1R 5#-CTAGTCATACGTTTGAAGAAAG-
CC-3#) were designed to specifically amplify the ITS1 region

from the Hematodinium spp. infecting C. sapidus, L. depurator,
and P. trituberculatus, producing a 302-bp reaction product
(see Table 1). Both primers anneal to the 5# and 3# end of the

variable ITS1 region. The amplification reaction mixtures
contained 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 1.5 mM
MgCl2, approximately 50 ng of genomic DNA, 0.1 mM of each

dNTP, 5 mM of each primer, 1 unit of Taq polymerase, and
sterile demonized water to a final volume of 20 mL. Thermocy-
cling conditions were as follows: denaturation at 94�C for

30 sec; primer annealing at 56�C for 30 sec; chain extension at
72�C for 90 sec; repeated for 35 cycles, with a final 5-min
extension. Amplification products (5-mL aliquot) were visual-
ized by agarose gel electrophoresis (2% w/v), stained with

ethidium bromide and viewed under a UV light source.
Amplified Hematodinium ITS1 region products were digested
independently with each of the diagnostic restriction enzymes

(Bsg I,Sfc I andBlp I) identified in the virtual restriction enzyme
digestion analysis following manufacturer protocols (New
England Biolabs Inc., Ipswich, MA). The digested products

were separated by 2% agarose (w/v) gel electrophoresis and
visualized as described earlier.

The specificity of the PCR primers was tested against DNA
samples (see Table 2) from infected and uninfected C. sapidus,

several other protozoan parasites, including Perkinsus marinus,
Haplosporidium nelsoni, H. costale, Bonamia spp., and Quahog
Parasite Unknown (QPX), other dinoflagellate species

(Karlodinium micrum, Pfiesteria piscicida, and P. shumwayae),
a parasitic ciliate fromC. sapidus (Mesanophrys chesapeakensis)
and other samples of Hematodinium spp. (from N. norvegicus,

C. pagurus, and P. bernhardus). PCR reactions were carried out
as described earlier. In addition, possible intraspecific variation
in the ITS1 region (primer binding domains and restriction

endonucleases recognition motif) between Hematodinium sp.

infecting C. sapidus from geographically separate locations

(Virginia and Georgia) was assessed by PCR-RFLP for 10
and 8 specimens of genomic DNA from individual infected
crabs from each state, respectively.

The sensitivity of the PCR primers was tested by serial
dilution of a genomic DNA sample extracted from C. sapidus
infected hemolymph. The number of parasite cells in the
infected hemolymph sample was estimated using neutral red

(as previously) and an improved Neubauer hemocytometer.
PCR reactions were carried out as described earlier. Five
microliters of the PCR reactions were subject to 2% agarose

(w/v) gel electrophoresis and visualized as described earlier.

Development and Application of DNA Probes

The 18S rRNA sequence from theHematodinium sp. infecting
C. sapidus was aligned with the only other published
Hematodinium 18S sequence (Gruebl et al. 2002), as well as
18S rRNA sequences from the syndinid Syndinium turbo

(DQ146405), P. shumwayae (AY245694), P. piscicida
(AY245693), P. marinus (AF497479), H. nelsoni (X74131), and
the parasitic dinoflagellateAmoebophrya sp. (AF069516). From

this alignment, we designed two 19-bp DNA probes (H-680 and
H-1425) that were specific to the Hematodinium 18S rRNA
sequence (see Results). Custom probes were synthesized with

the incorporation of digoxigenin at the 5# end (Operon Bio-
technologies Inc., Huntsville AL).

Paraffin-embedded tissue sections were cut at 6-mm thick-

ness, placed on positively charged slides (Fisher Scientific,
Pittsburgh, PA), and baked in an oven at 40�C overnight to
dry. Sections were dewaxed, rehydrated in an ethanol series,
and washed in distilled water. The sections were permeabilized

with 50 mg mL–1 pronase in P buffer (50 mM Tris HCl, 0.5 mM
EDTA, pH 7.5) at 37�C for 15 min. Proteolysis was halted by

TABLE 1.

Primer and probe sequences for detection of the

Hematodinium sp. infecting C. sapidus.

Primer/Probe Name Primer/Probe Sequence (5#-3#)

HITS1F CATTCACCGTGAACCTTAGCC

HITS1R CTAGTCATACGTTTGAAGAAAGCC

H-680 ACCAGATGATCACCCAAAG

H-1425 GTTTCCCACGTATCCGAAG

TABLE 2.

Screening results for the specificity of the HITS1F and HITS1R
primer set against various metazoans and protozoans.

DNA Template PCR Result

Infected host material

Callinectes sapidus w/Hematodinium sp. (n ¼ 18) +

Liocarcinus depurator w/Hematodinium sp. (n ¼ 4) +

Portunus trituberculatus w/Hematodinium sp. (n ¼ 4) +

Chionoecetes opilio w/Hematodinium sp. (n ¼ 4) –

Nephrops norvegicus w/Hematodinium sp. (n ¼ 6) –

Cancer pagurus w/Hematodinium sp. (n ¼ 6) –

Callinectes sapidus w/Mesanophrys chesapeakensis –

Crassostrea virginica w/Haplosporidium costale –

Crassostrea virginica w/Haplosporidium nelsoni –

Crassostrea virginica w/Perkinsus marinus –

Crassostrea ariakensis w/Bonamia sp. –

Culture material

Hematodinium sp. from Nephrops norvegicus –

Hematodinium sp. from Pagurus bernhardus –

Karlodinium micrum –

Cochlodinium sp. –

Pfiesteria shumwayae (CCMP 2089) –

Pfiesteria piscicida (CCMP 1830) –

Prorocentrum micans –

Perkinsus marinus (ATCC 50439) –
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two 5-min washes in P buffer followed by equilibration in 2 3

SSC (20 3 SSC ¼ 3 M NaCl, 0.3 M Na-citrate, pH 7.4) for

10 min. The slides were placed in a slide cassette and incubated
in 15 mL of prehybridization buffer (4 3 SSC, 50% Formam-
ide, 5 3 Dendhart solution, 0.5 mg mL–1 heat-denatured
salmon sperm DNA) for 1h at 37�C. The prehybridization

buffer was decanted and replaced with 60-mL prehybridization
buffer containing 8 ng mL–1 of the DIG-labeled oligonucleotide
probe (either H-680 or H-1425). The sections were covered with

plastic coverslips, placed on a heating block at 90�C for 2 min to
denature the target DNA, and placed immediately on ice for
1 min before placing them in a humid chamber at 42�C for

overnight hybridization. Posthybridization washes included
2 3 SSC twice at room temperature (25�C) for 5 min, 1 3 SSC
twice at room temperature for 5 min, 0.5 3 SSC twice at 42�C
for 10 min, followed by equilibration into maleic acid buffer

(100mMmaleic acid, 150mMNaCl, pH 7.5). The sections were
blocked with maleic acid buffer plus 2% (v/v) normal sheep
serum for 30 min at room temperature. Antidigoxigenin-

alkaline phosphatase conjugate (Roche, Indianapolis, IN) was
diluted 1:500 in maleic acid buffer plus 1% (v/v) normal sheep
serum and sections were incubated with 100 mL of the diluted

antibody for 3 h in a humid chamber at room temperature.
Unbound antibody was removed by two 5-min washes in Ab
wash buffer (maleic acid buffer + 0.3% [v/v] Tween 20),

followed by two 5-min washes in detection buffer (100 mM
Tris-HCl, 100 mM NaCl, 50 Mm MgCl, pH 9.5). The slides
were placed in a slide cassette and incubated in the dark for 2 h
at room temperature with 16 mL of color development solution

[15.872 mL detection buffer + 72 mL nitro blue tetrazolium
(NBT) + 56 mL 5-bromo-4-chloro-3-indolyl phosphate
(BCIP)]. The color reaction was stopped with a TE buffer

(10 mM Tris-HCl, 1 mM EDTA, pH 8.0) wash followed by
equilibration into double distilled H2O. Sections were counter-
stained in 1% Eosin Y solution (w/v) for 1 min, followed by

ethanol dehydration and mounted in histological mounting
medium (Permount). Sections were examined and images
documented using an Olympus BX51 microscope equipped
with a Nikon DXM 1200 digital camera (Act 1 software,

Nikon). To test probe specificity, sections of uninfected
C. sapidus tissue, samples of Hematodinium spp. from different
crustaceans, and other parasitic protozoa were processed as

described earlier (Table 3). Negative controls included sections
assayed without the addition of the DNA probe.

RESULTS

18S rRNA Gene and ITS1 Region Sequences

The four 18S rRNA gene sequences from theHematodinium
sp. infecting C. sapidus were identical and were combined to
produce a consensus sequence (Gen Bank Accession No.

DQ925237). Alignment of this sequence with other 18S rRNA
gene sequences from various parasites and dinoflagellates
(P. marinus, P. shumwayae, P. piscicida, S. turbo, H. nelsoni,

and Amoebophrya sp.) resulted in the identification of regions
unique to theHematodinium sp. from C. sapidus, where two 19-
bpDNAprobes for in situ hybridization were designed and used

in assays described earlier (see Table 1 and Fig. 1). The 18S
rRNA sequence of the Hematodinium sp. from C. sapidus from
Virginia was 100% identical over 1682-bp to theHematodinium

sp. infecting C. sapidus from Georgia, USA (GenBank Acces-
sion No. AF286023, Gruebl et al. 2002).

ITS1 region sequences of 10 clones (2 samples, 5 clones each)
from the Hematodinium sp. infecting C. sapidus were highly
conserved (99% similarity) (Gen Bank Accession Nos.

DQ925227–DQ925236). Nine of the 10 clones were identical
in length (351-bp), whereas the 10th clone sequence was 354-bp
in length because of a TAA insertion. We found five slightly
different sequences among our ITS1 region clones (Fig. 2) with

six clones having the same sequence, one having an TAA
insertion extending a microsatellite repeat region, and the other
three having single polymorphic nucleotides at positions 185

(G > T), 263 (T > C), 283 (T > C), and 319 (C > T). Alignment
of partial ITS1 sequences from other species of Hematodinium
(Hudson & Adlard 1996, Small et al. 2006a) indicated that the

ITS1 region sequences from the Hematodinium sp. in the blue
crab generated in this study were only 82% similar to the
previously published ITS1 sequence for presumably the same
Hematodinium sp. from C. sapidus, and only 46% similar to

ITS1 region sequences reported for theHematodinium sp. from
N. norvegicus.

PCR-RFLP Assay

The ten clone sequences from the ITS1 region were suffi-
ciently conserved at the 5# and 3# ends so that PCR primers

could be designed to target these domains. The forward primer
(HITS1F) was designed to anneal at bp 42/63-bp downstream
of the 18S/ITS1 boundary, whereas the reverse primer

(HITS1R) was designed to anneal at bp 4/27-bp upstream of
the ITS1/5.8S boundary (Fig. 1). The PCRprimersHITS1F and
HITS1R successfully amplified a 302-bp fragment (based on
sequence analysis) of the ITS1 region from Hematodinium sp.

TABLE 3.

Screening results for the specificity of the H-680 and H-1425
DNA probes against various metazoans and protozoans.

Test Material

H-680 and H-1425

Probe Results

Callinectes sapidus w/Hematodinium sp. +

Liocarcinus depurator w/Hematodinium sp. +

Chionoecetes opilio w/Hematodinium sp. +

Chionoecetes bairdi w/Hematodinium sp. +

Nephrops norvegicus w/Hematodinium sp. +

Cancer pagurus w/Hematodinium sp. +

Callinectes sapidus –

Callinectes sapidus w/Mesanophrys chesapeakensis –

Crassostrea virginica w/Haplosporidium costale –

Crassostrea virginica w/Haplosporidium nelsoni –

Crassostrea virginica w/Perkinsus marinus –

Pandalus platyceros w/spot prawn parasite –

Figure 1. Diagrammatic representation of the primer and probe anchor

locations in theHematodinium 18S ribosomal RNA gene and ITS1 spacer

region.
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infecting C. sapidus (Fig. 3A). In addition, the primers also
amplified a comparable length ITS1 region fragment from the

Hematodinium spp. infecting L. depurator and P. trituberculatus
(Fig. 3A). The primers did not produce amplification products
for any of the otherHematodinium spp., dinoflagellate, parasite,

or host DNA templates used (Table 2). Restriction enzyme
digestion of the positive amplification products by Bsg I
resulted in a 2-band digestion profile that was unique to the
Hematodinium sp. from C. sapidus (Fig. 3B). The diagnostic

2-band PCR-RFLP digestion profile was observed for infected
C. sapidus from Virginia and Coastal Savannah, GA, USA
(data not shown). The limit of sensitivity of the PCR assay was

found to be 0.3 parasites per 100 mL of hemolymph (Fig. 4).

DNA Probe Specificity

Both DNA Probes (H-680 and H-1425) hybridized to all of
the Hematodinium cells present in paraffin-embedded tissue
sections prepared from the various infected crustacean species

(Table 3, Fig. 5A to E). There was no background hybridization
to any host tissues for the crustacean samples analyzed or
to other protozoan pathogens such as P. marinus (Fig. 5F),
H. nelsoni, or a spot prawn parasite of Pandalus platyceros,

previously though to be aHematodinium sp. (Bower et al. 1993).
Hematodinium cells were localized in the myocardium of the
heart and the hemal spaces in the hepatopancreas of C. sapidus,

and in the hemal spaces in the hepatopancreas of N. norvegicus
and C. opilio (Fig. 5B to E).

DISCUSSION

We have amplified and sequenced both the 18S rRNA gene
and the ITS1 region from the Hematodinium sp. infecting

C. sapidus with the aim of developing a species-specific PCR-
based diagnostic assay. Primers developed to amplify the ITS1
region for the PCR assay also amplified the ITS1 region from

Hematodinium spp. infecting L. depurator and P. trituberculatus;
however, restriction enzyme digestion profiles of the ampli-
fication products were used to successfully differentiate the

Hematodinium sp. infecting C. sapidus. In addition, two oligo-
nucleotide DNA probes were developed to detect Hematodi-
nium spp. infections in crustaceans. The probes bound to all
Hematodinium species tested and will be a useful resource to

confirm and localize Hematodinium infection in field and
laboratory samples.

Methods used for diagnosis of Hematodinium spp. infection

in crustaceans have previously involved the use of traditional
light microscopy/histology (Meyers et al. 1987, Field et al. 1992,
Messick 1994, Wilhelm & Mialhe 1996), the assessment of the

carapace for discoloration (Meyers et al. 1987, Field et al. 1992,
Taylor &Khan 1995, Briggs &McAliskey 2002, Stentiford et al.
2002), the aggregation of parasites in the pleopod and swim-

ming legs of crabs (Field et al. 1992, Messick 1994, Field &
Appleton 1995, Tärnlund 2000), antibody-based assays (Field &
Appleton 1996, Stentiford et al. 2001, Small et al. 2002), and
DNA-based techniques (Hudson & Adlard 1994, Gruebl et al.

2002, Frischer et al. 2006, Small et al. 2006a). In particular,
Hematodinium sp. infections in C. sapidus have been identified
by microscopic analysis of fixed and stained hemolymph

samples and tissue sections (Newman & Johnson 1975, Messick &
Shields 2000, Sheppard et al. 2003), the use of neutral red dye
(Small 2004, Stentiford & Shields 2005), and two PCR-based

assays (Gruebl et al. 2002, Frischer et al. 2006). In the latter
molecular assays, a set of primers binding in the 18S rRNA gene
was used as the basis for a standard PCR and real time
diagnostic assays. Ribosomal 18S rRNA genes however, are

known to diverge slowly during speciation, and as such are well
conserved between species (Bargues et al. 2000). That is not to
say that species-specific assays cannot be developed using these

regions, as has successfully been achieved for P. piscicida
(Rublee et al. 1999), Martelia refringens (Le Roux et al. 1999),
andKudoa neurophila (Grossel et al. 2005), rather, that the PCR

primers developed by Gruebl et al. (2002) and used by Frischer

Figure 2. Nucleotide variation in the ITS1 region of the Hematodinium

sp. infecting Callinectes sapidus. Five different ITS1 forms were detected

when 10 clones were sequenced from 2 genomic DNA samples (5 clones per

sample). A dominant form (A) was represented in 6 of the 10 clones, and

the remaining 4 forms unique to single genomes (B to E).

Figure 3. PCR-RFLP assay for detection of the Hematodinium sp.

infecting Callinectes sapidus. (A) PCR amplification of the ITS1 region

from Hematodinium spp. infecting C. sapidus (lanes 1–3), Liocarcinus

depurator (lanes 4–6), and Portunus trituberculatus (lanes 7–9). (B)

Restriction enzyme digestion of amplified products using Bsg I. M ¼
100 bp molecular weight marker.

Figure 4. Sensitivity of PCR assay for detection of theHematodinium sp.

infecting Callinectes sapidus. Serial dilution of genomic DNA extracted

from a sample of infected hemolymph fromC. sapidus. Lanes 1–5: infected

hemolymph DNA template equivalent to 300, 30, 3, 0.3 parasite. M¼ 100

bp molecular weight marker.
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et al. (2006), are most likely genus specific because of the
conserved nature of 18S gene sequences in Hematodinium spp.
(Hudson & Adlard 1996, Small et al. 2006a).

The internal transcribed spacer regions 1 and 2 (ITS1 and
ITS2) that reside in-between the 18S, 5.8S and 28S ribosomal
RNA genes are good targets for DNA-based species identi-
fication, because these regions diverge considerably during

speciation, permitting closely related species to be identified.
Species-specific assays targeting the ITS regions have been
applied effectively to detect many dinoflagellates and parasites

(Hamaguchi et al. 1998, Dungan et al. 2002, Litaker et al. 2003,
Audemard et al. 2004, Galluzzi et al. 2004, Moss et al. 2006,
Small et al. 2006a). In this study, we have sequenced multiple

clones from two Hematodinium samples from C. sapidus to

determine whether intraspecific polymorphisms, which are
common in the ITS regions from similar organisms (Litaker
et al. 2003, Brown et al. 2004), would prohibit the use of this

region as a target for molecular assays. We report that the ITS1
region was well conserved in the 10 clones analyzed (Fig. 2) and
that no polymorphisms were detected in the regions to which
the ITS1-specific primers were designed to anneal. We observed

four single polymorphisms in the 10 clones analyzed, with three
of these being transitions. Given the reported error rate for
Platinum high fidelity Taq (4.4 3 10–5 per bp), it is unlikely that

these nucleotide substitutions are the result of PCR-induced
mutation, and are likely repeat motifs in the ITS1 region that
contain random mutations. Analysis of Hematodinium infec-

tions in C. sapidus samples from Georgia by the PCR-RFLP

Figure 5. Host tissue sections reacted with the H-680 and H-1425 probe by ISH. Positively stained Hematodinium sp. parasites are shown by dark

staining. (A) Uninfected Callinectes sapidus heart section reacted with H-1425 probe. (B) Hematodinium sp. in C. sapidus heart section reacted with

H-1425 probe. (C) Hematodinium sp. in C. sapidus hepatopancreas section reacted with H-860 probe. (D) Hematodinium sp. in Chionoecetes opilio

hepatopancreas section reacted with H-1425 probe. (E) Hematodinium sp. in Nephrops norvegicus hepatopancreas section reacted with H-1425 probe.

(F) Perkinsus marinus in digestive gland of Crassostrea virginica reacted with H-1425 probe (inset shows same C. virginica section reacted with the

Perkinsus sp. genus probe Perksp700 [Elston et al. 2004]). P, pericardium; M, myocardium; Ht, hepatopancreatic tubule; Ct, connective tissue; Ge, gut

epithelium. Scale bar ¼ 50 mm.
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assay indicated that extensive intraspecific polymorphisms
were not present in either of the ITS1 primer anchor regions

or the Bsg I restriction enzyme recognition site.
Significantly, the primers designed in this study also ampli-

fied the ITS1 region from Hematodinium spp. infecting
P. trituberculatus and L. depurator (Fig. 3A). In spite of this,

the Hematodinium sp. infecting C. sapidus could be distin-
guished from the others by a restriction enzyme digestion of
the amplification products (Bsg I), resulting in a diagnostic two-

band digestion profile (Fig. 3B). Furthermore, the parasite
species infecting P. trituberculatus and L. depurator could also
be reliably distinguished from each other (and from the species

infecting C. sapidus) by using the enzymes Sfc I and Blp I
(respectively) in place of Bsg I in the restriction enzyme
digestion assay (data not shown). Given that the primers were
able to bind to the ITS1 region in these Hematodinium species,

and that restriction enzyme digestion of amplicons could
separate these, we suggest that these may represent three
similar, yet distinct species of Hematodinium. Sequencing and

analysis of the ITS1 regions from these species, as well as data
for other gene regions are needed to confirm this hypothesis. No
amplicon was produced using template DNA from the Hema-

todinium spp. infecting C. opilio, N. norvegicus, P. bernhardus,
orC. pagurus, indicating that these parasite species are different
from the species in the portunid crabs. This hypothesis is

further supported by the 18S-ITS1-based PCR assay of Small
et al. (2006a), which gave an amplification product using DNA
from Hematodinium infected N. norvegicus and C. pagurus,
but not for that from C. sapidus.

Since the initial report of Hematodinium sp. infection in
Callinectes sapidus from the eastern United States (Newman &
Johnson 1975), the parasite has been reported from the spider

crab, Libinia emarginata, the stone crab,Menippe mercinaria, the
lesser blue crab, Callinectes similis, the xanthid crab, Neopanope
sayi, the portunid crab, Ovalipes ocellatus, and cancer crabs,

Cancer irroratus and C. borealis (MacLean & Ruddell 1978,
Messick & Shields 2000, Sheppard et al. 2003). These reports
were based onmicroscopic observation of parasite stages in fixed
hemolymph and tissue preparations, and in Sheppard et al.

(2003) by PCR using the Hematodinium 18S-based primers of
Gruebl et al. (2002). What is unknown is whether these crusta-
ceans represent alternate hosts for the same species of parasite

infecting C. sapidus, or whether they are different species of
parasites. Sheppard et al. (2003) sequenced the 195-bp 18S rRNA
gene fragments amplified from infectedC. sapidus,M.mercinaria,

and L. emarginata and concluded that these hosts are all
infected with the same species. However, the 18S rRNA gene
is highly conserved in similar species complexes (Skovgaard

et al. 2005), and is known to be conserved inHematodinium spp.
(Hudson & Adlard 1996). It is erroneous, therefore, to infer

species identifications based solely on this region. The PCR-
RFLP assay designed in this study would allow for the more
accurate assessment of whether the multitude of other crab
hosts are infected with the same species as that found in

C. sapidus. Alternatively, the ITS1-targeted PCR primers could
be used to amplify and sequence almost the entire ITS1 region
for analysis and comparisons among isolates.

The use of a specific diagnostic assay and DNA probes for
the Hematodinium sp. infecting C. sapidus will improve
estimates of disease prevalence, especially given the potential

for occult infections (Shields & Squyars 2000). Seasonality
has emerged as a significant epidemiological feature in
virtually all Hematodinium-host systems studied to date. In
the coastal bays of Maryland, Virginia, and Georgia, preva-

lence shows regular sharp peaks in late autumn with a rapid
decline in winter followed by moderate increases in spring
(Messick & Shields 2000, Sheppard et al. 2003). Epizootics

can reach 100% prevalence during outbreaks (Messick 1994)
with most of the diseased crabs likely dying of the infection
(Messick & Shields 2000, Shields & Squyars 2000). Other

Hematodinium infections show strong seasonality but the
patterns differ (see Stentiford & Shields 2005); yet, in all of
these systems, a nadir occurs when infections are extremely

low or even undetectable in host populations. These nadirs are
suggestive of an external reservoir or a latency of infection,
which is no doubt linked to the parasite life cycle. Frischer
et al. (2006) provide evidence that for the Hematodinium sp.

infecting C. sapidus, waterborne disease transmission is
possible via infective dinospores. In this scenario, the PCR-
RFLP and DNA probes would be useful for identifying

infected hosts and tissues, detecting life cycle stages in
environmental samples, and localizing parasites in field
studies and laboratory challenge experiments.
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Chatton, É. & R. Poisson. 1931. Sur l’existence, dans le sang des
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