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COWNOSE RAY (RHINOPTERA BONASUS) PREDATION RELATIVE

TO BIVALVE ONTOGENY

ROBERT A. FISHER,
1
* GARRETT C. CALL

1
AND R. DEAN GRUBBS

2

1Virginia Institute of Marine Science, College of William andMary, PO Box 1346, Gloucester Point, VA
23062; 2Florida State University Coastal and Marine Laboratory, 3618 Hwy 98, St. Teresa, FL 32358

ABSTRACT The purpose of this study was to determine the ability of the cownose ray, Rhinoptera bonasus (Mitchill, 1815),

to manipulate oysters and clams, to test for relative prey preference, and to investigate whether susceptibility to cownose ray

predation changes with bivalve ontogeny.We investigated patterns of predation for captive adult and young-of-year cownose rays

on 4 species of bivalves, including Crassostrea virginica (Gmelin, 1791), Crassostrea ariakensis (Fujita, 1913), Mercenaria

mercenaria (Linnaeus, 1758), andMya arenariaLinnaeus, 1758. In oyster (C. virginica) trials, predation probabilities by adult rays

were highest at shell heights of 30–70mmand shell depths of 8–22mm. The rates of predation by adult rays in trials in which same-

size oysters were used were higher than rates in most comingled trials. Adult rays showed no differences in predation between

native oysters (C. virginica) and nonnative oysters (C. ariakensis; P > 0.05). Adult rays selected hard- and soft-shell clams (Manly-

Chesson indexM. mercenaria, a ¼ 0.736 ± 0.002, electivity ¼ 0.473 ± 0.007;M. arenaria, a ¼ 0.742 ± 0.003, electivity ¼ 0.485 ±

0.013) over oysters (C. virginica, a¼ 0.263 ± 0.002, electivity ¼ –0.473 ± 0.007; a ¼ 0.257 ± 0.003, electivity¼ –0.485 ± 0.003). In

young-of-year feeding trials, oysters with a shell height of 10–35 mm and a shell depth of 3–12 mm had the highest probability of

predation. Native oyster and hard clam peak force or load crush tests resulted in forces of 200–1,500 N and 400–1,400 N across

shell depths of 10–35 mm and 21–34 mm, respectively, before valve failure. The results of this study indicate that cownose ray

predation on shellfish is limited by shell size and is likely related to ray jaw gape and bite force.

KEY WORDS: Durophagy, cownose ray, prey selection, predation risk, Rhinoptera, bivalve mollusc

INTRODUCTION

The cownose ray, Rhinoptera bonasus (Mitchill, 1815), is
a member of the order Myliobatiformes, which includes 10

families of stingrays. Cownose rays (Rhinopteridae) include at
least 7 species (Compagno 2005) of coastal pelagic rays that
often travel in large schools. R. bonasus is the only species that

occurs along the east coast of the United States, and is
distributed from southern New England to Brazil and through-
out the Gulf of Mexico. Cownose rays undergo long seasonal

migrations similar to those exhibited by most coastal sharks
(Smith & Merriner 1987, Grusha 2005). In spring, they migrate
north, reaching the Outer Banks of North Carolina by April
and subsequently the Chesapeake Bay in early May (Smith &

Merriner 1987). Cownose rays are abundant in the Chesapeake
Bay and its tributaries throughout the summer, occurring at
salinities as low as 8 (practical salinity scale) and temperatures

from 15–29�C (Smith &Merriner 1987). By early October, most
cownose rays have vacated the Chesapeake Bay to begin their
southerly migration to wintering areas primarily off the Atlan-

tic coast of Florida (Grusha 2005).
Cownose rays are durophagous (feeding on hard-shelled

prey) predators, feeding on molluscs as well as crustaceans and

benthic polychaetes. Collins et al. (2007) reported that cownose
rays from Charlotte Harbor on the Gulf coast of Florida fed
primarily on small crustaceans (cumaceans) and sedentary
polychaetes, but most earlier studies reported that the dominant

prey are small, weak-shelled bivalves (e.g., Smith & Merriner
1985, Blaylock 1993). Concerns over predation on commercial
bivalve resources have been raised by fishery and aquaculture

operations for many years and in several regions of the world.
However, little evidence of actual predation on these resources

has been documented (Gray et al. 1997), and studies have

shown the general absence of oysters in the diets of rhinopterid
and myliobatid rays (Smith & Merriner 1985, Collins et al.
2007) even when associated with oyster beds (Gray et al. 1997).

The ability of cownose rays to feed on large oysters is also
questionable as a result of the gape limitations of these rays
(Summers 2000, Sasko et al. 2006) and the force required to

crush Eastern oysters (Bishop & Peterson 2006). However,
Peterson et al. (2001), report that cownose rays in North
Carolina are capable of depleting dense patches of weaker
shelled bay scallops (Argopecten irradians (Lamarck, 1819)).

Oyster restoration and commercial grow-out efforts in Virginia
have undoubtedly experienced setbacks because of cownose
rays consuming deployed oysters on experimental reefs and

commercial grounds. In 2004 and 2006, 1.2 million and 775,500
oysters were seeded for reef restoration in Virginia, respectively.
Wesson (2009) reported that 95% were eaten by cownose rays.

Of the 9 species of batoids that inhabit the Chesapeake Bay
during summer months, only 2 species—the cownose ray and the
bullnose ray (Myliobatis freminvilliiLeseur, 1824)—have grinding
plates and jaw musculature potentially capable of manipulating

and crushing oysters and hard clams (Mercenaria mercenaria
(Linnaeus, 1758)). Although the bullnose rays may be capable of
manipulating and crushing adult oysters and hard clams, they are

relatively uncommon in Virginia waters, are generally solitary,
and are therefore unlikely to be major predators on bivalves in
this region. Cownose rays, in contrast, are extremely abundant in

the Chesapeake Bay. The reports of cownose ray predation on
commercial bivalves coupled with questionable claims of dra-
matic increases in the cownose ray population coastwide (Myers

et al. 2007) have spurred interest in developing a commercial
fishery for cownose rays or at least identifying nonlethal de-
terrents for keeping cownose rays from commercial beds.

Cownose rays use several behaviors in feeding on benthic

prey. Cownose rays excavate invertebrate prey from the substrate
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by using vigorous oscillations of the pectoral fins and by jetting
water taken in through the spiracles during respiration from the

mouth to separate prey further from sediment (Schwartz 1967,
Sasko 2000). Inertial suction feeding moves prey from the
sediment into the mouth. Anterior expansions of the pectoral
fins form two mobile cephalic lobes in cownose rays. These

lobes aid in the creation of feeding depressions in the substrate
as they are rhythmically but asynchronously extended ventrally,
and retracted during feeding (Sasko et al. 2006). The lobes may

also serve in increasing suction strength by surrounding iden-
tified prey, thereby creating a confined vacuum against the
substrate (Fisher, pers. obs.). When not actively feeding, these

lobes are retracted and held tight against the body to increase
hydrodynamic efficiency.

The jaws of cownose rays also are modified for durophagy.
The jaws of sharks and rays consist of 4 primary cartilages: 2 in

the upper jaw and 2 in the lower jaw. The symphyses that
loosely connect the two sides of the mandible (lower jaw) and of
the palatoquadrate (upper jaw) are fused in the rhinopterid and

closely related myliobatid rays (Summers 2000). Hyperdevel-
oped mandibular adductor and coracomandibular muscles in
the jaws (González-Isáis 2003), highly calcified jaws, and hard,

pavementlike tooth plates enable cownose rays to feed on prey
with hard shells. The tooth plates are interlocked, distributing
bite force across the whole jaw rather than on a single point

(Maschner 2000). A 60-cm cownose ray is capable of bite forces
between 40 N and 200 N (Sasko and Maschner in Sasko 2000,
Motta 2004). Bishop and Peterson (2006) reported that the
force necessary to crush the shell of Eastern oysters (Crassostrea

virginica (Gmelin, 1791)) is greater than 200 N for any with
a shell height greater than 30 mm, suggesting that only very
small oysters are susceptible to the predation pressure that

cownose rays can produce. Interestingly, the force required to
crush the Suminoe oyster (Crassostrea ariakensis (Fujita, 1913))
is less than 200 N at all sizes (Bishop & Peterson 2006),

suggesting that at all life stages, this introduced species may
be much more susceptible than native oysters to cownose ray
predation.

We performed cownose ray predation experiments with

captive rays to determine whether a critical size or feature exists
for C. virginica and M. mercenaria that can limit their suscep-
tibility to predation, and to examine patterns of ray predation

on various bivalve species of commercial importance.

METHODS

Cownose rays are schooling fish (Smith & Merriner 1985)
that are strictly observed naturally foraging and feeding in

groups. Therefore, each behavioral experiment comprised
a group of 4 adult female rays ranging from a 90-cm disc width
(DW) (12.7 kg) to a 102-cm DW (20.0 kg), and a maximum jaw
gape range of 27–34 mm. For subsequent trials we used cow-

nose rays from the 2009-y class (1.5 mo old) measuring 43 (2.1
kg)–45 cm (2.6 kg) DWwith amaximum jaw gape of 10–18mm,
referenced as young-of-year (YOY). Jaw gape was measured on

fresh, whole, dead rays (concurrent study) at the maximum
distance between teeth plates when simultaneously pulling the
lower jaw ventrally and posteriorly, and upper jaw ventrally and

anteriorly. Rays were caught by commercial fishermen using
haul seine gear near Back River, Poquoson Flats, in the lower
Chesapeake Bay and transported live to the Virginia Institute of

Marine Science inGloucester Point, VA.We held adult rays and
performed predation trials in an aboveground, oblong fiber-

glass tank (334.2 m) with sand filter recirculation. Water depth
was maintained at 0.6 m. We held YOY ray predation trials in
1.232.4-m recirculating tanks with a water depth of 0.6 m.

Behavioral Analysis

Feeding trials were conducted no more than once per day.
Cownose rays were maintained in a less than satiated, but not
starved, condition. Daily ration for elasmobranchs, including

batoids, ranges from 0.3–4.3% of body weight per day
(Wetherbee & Cortes 2004). The state of hunger, or mainte-
nance level, was achieved by feeding rays approximately 3% of

their cumulative body weight per day in live oysters (average
meat weights from various size oysters were calculated) and
freshly killed and dismembered blue crabs. The total weight of
bivalves (meat) consumed in most trials in this study did not

exceed 3.0% of the total body weight of the cownose rays.
Supplemental posttrial feeding occurred daily when estimated
consumption by the rays was less than 3%.

When not feeding, rays schooled counterclockwise around
the holding tank, keeping close proximity to each other. Upon
initiating each feeding trial, the rays typically made a single

‘‘investigatory’’ pass over the shellfish, and then routinely began
preying on the shellfish upon their second pass, within 30–60 sec
of shellfish introduction.

At the completion of each trial, predation on shellfish was

categorized as successful or unsuccessful. Handling time, or the
overall time (effort) expended by rays mouthing, crushing, and
successfully consuming various shellfish sizes/types, is not

reported in this study (concurrent study by authors). Cases
when a bivalve was crushed by the rays and not consumed, but
death was certain, were recorded as successful predation as

a result of the ecological effect in terms of ray-inducedmortality
on bivalve populations.

Predation Trials

We used single (cultchless) oysters (C. virginica and C.

ariakensis), single hard clams (M. mercenaria), and single soft
clams (M. arenaria) for adult predation trials. Specimens of
each species were divided into groups. C. virginica included the

following shell height (SH) groups: 15–25 mm (seed oysters),
30–40 mm, 45–55 mm, 60–70 mm, 75–85 mm, and 90–100 mm.
C. ariakensis included the following SH groups: 45–55 mm, 60–

70 mm, and 75–85 mm. M. mercenaria used in testing included
30–35 mm (little neck), 40–45 mm, and 50–55 mm (top necks)
SH groups. M. arenaria used in testing included the shell width

(SW) group of 45–55 mm. Oyster SH was measured as the
distance between an oyster’s anterior (umbone) and posterior
(bill) margin. Oyster width, or shell depth (SD), was also
measured for each bivalve used in all trials (Fig. 1), and

represented the maximal distance between the outside surfaces
of closed valves (left and right valves combined). SW was
measured as the maximum distance across a valve perpendic-

ular to SH. SW was compared with SH in trials using M.
arenaria because its SW is similar to SH in oysters. Trial
duration (time allowed for predator–prey interaction) was

randomly assigned each testing day. Timing of each trial
commenced with the introduction of shellfish into the ray
holding tank. After trial time expired, rays were herded to one
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end of the holding tank (opposite end from where prey were
introduced) using a fence constructed of PVC that extended the

width of the tank. The rays were corralled there until shellfish
and crushed shell remnants were collected from the tank
bottom. Collection was performed by compiling the shell from

the tank bottom using a 1-m long rubber squeegee, followed by
scooping shell from the pile with a 2-gal capacity funnel
attached with a 1-mm-mesh filter bag. The final removal of

small pieces was conducted using a 6-gal wet–dry shop vacuum.
Whole bivalves recovered after each trial were sorted from shell
remnants, grouped to size or species classification, counted, and

remeasured (SH or SW and SD).

Comingled Oyster Susceptibility Trials

To evaluate size preferences, we comingled multiple shellfish

size groups together and introduced them simultaneously to the
rays. In comingled trials with adult cownose rays, 25 single
oysters or clams per SH group (for a total of 150 oysters or 75

clams) were mixed and dumped into the holding tank approx-
imately 1 m from the tank’s vertical end wall, resulting in
a mound of randomly mixed bivalves of various sizes covering

approximately 0.5 m2. For C. virginica, feeding trials were
conducted in triplicate for time periods of 7.5, 15, 30, and
45 min, and duplicate for 60-, 120-, 240-min periods. For C.

ariakensis, we only tested 3 SH groups (because of availability)
in triplicate 30-min trials. Preliminary investigations feeding
rays M. mercenaria demonstrated that exceeding 15 min was
likely to exhaust the 25 clams in the 30–40-mm SH size class;

therefore, clam selectivity trials were only conducted at 15-min
durations. For comingled trials with YOY rays, 25 oysters per
SH group (SH 10–20 mm, 20–30 mm, and 30–40 mm) were

comingled in a 2-gal bucket, then dumped into the holding tank,
resulting in a mound ;400 cm2. Triplicate 18-h feeding trials
were conducted.

Data analyses were conducted using SPSS for Windows
(version 16.0.0, IBM, Somers, NY). Adult comingled trials were
initially evaluated using chi-square tests and G tests to test the
null hypothesis that predation success was equal for bivalves of

all SH. In trials in which predation success was unequal, we used
the Manly-Chesson alpha index of selectivity for variable prey
abundance and normalized it to get electivity (–1 is complete

avoidance and +1 is complete preference) to evaluate prey
preferences. Actual count data were standardized to display
the proportion of predation based on SH and SDmeasurements

before and after comingled trials. The mortality data collected
from these trials were also used to generate proportions of
predation.We also used binary logistic regression for both adult

and YOY comingled trials to examine the effect of each SH
group, SD, and time period (when appropriate) on predation

probability where a binary response—0, alive; 1, dead—is
related to one or more predictor variables. A logistic regression
model predicted the probability of predation of 3 different
bivalves in the comingled trials—C. virginica,C. ariakensis, and

M. mercenaria—by captive cownose rays. The model can be
expressed as

Logit fpðxÞg ¼ log fpðxÞ=1�ðxÞg¼ b0 + b1x + b2x2

where p(x) is the probability that a bivalve will be preyed on as
a function of a variable x, and b0, b1, b2 are the regression
parameters. The equation can be rearranged to define estimated

probability p(x) as

pðxÞ ¼ eb0+b1x+b2x
2

f1+eb0+b1x+b2x2g

Factors (x) contributing to the probability of predation
(p(x)) included SD and SH groups, and, in one instance, time

period for C. virginica. For analysis of C. virginica, the SH
groups were 15–25, 30–40, 45–55, 60–70, 75–85, and 90–100
mm. For C. ariakensis the SH groups were 45–55, 60–70, and

75–85 mm. The groups for M. mercenaria were 30–35, 40–45,
and 50–55 mm. We applied this model to each trial for time
periods of 7.5, 15, 30, 45, 60, 120, 240 min for C. virginica; 30

min for C. ariakensis; and 15 min for M. mercenaria. Time (x)
was added as a factor to the model for C. virginica to generate
a predicted probability across multiple time periods. Parameter

estimates for each predictor variable were generated and
evaluated for significance (P < 0.05). Model fit was evaluated
using Hosmer and Lemeshow tests.

Evaluation of Peak Load of C. virginica and M. mercenaria

Forty oysters (C. virginica: SH, 24–95 mm; SD, 12–35 mm)
and 36 hard clams (M. mercenaria: SH, 33–54 mm; SD, 21–31

mm) were used to evaluate the force (load) required to crush
each species. We used a 100 Kip Enerpac manual hydraulic
pump and jack system, connected to a 5,500-lb (25-kN) MTS
Systems Corporation (Eden Prairie, MN) load cell (model

661.20B-01). The load cell was connected to a voltmeter
through an AC-powered Bridge sensor (model DMD 465WB)
for taking load measurements. A standard 0–2-in range de-

flection dial gauge (with a least count of 0.001 in) was used to
record deformation/deflections of the shellfish specimen. Cou-
pling the MTS load cell with the Bridge sensor increased the

resolution of the load readings greatly, and the manual
hydraulic pump gave precise control over the load incre-
ments/intervals. The least applicable load was 0.7 lb, or 3 N,

with this configuration.
The load cell was calibrated under the MTS load frame

system before testing shellfish. The calibration involved the
application of a known load to the load cell assembly in

increments and the corresponding voltage output recorded.
This process establishes the voltage-to-load calibration rela-
tionship for the load cell. We weighed andmeasured SH and SD

for all live bivalve samples. Specimens were placed on a solid
steel platform under the load cell, and load testing commenced.
With all shellfish samples, the load cell was gently brought in

Figure 1. Side view of an oyster (C. virginica). SD, shell depth; SH, shell

height.
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contact with the specimen, and the deflection dial gauge was set
to 0. A small increment of load was then applied using the

hydraulic pump, and corresponding deformation of the speci-
men was recorded from the mechanical dial gauge. This process
continued until the specimen failed by crushing. One of the 2
valves of specimens would fail first, at which point load readings

were recorded, indicating initial valve failure, or, for the
purpose of this study, mortality. Load readings were made at
point of first failure (cracking of one valve) and again at point of

second valve failure. Load wasmeasured in kilo-Newtons (from
the load cell) versus vertical deformation in millimeters (based
on the dial gauge readings). Compressive load readings were in

pound–force (lbf) with 1 lbf ¼ 4.4482 N.

Comparative Predation Trials

Adult predation trials were conducted comparing C. virgin-

ica and C. ariakensis, C. virginica and M. mercenaria, and C.
virginica andM. arenaria. In comparative trials, 25 specimens of
both species from the same SH group with similar SD (Table 1)

were comingled and simultaneously introduced into the holding
tank with 4 adult rays. Trial time was held constant at 15 min
and performed in triplicate. For oyster/soft-shell clam trials, we

visually counted mortalities at 3, 5, and 15 min for triplicate
trials. For comparative experiment testing, preference chi-
square test or G tests were performed and combined to test

for significant (a ¼ 0.05) differences in the numbers of each
species preyed on. Independent tests of significance were
combined using Fisher’s (1954) method. We calculated the
Manly-Chesson alpha index of selectivity for variable prey

abundance and normalized it to get electivity (–1 is complete
avoidance and +1 is complete preference) (Chesson 1978) to
determine prey preference when appropriate.

Rate Trials

We evaluated size-mediated predation rates by adult rays

through predation trials grouping 100 C. virginica oysters from
a given SH size over a 15-min period. Rate is defined as the mean
number of oyster mortalities per minute per ray within each

individual time trial. Duplicate trials were performed for oyster
SH: 30–40, 45–55, 60–70, and 75–85 mm. Rates of predation
were standardized to account for differences in oyster abundance
to compare rates of predation with comingled feeding trials

during which rays were introduced to oysters of varying sizes.

RESULTS

Comingled Trials

In comingled trials with adult cownose rays, the proportion
of oysters successfully eaten increased for all SHs tested as time
increased, except for the largest SH class (90–100 mm; Fig. 2A).

TABLE 1.

Shellfish used in adult ray predation comparative trials.

Trial Type Species

Shell Height

(mm)

Mean SD

(mm)

SD Range

(mm)

Oyster–oyster C. virginica 75–85 27.1 21–32

C. ariakensis 75–85 26.0 21–32

Oyster–oyster C. virginica 45–55 16.5 17–25

C. ariakensis 45–55 17 14–20

Oyster–hard clam C. virginica 45–55 22.9 16–32

M. mercenaria 35–40 24.9 21–32

Oyster–soft clam C. virginica 45–55 16.0 11–24

M. arenaria SW, 45–55 16.0 11–20

SD, shell depth; SW, shell width.

Figure 2. Results from comingled oyster trials with adult cownose rays.

(A) Proportion of oysters (C. virginica) preyed on for shell height (SH)

groups over various time trials based on count data. (B) Mean predicted

probabilities of oyster (C. virginica) predation for SH groups from logistic

regressionmodel over various time trials. (C)Mean predicted probabilities

of predation for oyster (C. virginica) SH groups over time.
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Shell heights of 30–40, 45–55, and 60–70 mm were the most
heavily selected for all time trial periods (Table 2). Lowest

predation success was observed on 15–25-, 75–85-, and 90–
100-mm SH oysters.

The probability of predation increased for all shell heights
tested as time increased, except for the 75–85- and 90–100-mm

oysters in the 15-min time period, and the 90–100-mm oysters in
the 240-min time period (Fig. 2B, C). Overall, oysters in the
smallest and largest SH categories had the lowest selectivity.

Mean SD of oysters within each SH group increased 2–3 mm
between pretrial and posttrial in the 60–70-, 75–85-, and 90–
100-mm oysters, suggesting selection for those oysters with

smaller SD in larger oysters (Table 3). No difference inmean SD
was found in the 15–25-, 30–40-, and 45–55-mm SH oysters.

Predation declined with increasing SD. The highest proportion
of predation was observed in oysters with SDs between 8 mm

and 22 mm, whereas the lowest predation success was recorded
in oysters with SDs greater than 32 mm (Fig. 3).

The highest probability of predation among bivalves tested
was for C. virginica in the 8–22-mm SD range, with predation

declining with increasing SD (Fig. 4). Probability of predation
on C. ariakensis was highest for SDs of 14–20 mm. Similarly,
predation declined as SD increased above 22 mm. The highest

probability of predation inM. mercenaria was observed on SDs
between 21 mm and 26 mm. A steep decline in predation was
observed as SD increased above 26 mm. A logistic regression

equation predicted the probabilities of predation forC. virginica
based on the 8 variables tested (Fig. 4):

TABLE 2.

Combined predation (success or failure) on oysters (C. virginica) for adult comingled trials.

Time Trial Shell Height (mm) Success Failure a Electivity

7.5 min 15–25 12 63 0.0504 ± 0.0002 –0.5835 ± 0.0097

n ¼ 3 30–40 47 27 0.3193 ± 0.0057 0.3887 ± 0.0232

45–55 38 35 0.2272 ± 0.0008 0.1871 ± 0.0064

60–70 34 40 0.1853 ± 0.0008 0.0605 ± 0.0078

Chi-square ¼ 73.42 75–85 32 44 0.1945 ± 0.0156 0.0139 ± 0.1880

P < 0.05 90–100 7 67 0.0233 ± 0.0016 –0.8180 ± 0.0994

15 min 15–25 18 57 0.0463 ± 0.0001 –0.6109 ± 0.0044

n ¼ 3 30–40 58 17 0.2637 ± 0.0072 0.2584 ± 0.0513

45–55 64 11 0.3373 ± 0.0065 0.4217 ± 0.0239

60–70 52 24 0.1944 ± 0.0007 0.0904 ± 0.0071

Chi-square ¼ 146.7 75–85 42 33 0.1461 ± 0.0039 –0.1072 ± 0.0781

P < 0.05 90–100 5 70 0.0121 ± 0.0004 –0.8945 ± 0.0334

30 min 15–25 27 48 0.0526 ± 0.0008 –0.5770 ± 0.0345

n ¼ 3 30–40 64 11 0.2283 ± 0.0048 0.1751 ± 0.0361

45–55 69 6 0.2853 ± 0.0078 0.3117 ± 0.0356

60–70 67 8 0.2741 ± 0.0076 0.2852 ± 0.0404

Chi-square ¼ 113.8 75–85 42 32 0.0997 ± 0.0017 –0.3038 ± 0.0422

P < 0.05 90–100 28 47 0.0616 ± 0.0034 –0.5559 ± 0.1637

45 min 15–25 29 46 0.0498 ± 0.0005 –0.5915 ± 0.0208

n ¼ 3 30–40 65 10 0.2188 ± 0.0038 0.1524 ± 0.0270

45–55 72 4 0.3076 ± 0.0093 0.3576 ± 0.0350

60–70 68 7 0.2374 ± 0.0013 0.2130 ± 0.0087

G ¼ 111.9 75–85 51 22 0.1213 ± 0.0005 –0.1875 ± 0.0103

P < 0.05 90–100 30 39 0.0652 ± 0.0035 –0.5313 ± 0.1522

60 min 15–25 26 24 0.0595 ± 0.0001 –0.5199 ± 0.0008

n ¼ 2 30–40 49 1 0.2607 ± 0.0003 0.2755 ± 0.0020

45–55 49 1 0.2607 ± 0.0003 0.2755 ± 0.0020

60–70 48 2 0.2313 ± 0.0005 0.1998 ± 0.0039

G ¼ 101.1 75–85 38 12 0.1361 ± 0.0068 –0.1562 ± 0.1245

P < 0.05 90–100 19 31 0.0517 ± 0.0041 –0.6194 ± 0.2023

120 min 15–25 27 23 0.0615 ± 0.0005 –0.5117 ± 0.0204

n ¼ 2 30–40 50 0 0.2482 ± 0.0010 0.2430 ± 0.0065

45–55 50 0 0.2482 ± 0.0010 0.2430 ± 0.0065

60–70 48 2 0.2191 ± 0.0001 0.1673 ± 0.0007

G ¼ 78.40 75–85 41 9 0.1344 ± 0.0004 –0.1284 ± 0.0073

P < 0.05 90–100 32 18 0.0886 ± 0.0032 –0.3716 ± 0.0970

240 min 15–25 41 9 0.1281 ± 0.0035 –0.1734 ± 0.0679

n ¼ 2 30–40 25 0 0.2174 ± 0.0001 0.1629 ± 0.0001

45–55 50 0 0.2174 ± 0.0001 0.1629 ± 0.0001

60–70 50 0 0.2174 ± 0.0001 0.1629 ± 0.0001

G ¼ 123.3 75–85 48 2 0.1941 ± 0.0120 0.0885 ± 0.0120

P < 0.05 90–100 15 35 0.0255 ± 0.0260 –0.7740 ± 0.0260

Shell heights in bold type indicate preferred prey items.
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pðxÞ ¼ 1

1+e�ð7:260 + 0:013x1+ �0:302x2+ �6:590x3 + �2:574x4+�0:896x5+ 0:457x6+ 0:906x7Þ

where p(x) is Prob (0, 1), x1 is time, x2 is SD, x3 is an SH of 15–
25 mm, x4 is an SH of 30–40 mm, x5 is an SH of 45–55 mm, x6 is
an SH of 60–70 mm, and x7 is and SH of 75–85 mm. All

variables were significant at the 0.05 level, and the Hosmer and
Lemeshow Test was nonsignificant (P > 0.108), suggesting the
model adequately fit the data. Individual analysis of each time
trial period resulted in nonsignificant Hosmer and Lemeshow

tests for all time periods except for the 15-min period. Between
3–5 of 7 parameter estimates were significant for each period,
but the parameter estimates for SD and the smallest SH group

(15–25 mm) were significant for all time trials (Table 4).
We generated a logistic regression equation forC. ariakensis,

pðxÞ ¼ 1

1+e�ð15:329 + �0:556x1+ 16:421x2+ �0:819x3Þ ;

where the intercept and SD parameter estimates were significant
(P > 0.01) and the SH parameter estimates were nonsignificant
(P > 0.998 and P > 0.472, respectively). However, the Hosmer

and Lemeshow test was significant (P < 0.026), suggesting the
model did not adequately fit these data. For hard clams (M.
mercenaria), the logistic regression equation is

pðxÞ ¼ 1

1+e�ð30:355 + �0:993x1+ 13:944x2+ �0:934x3Þ :

The Hosmer and Lemeshow test was nonsignificant (P > 0.394),
suggesting a better model fit and, in addition, 2 (intercept and
SD;P < 0.12 andP < 0.05, respectively) of 4 parameter estimates

were significant. Predicted probabilities from the model are
shown (Fig. 4).

In comingled trials with YOY rays, the probability of

predation declined as SH and SD increased (Fig. 5). The
equation generated for YOY predation is

pðxÞ ¼ 1

1+e�ð21:027 + 2:964x1+ �0:370x2+ �0:270x3Þ :

Parameter estimates for intercept and SH were nonsignifi-

cant (P > 0.997, P > 0.850, and P > 0.285), whereas the estimate
for SDwas significant (P < 0.05). TheHosmer andLemeshow test
suggested the model did not adequately fit the data (P < 0.049).

The force needed to cause failure in one or both valves in C.
virginica and M. mercenaria increased as SD increased (Figs. 6
and 7). The plot of the log-transformed SD and peak load
displays that the load scales isometrically with SD.

ForM.mercenaria, linear peak load is lowest at a 21-mm SD
and increases to nearly 1,400 N at a 33-mm SD (Fig. 7A). Adult
probability of predation and peak load intersect at 30 mm for

M. mercenaria. Peak load for C. virginica is lowest at an SD of
10 mm and increases to more than 1m500 N at a 35-mm SD
(Fig. 7B). Adult probability of predation and peak load in-

tersects at the 29-mm SD for C. virginica. YOY predation and
linear peak load (C. virginica) intersect at a 17-mm SD.

Rate Trials

The rate of predation for all oyster SH groups decreased

with increasing trial time. In the 7.5-min time trials, 30–40-mm
SH oysters were preyed on quickest, followed by the 45–55-, 60–
70-, then 75–85-mm SH oysters (Fig. 8A). Cownose ray pre-

dation rates on oysters were only slightly higher on same-size
oysters compared with comingled oysters of varying sizes,
except in the 75–85-mm SH (Fig. 8B).

TABLE 3.

Range of shell depths and mean shell depth of C. virginica
before and after adult ray comingled predation trials.

Shell Height

(mm)

Range of Shell

Depth (mm)

Mean Shell

Depth Before

Feeding (mm)

Mean Shell

Depth After

Feeding (mm)

15–25 4–9 6 6

30–40 8–18 12 12

45–55 11–22 16 16

60–70 13–33 21 24

75–85 18–35 27 29

90–100 18–40 30 32

Figure 3. Proportion of C. virginica eaten as a function of shell depth in

comingled trials. Vertical lines represent the range in maximum jaw gape

for adult rays used in predation trials.

Figure 4. Mean predicted probability of adult ray predation from logistic

regression models for C. virginica, C. ariakensis, and M. mercenaria as

functions of shell depth. Vertical lines represent the range in maximum jaw

gape for adult rays used in predation.
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Comparative Trials Between Bivalve Species

No significant difference in predationwas observed betweenC.
virginica and C. ariakensis in both SH groups (SH 45–55 mm, SH

75–85mm;P > 0.222, 0.186, respectively) tested. Predation success
was highest (90–96% eaten) in 45–55-mm oysters of both species.
Predation success was significantly higher (P < 0.0001) and the
rays selected hard clams (M. mercenaria, a ¼ 0.736 ± 0.002,

electivity ¼ 0.473 ± 0.007) over oysters (C. virginica, a ¼ 0.263 ±
0.002, electivity ¼ –0.473 ± 0.007). Rays also selected soft clams,
M. arenaria at 5 min into a 15-min trial (a ¼ 0.742 ± 0.003,

electivity ¼ 0.485 ± 0.013) over oysters (C. virginica, a ¼ 0.257 ±
0.003, electivity ¼ –0.485 ± 0.003) initially, then selection was
more equal at the end of 15-min trial (M. arenaria, a ¼ 0.570 ±
0.014, electivity ¼ 0.141 ± 0.059; C. virginica, a ¼ 0.429 ± 0.014,
electivity ¼ –0.141 ± 0.059). Although SH was greater for C.
virginica in oyster–hard clam trials, mean SD was similar for both
species (meanSDof clams, 24.9mm;meanSDofoysters, 22.9mm).

DISCUSSION

Observations of cownose rays feeding throughout this study

showed that bivalves were viewed as a general food source, and
initial selection of potential prey was not based on a prey size.
Cownose rays would indiscriminately suck shellfish toward
their mouth and, if the shellfish fit between the ray’s jaws and

adequate crushing force was applied, the shellfish was eaten. If
the prey was too large to fit between the biting plates, it was
discarded and escaped predation, at least initially.

Shellfish mortality caused by cownose ray predation of partic-
ular SH and SD supports the idea that cownose ray jaw
morphology has a quantitative gape limitation related to prey size.

In general, adult cownose rays in this studywere unable to consume
bivalves larger than 31–32mmSDregardless of SH, andYOY rays
were not able to consume those larger than 15–16 mm SD.

Data suggest that rays select oysters of intermediate SH or
SD. During comingled trials, 3 SH groups (30–40, 45–55, 60–70

mm) had the highest probability of being eaten by adult rays
whereas predation probability on smaller and larger oysters was
significantly lower. Adult rays appeared unable to detect
shorter (15–25 mm SH) oysters, and ingestion of those sizes

was a result of collateral feeding only on smaller oysters in close
proximity to larger target oysters. The tallest oysters (>75 mm
SH) were eaten in fewer numbers because they were too big (SH

and SD) to be easily manipulated and required more handling
time to consume than oysters of smaller SH and typically
shallower SD. Thus, midsize oysters (30–70 mm SH) fit more

easily between the rays’ jaws, resulting in higher predation.
Given longer time to forage, however, successful predation on
larger oysters increased. However, predation rates of the largest

2 size classes remained lower than the 3 intermediate size classes
regardless of time allowed, further indicating that physical
constraints, such as jaw gape, limited predation success.

In comingled trials with YOY rays, the smallest oysters were

most susceptible to predation. YOY rays attempted to feed on
the largest oysters offered (30–40 mm SH, 15–19 mm SD), but
were unsuccessful because of gape limitations.

The logistic regression model was used to determine the
effect of SH and SD on predation. Although direct application
of this model might not reflect predation in a natural setting

with unlimited time, the model does support the generalization
that adult cownose rays do not primarily prey upon very small
or very large, deeper bivalves.

At nearly all SDs, there was a direct relationship between

trial duration and mortality for C. virginica. Given more time,
rays would continue to manipulate larger oysters that had been
attempted earlier in the trial by one or more rays without

success. This aggregate crushing effect, combined with increases
in feeding time, contributed to the higher amount of predation.
Regardless of time, greatest predation success in comingled

trials were on oysters 30–70 mm SH and 14–20 mm SD. This
suggests the rays actively selected oysters of this size range
because they arewithin ray gape limitations. TheManly-Chesson

TABLE 4.

Parameter estimates b0 . b6 corresponding to the intercept, shell depth, 5 shell height categories (15–25, 30–40, 45–55,
60–70, and 75–85 mm) for individual adult ray comingled trials.

Time Period

(min) Intercept (b0) b1/p SD b2/p 15–25 b3/p 30–40 b4/p 45–55 b5/p 60–70 b6/p 75–85 HL

7.5 4.608 –0.206 –5.004 –1.653 –1.112 –0.205 0.723 0.107

0.001 <0.05 <0.05 0.076 0.139 0.705 0.088

15 5.731 –0.279 –5.162 –1.085 0.690 1.069 1.990 0.048

<0.05 <0.05 <0.05 0.287 0.415 0.103 <0.05

30 9.302 –0.340 –7.744 –3.644 –1.292 1.208 0.217 0.230

<0.05 <0.05 <0.05 <0.05 0.121 0.016 0.574

45 9.144 –0.325 –7.546 –3.531 –0.458 0.594 0.492 0.202

<0.05 <0.05 <0.05 0.001 0.614 0.288 0.225

60 10.653 –0.384 –8.106 –2.329 –0.337 0.573 0.830 0.104

<0.05 <0.05 <0.05 0.163 0.807 0.551 0.119

120 10.234 –0.328 –7.982 14.704 16.174 0.295 0.518 0.981

<0.05 <0.05 <0.05 0.998 0.998 0.751 0.320

240 16.638 –0.554 –11.569 11.780 14.131 18.154 1.927 0.997

<0.05 <0.05 0.002 0.999 0.998 0.997 0.031

P values of each variable are shown below parameter estimates, and significance level for the Hosmer and Lemeshow tests (HL) of model fit are

displayed.

SD, shell depth.
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index further supports the preference for the aforementioned
oyster SHs. These preferences may be further explained by force
requirements. The force required to crush bivalves (peak load)

was positively correlated with SD and scales isometrically. The
rise in force needed to crush a bivalve at increased SD along

with jaw gape and bite force limits may work in concert to lower

ontogenetically the susceptibility of bivalves to predation.
Comparing results from comingled versus same-size trials,

slightly higher rates of predation were observed in same-size trials

except for the 75–85-mm-SH oysters. The difference in the rate of
predation may be the result of the greater time required to sort
(passively or actively) through oysters of various sizes, including
large oysters that cannot be successfully preyed upon at first

attempt (75–85 mm). However, the differences in predation rates
between trial types may be explained by passive foraging. Adult
rays were observed manipulating and preying upon shellfish as

they were encountered, regardless of the proximity of more
susceptible prey. This passive foraging on oysters was also
observed in YOY rays that indiscriminately initiated prey manip-

ulation on the first oyster encountered, regardless of oyster size.
Oyster predation rate in comingled trials declined for each

SH category as time increased (Fig. 8A). Rays initially depleted
more susceptible prey, resulting in fewer available prey as time

progressed. Fewer available prey, a larger proportion of prey
approaching or exceeding the gape or bite force limitations
(increasing handling time), and satiation resulted in decreasing

rates of predation over time.

Figure 5. (A) Mean predicted probability of young-of-year (YOY) pre-

dation from the logistic regression model forC. virginica as related to shell

height. (B) Mean predicted probability of YOY predation from the logistic

regression model of C. virginica as related to shell depth. Vertical lines

represent maximum jaw gape range for YOY rays used in predation trials.

Figure 6. Peak load of C. virginica andM. mercenaria as related to shell

depth plotted on logarithmic axes.

Figure 7. (A) Mean predicted probability, adult ray predation, and

nontransformed peak load of M. mercenaria as related to shell depth. (B)

Mean predicted probability of young-of-year (YOY) adult ray predation

and nontransformed peak load ofC. virginica as related to shell depth. C.

virginica Probability of Predation (adult), C. virginica Probability of

Predation (YOY), C. virginica Peak Load (N).
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Management Implications

Cownose ray predation on commercial bivalves has been
a concern for shellfish industries for more than 40 y (Merriner &
Smith 1979). These concerns are acute in the seeding and grow-

out operations that are part of restoration efforts. Considering
that cownose rays have among the slowest reproductive rates of
any vertebrate, usually producing a single pup each year (Smith

& Merriner 1986), eradication programs are not a viable
solution. However, there may be other means to protect
commercial and restored shellfish beds.

Our data suggest cownose rays are gape limited and unable
to produce the force needed to crush larger oysters. Therefore,

oyster growers and those attempting to seed reefs with mature
oysters (broodstock) should consider some measure of pro-
tection for shellfish until they reach a shell depth of 22–24 mm
and/or breed shellfish able to withstand forces greater than

1,400 N.We demonstrated that YOY rays can successfully prey
on seed oysters up to 40 mm SH. In most aquaculture settings,
oyster seed is protected throughout grow-out by various con-

tainment methods (bags, floats, racks). However, cultchless
oysters are produced for restoration efforts where small oysters
are used to seed constructed reefs. In this application, thought

should be given to habitat structure, with reefs providing refuge
(crevices) for small oysters to settle and be less susceptible to ray
predation. Cultched or spat-on-shell oysters have been proposed
and used in restoration efforts, and could limit susceptibility of

oysters to cownose ray predation. Future work on cownose ray
and cultched oyster interaction is needed to evaluate any benefits.

The results also indicate that oyster restoration efforts might

not benefit from introducing different oyster species. Our data
indicate cownose rays prey on C. ariakensis no differently than
on C. virginica. Although the introduction of the fast-growing

C. ariakensis has been suggested as a possible solution, the
results of comparative predation trials indicate that rays do not
discriminate between C. ariakensis and C. virginica, and there-

fore the introduction of C. ariakensis to the Chesapeake Bay to
restore oyster reefs or to revitalize the commercial industry may
not be an adequate solution.

Our data suggest cownose rays prefer the clams M. merce-

naria andM. arenaria over the oysterC. virginica. Preference for
soft clams (M. arenaria) was expected as a result of their high
SH-to-SD ratio and relatively weak valves. This species was

historically the dominant natural prey of cownose rays in the
Chesapeake Bay (Smith & Merriner 1985); however, natural
disaster (Tropical Storm Agnes in 1972), disease, and over-

exploitation have led to the collapse of soft-shell clam stock in
the estuary. Given the significant influence of SD on predation
in the comingled trials ofC. virginica and the similarity of SD in
oyster–clam trials, higher predation on hard clams was un-

expected. A ray must crush the clam at or near its deepest point
(SD), whereas in oysters, rays can ‘‘nibble’’ the flattened,
posterior edge of the shells. The ability to handle oysters and

apply force along the edges of oysters negates some of the effects
of the gape limitation. Further investigation into the amount of
nutrition gained by clams over oysters or shell composition and

structure could explain the preference.
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