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SPERM SWIMMING SPEEDS IN THE EASTERN OYSTER CRASSOSTREA VIRGINICA

(GMELIN, 1791)

ROGER MANN1* AND MARK W. LUCKENBACH2

1Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062;
2Virginia Institute of Marine Science, College of William and Mary, Wachapreague, VA 23480

ABSTRACT Oysters, like the vast majority of sessile marine invertebrates, shed sperm and eggs into the water column where

fertilization subsequently occurs. The fate of the gametes depends on their passive movements at various scales in a high-viscosity

environment, the longevity of the sperm�s ability to affect oriented movement, the rate of spermmovement toward the egg target,

and the ability of sperm to effect fertilization. Oyster sperm swim in a helical pattern with a mean forward progression velocity of

0.057 ± 0.010 mm/sec (SE; n¼ 25) with the 95 percentile range extending from 0.036–0.078 mm/sec, a value comparable with that

reported for echinoderm sperm.
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INTRODUCTION

Oysters of the genus Crassostrea release eggs and sperm into
the water column where fertilization subsequently occurs. Fer-

tilization efficiency (proportion of the eggs fertilized) is depen-
dent on the synchrony of gamete release by the contributing
parents, their proximity to one another, local mixing and dilution

effects at various scales of the overlaying water, half-life of
viability of the gametes, probability of encounter and fertiliza-
tion of the individual gametes, andmore. Farley (2002) provides
a brief history of the interest in the fertilization process dating

back to the early work of Lillie (1915), Mortensen (1938), and
Thorson (1950), and proceeding to the more recent develop-
ment of fertilization models by Vogel et al. (1982) and Denny

et al. (Denny 1988, Denny & Shibata 1989, Denny et al. 1992).
For marine species with free release of gametes into the water
column, the major historical focus has been on echinoderms,

including the early works of Lillie (1915) and Rothschild and
Swann (1951), and more recently the work of Levitan et al.
(Levitan 1991, Levitan et al. 1991, Levitan et al. 1992, Sewell &
Levitan 1992, Levitan 1993, Levitan & Young 1995, Levitan

1996a, Levitan 1996b, Levitan 1998, Levitan 2000). We can find
no comparable data for oysters.

As part of a larger study of the fertilization kinetics of oysters

of the genus Crassostrea, noted for their aggregative settlement
and subsequent close proximity during the adult spawning
events, we sought to describe sperm swimming speeds.

MATERIALS AND METHODS

Newly released sperm and eggs were obtained from the

Virginia Institute ofMarine Science oyster hatchery at Gloucester
Point, Virginia. Sperm were maintained in filtered seawater at the
temperature (24�C) and salinity (20) of origin throughout the
experiment.

Sperm suspensions were introduced to one end of an optically
flat glass capillary tube with an internal dimension of 600 mm
depth (vertical dimension), a width of 3.5 mm (flat, north–south

as viewed in the microscope oculars), and a length of 8 cm. Egg
suspension was added to the other end of the capillary tube and

the contents observed on the stage of a Zeiss IM35 inverted

microscope using bright field illumination with a 253 or 403
objective. The observedmaterial was recorded onVHS videotape
using aDage low-light video camera. The video signal was passed
through a time/date stamp recorder to allow superimposition of

date, time, and a stop watch feature onto each video ‘‘frame’’ to
the nearest 0.01 sec.

The depth of the capillary tube was critical to obtaining

swimming speeds that have minimal wall effect from an adjacent
surface. Viscous forces, already high for swimming sperm (de-
scribed later), are enhanced in close proximity to the capillary

walls, so we measured swimming speeds in the center of the tube.
Despite the fact that the objectives chosen have wide numerical
apertures, the depth of field of observation was limited to less

than the 600-mm capillary depth. For video recording, the depth
of field under observation was set by moving the focus up and
down serially to record the positions equivalent to the inner top
and inner bottom surface of the capillary, then the focus was

fixed at a midway point.
Recordings were made of active swimming sperm within the

capillary. The proximity of eggs, given that both sperm and egg

share the same limited water mass within the capillary, was as-
sumed to ensure swimming typical of that in nature during a
spawning event. A typical recording included hundreds, if not

thousands, of sperm over the time course of observation. Oyster
eggs do not swim. Farley (2002) argues that echinoderm eggs
exhibit Brownian motion. This may well be the case for oyster
eggs, although their movement within the capillary in this ex-

periment, given their diameter of approximately 50 mm, is limited
by viscous forces. For this reason, no attempts were made to re-
cord egg movements in the current experiment. Oyster sperm are

described in Eble and Scro (1996) as having a head of approx-
imately 2–3 mm and a flagella tail of up to 40 mm in length. The
nature of flagellar movement results in the sperm swimming

forward in a helical pattern. Thus, several dimensions can be
used to describe the swimming, including absolute velocity of
the sperm, which includes the helical pattern of progression,

forward progression as a lesser value that describes a linear value
along to the axis of the helix, the diameter of the helix, and the
pitch of the helix. Although the helical swimming pattern results
in a slower forward progression than a straight-line velocity

equal to the absolute velocity, the helical pattern confers added
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elements of stability in control of the direction of movement (not
unlike a bullet emerging as a spinning projectile from the rifled

barrel of a gun). For the current experiment, the focus was on
recording the forward progression velocity of the sperm. Note
that the sperm helices progress in straight lines in general, and
thus the diameter of the helix is critical to the overall forward

movement in setting the volume searched by the sperm in
seeking an egg target. A helix diameter that is too small does
not optimize the search area. A diameter that is too large forms

the pattern of a ‘‘hollow tube’’ and may again fail to optimize
search volume.

The video records were replayed and the following criterion

applied for records to be included in the final analysis: all
sperm should exhibit continual swimming throughout the ex-
amination period (typically 0.6–1.0 sec at an equivalent of 30
recording periods). Depending on the objective used, the re-

cording field viewed on the replay monitor was approximately
200 mm across.

RESULTS

After rejecting values not meeting the prerequisites of obser-
vation, a total of 25 records were considered acceptable. They are

illustrated from lowest to highest values in Figure 1. Inclusion of
all data points results in a mean forward progression velocity of
0.057 ± 0.010mm/sec (SE), with the 95 percentile range extending

from 0.036–0.078 mm/sec. One value exceeds the remainder by
a considerable margin, although no rationale is immediately
evident to exclude the data point. Even considering this as
spurious, the corresponding values are reduced as follows: mean

forward progression velocity of 0.050 ± 0.007 mm/sec (SE), with
the 95 percentile range extending from 0.035–0.064 mm/sec.
These values are of the same order of magnitude as that

reported for echinoderm sperm—0.027 mm/sec—by Farley
(2002). The Reynolds number for an oyster sperm swimming
at the mean velocity measured in this experiment is 1.21310–4,

indicating a large dominance of viscous forces over inertial
forces. For comparison, this velocity is roughly equivalent to
pushing a baseball through Crisco shortening at 3mm/sec. The
density (r) of Crisco shortening � 0.8 g/cm3 (data source:

http://www.scholarchemistry.com/msds/Crisco_Shortening_
235.70.pdf); the dynamic viscosity (m) of Crisco ranges from

1.0–2.0 3 103 kg/m/sec (data source: http://www.research-
equipment.com/research-equipment.html); and the diameter of
a regulation baseball is 7.5 cm (data source: MLB.com, Official
Rules).

DISCUSSION

The similarity of mean forward progression velocity for
oyster and echinoderm sperm is not unexpected given similar-
ities in size and the viscous environment encountered in both

situations.
Consideration of the fertilization process in an essentially

infinite volume of seawater can be viewed in both absolute con-
centrations of gametes (numbers per unit volume) for which very

large values are commonplace, or in terms of relative volumes
(volume of gametes relative to the volume of water in which they
are suspended). In the latter instance, even very high absolute

concentrations can result in extraordinarily low relative volumes
that describemore accurately the dilemmaof an individual sperm
seeking to fertilize a single target egg. A simple spreadsheet cal-

culation illustrates this challenge. Consider a single point source
spawning event in an overlaying body of water above a flat sur-
face. Assume that the eggs disperse into a perfect hemisphere, the

origin of which is the point of discharge from the originating
organism. The concentration of the eggs thus declines as the
volume of the hemisphere increases. Further assume, for this
example, that distribution within the hemisphere is uniform.

Figure 2 illustrates such a facsimile.
The volume of the hemisphere increases by the cube of the

radius (Fig. 2A). If 1 million eggs are released, the egg con-

centration (measured in numbers per milliliter) as a function of
hemisphere radius is shown in Figure 2B. Given an assumed egg
diameter of 50 mm, the total volume of the eggs per milliliter of

seawater as a function of radius hemisphere is given in Figure 2C.
Assuming that the eggs are distributed uniformly in space, the
distance between adjacent eggs can be described by the radius of
the sphere occupied by a single egg. This radius, less the radius of

the egg itself, sets the maximum distance a sperm would need to
swim to encounter an egg, assuming that the helical swimming
pattern of the egg actually ‘‘hits the target’’ of a the individual

egg. (Note that that this calculation also provides an estimate of
mean swim distance in the case of randomly distributed eggs and
sperm when there is a 1:1 ratio of sperm to egg; under the more

plausible condition of sperm to egg ratios 2–4 orders of magnitude
higher, mean swim distance would decrease, but maximum swim
distance in the simplified scenario we have created would remain

the same.) This distance can be expressed inmicrometers or body
length equivalents of single sperm assuming a 40-mm length, and
is shown in relation to the hemisphere radius in Figure 2D and
2E, respectively. Alternatively, assuming a mean forward pro-

gression velocity of 0.057 ± 0.010mm/sec, the time for a sperm to
swim this distance can also be estimated (Fig. 2F).

Of note in Figure 2 is the rapidly decreasing value in the

volume of eggs relative to the volume of water (Fig. 2C), and the
corresponding increasing value in maximum swim distances
and times for sperm (Fig. 2D–F). Given the assumed inability

(or at least, yet to be demonstrated ability) of sperm to use
complex search behavior for egg targets (presumably, they
just swim), the probability of encounter with an egg, even

Figure 1. Distribution of individual records of oyster sperm swimming

speed.
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at high absolute egg concentrations, is modest at best. At
hemisphere radii in excess of 10–20 cm, these modest probabil-
ities are countered only by a consideration of extraordinary
numbers of sperm moving along random, oriented swimming

paths in the vicinity of the dispersed eggs.
Of particular note in the context of Figure 2 is the dilution of

even extraordinary absolute numbers of eggs at hemisphere

radii in excess of 50–100 cm. Even with modest water move-
ment, this can occur in but a few minutes, yet sperm viability is
known from hatchery operations to be on the order of tens of

minutes to more than 1 h, which is greater than that typically
observed for echinoderms (again, the records in Farley (2002)
suggest a maximum of 20–30min). This time frame of endurance

by oyster sperm appears somewhat incompatible with the
scenario we have constructed in which gamete concentrations
are presumed to be reduced to very low levels in a matter of
minutes. This ‘‘incompatibility’’ raises 2 points of speculation:

could the facsimile presented here be a very poor representa-
tion of diffusion and turbulence at the times of spawning in
sedentary invertebrates, and do oyster sperm swim continu-

ally? Sundby et al. (1994) have suggested that very small-scale
turbulence can increase and sustain close proximity of cod
larvae to their prey organisms, thus creating a feeding environ-

ment where mean prey densities do not correctly portray actual
feeding concentrations within the turbulence-induced feeding
‘‘aggregations.’’ Could small-scale turbulence create a similar

Figure 2. (A–F) Examination of sperm concentration in a half sphere of increasing radius with a loading of 1,000,000 eggs with an individual diameter of

50 mm. Estimates are developed for the relationship between the radius of this hemisphere and water volume (A); egg concentration (B); egg volume per

milliliter (C); maximum swimming distance to accomplish fertilization, assuming uniform sperm concentration in microns (D) and sperm body lengths

(E); and estimated maximum swimming time at a mean swimming velocity (F).
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scenario withmaintenance of sperm and eggs in aggregations with
half-lives such that sperm–egg encounter rates are increased?

Similarly, the significance of apparent extended half-life of sperm
raises the question of continuous versus discontinuous swim-
ming. Answering either of these questions is beyond the scope of
this investigation. The salient point here is that there remains

much that we do not know about the biological and physical

dynamics that affect fertilization in oysters and other free-
spawning marine invertebrates.

ACKNOWLEDGMENTS

This study was supported in part by funds from the NOAA

Chesapeake Bay Office under award no. NA06NMF4570246.

LITERATURE CITED

Denny, M. W. 1988. Biology and mechanics of the wave-swept en-

vironment. Princeton, NJ: Princeton University Press. 329 pp.

Denny,M.W., J. Dairiki & S.Destefano. 1992. Biological consequences

of topography on wave-swept rocky shores: I. Enhancement of

external fertilization. Biol. Bull. 183:220–232.

Denny, M. W. & M. F. Shibata. 1989. Consequences of surf-zone turbu-

lence for settlement and external fertilization. Am. Nat. 134:859–889.

Eble, A. F. & R. Scro. 1996. General anatomy. In: V. S. Kennedy, R. I. E.

Newell &A.Rosenfield, editors. TheEastern oyster,Crassostrea virginica.

College Park, MD: University of Maryland Sea Grant Press. pp. 10–73.

Farley, G. S. 2002. Helical Nature of Sperm Swimming Affects the Fit of

Fertilization-Kinetics Models to Empirical Data. Biological Bulletin

203:51–57.

Levitan, D. R. 1991. Influence of body size and population density on

fertilization success and reproductive output in a free-spawning

invertebrate. Biol. Bull. 181:261–268.

Levitan, D. R. 1993. The importance of sperm limitation to the evolution

of egg size in marine invertebrates. Am. Nat. 141:517–536.

Levitan, D. R. 1996a. Effects of gamete traits on fertilization in the sea

and the evolution of sexual dimorphism. Nature 382:153–155.

Levitan, D. R. 1996b. Predicting optimal and unique egg sizes in free-

spawning marine invertebrates. Am. Nat. 148:174–188.

Levitan, D. R. 1998. Does Bateman�s principle apply to broadcast-

spawning organisms? Egg traits influence in situ fertilization rates

among congeneric sea urchins. Evolution 52:1043–1056.

Levitan, D. R. 2000. Sperm velocity and longevity trade off each other

and influence fertilization in the sea urchin Lytechinus variegatus.

Proc. Biol. Sci. 267:531–534.

Levitan,D. R.,M.A. Sewell &F.- S. Chia. 1991.Kinetics of fertilization

in the sea urchin Strongylocentrotus franciscanus: interaction of

gamete dilution, age, and contact time. Biol. Bull. 181:371–378.

Levitan, D. R., M. A. Sewell & F.- S. Chia. 1992. How distribution and

abundance influence fertilization success in the sea urchin Strong-

ylocentrotus franciscanus. Ecology 73:248–254.

Levitan, D. R. & C. M. Young. 1995. Reproductive success in large

populations: empirical measures and theoretical predictions of

fertilization in the sea biscuitClypeaster rosaceus. J. Exp. Mar. Biol.

Ecol. 190:221–241.

Lillie, F. R. 1915. Studies of fertilization VII: analysis of variations in

the fertilizing power of sperm suspensions of Arbacia. Biol. Bull.

28:229–251.

Mortensen, T. 1938. Contributions to the study of the development

and larval form of echinoids. K. Dan. Vidensk. Selsk. Biol. Skr. 7:

1–59.

Rothschild, L. & M. M. Swann. 1951. The fertilization reaction in the

sea-urchin: the probability of a successful sperm–egg collision. J. Exp.

Biol. 28:403–416.

Sewell, M. A. & D. R. Levitan. 1992. Fertilization success in a natural

spawning of the dendrochirote sea cucumber Cucumaria miniata.

Bull. Mar. Sci. 51:161–166.

Sundby, S., B. Ellertsen & P. Fossum. 1994. Encounter rates between

first-feeding cod larvae and their prey during moderate to strong

turbulent mixing. In: J. Jakobsson, O. S. Astthorsson, R. J. H.

Beverton, B. Bjoernsson, N. Daan, K. T. Frank, J. Meincke,

B. Rothschild, S. Sundby & S. Tilseth, editors. Cod and Climate

Change: Proceedings of a Symposium Held in Reykjavik, 23–27

Aug. Volume 198 of ICES Marine Science Symposia. International

Council for the Exploration of the Sea. 693 pp.

Thorson, G. 1950. Reproduction and larval biology of marine bottom

invertebrates. Biol. Rev. Camb. Philos. Soc. 25:1–45.

Vogel, H., G. Czihak, P. Chang &W. Wolf. 1982. Fertilization kinetics

of sea urchin eggs. Math. Biosci. 58:189–216.

MANN AND LUCKENBACH390


	Sperm Swimming Speeds In The Eastern Oyster Crassostrea Virginica (Gmelin, 1791)
	Recommended Citation

	tmp.1531150264.pdf.dNgsC

