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CRASSOSTREA ARIAKENSIS IN CHESAPEAKE BAY: GROWTH, DISEASE

AND MORTALITY IN SHALLOW SUBTIDAL ENVIRONMENTS

KENNEDY T. PAYNTER,1,2* JACOB D. GOODWIN,1 MARCY E. CHEN,1 NANCY J. WARD,1

MARK W. SHERMAN,1 DONALD W. MERITT3 AND STANDISH K. ALLEN4

1Department of Biology, University of Maryland, College Park, Maryland 20742; 2Chesapeake
Biological Laboratory, University of Maryland Center for Environmental Science, Solomons,
Maryland 20688; 3Horn Point Laboratory, University of Maryland Center for Environmental Science,
Cambridge, Maryland 21613; 4Virginia Institute of Marine Sciences, College of William and
Mary, Gloucester Point, Virginia 23062

ABSTRACT In April 2004, triploid native (Crassostrea virginica) and nonnative (Crassostrea ariakensis) oysters were deployed

in cages at four sites along a salinity gradient in Chesapeake Bay. In Maryland, the lowest salinity site was located in the Severn

River and two low to mid-salinity sites were located in the Choptank and Patuxent Rivers. The highest salinity site was located in

the York River in Virginia. Growth, disease acquisition, and mortality were measured in the deployed oysters through August

2006. Although ANOVA revealed that the nonnative oysters were significantly larger at the end of the experiment than the native

oysters at all sites, the differences were much greater at the Virginia site (59 mm) than in Maryland waters (9–23 mm). With the

exception of C. ariakensis in the Severn River, Perkinsus marinus infected both species at all sites. Prevalences and weighted

prevalences in both species remained relatively low throughout the experiment, but native oysters consistently acquired higher

prevalences and weighted prevalences thanC. ariakensis by August 2006. With the exception of several mortality-inducing events

including winter freezing and hypoxic exposure, mortality was generally low in both species. No disease-related mortality was

suspected in either species given the low weighted prevalences observed. In the York River, where a substantial natural spatfall

occurred in 2004, more native spat were found onC. ariakensis than onC. virginica. To our knowledge, this is the first comparison

of triploid C. ariakensis to triploid C. virginica conducted in the field. Because we did not observe substantial disease-related

mortality, it is too soon to draw conclusions regarding the disease tolerance of C. ariakensis in the field or its viability as a

replacement for the native species.

KEY WORDS: Suminoe oyster, Crassostrea ariakensis, Crassostrea virginica, oyster, Chesapeake, growth, disease, mortality

INTRODUCTION

In recent years, Perkinsus marinus and Haplosporidium

nelsoni, two protozoan parasites, have contributed to the
dramatic decline in populations of the eastern oyster, Crassos-
trea virginica (Gmelin, 1791), in Chesapeake Bay and hindered

restoration efforts in many areas. Introduction of the Suminoe
oyster, Crassostrea ariakensis (Fujita, 1913), has been proposed
as a means of rehabilitating the oyster industry and restoring
oyster reef habitats in Chesapeake Bay. Previous studies have

indicated that C. ariakensis had higher growth rates and lower
parasite-related mortality than C. virginica (Calvo et al. 2001).
Experiments byCalvo et al. (2001), designed to assess the poten-

tial use of triploid C. ariakensis as an aquaculture species, were
conducted in floating racks at sites in Virginia and used
populations of C. ariakensis and C. virginica that differed in

disease history, initial rearing environment, and ploidy. In that
study, theC. ariakensiswere triploid and deployed directly from
the hatchery (i.e., not previously infected by P. marinus),

whereas the C. virginica to which they were compared were
diploid, older and had acquired P. marinus infections in the
previous year. These factors likely contributed to the differences
in growth and mortality observed between species in that study

because triploid oysters have been shown to grow faster than
diploids (Allen & Downing 1986) and that second year infec-
tions of P. marinus are typically more virulent than first year

infections (Paynter & Burreson 1991).

Our goal was to control for these factors and to assess the
performance of C. ariakensis in shallow subtidal habitats,
thereby broadening our understanding of the potential utility

of C. ariakensis as part of an ecological restoration program
aimed at restoring oyster reefs in Chesapeake Bay. We exam-
ined growth, disease acquisition, and mortality in side-by-side
field grow-out experiments. We used hatchery-produced trip-

loid oysters of both species and deployed them simultaneously
in shallow subtidal environments at four sites encompassing an
environmental gradient from polyhaline southern to oligoha-

line northern regions of Chesapeake Bay. We found that after
28 mo, C. ariakensis grew to a larger mean size than C. virginica
at all sites. However, the differences in final size were relatively

small at the Maryland sites but large at the Virginia site.
Because P. marinus prevalences in our experimental triploids
were relatively low even after a third summer of exposure at the
Virginia site, we compared P. marinus prevalences in diploid C.

virginica of similar deployment history at the Virginia site and
found much higher prevalences in those oysters.

METHODS

Triploid juvenileC. ariakensis andC. virginicawere placed in
mesh oyster cages and deployed at three sites in Maryland
(Severn, Choptank, and Patuxent Rivers) and one site in Vir-
ginia (York River). Long-term data from nearby NOAA

Chesapeake Bay Program monitoring buoys indicated that
these sites should provide a range of salinity exposures from
5–25. The methods used in our study were modeled after

those of Calvo et al. (2001) to assure comparable results and*Corresponding author. E-mail: paynter@umd.edu
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biosecurity. All deployments were permitted by the Virginia
Marine Resource Commission, Maryland Department of Nat-

ural Resources and/or Army Corps of Engineers after consul-
tation with the Ad-hoc Exotic Species subcommittee of
the Living Resources subcommittee of the Chesapeake Bay
Program.

Juvenile C. virginica and C. ariakensis for these experiments
were produced in October, 2003, at the VIMS oyster hatchery
by crossing tetraploids of each species produced in 2002 with

diploids of the same species (see Guo & Allen 1994). Diploid C.
virginica came from local Maryland stocks, whereas diploid C.
ariakensis came from a North American west coast population.

Juveniles of both species were held in flow-through tanks at
Cherrystone Aquafarms, Cheriton, VA, until deployed in the
field in April 2004. At each site, 800 oysters of each species were
split between two replicate subtidal cages resulting in four cages

(two of each species) at each site. Experimental units consisted
of mesh cages (ADPI, Inc) strapped onto underwater racks that
held the cages ;0.25 m above the bottom. To prevent reduc-

tions in growth rate because of overcrowding, additional cages
were periodically added to the experiment and oyster popula-
tions split evenly between old and new cages.

Sites were visited monthly with the following exceptions: a
single sampling period was used for November/December 2004
and no samples were taken in March 2005. To assess disease

acquisition, oysters were sampled at each site monthly from
May through October of 2004 and also in November/December
of 2004, in January, May, July and October of 2005, and in
August of 2006 (York site only). All live oysters, boxes, and

gapers were counted to assess mortality and a subset of live
measured each month to assess growth. For growth measure-
ments, 30–40 oysters were haphazardly selected en masse from

each cage and their shell height measured to the nearest mm.
During months chosen for disease sampling, 15 of the measured
oysters from each of two cages were returned to the laboratory

for additional analyses. Oysters not selected for laboratory ana-
lyses were returned to their original cage. Boxes were discarded,
and gapers were returned to the laboratory for disease analysis.

Our sampling design was not well suited for measuring

cumulative mortality because we destructively sampled from
the cages over time for disease and ploidy testing. To assess
mortality, we calculated a ‘‘monthly’’ percent mortality in each

cage rather than a cumulative mortality.Monthly mortality was
calculated as total boxes and gapers divided by the total number
of oysters in each cage (monthly mortality ¼ [gapers + boxes]/

[gapers + boxes + live] 3 100) between sampling periods. It
should be noted that each sampling period was not exactly the
same but approximately one month. This approach quantified

the percent of oysters that died in each cage, because the last
sampling was insensitive to prior sampling removals from the
cage and provided accurate insight into oyster deaths during a
specific time period.

A three-factor ANOVA (a ¼ 0.05) was used to test for
effects of species, site, and cage in August 2006 shell heights
(JMP software, v. 5.0.1.2, SAS Inc.). Initial analyses showed no

effect of cage on shell heights, so a two-factor ANOVAwas then
conducted pooling individual shell heights from cages within
species and within site. The two-factor analysis showed a

significant interaction between site and species so 1-factor
ANOVA was performed to test differences in final shell height
between species at each site. Monthly mortality was analyzed

using three-factor ANOVA with site, species, and cage as
factors. Cages were shown to have no significant effect on

mortality, so a two-factor ANOVA was then performed. The
two-factor analysis showed a significant interaction between
site and species so 1-factor ANOVA was performed to test dif-
ferences in monthly mortality between species at each site.

In the laboratory, Perkinsus marinus infection was assessed
using the thioglycollate assay after Ray (1954), and infection
intensity was scored for each oyster using the following

categories and corresponding scores: absent ¼ 0, very light ¼
0.5, light ¼ 1, moderate ¼ 3, and heavy ¼ 5. Weighted prev-
alence (WP) was then calculated as the average infection

intensity for each group of oysters sampled (n ¼ 30). Oysters
sampled from different cages were pooled for disease analysis.
In August 2006, samples were also collected and analyzed from
diploid C. virginica at the York River that were the same age as

our experimental animals and had been reared in cages under
similar conditions as part of another research project adjacent
to our cages. Because P. marinus infections rates in our experi-

mental animals were lower than we had expected, we sampled
the diploids to compare with our triploid results, suggesting
whether ploidy might have some affect on P. marinus infection

rates. The diploids were not part of our experimental deploy-

ment and this comparison was made only for qualitative
purposes. As is typical for data of this nature, no statistical

tests were run on prevalence or weighted prevalence values.
Opportunistic observation in the laboratory of the valves of

sacrificed oysters revealed that C. ariakensis shells from the
York River site appeared to have more natural spat settlement

on them than did the native oyster shells. Counts were made of
spat on both valves of each species from the York River site.
Spat/valve were compared using a simple t-test (a ¼ 0.05).

RESULTS

Salinity

Salinity data from NOAA monitoring buoys near each site
showed that the Severn River site was characterized by low

salinities during the study period (6–12.9) whereas the Chop-
tank and Patuxent River sites had low to moderate salinities
(7.9–12.9 and 8.3–15.5, respectively, see Figure 1). The York

River site, adjacent to the Virginia Institute of Marine Science
(VIMS), was associated with the highest salinity range (16.5–27;
see Fig. 1). Although the salinities were more variable at the

York River site, no large or unusual shifts in salinity occurred at
any of the sites as a result of extended drought or heavy rainfall
during the study. Although the Patuxent site reached a high of

15.5 in October 2005, theMaryland salinities remained within a
remarkably small range revolving around 10 during most of the
study.

Growth

As of August 2006, the effects of species, site, and their

interaction on August mean shell height were all highly
significant. At each site, the mean shell height of C. ariakensis
was significantly greater than C. virginica (Table 1, 1-way

ANOVA at each site, P < 0.001 for all sites; Fig. 2). Tests of
the effects of site within species found that shell heights at the
York River site were significantly greater than the other three
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sites for both species. Although salinity is unlikely to be the only

difference between our sites (see Fig. 1.) and may not be the
primary factor driving observed differences in growth, it is clear
that C. ariakensis growth rates were significantly greater at the

Virginia site than at the Maryland sites where C. ariakensis
reached a mean shell height of nearly 180 mm.

Growth rates of C. ariakensis and C. virginica within site

were nearly identical at all sites for the first four months (Fig. 2).
However, during the first fall season (September to December
2004), C. ariakensis continued to grow at summertime rates at

all sites except the Patuxent River. After the first fall, increases
in shell height over time were remarkably similar between

species within site at all Maryland sites (i.e., the trend lines
are nearly parallel; Fig. 2a to c). At the York River site in

Virginia, growth rates of C. ariakensis and C. virginica differed
for the majority of the study (Fig. 2d). After growing through
the first summer and part of fall at rates nearly identical to
C. virginica, C. ariakensis continued to grow until December

2004 when shell height stopped increasing. In contrast, C.
virginica grew very little between September and December
2004. Shell growth in both species then restarted after March,

but C. ariakensis growth was more robust. Growth stopped in
C. ariakensis during the summer months, and restarted in
September 2005, whereas C. virginica grew at a slower rate

throughout the summer and stopped again in October. Growth
in C. ariakensis continued throughout the winter of 2005/2006
until June 2006, when it again slowed through August 2006.
During the same period, C. virginica grew very slowly, increas-

ing in shell height only 13 mm between September 2005 and
August 2006 compared with the 45 mm increase observed in
C. ariakensis.

Disease

Prevalences of Perkinsus marinus (Dermo) infections in both

species were typical in annual cycle (peaked in October) and in
relation to salinity (the highest prevalence in the oysters raised
at the highest salinity). First year infections were detected only

in native oysters in Virginia (% infected ¼ 26.7, WP ¼ 0.23).
Second year infections were detected in both species of oysters
at all sites except in C. ariakensis at the Severn site (Fig. 3).
Although it is difficult to compare disease prevalences statisti-

cally (a single sample of 30 oysters is the historic standard for
Perkinsiosus diagnosis), Figure 3 shows that P. marinus prev-
alences appear to be similar between oyster species raised at the

Choptank and Patuxent sites. However, P. marinus prevalence
in C. virginica grown in Virginia was almost 4 times that of C.
ariakensis held at the same site. Weighted prevalences (Fig. 4)

showed similar trends with higher infection levels inC. virginica
at theVirginia site.However, it shouldbenoted that allWPvalues
were quite low (all but one are less than 0.20) relative to levels
observed during disease-induced mortality events (WP $ 2.5).

Disease trends in C. ariakensis and C. virginica at the York
River site showed interesting differences (Fig. 4). By the end of
the first growing season (October 2004), 26.7% of the native

oysters were infected with P. marinus but no parasites were
detected in the nonnative oysters. ByMay of the following year,
both species had light infections. By October 2005, 66.7% of C.

virginica were infected as compared with only 16.7% for C.
ariakensis. Weighted prevalences were also quite different,
showing that the native oyster had substantially more intense

infections (although, overall, the infections in all oysters
remained relatively light). By August, 2006, infection preva-
lences and weighted prevalences had not changed substantially.
However, the diploid C. virginica tested that were the same age

and held in trays nearby our experimental oysters showed much
higher prevalence (93.1%) and weighted prevalence (2.1) than
either triploid group.

Mortality

Patterns of mortality were very similar throughout the study
but differed between sites and, at times, between species within

Figure 1. Temperature (A) and salinity (B) data from NOAA monitoring

buoys near each site. Buoy LE43 was used for the York site (h), LE1.3 for

the Patuxent (¤), ET5.2 for the Choptank (D), and WT7.1 for the Severn

(s).

TABLE 1.

Final mean (and standard error) shell heights of oysters at all
sites. N$ number of oysters measured at final sampling.

Crassostrea ariakensis was significantly larger than C. virginica
at each site. Crassostrea ariakensis at the York site was

significantly larger than oysters of either species raised
at any other site.

River Species

Mean Shell

Height (mm) SE N

Severn C. ariakensis 118.7 1.8 88

C. virginica 97.6 1.6 36

Choptank C. ariakensis 128.1 2.5 30

C. virginica 105.0 2.4 34

Patuxent C. ariakensis 114.5 1.7 60

C. virginica 105.5 1.7 60

York C. ariakensis 174.6 2.0 60

C. virginica 115.2 2.0 60
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site (Table 2; Fig. 5). Mean monthly mortality was less than 2%

at all sites in both species. However, we believe several events
caused ‘‘artifactual’’ mortality during the course of the exper-
iment. First in the fall of 2004, when oyster cages at the Patuxent
site had been transferred into a flow through tank because of

heavy seas, water flow was cut off for approximately 72 h and
the tank fouled. After this exposure, approximately 10% of the
C. ariakensis oysters died, whereas less than 2% of the

C. virginica died. In February 2005, a freeze event apparently
occurred at the Severn and Choptank sites where an extremely
low tide exposed several cages to freezing temperatures. In the

Choptank, all oysters in two cages, one ofC. ariakensis and one
of C. virginica were killed. In the Severn, one cage of
C. ariakensis experienced over 60% mortality and one of
C. virginica over 25%. TheC. ariakensis cage was more exposed

than the C. virginica cage and likely resulted in higher mortality
of that species at that site. Higher box and gaper counts in the
two months subsequent to that event were likely related to it.

Analysis of variance of the monthly mortality data, with
freezing outliers removed, showed significant site, species, and
interaction effects. In general, mortality was lowest at the low

salinity Severn site (0.67 ± 0.15 SEM) and highest at the highest
salinity York site (1.36 ± 0.16), with the Choptank and Patuxent
sites in between. Species–specific mortality rates at each site are

shown in Table 2. One-factor ANOVA showed that mean
monthly mortality was not different between species at the
Severn or Choptank sites. However, mean monthly mortality

was significantly higher in C. ariakensis at the Patuxent site but

significantly lower at the York site (Table 2).
A few interesting patterns emerged in the monthly mortality

graphs. In the York, mortality in both species appeared to be
greater in the summer months—especially C. virginica mortal-

ities, which rose over 5% in 2005 & 2006. In the Patuxent,
mortalities in both cages of C. ariakensis rose in late summer/
fall of 2004 and 2005, whereas C. virginica showed no change.

We believe these mortalities were in association with temporary
transfer of the cages into flow-through enclosed tanks during
bad weather. In the Choptank, oysters in bothC. virginica cages

showed a spike in mortality over 10% in September 2004 and a
smaller increase in July 2005. C. ariakensis showed no such
mortality at that site and Perkinsus marinus infections in the
native oysters did not appear to be heavy enough to cause such

mortalities.

Recruitment onto C. ariakensis versus C. virginica

In summer of 2004, wild C. virginica larvae settled over our
study area in the York River but at none of the Maryland sites.

Assessment of spat (juvenile oysters) densities conducted in
October 2004 found significant differences in the numbers of
spat settled on C. ariakensis versus C. virginica (Mann-Whitney

Rank Sum, P < 0.001). Almost four times as many spat settled
on C. ariakensis (4.0 spat/oyster) than on C. virginica (1.1 spat/
oyster) held in side-by-side trays.

Figure 2. Mean shell height (%SD) ofC. ariakensis (¤) andC. virginica (h) at sites in the Severn (A), Choptank (B), Patuxent (C), and York (D) sites.

Except for late Fall 2004 growth in C. ariakensis, increases in shell height were nearly identical over time at the Maryland sites (A to C). However, at

the York site, C. ariakensis increased shell height throughout the year, whereasC. virginicamuch more slowly. Table 1 shows statistical comparisons of

final shell heights.
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DISCUSSION

The suitability ofC. ariakensis as an ecological substitute for

C. virginica in the Chesapeake Bay depends on the physiological
ability of the species to survive and flourish in the Chesapeake
ecosystem. This project sought to determine the comparative
performance of both species in the field one means of gauging

that suitability. One of the main goals was to document the
mortality caused in both species by P. marinus infections.
Typically at the York river site, P. marinus will induce mass

mortalities in oysters in the second and/or third summer season
(Burreson 1991, Paynter & Burreson 1991). However, P.
marinus infections in the oysters deployed for this project

apparently never reached an intensity level high enough to
induce or cause mass mortalities in either species. It is possible
that triploidy conveyed some physiological advantage to dis-

ease, and thus the experimental oysters were not lethally
infected within the expected time frame, although Barber &
Mann (1991) reported no differences in disease susceptibility
between triploid and diploid oysters. Despite a lack of disease-

induced mortality, infection levels were indeed lower in
C. ariakensis than in the native oyster and one would predict
that disease-induced death would come sooner to the natives

than C. ariakensis. However, we could not demonstrate that,
therefore, one of the key questions as to the value or suitability
of C. ariakensis as an ecological substitute for a disease-

intolerant native oyster remains unanswered by this study. It
should be noted that Moss et al. (2006) have shown that

C. ariakensis can acquire lethal infections of P. marinus under
laboratory conditions and, thus, may not be entirely physio-

logically resistant to the parasite.
During the study period, C. ariakensis outgrew native

oysters at all sites, however, differences in growth rates between

the two species were much greater at the higher salinity Virginia
site than at the lower salinity Maryland sites. A review of the
literature indicates that C. ariakensis is generally considered a

fast growing oyster. We are unaware of other studies that have
specifically addressed differences in growth of C. ariakensis as a
function of salinity that included sites with low enough salinities

to be comparable to those commonly observed on oyster reefs in
the Maryland portion of Chesapeake Bay (see Zhou & Allen
2003 for a review). In Japan, the salinity range for C. ariakensis
has been reported from 9–30 (Amemiya 1928), whereas in

China, multiple reports of optimal ranges cluster around 10–
30 (Zhou & Allen 2003). Thus, the three Maryland sites
represented suboptimal growth salinities according to the

literature, and our results confirm this conclusion. Other studies
(Calvo et al. 2001, Grabowski et al. 2004) have shown similar
results, although those studies compared diploid native oyster

growth to triploid nonnative growth. Triploid oyster growth is

Figure 3. Prevalence (% of oysters infected, A) and weighted prevalence

(B) of P. marinus in triploid C. ariakensis (black) and triploid C. virginica

(gray) in October 2005 at all sites. 0$ All oysters tested were negative for

P. marinus infection. More native oysters became infected (>60%) than

nonnatives (<20%) at the York site and more heavily infected than C.

ariakensis.

Figure 4. Prevalence (A) and weighted prevalence (B) of P. marinus in

triploid C. ariakensis (black), triploid C. virginica (gray), and diploid C.

virginica (hatched) at the York River site. 0$ All oysters negative for P.

marinus infection. Crassostrea ariakensis infections remained relatively

low, whereas C. virginica infections increased over time to >60%. Diploid

C. virginica oysters with similar deployment history (see text) and tested in

August 2006 showed >90% infection. Weighted prevalences in both

species were relatively low considering the three summers of exposure at

the York river site. However, C. virginica showed higher weighted

prevalence than C. ariakensis in October 2005 and August 2006. Diploid

C. virginica showed nearly lethal weighted prevalence.
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sometimes more rapid than conspecific diploid growth (Allen &
Downing 1986, Barber & Mann 1991). Because the present

study compares triploids to triploids, it confirms a true species-
associated difference in growth rate. Further, the difference in
growth rates associated with salinity is remarkable and may

indicate that C. ariakensis will not grow as much faster than the
native oyster in Maryland waters.

In considering whether C. ariakensis is a viable replacement
for the native species, disease susceptibility may be even more

important than growth rate. P. marinus infection rates were low
at all sites in both species and did not appear to cause disease-
related mortalities in either species. However, P. marinus
infection has been shown to reduce growth rate in C. virginica

(Andrews 1965, Paynter & Burreson, 1991). The reduced
growth rates in both summer seasons in C. virginica groups
with P. marinus infections suggest that parasite infection may

have contributed to the differential growth rates between
species, causing a reduction in growth rate in C. virginica.

Mortality rates were low throughout the study except for

low-tide associated freezing events at the Choptank and Severn
sites and apparent anoxic stress at the Patuxent site associated
with temporary housing in flow-through tanks. Our suspicion
that the differential mortality rates observed in the Patuxent in

October 2004 may have been caused by differences in hypoxia/
anoxia tolerance between the two species has been supported by
recent work by Harlan (2007) demonstrating that C. ariakensis

is less tolerant of oxygen stress thanC. virginica. She found that
most C. ariakensis held under anoxic conditions died within a
few days, whereas most C. virginica survived over two weeks.

Given the frequency of anoxic and hypoxic events in Ches-
apeake Bay (Mackiernan 1987, Smith et al. 1992), evaluation of
the utility of C. ariakensis as a substitute for the native species

will need to carefully weigh any advantages in disease resistance
against the disadvantages of higher susceptibility to oxygen
stress.

Interestingly, in the York River where the only measurable

spatfall occurred, significantly more native oyster spat settled
on C. ariakensis than C. virginica in 2004. Because our analyses
did not control for differences in the total surface area available

for settlement on the valves of the two species, additional
studies will be required to determine whether spat settle at

Figure 5. Monthly mortality of C. ariakensis (¤) and C. virginica (h) at Severn (A), Choptank (B), Patuxent (C), and York (D) sites. Note that the

maximummortality represented on the Y-axis is 30%.Monthly mortality was calculated as (# boxes + # gapers)/(# live + # boxes + # gapers) in each of

two sampling cages. Boxes and gapers were removed eachmonth. The spikes in mortality in the Severn and Choptank sites were result of a low-tide freeze

in one cage of C. ariakensis and one cage of C. virginica at each site. The two cages frozen at the Choptank site were removed from the study.

TABLE 2.

Mean monthly mortality rates of oysters at all sites. Monthly
mortality was calculated as (boxes + gapers)/(live + boxes +

gapers) 3 100 at each sampling period. N represents the number

of monthly samples 3 number of cages for which monthly
mortality estimates were generated.

River Species

Mean Monthly

Mortality (%) SE N

Severn C. ariakensis 0.59 0.22 48

C. virginica 0.76 0.22 48

Choptank C. ariakensis 0.40 0.31 24*

C. virginica 1.46 0.32 24*

Patuxent C. ariakensis 1.23** 0.22 48

C. virginica 0.37 0.21 48

York C. ariakensis 0.83*** 0.22 47

C. virginica 1.88 0.22 47

* Oysters in one cage of C. ariakensis and one cage of C. virginica were

killed by freezing in 2/2005.

** C. ariakensis mortality was significantly higher than that of C.

virginica at the Patuxent site (1-factor ANOVA; P < 0.0078).

*** C. ariakensis suffered significantly less mortality thanC. virginica at

the York site (1-factor ANOVA; P < 0.0024). No significant differences

in mortality were detected between species at the Severn or Choptank

sites (1-factor ANOVA).
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higher rates per unit surface area onC. ariakensis. That said, the
differences in surface area were probably not large, because the

mean shell height of C. ariakensis at the time of settlement was
about 90 mm and that of C. virginica was about 80 mm. This
could be an important observation. Because larval settlement is
a function of both physical and chemical cues and because

hybridization between the two species is unproductive (Allen
et al. 1993, Gaffney & Allen 1993), increased settlement rates of
native oyster larvae on nonnative oysters might lead to complex

interactions between populations of the two species.
In summary,C. ariakensis grew more rapidly than the native

oyster at all sites. In addition, parasitic infections were sub-

stantially lower in the nonnative oysters, which will likely lead
to lower disease-related mortalities, although that was not
quantified by this study. The lack of large differences in growth
rates in Maryland suggests that disease tolerance might be the

most important quality C. ariakensis could bring to the upper,
less saline Chesapeake Bay. Because no studies, including this

one, have quantified differences in disease-related mortality
between triploids of the two species and at least one study

has shown that C. ariakensis can acquire lethal infections of
P. marinus (Moss et al. 2006), it is still too soon to draw
definitive conclusions regarding the disease tolerance of C.
ariakensis in the field or its viability as a replacement for the

native species.
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