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TEMPORAL VARIATION IN FECUNDITY AND SPAWNING IN THE EASTERN OYSTER,

CRASSOSTREA VIRGINICA, IN THE PIANKATANK RIVER, VIRGINIA

ROGERMANN,*MELISSA SOUTHWORTH, RYAN B. CARNEGIEAND RITA K. CROCKETT

Virginia Institute of Marine Science, College of William and Mary, PO Box 1346, 1375 Greate Road,
Gloucester Point, VA 23062

ABSTRACT Oysters of the genus Crassostrea are considered good examples of an r-selected marine invertebrate with small egg

size, high fecundity, and multiple spawning events per year, each characterized by significant individual weight loss. Historical

(decadal) data for the Virginia portion of the Chesapeake Bay support these generalities. We present recent (subdecadal) data,

collected for naturalCrassostrea virginica broodstock of populations in the PiankatankRiver, Virginia. The relationship is described

between oyster size, fecundity, spawning periodicity, and egg viability for natural broodstock. Oysters collected throughout the

summers of 2010 through 2012 and induced to spawn by thermal cycling released viable eggs on 7 dates (n¼ 119 oysters, 35 male, 84

female; shell length (SL) range, 58–113 mm). Oysters were opened to examine sex ratio on four additional dates (total n ¼ 242

oysters, 82 male, 160 female). Fecundity varied in the range 105–1.23108 eggs. When all data are considered in unison, no strong

relationship with SL is evident; however, when eliminating the artifact of data corresponding tominimal egg release, amuch stronger

relationship, comparable with that reported in older literature, emerges. Female fraction ðFemale=ðFemaleþMaleÞÞwas consistently
more than 1 in oysters larger than 60 mm in SL (estimated age, $2 y), generally in accordance with recently published literature on

the species in themid-Atlantic. The size-versus-fecundity relationship does not appear to be greatly influenced by disease prevalence/

intensity. The temporal sequence of spawning activity was not observed to continue after midsummer and is not commensurate with

a cumulative degree-day estimator during the latter half of the well-documented historical spawning season. A size–fecundity

estimator for the Piankatank River oysters provides a basis to estimate the disproportionate value of larger/older ($3 y) oysters in

the system, and provides additional input to the fine-tuning of a previously developed rotational harvest schedule for the river stock.

The possible impact of recent changes in water quality, seasonal occurrence of dinoflagellate blooms, and/or long-term impacts of

changing regimes were not examined in detail in this study but are suggested as worthy lines of future investigation.

KEY WORDS: eastern oyster, Crassostrea virginica, fecundity, Perkinsus marinus, Haplosporidium nelsoni, recruitment

INTRODUCTION

The eastern oyster Crassostrea virginica (Gmelin 1791) is
described as an r-selected protandric hermaphrodite with a type
3 mortality curve and a life expectancy in excess of 10 y in
undisturbed populations (Powell & Cummins 1985, Thompson

et al. 1996). Its complex life history traits include high fecundity,
external fertilization through coordinated mass spawning, and
a planktotrophic larval form. Fecundity is related positively to

body size (Galtsoff (1930), Cox andMann (1992) as also cited in
Choi et al. (1993), Thompson et al. (1996)). Multiple spawnings
per year are expected in the southern reaches of the occupied

range and are generally predictable using degree-day estimators
(Price & Maurer 1971, Mann et al. 1994). Spawning results in
considerable loss in individual weight (Gunter 1942, Engle
1950, Gabbott 1975). Gregarious settlement of juveniles on

the growing edges of adults promotes reef accretion and the
perpetuation of the species in the geologically ephemeral
estuarine environment (Mann et al. 2009a). This life history

construct prompts numerous quantitative questions. At what
age/size does the male-to-female transition occur? How does
variation in the male-to-female transition affect population

level fecundity? Are the described life history traits plastic? If so,
will this plasticity emerge in populations truncated in age/size
by harvests, predation, diseases, and/or environmental stress?

Can fecundity and sex ratio estimates be used in conjunction
with density and population demographic data to develop
spawner–recruit relationships that have proved so valuable in
finfish fisheries but are essentially absent as management tools

in oyster fisheries? Only recently have these basic questions been
addressed, with much work still in progress.

All the previously listed questions are pertinent to the

management of extant oyster populations in the Chesapeake
Bay, where historical harvests and, more recently, disease
pressure have had a notorious impact (Andrews & Wood

1967, Burreson & Andrews 1988, Newell 1988, Burreson &
Ragone Calvo 1996), reducing both population size and
arguably truncating age structure. Harding et al. (2013) de-

scribed the sex ratio-versus-size relationship in oysters from
subestuaries of Chesapeake Bay, revealing remarkable similar-
ity to observations by Powell et al. (2013) for oysters from
Delaware Bay, a strong predominance by number of males but

by weight of females. Mann et al. (2009b), Southworth et al.
(2010), and Harding et al. (2010) provided a comprehensive
description of spatial population structure, including size and

age demographics and shell budget in the James River, Great
Wicomico River, and Piankatank River, respectively—all Vir-
ginia subestuaries of the Chesapeake Bay. Harvest in the

Piankatank River is limited to a well-regulated seed oyster
fishery that has been executed for in excess of 25 y, and for
which long-term monitoring of both oyster recruitment

(reviewed in Southworth and Mann (2004, 2013)) and disease
(both Perkinsus marinus and Haplosporidium nelsoni) (e.g.,
Carnegie & Burreson 2011) occur. The importance of the shell
budget in long-term stability of oyster populations has only

recently been adequately appreciated (Powell et al. 2006, Mann
& Powell 2007, Powell & Klinck 2007). A shell-neutral (no net
loss) rotational harvest protocol is outlined in Harding et al.

(2010) as a mechanism to sustain the population in the absence
of shell planting. Absent from that analysis is a detailed
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examination of the size-versus-age-versus-fecundity relation-
ship of the extant population, and a consideration of the impact

of enzootic diseases on that relationship. Fecundity remains
a key question, particularly given earlier documented detrimental
impacts of parasitism on gamete production. BothP.marinus and
H. nelsoni have been documented to reduce oyster fecundity, with

impacts increasing as infections intensify (Barber et al. 1988, Ford
& Figueras 1988, Kennedy et al. 1995, Dittman et al. 2001). In
recent years, however, evidence suggests thatCrassostrea virginica

has adapted to intensified disease by developing a level of disease
resistance (e.g., Carnegie & Burreson 2011). In recognition of this
changing background, restoration efforts have sought to protect

putatively resistant broodstock, but the fecundity of larger/older
survivors of annual epizootics has been uncertain. To extend the
aforementioned analyses and provide critical perspective on
oyster fecundity, the current study seeks to examine the individual

size-versus-fecundity relationship and the influence of disease on
spawning, and the importance of older year classes in total egg
production within the considered population.

MATERIALS AND METHODS

Field Location

The Piankatank River is a small estuary (watershed area,
466 km2 (Chen et al. 1977)) located on the western shore of the

Chesapeake Bay in Virginia. Andrews (1979) described it as
a trap-type estuary, noted for high and regular recruitment of

oysters. It is managed by the Virginia Marine Resources Com-
mission (VMRC) as a source of oyster seed for transplant to other
locations in the Virginia portion of the Chesapeake Bay. A recent
description of oyster stocks in the river is given by Harding et al.

(2010). Figure 1, taken directly from that publication, provides
a background to the local distribution of the stock and sampling
location for the current study. The study was effected during

summer 2010, 2011, and 2012. Temperature and salinity during
the period of collectionwas recorded at 15-min intervals using the
YSI 600 Series sonde (Yellow Springs Instruments)maintained at

0.5 m above the bottom at Palace Bar Reef (location 2 in Fig. 1),
as described in Harding et al. (2010). When sonde data were
unavailable, data values were taken from weekly field measure-
ments, per Southworth and Mann (2013), with interpolations to

provide daily estimates.

Estimation of Oyster Fecundity and Egg Viability

Oysters were collected by dredging at Ginney Point in the
PiankatankRiver, Virginia (location 1 in Fig. 1, dates in Table 1)
and transferred to a local oyster hatchery at Oyster Seed

Holdings LLC (OSH), Gwynn�s Island, Mathews County,
Virginia (Fig. 1, within 10 km of the collection site). The target

Figure 1. Location of the 8 public reefs in the Piankatank River, Virginia. Reefs are as follows: 1, Ginney Point, collection location for the current study;

2, Palace Bar; 3, Bland Point; 4, Heron Rock; 5, Cape Toon; 6, Stove Point; 7, Burton Point 1; and 8, Burton Point 2. Source: Harding et al. (2010).

Reprinted with permission of the author.
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for each collection was a minimum of 100 oysters (typically 130–
150) with shell length (SL) as defined here as the maximum
dimension from the hinge to the growing edge, in excess of 30mm
and including all lengths present in the demographic. The choice

of OSH in the immediate vicinity of collection was important in
minimizing local impacts of water quality on experimental work
described later. Local water quality is influenced by watershed

runoff, and the western shore tributaries of the Chesapeake Bay
vary markedly in both watershed area and land use within those
watersheds.

Oysters were cleaned and maintained overnight at ambient
temperature out of water in a damp container. The following
morning, approximately 65 oysters, representing the entire size

demographic, were transferred to a spawning table flooded with
filtered seawater at ambient temperature and subjected to
thermal cycling (ambient, +10�C, ambient, +10�C at 30-min
intervals) for a maximum of 3 cycles. Between 5 oysters and 10

oysters from those not transferred to the table were shucked and
examined for eggs or sperm by smear tests and microscopic
examination. Active sperm, when present, were added to the

spawning table water at the second thermal cycling if no
spawning was observed at the first cycle. If spawning occurred,
males were left on the table. Spawning females were removed to

individual dishes of filtered seawater to complete the spawning
process (approximately 15 min). Fecundity was estimated from
the mean cell count of triplicate subsamples and the known
mixed volume of the dish from which the sample was taken. A

subsample of eggs was removed from each spawning female,
fertilized using a common mixed pool of sperm, and examined
at 24 h for the presence ofD-stage larvae (egg viability as + or –).

Nonspawning animals were returned to the river at a site
ensuring they would not be resampled in subsequent collections.

Disease Prevalence and Intensity

All spawning individuals and a subset of nonspawners from
each interval were retained and examined subsequently to

determine the prevalence and intensity of Haplosporidium
nelsoni and Perkinsus marinus as well as any other notable

pathological conditions. Transverse sections of oyster tissues
including gills, mantle, stomach, intestine, gonad, digestive
gland, and associated connective tissues were processed using
standard histological methods for microscopic observation of

both parasites in 6-mm, hematoxylin and eosin-stained paraffin
sections. Infections by H. nelsoni were rated rare, light, moder-
ate, or heavy in intensity according to Carnegie and Burreson

(2011). Infections by P. marinus were rated similarly using the
following standard: observation of 1–10 cells or small clusters of
cells indicated an infection that was rare; 11–40 cells or small

clusters, light infection; larger numbers but still primarily within
the gut epithelium, moderate infection; and more intense
infection spreading into connective tissues and hemal spaces,
heavy infection. In 2010 and 2011 samples only, P. marinus was

also detected using an adaptation of Ray�s fluid thioglycollate
assay (RFTM), with infections again characterized as rare
through heavy (Audemard et al. 2008).

Additional perspective on oyster disease in Chesapeake Bay
was provided by the VIMSOyster DiseaseMonitoring Program,
which has three components as described in Carnegie and

Burreson (2009, 2011): a fall survey of ;30 oyster reefs in the
James, York, Piankatank, Rappahannock, and GreatWicomico
rivers and Mobjack Bay; a James River quarterly survey of four

reefs in that river; andmonthly (May toNovember) evaluation of
spring imports, naive sentinels from the generally disease-free
upper Rappahannock River to the disease-intense York River.

Estimation of Spawning Frequency: Degree-day Functions

and Condition Index

Oysters are poikilotherms. Metabolic rates are temperature
dependent. Storage metabolism, gametogenesis, vitellogenesis,
and spawning proceed in a time-sequenced manner driven by

temperature (Gabbott 1975, Mann 1979, Thompson et al.
1996). This temporal sequence for Crassostrea virginica has
been described in terms of a predictive degree-day estimator by

Price and Maurer (1971) and Mann et al. (1994) as

D0 ¼ d t � toð Þ

where d is the number of days to attain a ripe state, t is the
temperature to which oysters are exposed (ambient field

temperatures), and to is the temperature below which no
evidence of gonad development is found.

Price and Maurer (1971) used a value of 12.0�C for to and

estimated a value of 450 forD# using Delaware BayCrassostrea
virginica. Mann et al. (1994) examined oysters spawning at
Horsehead Reef in the James River in 1988. Spawning dates are

estimated for June 22, July 27, and August 17, 1988. Using
12.0�C for to and York River, Virginia, water temperatures as
surrogates, estimates of D# of 420, 449, and 443, respectively,
were generated, with a mean value for D# of 434. Using the

previously described records of water temperature for Palace
Bar reef, a sequence of projected spawning dates was developed
for each of 2010 through 2012.

Spawning activity results in a short-term loss in tissue weight
relative to shell weight. The ratio of these values is expressed
as a condi t ion index CI ¼ ðDry meat weight 3 100Þ=ð
Dry shell weightÞ, per Walne and Mann (1975), Mann (1978),

TABLE 1.

Observations of spawning and spawning attempts during the
2010 to 2012 study period, with numbers of female (F) and

male (M) individuals, and viability (see text).

Date Spawn? n F/M (n) Viable yes/no (n)

July 1, 2010 Y 22 16/6 15/1

August 5, 2010 No

May 3, 2011 No

May 17, 2011 No

May 31, 2011 No

June 7, 2011 Yes 18 13/5 13/0

June 14, 2011 No

June 21, 2011 Yes 3 1/2 1/0

June 28, 2011 No

July 19, 2011 No

May 16, 2012 No

May 22, 2012 Yes 6 6/0 6/0

May 30, 2012 Yes 12 10/2 10/0

June 6, 2012 Yes 37 26/11 26/0

June 13, 2012 No

July 11, 2012 Yes 21 12/9 11/1

Total 119 84/35 82/2
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and Rainer and Mann (1992). In the current study, a separate
subsample of 25 individual oysters from the original collection
was frozen for subsequent estimation of the CI, and the

temporal sequence in the population examined.

RESULTS

Temperature and Salinity

In each of the study years, summer temperature reached
30�C (Fig. 2). This occurred in July 2010, and in August in both
2011 and 2012. Salinity rose gradually during all 3 y to annual

maxima of approximately 18 in September 2010 and July 2012,
and 16 in September 2011. These are comparable with longer
term values reported in Harding et al. (2010), and annual

monitoring reports focused on temporal and spatial recruitment
patterns (Southworth & Mann 2013).

Estimation of Oyster Fecundity and Egg Viability

Hatchery spawning with viable eggs was observed on 7 dates
(July 1, 2010, June 7, 2011, June 21, 2011, May 22, 2012, May
30, 2012, June 6, 2012, July 11, 2012; total n ¼ 119 oysters, 35

male, 84 female). The number of individuals spawning on each
date is given in Table 1. Oysters were opened to examine sex
ratio on 4 additional dates (n¼ 242 oysters, 82male, 160 female;

Table 2).
The female fraction F=FþMð Þ was consistently more than

0.5 in oysters larger than 60 mm in SL (estimated age, $2 y

using the quadratic length–age estimator of Harding et al.
(2010, Table 11; n ¼ 72, years 2003 to 2009 where SL ¼ a 3

(Age)2 + b3(Age) + c, and values of a, b, and c are –2.95, 32.66,
and 14.45, respectively).

Individual fecundity varied between 105 eggs and 1.23 108

eggs. Fecundity (in years) versus SL (in millimeters) is presented
in a series of 3 plates in Figure 3. Figure 3A presents all data by

year for all years (n¼ 84). Only modest spawning was observed
in 2010 (n¼ 16) and 2011 (n¼ 14); thus, Figure 3B presents data
for the two major spawning events in 2012 (May 30, 2012, and

June 6, 2012) only with a fitted allometric curve (y ¼ 0.46 3

SL3.94, R2¼ 0.37, n¼ 36). Figure 3C presents data for the same
two major events in 2012 when individual values exceed 53106

with the fitted curve (y ¼ 21753SL2.19, R2 ¼ 0.31, n ¼ 26). The
exclusion proceeding from Figure 3B to Figure 3C is based on

Figure 2. Field temperature and salinity at Palace Bar Reef (labeled PBR in Fig. 1) for period 2010 to 2012.

TABLE 2.

Sex ratio by size for observed spawning individuals by size (see

Table 1) plus additional oysters opened during laboratory
procedures (see text).

Size (mm) Female (n) Male (n)

Fraction

Female

Individuals in each

size range (n)

<60 2 7 0.22 9

61–65 6 4 0.6 10

66–70 12 7 0.63 19

71–75 17 13 0.57 30

76–80 30 12 0.71 42

81–85 25 13 0.66 38

86–90 22 10 0.69 32

91–95 16 6 0.72 22

96–100 18 4 0.82 22

101–105 7 2 0.78 9

106–110 1 3 0.25 4

>111 4 1 0.8 5

Total 160 82 0.66 242
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the estimate that fecundity less than 5 3 106 represents
minimal spawning equivalent to less than 1% of the remain-

ing values in the plot. Note the changing exponent with
exclusion of the low values—from an unreasonable value of
3.94 (unacceptable in that extrapolation to even marginally
larger animals results in weight of eggs exceeding total tissue

weight) to a value of 2.19, effectively scaling with the square
of length (a tubular analog). This scaling function is similar
to that reported for general oyster allometry (Powell et al. in

prep.).

Disease Prevalence and Intensity

Levels of both Haplosporidium nelsoni and Perkinsus mar-
inus were low in Piankatank River samples collected for this
study. The infectious H. nelsoni was detected at 2.5% preva-

lence on the one sampling date in August 2010, and at
prevalences ranging from 2.8%–13.3% on 3 of the first 4
sampling dates in 2011 (May 17, May 31, June 7). It was

undetected after that and throughout 2012. Without exception,
these represented just 1 or (in one case) two observations in
a sample, and just a single infection reached light intensity; all

others were rare. Therefore, H. nelsoni cannot be viewed as
having impacted this study.

Levels ofPerkinsus marinus infections were greater, reaching

55.0% prevalence (as determined histologically) in 2010 when
an August sample was collected, the latest in any year of the
study; 33.3% prevalence in 2011, when samples were collected
between May and mid July; and 25.5% prevalence in 2012,

when samples were collected over a similar time frame (Fig. 4A).
Weighted prevalences (again determined histologically) were
very low in study samples, however, reflecting the absence of

serious infections (Fig. 4B). Weighted prevalences in 2011 and
2012 were less than 0.5, meaning that the average oyster had
a rare infection. Just five infections reached moderate intensity

during these years. Weighted prevalence was greater (1.09) in
the single 2010 sample, collected in August, but this still means
the average oyster only had a light infection. Ray�s fluid
thioglycollate assay-based weighted prevalences for 2010 and

2011 support the histological portrait of P. marinus parasitism.
An RFTM-based weighted prevalence of 1.75 in the August
2010 sample suggests only a modest level of P. marinus-caused

Dermo disease. Weighted prevalences ranging from 0.23–0.90
in 2011 suggest inconsequential parasitism during the time
period in which samples were collected.

Data collected for Ginney Point during the fall survey (open
diamonds in Figs. 4A, B) forPerkinsus marinus infections reveal
far higher prevalences andweighted prevalences in autumn than

in spring and summer, an indication that the parasite thrives in
the Piankatank River but was simply well below its autumn
peak each year during the time periods when study samples were
collected.

Given that the overall data for Perkinsus marinus suggest
a minimal early season impact, there is little justification for
comparing P. marinus levels in spawning oysters versus non-

spawners. Nonetheless, there were five dates on which two
groups of samples, spawners and nonspawners, were analyzed.
Prevalence ofP. marinuswas greater in spawning oysters on 3 of

the 5 dates, and averaged 14.1% over all 5. For the same 5
samples, prevalence of P. marinus in nonspawning oysters
was 8.1%.

Figure 3. Shell length (SL) versus fecundity (y). (A) All spawning events

for the period 2010 to 2012. (B) Spawning events on May 30, 2012, and

June 6, 2012 (n$ 36). The power fit is y$ 0.46263SL3.94;R2
$ 0.37. (C)

Spawning events onMay 30, 2012, and June 6, 2012, excluding values less

than 5310
6
(n$ 26). The power fit is y$ 21753SL

2.19
; R2

$ 0.31.
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There were insufficient numbers of Perkinsus marinus in-
fections in the 2011 and 2012 samples to permit an analysis of

size-specific infection levels. In the August 2010 sample, how-
ever, the 40 oysters ranged in size from 63.3–106.8 mm and
displayed a range of infection intensities. The 20 smaller oysters

(63.3–81.7 mm) displayed lower weighted prevalences than the

20 larger oysters (81.8–106.8 mm) by RFTM (1.50 vs. 2.00) and
histology (0.95 vs. 1.13), although the frequency of ‘‘serious’’

moderate to heavy infections in the 2 size groups was similar:
0.15 (smaller) versus 0.10 (larger) as judged by RFTM, and 0.25
in each case by histology. Neither size group appearedmarkedly
healthier than the other.

Temporal Spawning Sequence

Table 3 provides a comparison of observed and estimated,

from degree-day data, frequency of spawning. A consistent
sequence of up to 5 spawning events is predicted to occur on
approximate Julian days 150–156, 170–184, 206–210, 232–237,

and 262–267. Concurrence of estimated and observed events in
2010 (spawning 2), 2011(spawnings 1 and 2) and 2012 (spawn-
ing 2). Spawning before (2012) or between the predicted dates
(2011 and 2012) was also observed, indicating asynchrony in

gametogenesis among individuals within the population. Of
note is the lack of spawning later in the summer in all years, an
observation strengthened by independent observations by

commercial hatchery operators.
Histological analyses provided additional perspective on

spawning. Most oysters in the sample from early August 2010

were ripe and still releasing at least small numbers of gametes at
that stage. In 2011, oysters were in early gametogenic de-
velopment on May 3, but many were mature and beginning to

spawn by May 17, and gradual spawning continued without
a dramatic peak and recovery at least through the end of
sampling on July 19. In 2012, oysters were generally late in
development by May 16, with half or more beginning to spawn

by May 22. As in 2011, gradual spawning continued in 2012, at
least through the end of sampling in July. Spawning is
characterized in oysters as a dramatic release; however, the

possibility of an ongoing intermittent low level of ‘‘dribble’’
spawn cannot be entirely discounted. Such behavior would be
unrecorded on the spawning table and in Table 1. Histological

examination presents evidence of egg evacuation, but the time
course of such limited spawning is both difficult to examine in
the current design and to quantify for comparison with data
described later.

Figure 4. Infection by Perkinsus marinus in Piankatank River oysters as

determined histologically. (A) Percentage of prevalence. (B) Weighted

prevalence. Filled diamonds represent study samples; open diamonds

represent fall survey samples (as discussed in text).

TABLE 3.

A comparison of estimated spawning events during 2010 to 2012 based a cumulative degree day (D#) value of 443 (see text).

Date Julian day Temperature (�C) Salinity Degree-day Estimated spawning Observed spawning

June 4, 2010 156 24.5 14.1 440.7 1

July 2, 2010 184 27.6 15.8 878.8 2 July 1, 2010

July 28, 2010 210 28.5 16.4 1,308.6 3

August 24, 2010 237 27.7 17.2 1,741.9 4

September 24, 2010 267 25.2 19 2,169.1 5

June 3, 2011 154 26.9 11.8 446.9 1 June 7, 2011

July 1, 2011 182 27.4 11.7 873 2 June 21, 2011

July 27, 2011 208 29.7 13.8 1,306 3

August 21, 2011 233 28.6 15.1 1,738.4 4

September 21, 2011 264 22.8 13 2,174.4 5

May 29, 2012 150 25.5 18.4 444.7 1 May 22, 2012

June 27, 2012 179 26.3 15.3 868.6 2 May 30, 2012

July 24, 2012 206 28.7 18.3 1,302.2 3 June 6, 2012

August 19, 2012 232 28 18.6 1,736.6 4 July 11, 2012

September 18, 2012 262 24.5 18.8 2,173 5
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Figure 5 illustrates the relationship between SL and dry
tissue weight (W; in grams) in all CI samples. The power fit

(W¼ 0.00023SL1.97,R2¼ 0.31, n¼ 375) has an exponent value
similar to that for the SL versus fecundity relationship in Figure
3C for fecundity values in excess of 53 106; however, there is
considerable scatter around the fitted line, indicating variation

in dry weight at any chosen value of SL.
Table 4 summarizes temporal changes in the CI of popula-

tion subsamples throughout the study period. Within each

subsample, chosen to represent the size range of individuals
examined, the standard deviation of the CI varied between 26%
and 45% of the mean, indicating large within-sample variation.

This is consistent with the data of Figure 5 and Table 3 in
indicating asynchrony in the storage–gametogenesis–spawning
continuum. Note that even on dates when spawning was
observed in hatchery conditions, the majority of the individuals

did not spawn; compare the number spawning in Table 3 versus
the sample size of 65 submitted to thermal cycling.

DISCUSSION

There are relatively few published descriptions of the size
versus fecundity relationship in field-collected oysters that are

not compromised by artifacts that, in turn, lessen the value of
such data for field application in developing stock recruit
models for natural population management for either restora-

tion or fishery purposes. Hatchery procedures may use excessive
thermal stimulation or be based on ‘‘stripping’’ of gametes. Cox
and Mann (1992) examined field collections from the James
River, Virginia, but complicated interpretation of fecundity

values by freezing and subsequently thawing specimens, result-
ing in probable egg destruction and/or incomplete recovery.
Thompson et al. (1996) developed a size versus fecundity

estimator based on a subset of the data from Cox and Mann
(1992). The exponent of this descriptive fit (y ¼ 39.07x2.36),
where y is fecundity and x is dry tissue weight, is incompatible

with even modest extrapolation given that it is much greater
than 1.0, and therefore of questionable general value. Choi et al.

(1993) used an immunoassay, enzyme-linked immunosorbent
assay, procedure approach to egg protein to estimate fecundity

on oysters collected from West Bay, Texas, and report an
almost linear relationship between body weight and egg number
in ripe oysters (y ¼ 19.86x1.17). Galtsoff (1930) provided
fecundity values based on eggs released by a limited number

of large oysters; length and fecundity (single spawning release)
values are 92mm, 94mm, 112mm, and 133mmand 30.3million,
114.8 million, 15.0 million, and 70.3 million, respectively. When

these lengths are examined in the context of the fitted line in
Figure 3C, the estimated fecundity values are 45.5 million, 47.7
million, 70.1 million, and 102 million, respectively. When

corrected for length of the individual oyster, values reported by
Galtsoff (1930) are comparable with those in the current study.

Galtsoff (1930) summarizes reports for Crassostrea virginica
(then Ostrea virginica) fecundity to that date thus: Brooks

(1880) with an ‘‘average-size oyster’’ of more than 9 million
eggs, and an ‘‘unusually large’’ oyster producing 60 million eggs
in 1 summer. Nelson (1921) indicated that a large oyster ‘‘if

fat the preceding spring, undoubtedly would mature from
50 million to 60 million eggs in a season. (p. 8)’’ Again, these
values are in a comparable range with the current study. Studies

of Crassostrea gigas by Galtsoff (1930) also reported 11.4–55.8
million eggs released per spawning, but these did not provide
accompanying length data.

Significantly, the observed egg production occurred against
a backdrop of still intense parasitic disease pressure in the
Chesapeake Bay region. Although Haplosporidium nelsoni
impacts wane (Carnegie & Burreson 2011), peak annual Per-

kinsus marinus levels remain greater than those that preceded
the intensification of Dermo disease during the 1980s (Andrews
1984, Burreson&Andrews 1988). Although autumn abundance

(i.e., weighted prevalence) of P. marinus in the Piankatank
River was typically high, impacts on gametogenesis and spawn-
ing were minimal. Our results are thus supportive of early findings

by Kennedy et al. (1995), who found that, although serious
P. marinus infections can impact oyster reproduction significantly,
autumnP.marinus levels are not predictive of reproductive success
in the subsequent year; and by Dittman et al. (2001), who found

that P. marinus impacts on reproduction are most profound when
imposed during gametogenesis, rather than on mature individuals
about to spawn. In particular, during the impressive spawn of

2012, the oysters were not affected seriously by P. marinus
infections of several months earlier, from which they had re-
covered, or by infections emerging early enough to affect game-

togenesis, which probably were present but at a low frequency
below the level of detection in our sampling. It is noteworthy that
the studies byKennedy et al. (1995) andDittman et al. (2001) were

conducted more than 20 years ago, in 1990 and 1991. The lack of
interference in oyster reproduction byP.marinus two decades later
may reflect developing resistance or tolerance to infection, neither
concept of which is well defined with respect to this host–parasite

system. It must be viewed as 1 possible key to the resilience of this
key estuarine species.

What are the implications of the current findings for

management and future stability of the oyster populations in
the Piankatank River? To address this question we assembled
size-specific oyster density estimates from each reef identified in

Figure 1 from as yet unpublished fall 2012 stock assessment
surveys (Methods in Mann et al. (2009b), and Harding et al.
(2010) and Southworth et al. (2010)). The data were then

Figure 5. Shell length (SL) versus dry tissue weight (W). The power fit is

W$ 0.0023SL1.97; R2
$ 0.31 (n$ 375).
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aggregated for the entire river system to examine contribution
to the total egg production by size class within the population. A
summary is provided in Table 5. Age classes were segregated

from length demographics using the length-at-age relationship
from Harding et al. (2010), with ages corresponding to a ‘‘birth
date’’ of July 1. All young of the year were excluded, thus ages

are described as 1.3 y, 2.3 y, 3.3 y, 4.3 y, and 5.3 y or more. The
sex ratio (percentage female) of the age classes was based on
Harding et al. (2013), noting the transition from male to female

with increasing age. For the 2012 assessment, the 2-y age class
represents 50% of the total oysters by number and 32.7% of the
egg production (2010 was a year of exceptional recruitment
whereas 2011 was a poor recruitment year). In contrast, the 3-y

age class represents 28% of the total by number but 45.3% of
the total egg production. The population is severely age
truncated, with age classes 3 y and older representing 5.8% of

the total by number but contributing 19.5% of the egg pro-
duction. The disproportionate value of the age 3 y and older
classes in egg production is noted: 34% of the total by number

but contributing 64.8% of the egg production.
Of concern in the current study is the consistent lack of

spawning in the latter portion of the summer period, an
observation also related by the hatchery operators at OSH,

where the study was conducted, and the lack of observed re-
cruitment to shell strings in annual recruitment surveys (South-
worth et al. 2011, Southworth & Mann 2012, Southworth &

Mann 2013). The reason for this temporal truncation (compare
observations with projected number of spawnings in Table 3
and historical records of oyster spawning dates, as summarized

in Haven and Fritz (1985), Austin et al. (1996), and Thompson
et al. (1996)) is not known. The incidence and intensity of
harmful algal blooms (HAB) in the Virginia estuaries in mid-to-

late summer has been notable in recent years (K. Reece, VIMS,
pers. comm. 2013) although a comprehensive understanding of
both individual HAB species dynamics and toxicity in these
locations remains a subject of investigation rather than a well-

established body of knowledge. Potentially detrimental HAB
impacts on Crassostrea virginica gametogenesis and spawning
have not been evaluated, but if they exist it is reasonable to

assume these impacts would be focused on late-season repro-
ductive activities. A second possibility is that earlier reproduction
is an adaptive response to intensified Perkinsus marinus parasit-

ism. As noted earlier, serious P. marinus infections can be
disruptive to oyster gametogenesis (Dittman et al. 2001). These
infections are most widespread later in the oyster�s reproductive
season, from August to October, during the parasite�s seasonal

TABLE 4.

Temporal sequence of condition index of population subsamples (n$ 25 per sample) for the study period.

Date Length (mm) SD

Dry meat

weight (g) SD Condition index SD Spawn?

June 8, 2010 77.4 11.66 1.59 0.73 2.55 0.75 No

July 1, 2010 82.3 8.64 1.36 0.54 1.73 0.57 Yes

August 9, 2010 79.9 12.70 0.87 0.54 1.20 0.50 No

May 3, 2011 83.8 13.35 1.12 0.49 1.38 0.43 No

May 17, 2011 79.4 13.35 1.34 0.56 1.89 0.47 No

May 31, 2011 75.0 10.05 1.13 0.43 2.09 0.93 No

June 7, 2011 80.6 11.39 1.32 0.51 1.86 0.49 Yes

June 14, 2011 82.0 9.70 1.27 0.59 1.72 0.51 No

June 21, 2011 83.8 13.35 1.12 0.49 1.38 0.43 Yes

May 16, 2012 76.0 6.83 1.51 0.33 3.03 1.05 No

May 22, 2012 72.1 13.20 1.65 0.86 3.82 1.22 Yes

May 30, 2012 76.0 6.83 1.51 0.33 3.03 1.05 Yes

June 6, 2012 74.6 13.63 1.60 0.82 3.03 0.81 Yes

June 13, 2012 79.6 10.54 1.58 0.79 2.79 0.99 No

July 11, 2012 81.4 10.72 1.18 0.43 1.74 0.44 Yes

Data presented as mean ± SD for length, dry meat weight, and condition index ðWeight 3 100=SÞ; where S is the dry shell weight (in grams).

TABLE 5.

Mean oyster density and egg production, corrected for sex ratio by age class from the 2012 fall survey (see text).

Age class (y)

1.3 2.3 3.3 4.3 > 5.3 All

Size class (Lmax) 40 65 85 95 >95

Average density 6.2 19.4 10.8 1.5 0.8 38.7

Total oysters (n) 6.20E + 06 1.93E + 07 1.08E + 07 1.45E + 06 7.61E + 05 3.85E + 07

Percentage 16.1 50.2 28.0 3.8 2.0

Sex ratio (% female) 36.0 60.0 75.4 83.6 100.0

Egg production 1.18E + 13 1.58E + 14 2.20E + 14 5.16E + 13 4.33E + 13 4.85E + 14

Egg production (%) 2.4 32.7 45.3 10.6 8.9
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epizootic peak (Burreson&RagoneCalvo 1996). The proportion
of the Chesapeake Bay oyster population impacted by such

infections expanded dramatically during the 1980s (Burreson &
Andrews 1988), which hypothetically may have selected against
a late-spawning segment of the oyster population. Both HAB
impacts and oyster diseases, amongother possible factors, should

receive further attention as potential causes of the temporal
truncation in oyster spawning.

Long-term studies of egg-to-recruit relationships are rare in

the molluscan literature, but the availability of a 15-y data set
for the Piankatank River, and 15–20-y data sets for parts of the
James and Great Wicomico rivers in the Virginia Chesapeake

Bay offer the option to explore these relationships, given that
the current study suggests a strong relationship between dry
tissue weight and fecundity (compare the exponents as de-
scribed earlier), suggesting the former can be used as a proxy for

the latter in long-term studies. The Piankatank is generally
considered a trap-type estuary with only modest tidal exchange
(Andrews 1979), although some recruitment in the river may

originate in the Lower Rappahannock, where populations have
recovered in recent years with rotational harvest management.

The rotational harvest proffered by Harding et al. (2010)
addresses a dual reference point approach for sustaining both
live oyster populations and shell substrate. The latter is sensitive
to harvest of larger oysters, given their individual dispropor-

tionate contribution to the shell base. The current data will
allow exploration to a refined approach incorporating both
maximal shell retention in the system and maintenance of

spawning stocks.
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