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MEIOTIC AND EARLY ZYGOTIC DEVELOPMENT IN CRASSOSTREA VIRGINICA

OBSERVED THROUGH CONFOCAL MICROSCOPY

HOTTA MASARU,1 AKIRA KOMARU,1 JOANA TEIXEIRA DE SOUSA2

AND STANDISH K. ALLEN JR.2*
1Faculty of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu-city, Mie, 514-8507, Japan;
2Aquaculture Genetics and Breeding Technology Center, Virginia Institute of Marine Science, College of
William and Mary, 1375 Greate Road, Gloucester Point, VA 23062

ABSTRACT Several studies have examined early development in oysters, but few have reported the normal (expected) behavior

of meiosis and early mitosis or of the organization of the spindle by the centrosomes. To establish this baseline, normal

development of fertilized eggs in Crassostrea virginica from meiosis until the four–cell stage using confocal microscopy was

documented. To visualize the centrosomes and microtubules, eggs were stained with antibodies for g- and a-tubulin. In addition

to establishing normal development, two additional features of early development were documented. First, centrosome behavior

was documented. The centrosome associated with the female pronucleus disappeared after polar body formation. The single

centrosome associated with the male pronucleus duplicated by late anaphase of meiosis II to eventually form the spindle for

mitosis I, thus the two centrosomes in the first cleavage were derived from the sperm. Second, linkage between the cell and

centrosome cycles was established. In the first and second mitosis, centrosome duplication began at early anaphase. At late

anaphase, the centrosomes duplicated and were observed as two distinct units at each pole. Asynchrony was also observed at the

four–cell stage between the large and small blastomeres, with chromatin and centrosome duplication showing more advanced

stages in the large blastomere. This documentation will serve as a baseline for future studies on chromosome loss in polyploid

oysters.

KEY WORDS: oyster, Crassostrea virginica, centrosome, microtubule, meiosis, cleavage

INTRODUCTION

Chromosome loss in Crassostrea species had been docu-

mented for both diploids (Thiriot-Qui�evreux et al. 1992, Leit~ao
et al. 2001, de Sousa et al. 2011) and polyploids (Allen et al.
1996, McCombie et al. 2005, Zhang et al. 2010, Zhang et al.

2014). In a previous study on the subject, de Sousa et al. (2016)
hypothesized the possible involvement of supernumerary cen-
trosomes in early development and possibly in later ontogeny in

the loss of chromosomes. To know what is unusual in (possibly)
abnormal chromosome behavior in polyploids, it is critical to
understand normal chromosome behavior. Surprisingly, little
information is available on microtubule and centrosome be-

havior in early development of oysters and especially Crassos-
trea virginica. The objectives of this work were to document
early development starting with meiosis in newly fertilized eggs

through the first and second cleavage divisions, including
centrosome inheritance and duplication observed by confocal
microscopy.

Several studies have made cytological observations on early
development in bivalves and can be roughly divided into two
purposes. The first type concerns genetic improvement or

chromosome manipulation, including polyploid induction, for
aquaculture. Especially, for triploid production, which has high
commercial value because of reproductive sterility, numerous
studies have demonstrated meiotic and early zygotic develop-

ment (Komaru et al. 1990b, Longo et al. 1993, Li et al. 2000)
during chromosome set manipulation. Chromosome manipu-
lation techniques include the induction of polyploidy with

chemical reagents, such as, cytochalasin B and inactivation of
chromosomes using UV irradiation (Longo et al. 1993, Li et al.

2000). The main target of chromosome manipulation in these
studies was inhibition of polar body (PB) formation or first
cleavage division. Most of these studies observed and described

chromosomemovements using normal light (Crassostrea virgin-
ica: Longwell & Stiles 1968), electron microscopy (Crassostrea
gigas: Longo et al. 1993), or epifluorescence microscopy
(Pinctada fucata: Komaru et al. 1990a, 1990b; Chlamys nobilis:

Komaru & Wada 1991; C. gigas: Li et al. 2000). Work of this
nature has contributed to the production of triploid scallops,
clams, and mussels—some on at least a semicommercial scale

(Beaumont & Fairbrother 1991, Nell 2002).
The second type of cytological study of early development

in bivalves concerns investigations in developmental biology

and/or cytology. Marine bivalves are excellent candidates
for meiotic and early zygotic studies (Guo & Allen 1997)
as reported by Longo (1972), Guo et al. (1992a, 1992b), and

Longo et al. (1993). The main advantage of this system,
compared with insect and mammalian ones, is that marine
bivalves have high fecundities and practice external fertiliza-
tion. For example, a 2-y-old female Pacific oyster, Crassostrea

gigas, may produce 20–50 million eggs (Guo et al. 2009). Eggs
from bivalves, in general, are smaller and contain less yolk
material than eggs from fish and amphibians. Moreover,

because meiosis is arrested at prophase I in the follicle, meiosis
I and II can both be visualized in mature bivalve eggs after
controlled fertilization. For example, Kuriyama et al. (1986)

showed the microtubule cycle in oocytes of Spisula solidissima
using fluorescence microscopy and immunological methods.

Surprisingly, few studies have been done on the meiotic and

mitotic chromosome behavior inCrassostrea spp. Longwell and
Stiles (1968, 1973) reported chromosome behavior stained by
aceto-orcein at fertilization, meiosis, and early cleavage in
Crassostrea virginica using optical microscopy. Li et al. (2000)

compared nuclear behavior between normal and gynogenetic
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eggs of Crassostrea gigas using DAPI staining and epifluor-
escence microscopy. Longo et al. (1993) showed the course of

fertilization and meiosis in CB-treated and untreated C. gigas
eggs using electron microscopy and immunofluorescent tech-
niques for the observation of DNA and microtubule organiza-
tion, only from meiosis through metaphase of mitosis I. They

discussed the behavior of centrosomes based on the organiza-
tion of microtubules in the chromosome assemblages. Actual
centrosomal behavior, however, has not been reported and

there is little information for meiosis and even less for early
cleavage. More contemporary techniques allow detailed visu-
alization of complete meiotic and mitotic cytological structure

and organelles. For example, Pielak et al. (2003, 2004, 2005)
were able to elucidate the interaction between microtubule
asters and cortical actin in Spisula solidissima oocytes using
confocal microscopy. Several studies showed localization of

centrosomes and nucleolinus in S. solidissima oocytes using
confocal microscopy with in situ hybridization (Alliegro &
Alliegro 2005, 2008, 2013, Alliegro et al. 2006, 2010, 2012).

Confocal microscopy affords exceptional clarity into the cytol-
ogy of development. In this article, meiotic and early zygotic
developments were documented in normal diploid C. virginica

with confocal microscopy to document normal development.

MATERIALS AND METHODS

Crosses Experiment and Sampling

Two sets of pair matings were produced in the hatchery on
August 9 (Cohort 1) and August 16 (Cohort 2), 2016. Ripe
oysters from line DEBY.14 and hANA.14 held by Aquaculture

Genetics and Breeding Technology Center were shucked and
gonad biopsies were examined microscopically to determine the
sex. The best specimens (maturity and fecundity) were used to

make experimental crosses. Eggs for cohort 1 and 2 were strip-
spawned (Allen & Bushek 1992) from hANA females. Males
were from the DEBY.14 line for cross 1 and hANA.14 for the

cohort 2. Eggs were counted before fertilization to obtain
appropriate densities of eggs in the beakers. Both cohorts were
performed at 24.5� in 14.1 psu-filtered seawater.

Samples were fixed at 0, 10, 30, 60, 80, and 100 min
postfertilization, with the first three samples corresponding to
periods of meiosis and the last three—mitosis. Oyster eggs are
arrested before meiosis I and commence after fertilization. An

appropriate volume of eggs was taken to assure at least 20,000
eggs were fixed.

Sample Preparation for Confocal Microscopy

Fixation of Eggs and Staining

Eggs sampled from beakers were screened through a 20-mm
Nytex screen to remove cell debris and placed into a 15-mL

Falcon tube containing 12 mL of fixative consisting of 0.1%
TritonX-100, 4% formaldehyde in PEM (100-mM PIPES,
5-mM EGTA, 1-mM MgCl2, pH 6.8, using NaOH). Eggs were

simultaneously permeabilized and fixed in this fixative for 2 h.
After fixation, the samples were rinsed three times with 10-mM
glycine–phosphatase buffered saline (glycine–PBS pH7.4) and

then washed with 10-mM glycine–PBS twice. The samples were
stored in 10-mMPBS (without glycine) in 15-ml falcon tube and
stored at 4� until they were used for cytoskeletal labeling.

For microtubules and centrosomes, before staining, fixed
eggs were incubated for 1 h in 3%bovine serum albumin (BSA)/

PBS. Eggs were then washed once with glycine–PBS. After-
ward, eggs were washed again, this time with 0.1% BSA/PBS
(containing 0.1% TritonX). For staining, either of two primary
antibodies was used, specific for either microtubules or centro-

somes, in combination with a secondary antibody containing
the fluorochrome. Microtubules were labeled with mouse
monoclonal anti-a tubulin (Sigma-T9026) diluted to 0.5 mL/mL

by 1% BSA/PBS (containing 0.1% TritonX) by incubating for
24 h at room temperature. Centrosomes were labeled with
mouse monoclonal anti-g tubulin (Sigma-T6557) diluted to

0.5 mL/mL by 1% BSA/PBS (containing 0.1% TritonX) as
the primary antibody by incubating for 48 h at room temper-
ature. After incubation, the eggs were washed three times with
0.1% BSA/PBS (containing 0.1% TritonX).

Eggs stained for microtubules or for centrosomes were
labeled with the goat antimouse IgG (H + L) secondary
antibody pretagged with Alexa Fluor 488 conjugate diluted to

5 mL/mL by 1%BSA/PBS (containing 0.1%TritonX). The eggs
were washed three times with 0.1% BSA/PBS (containing 0.1%
TritonX).

For chromosomes and nuclei, eggs labeled for either micro-
tubules or for centrosomes were then counterstained withDAPI
stock solution (DAPI 5 mg/mL, 2-mercapt-ethylamine hydro-

chloride 10 mM, Tris 10 mM, EDTA-2Na 100 mM, NaCl
100 mM) diluted to 0.5 mg/mL by 1% BSA/PBS (containing
0.1% TritonX) and incubated for 20 min to visualize the
chromosomes. The labeled samples were washed twice with

0.1% BSA/PBS (containing 0.1% TritonX).
For mounting slides permanently, after removal of most of

the supernatant, a suspension of eggs was added to about 60 mL
of mounting medium (ProLong Gold Antifade Mountant) on
the slide glass (Matunami Glass Ind., Ltd). The specific slide
glasses were coated around the edges and uncoated in the center

to avoid crushing the eggs when the cover slip was mounted
(Alliegro et al. 2010). Eggs and mounting medium were
aspirated gently to mix the eggs and medium. A cover slip
was placed over the sample/mounting medium mixture and the

edges sealed with nail polish.
Samples were viewed with a standard Olympus epifluores-

cence microscope and by confocal microscopy using an Olym-

pus Laser Scanning Fluoview FV1200 with image processing
via FV10-ASW 4.2 Viewer (Olympus). Images are maximum
intensity projections of the entire z-stack. In addition, an optical

microscope BX-51(Olympus) using cellSens (Olympus) image
analysis software was used for estimating egg diameter.

Measurements

Eggdiameterwas determinedunder 1003magnification in fixed
eggs by taking four diameter readings at each egg. Eggs inwhich the

maximum egg diameter differed from a minimum egg diameter by
more than 10 mm were not analyzed because of their probable
immaturity. Average egg diameter from each diploid female was

statistically analyzed with a Welch�s t-test at P ¼ 0.05.
Spindle size was defined as the distance between two

centrosomes. Measurement of spindle size was determined on

a photograph and measured using imaging software FV10-
ASW 4.2 Viewer. In meiosis I, the images were taken with
the following three conditions: (1) Developmental stage was
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meiosis I metaphase. (2) The peripheral centrosome was
attached to the egg cortex. (3) The images from the confocal

were taken with the 2D-mode and the two centrosomes had to
be in the same section. The thickness of single optical section in
the 2D-mode was theoretically 1.34 mm. For measuring the first
mitotic division (MT1), the distance between centrosomes was

determined under following two conditions: (1) Developmental
stage was metaphase of MT1. (2) The images were taken by the
2D-mode with confocal microscopy and two centrosomes were

in the same section.

RESULTS

Egg Morphology

The overall morphology of eggs obtained from stripped
follicles after incubation in seawater for 30 min took two forms:

(1) Eggs were round (Fig. 1A) or (2) eggs were teardrop shaped
(Fig. 1B). Uneven distribution of egg yolk was observed in both
forms with optical microscopy. Egg diameter was 47.0 ± 1.9 mm
(n ¼ 73) for the first cohort and 49.1 ± 1.8 mm (n ¼ 93) for the

second, which was significantly different (P < 0.001) between the
two diploid females used in the cohort. Teardrop-shaped eggs

rounded up after fertilization.

Meiosis

Microtubules and centrosomes were visualized by immuno-

staining of the eggs and maternal and paternal chromosomes
with DAPI staining. A spindle was formed by two centrosomes
and microtubules spread radially from each centrosome. The
meiotic spindles were located near the animal pole. Peripheral

astral microtubules were oriented near the animal pole and
spread along the cell cortex (Fig. 1C). Central astral microtu-
bules were spread radially at the center of the egg. In most eggs,

one centrosome was attached to the cortex of oocytes and the
other centrosome was located centrally. The average distance
between the two centrosomes was 14.4 ± 1.3 mm (n¼ 50) for the

first cross and 13.9 ± 1.2 mm (n ¼ 50) for the second. There was
a significant difference between the two crosses, i.e., egg source
(P ¼ 0.031). Chromosomes derived from the egg were arranged
along the equatorial plane of the meiotic spindle. Karyokinesis

was observed to proceed perpendicular to the egg surface (Fig.
1D, E). After extrusion of the first polar body (PB1), the second
meiotic spindle appeared. During the transition from the first to

the second meiotic division, the maternal chromosomes never
appeared in a decondensed state. At sampling periods immedi-
ately after cytokinesis, chromosomes were observed at the start

of secondmeiosis. When the secondmeiotic spindle appeared, it
was not always perpendicular to the egg surface, but later was
observed perpendicular to the egg surface for the release of

second polar body (PB2) (Fig. 1F). Extruded PB1 and PB2 were
very close together. In some cases, the number of polar bodies
on the egg surface could not be counted accurately.

Male Pronucleus Transformation and Centrosome Inheritance

Just after insemination, the sperm nuclei in the cytoplasm of
eggs were observed still in a condensed (Fig. 2A) state. Sperm
could be seen at various locations around the perimeter of the

egg. The centrosome was not observed at the periphery of the
sperm nucleus at early metaphase II (Fig. 2A). At meiosis II,
one centrosome was observed beside the sperm nucleus (Fig.

2B). The centrosome originating from the sperm duplicated by
late anaphase of meiosis II (Fig. 2C). When the release of the
PB2 was complete, the sperm nucleus began to swell (Fig. 2D),

with two centrosomes still associated with it. The female
pronucleus also swelled, but the centrosomes associated with
the female pronucleus during meiosis disappeared after PB2

formation. At this time, duplicated centrosomes migrated to
opposite sides of the male pronucleus (Fig. 2E). The network of
microtubules began to build in the egg cytoplasm (not shown,
but could be observed with microtubule staining). Syngamy

occurred as the swollen male and female pronuclei combined in
the center of the egg, with the two centrosomes derived from the
male pronuclei (Fig. 2F). Intermingled chromosomes began to

condense and line up on the equatorial plane for first mitosis
(Figs. 2G and 3H).

Mitosis—First Cleavage and Mitotic Centrosome Duplication

Chromosomes from the male and female pronuclei gathered
and aligned on the equatorial plane of the spindle organized by

Figure 1. Oocytes 30 min after strip spawning (A, B) observed by light

microscopy and newly fertilized eggs of Crassostrea virnginica by

fluorescence microscopy (C–F). Microtubules (C, E, F) and centrosomes

(D) were labeled with a- or g-tubulin antibody, respectively. Chromo-

somes were located on the metaphase plate of first meiosis (C, D).

(E) Early anaphase of first meiosis. (F) Metaphase of second meiosis.

The first polar body was on the egg surface. Scale bar$ 10 mm.
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the two centrosomes (Fig. 3A). The spindle was organized in the

center of the egg. The spindle axis of the first cleavage formed
perpendicular to the axis of the animal–vegetal pole. At meta-
phase of MT1, the average distance between the two centro-

somes was 17.56 ± 1.9 mm (n¼ 10) for the first cohort and 15.9 ±
1.0 mm (n¼ 11) for the second, with a significant difference (P¼
0.045) between the two cohorts. Beginning at anaphase ofMT1,

the fluorescent signal of the centrosome diminished, probably

because the centrosome was undergoing duplication. Two
fluorescent signals were recognized at each pole of the spindle
(Figs. 3B and 4C). Also, at late anaphase ofMT1, the polar lobe

(PL) formed at the vegetal pole (Figs. 3C and 4D) and was later
absorbed into one of the two cells of the first cleavage to form
large and small blastomeres. Cytokinesis was observed at times

Figure 2. Behavior of pronuclei and centrosome inheritance in fertilized

eggs of Crassostrea virginica. (A) At metaphase of meiosis II, male

pronucleus (MP) is condensed and has only one centrosome (B). (C) By

late anaphase of meiosis II, the centrosome of the MP has duplicated.

Male pronucleus and female pronucleus (FP) begin to swell. (D) They

migrate to cell center as duplicated centrosomes migrate to opposite sides

ofMP (E). (F) Syngamy precedes condensation of chromosomes fromMP

and FP (G). (H) Finally, chromosomes organize on the metaphase plate of

MT1. White arrows indicate centrosomes. Scale bar$ 10 mm.

Figure 3. First cleavage of mitosis in dividing eggs of Crassostrea

virginica. (A) In early anaphase of MT1, microtubule structure can be

clearly seen to have organized around the centrosomes. (B) Centrosomes

are indistinct by anaphase. (C, D) By late anaphase, PL has formed, but is

absorbed later. (D) Early midbody is clearly visible at telophase of mitosis

1 and shrinks with progression of cell cleavage. (E)Mitotic centrosomes at

early anaphase of first cleavage (arrows). (F) Mitotic centrosomes

(arrows) at disengagement at late anaphase of first cleavage.

(G) Telophase of first cleavage. Condensed chromosomes had segregated

to each spindle pole. After migration of chromosomes, the signal of

g-tubulin became two. Condensed chromosome started to decondense at

telophase. (H) Nuclei were observed in a swollen state in early two cell

stage. White arrows indicate centrosomes.
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synchronous to the absorption of the PL. The cleavage furrow
was colocated with the position of the extruded polar bodies at

the animal pole. Also, the midbody between the cells became
apparent at telophase (Fig. 3D), apparently decreasing with the
contraction of the contractile ring.

At early anaphase of MT1 (Fig. 3E), centrosomes were

distinct, one at each pole of the spindle. The centrosomes were
elongated. But by late anaphase, they had begun to duplicate
and were observed as two distinct signals at each pole (Fig. 3F).

By telophase, segregated chromosomes had started to decon-
dense (Fig. 3G) with duplicated centrosomes.

Two–Cell

After the formation of two cells (Fig. 3H), nuclei swelled and
chromatin in the nuclei was observed in amore condensed state.
A network of microtubules was evident throughout the egg

cytoplasm at this stage (Fig. 4A). The astral microtubules that
had nucleated from each centrosome were duplicated in late
anaphase of MT1 and had migrated to opposite poles of their

respective nuclear masses and started to form the spindle poles
(Fig. 4B). At metaphase ofMT1, chromosomes segregated after
aligning on the equatorial plane of each spindle. This seemed to

occur simultaneously in both blastomeres (Fig. 4C). The second
karyokinesis of the two blastomeres, however, was asynchro-
nous in the vast majority of observations (Fig. 4D). In the eggs

observed that were asynchronous, chromosome segregation in
the large blastomere was seen before those in the small
blastomere. The PL again formed and was then absorbed in
the large blastomere at anaphase. At the telophase of the second

mitotic division (MT2), the width of the midbody that formed
between each blastomere decreased with the contraction of the
contractile ring as in the first cleavage.

Four–Cell

The blastomere that absorbed the PL became the large

blastomere (Fig. 4E). The other cells appeared to be of equal size.
Chromosome decondensation occurred simultaneously in all four
cells (Fig. 4F), whereas a network of microtubules was built in the

cytoplasm, as observed in former stages. The large blastomere was
the first to form the next mitotic spindle in the four–cell stage (Fig.
4G). As the mitotic apparatus of the large blastomere became
organized with chromosomes at the metaphase plate, the chro-

mosomes of the three small blastomeres were less condensed and
the aster not completely segregated. Figure 4D shows the four–cell
stage. In the large blastomere, centrosomes were already dupli-

cated at the poles for the next division. In the small blastomeres,
the centrosomes were observed as one unit located on both sides of
the condensed chromosomes, but not on the metaphase plates.

Thus, at the four cell stage, asynchrony was obvious.

DISCUSSION

Egg Structure at Fertilization

In this study, eggs were obtained by strip spawning (Allen &
Bushek 1992), which is an increasingly common way for
research and commercial spawning of oyster species. Other

studies have documented early development of oyster eggs
obtained by strip spawning. Longo et al. (1993) documented
two morphologies of Crassostrea gigas fertilized egg from strip

spawning. The significance of these two forms with respect to

gamete maturation, fertilizability, and potential for develop-
ment was unclear. It was assumed that teardrop-shaped eggs
were immature, having been torn from their follicle walls where

they were still attached. Such eggs generally round up after time
and are equally fertilizable, but this has not been tested directly.
Nonetheless, egg diameter was measured only on round eggs.

Figure 4. Two-cell and 4-cell stage in Crassostrea virginica embryos.

(A) Chromosomes under duplication in each cell. (B) Centrosome

migrated to opposite poles and began to form spindles. (C) Metaphase

occurred simultaneously in both cells, but mitosis was usually advanced

in the large blastomere (D). The microtubules (E–G) and centrosomes

(H) were labeled with a- or g-tubulin antibody, respectively. (E) Mid-

bodies (arrows) were clearly visible as cells divided and nuclei entered

S phase. (F) All four blastomeres entered S phase simultaneously.

(G) Large blastomere began mitosis first. (H) Chromosome segregation

was completed in the large blastomere first. Scale bar$ 10 mm.
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On average between the cohorts, the diameter of eggs from
diploidCrassostrea virginicawas 48.2 mm. The egg size differing

significantly from each other (female from first cohort versus
female from second) was surprising because the egg size of C.
virginica is highly regulated, undergoing constant balancing
selection between fecundity and nourishment (Powell et al.

2011). At the same time, eggs from the two cohorts came from
two different highly selected lines and the effect of domestica-
tion on the egg size is unknown.

Meiosis

Meiotic maturation in molluscan species is characterized by
two general types: eggs with a secondary arrest in the first meiotic

metaphase or eggs with no secondary arrest. In some bivalves,
such as Spisula or Barnea, spawned oocytes are arrested at
prophase I. Fertilization occurs at this stage leading to reinitiation

of meiosis (Dub�e & Guerrier 1982, Colas & Dub�e 1998). By
contrast, bivalves, such as Ruditapes and Crassostrea (Kuraishi &
Osanai 1988), undergo germinal vesicle breakdown after spawning

and are then arrested at metaphase of meiosis I. The Crassostrea
virginica eggs in this study were incubated for at least 30 min after
strip spawning, andmost of the eggs were arrested atmetaphase of
meiosis I. In some cases, the meiotic spindle pole was unattached

to the cortex of the animal pole (Fig. 2A). It seemed clear that the
spindle migrates to the animal pole eventually. Kuriyama et al.
(1986) and Pielak et al. (2003) described similar meiotic spindle

behavior using Spisula oocytes. Longo et al. (1993) also docu-
mented spindle formation during meiosis in Crassostrea gigas.
Interestingly, Longo et al. (1993) proposed that this spindle

migration in bivalves can occur without microfilaments.
The male pronucleus condensed and remained quiescent

until PB2 extrusion in the egg cytoplasm, at which point it

began to swell. Similar findings were reported in previous work
(Crassostrea gigas: Longo et al. 1993, Stephano & Gould 2000,
Asterina miniata: Stephano&Gould 2000;Corbicula sandai and
Corbicula fluminea: Obata et al. 2006). On the other hand,

duplicated centrosomes were observed at late anaphase of
meiosis II (Fig. 3C). The paternal centrosome may have been
duplicated at the same time as PB2 extrusion or before.

Stephano and Gould (2000) proposed that MAP kinase is
involved in sperm centrosome suppression based on the obser-
vation for microtubule organization in which MAP kinase is

inhibited during meiosis in oyster eggs.

Pronuclei and Centrosome Inheritance

Longo et al. (1993) investigated the course of fertilization
events in CB-treated Crassostrea gigas eggs using electron

microscopy and immunofluorescent techniques for the observa-
tion of DNA and microtubule organization. Based on microtu-
bule formation, they suggest that centrosomes of the embryo of
C. gigas are paternally inherited (Longo et al. 1993, Longo 1997).

Actual centrosome behavior was not reported, however. Obser-
vations from this study followed the behavior of centrosomes
from metaphase of meiosis I through metaphase I and clearly

showed that centrosomes are inherited from sperm whereas
maternal centrosomes disappear (Fig. 2D). Therefore, it is
evident from this study that two centrosomes derived from

spermatozoa act as microtubules organization center of
MT1. More correctly, the one centrosome derived from sperm
duplicated just after PB1 extrusion. If oocytes were to retain

a fully functional maternal centrosome capable of replication,
introduction of a paternal centrosome would result in the

presence of two replication-competent centrosomes and lead to
the formation of tetrapolar spindles and disruption of chromo-
some segregation or aneuploidy (Palazzo et al. 1999). Thus, the
ability of the maternal centrosome to replicate seems lost during

the completion of meiosis, leaving the paternal centrosome to
replicate as needed for coordinated development (Sluder et al.
1989, Schatten 1994).

In oocytes of starfish, Asterina pectinifera and the clams,
Spisula solidissima and Corbicula sandai, the ability of the
maternal centrosome to replicate is selectively destroyed during

meiosis II (Kuriyama et al. 1986, Sluder et al. 1989, 1993, Obata
et al. 2006, Borrego-Pinto et al. 2016). Importantly, in both
Asterina and Spisula, the male centrosome is present in the egg
cytoplasm when the ability of the maternal centrosome to

replicate and to nucleate microtubules was destroyed (Sluder
et al. 1989, 1993, Wu & Palazzo 1999). Yet, despite the
deactivation of the maternal centrosome, maternal components

are still required for restoration of the zygotic centrosome
during organization of microtubules (Schatten 1994).

Mitosis

Normal cell division proceeds through the linkage of the cell
cycle, the nuclear cycle, and the centrosome cycle in animal cells

(Doxsey et al. 2005). The first two mitotic divisions were
observed in this study. Although cell number was different,
centrosomes and cytoplasmic structure exhibited similar be-

havior in both MT1 and MT2 in accordance with the nuclear
cycle. Furthermore, the microtubule cycle was closely related to
the centrosome cycle because centrosomes coordinate microtu-

bule organization. The following description presents the
linkage of nuclear cycle, cell cycle, and centrosome cycle in first
two mitotic divisions of Crassostrea virginica zygotes.

Metaphase to Anaphase

The duplicated genome must be divided into two daughter
cells by the spindle apparatus that is organized by centrosomes.
Centrosomes are composed of two orthogonally arranged

centrioles surrounded by an amorphousmass of protein, termed
the pericentriolar material (Nigg 2002). One centrosome with
two centrioles performs as a single microtubule organization
center (Nigg 2002, 2007). In the initial step for Crassostrea

virginica, chromosomes condensed and aligned on the equato-
rial plane of the spindle that was formed by microtubules
radiating from the two centrosomes at metaphase. Chromo-

some segregation began after all chromosomes were aligned on
the equatorial plane. Normally, the process is regulated by
a spindle assembly checkpoint that monitors attachment of the

spindle microtubules to kinetochores of chromosomes (Doxsey
et al. 2005). Changes in cell structure and centrosome number
during the metaphase to anaphase stage were not observed by us.

Late Anaphase

There were several changes in both cell structure and centro-
some behavior in late anaphase of the two mitotic divisions. For
the centrosome, although a single centrosome was observed at

each pole at early anaphase of MT1, two distinct signals of
g-tubulin were recognized in each spindle pole at late anaphase.
In more detail, these duplicated signals of g-tubulin were
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diminished compared with the signal in early anaphase of MT1.
A similar finding was observed in MT2 (data not shown). The

interpretation was that the centrosomes were either disengaged
before or undergoing duplication. This distinction was not
possible because of the limitations of gamma tubulin staining.
To undergo duplication, the orthogonal association of centrioles

is lost and the amount of g-tubulin decreases by about one-third
to one-fifth. The dissociation is accompanied by a striking
decrease in microtubule nucleating activity in centrosomes

(Khodjakov & Rieder 2001). This process is the first step for
centrosome duplication (Meraldi & Nigg 2002). In Crassostrea
virginica, centrosome duplication began at late anaphase of

MT1. Furthermore, change of cell structure also started at late
anaphase of early mitotic division. For MT1, the PL protruded
fromvegetal pole. For the second cleavage, the PL extruded from
the large blastomere (data not shown). Dorresteijn (1990)

reported that spiralian embryos, such as mollusca with an
unequal first mitotic division, can be divided into two groups:
with or without PL formation. Polar lobe formation has been

observed in other species during early development (e.g., Cras-
sostrea gigas: Deno 1998; Crepidula fornicata: Henry et al. 2006).
In embryos without a PL, the first mitotic division shifts to one

side and one spindle pole attaches to the cortex (e.g., Dreissena
polymorpha: Luetjens & Dorresteijn 1998; Corbicula sandai:
Obata et al. 2006). On the contrary, the spindle of the first

cleavage is oriented in the center of the zygote. This is the typical
pattern of the first cleavage with PL formation.

Telophase to Prophase

In Crassostrea virginica, the centrosomes organized the
microtubules from metaphase to late anaphase to establish
the spindle apparatus. The fluorescence of the astral formation
diminished when the chromosomes decondensed and formed

the nucleus. This loss of g-tubulin signal is probably associated
with dissassembly of microtubules at late anaphase and seemed

to be related to the centrosome cycle. g-tubulins are essential for
nucleation of microtubules (Palazzo et al. 1999). The main
feature of telophase was cytoplasmic division. The cleavage
furrow was observed when segregated chromosomes decon-

densed and formed nuclei. Moreover, the midbody was ob-
served between the two dividing cells at the end of cytoplasmic
division. The midbody is common and synchronous with the

formation of the contractile ring in animal cells (Steigemann &
Gerlich 2009). At this time, synchrony was observed between
cytoplasmic division and PL reabsorption. In contrast to this

dynamic cell structural change, the two duplicated centrosomes
apparently kept their position and structure. Important cen-
trosomal behavior was observed when cell division was com-
pleted: two adjacent centrosomes separated and acted as

microtubule organizing centers. Centrosome separation is
known to be caused by the action of microtubules-dependent
motor proteins, such as Eg5 (Smith et al. 2011). The two

separated centrosomes formed a bipolar spindle and contrib-
uted to chromosome segregation. Asynchrony of the cell cycle
in each cell at four–cell stage was also observed. Even though

cell number and cell structure are different between first and
second cell division, the cell cycle, nuclear cycle, and centrosome
cycle are coordinated in both cell divisions.

In this article, detailed observations on meiotic and early
zygotic development were presented. The results, obtained by
double staining nuclear and microtubules or centrosomes clearly
showed linkage of cell cycle, nuclear cycle, and centrosome cycle.

This fundamental knowledge will be useful not only to un-
derstand the detailed mechanism of meiosis and early mitosis in
the oyster, but also for future investigations into meiotic and

mitotic abnormalities in polyploids of Crassostrea virginica.

LITERATURE CITED

Allen, S. K. & D. Bushek. 1992. Large-scale production of triploid

oysters, Crassostrea virginica (Gmelin), using ‘‘stripped’’ gametes.

Aquaculture 103:241–251.

Allen, S. K., Jr., X. Guo, G. Burreson & R. Mann. 1996. Heteroploid

mosaics and reversion among triploid oysters, Crassostrea gigas:

fact or artifact. J. Shellfish Res. 18:293.

Alliegro, M. A., J. J. Henry & M. C. Alliegro. 2010. Rediscovery of the

nucleolinus, a dynamic RNA-rich organelle associated with the

nucleolus, spindle, and centrosomes. Proc. Natl. Acad. Sci. USA

107:13718–13723.

Alliegro, M. C. & M. A. Alliegro. 2005. Differential expression of

tyrosinated tubulin in Spisula solidissima polar bodies. Dev. Dyn.

232:216–220.

Alliegro, M. C. & M. A. Alliegro. 2008. Centrosomal RNA correlates

with intron-poor nuclear genes in Spisula oocytes. Proc. Natl. Acad.

Sci. USA 105:6993–6997.

Alliegro, M. C. & M. A. Alliegro. 2013. Localization of rRNA

transcribed spacer domains in the nucleolinus and maternal procen-

trosomes of surf clam (Spisula) oocytes. RNA Biol. 10:391–396.

Alliegro, M. C., M. A. Alliegro & R. E. Palazzo. 2006. Centrosome-

associated RNA in surf clam oocytes. Proc. Natl. Acad. Sci. USA

103:9034–9038.

Alliegro, M. C., S. Hartson & M. A. Alliegro. 2012. Composition and

dynamics of the nucleolinus, a link between the nucleolus and cell

division apparatus in surf clam (Spisula) oocytes. J. Biol. Chem.

287:6702–6713.

Beaumont, A. R. & J. E. Fairbrother. 1991. Ploidy manipulation in

molluscan shellfish: a review. J. Shellfish Res. 10:1–18.

Borrego-Pinto, J., K. Smogyi, M. A. Karreman, J. K€onig, T. M€uller-

Reichert, M. Bettencourt-Dias, P. G€onczy, Y. Schwab &

P. L�en�art. 2016. Distinct mechanisms eliminate mother and

daughter centrioles in meiosis of starfish oocytes. J. Cell Biol.

212:815–827.

Colas, P. & F. Dub�e. 1998. Meiotic maturation in mollusc oocytes.

Semin. Cell Dev. Biol. 9:539–548.

Deno, T. 1998. Autonomous fluorescence localized at the polar lobe of

eggs of Japanese oyster, Crassostrea gigas. Bull. Osaka Kyoiku

Univ. III Nat. Sci. 46:195–207.

de Sousa, J. T., S. K. Allen, Jr., H. Baker & J. L. Matt. 2016. Aneuploid

progeny of the American oyster, Crassostrea virginica, produced by

tetraploid 3 diploid crosses: another example of chromosome

instability in polyploid oysters. Genome 59:327–338.

de Sousa, J. T., D. Matias, S. Joaquim, R. Ben-Hamadou, &

A. Leit~ao. 2011. Growth variation in bivalves: new insights

into growth, physiology and somatic aneuploidy in the

carpet shell Ruditapes decussatus. J. Exp. Mar. Biol. Ecol.

406:46–53.

Dorresteijn, A.W. 1990. Quantitative analysis of cellular differentiation

during early embryogenesis of Platynereis dumerilii. Roux�s Arch.

Dev. Biol. 199:14–30.

Doxsey, S., W. Zimmerman & K. Mikule. 2005. Centrosome control of

the cell cycle. Trends Cell Biol. 15:303–311.

MEIOTIC AND EARLY ZYGOTIC DEVELOPMENT 705



Dub�e, F. & P. Guerrier. 1982. Activation of Barnea candida (Mollusca,

Pelecypoda) oocytes by sperm or KCl, but not by NH4Cl, requires

a calcium influx. Dev. Biol. 92:408–417.

Guo, X. & S. K. Allen, Jr. 1997. Sex and meiosis in autotetraploid

Pacific oyster, Crassostrea gigas (Thunberg). Genome 40:397–405.

Guo, X., K. Cooper, W. K. Hershberger & K. K. Chew. 1992a. Genetic

consequences of blocking polar body I with cytochalasin B in

fertilized eggs of the Pacific oyster, Crassostrea gigas: I. Ploidy of

resultant embryos. Biol. Bull. 183:381–386.

Guo, X., W. K. Hershberger, K. Cooper & K. K. Chew. 1992b. Genetic

consequences of blocking polar body I with cytochalasin B in

fertilized eggs of the Pacific oyster,Crassostrea gigas: II. Segregation

of chromosomes. Biol. Bull. 183:387–393.

Guo, X., Y. Wang, Z. Xu & H. Yang. 2009. Chromosome set

manipulation in shellfish. In: Burnell, G. & G. Allan, editors. New

technologies in aquaculture: improving production efficiency, qual-

ity and environmental management. pp. 165–194. Sawston, Cam-

bridge, UK: Woodhead Publishing.

Henry, J. Q., K. J. Perry & M. Q. Martindale. 2006. Cell specification

and the role of the polar lobe in the gastropod mollusc Crepidula

fornicata. Dev. Biol. 297:295–307.

Khodjakov, A. & C. L. Rieder. 2001. Centrosomes enhance the fidelity

of cytokinesis in vertebrates and are required for cell cycle progres-

sion. J. Cell Biol. 153:237–242.

Komaru, A., K. Matsuda, T. Yamakawa & K. Wada. 1990a. Meiosis

and fertilization of the Japanese pearl oyster eggs at different

temperature observed with a fluorescence microscope. Nippon

Suisan Gakkaishi 56:425–430.

Komaru, A., K. Matsuda, T. Yamakawa & K. Wada. 1990b. Chromo-

some behavior of meiosis-inhibited eggs with cytochalasin B in

Japanese pearl oyster. Nippon Suisan Gakkaishi 56:1419–1422.

Komaru, A. & K.Wada. 1991. Different processes of pronuclear events

in pressure-treated and CB-treated zygotes at the second meiosis in

scallop. Nippon Suisan Gakkaishi 57:1219–1223.

Kuraishi, R. & K. Osanai. 1988. Behavior of sperm nuclei in meiotic

eggs of the oyster,Crassostrea gigas. Bull. Mar. Biol. Stn. Asamushi

Tohoku Univ. 18:57–65.

Kuriyama, R., G. G. Borisy & Y. Masui. 1986. Microtubule cycles in

oocytes of the surf clam, Spisula solidissima: an immunofluorescence

study. Dev. Biol. 114:151–160.

Leit~ao, A., P. Boudry & C. Thiriot-Qui�evreux. 2001. Negative correla-

tion between aneuploidy and growth in the Pacific oyster, Crassos-

trea gigas: ten years of evidence. Aquaculture 193:39–48.

Li, Q., M. Osada, M. Kashihara, K. Hirohashi & A. Kijima. 2000.

Cytological studies on artificially induced gynogenesis in the Pacific

abalone. Fish. Sci. 66:701–707.

Longo, F. J. 1972. The effects of cytochalasin B on the events of

fertilization in the surf clam, Spisula solidissima. I. Polar body

formation. J. Exp. Zool. 182:321–344.

Longo, F. J. 1997. Fertilization, 2nd edition. New York, NY: Garland

Science.

Longo, F. J., L. Mathews & D. Hedgecock. 1993. Morphogenesis of

maternal and paternal genomes in fertilized oyster eggs (Crassostrea

gigas): effects of cytochalasin B at different periods during meiotic

maturation. Biol. Bull. 185:197–214.

Longwell, A. C. & S. S. Stiles. 1968. Fertilization and completion of

meiosis in spawned eggs of the American oyster, Crassostrea

virginica Gmelin. Caryologia 21:65–73.

Longwell, A. C. & S. S. Stiles. 1973. Gamete cross incompatibility and

inbreeding in the commercial American oyster,Crassostrea virginica

Gmelin. Cytologia (Tokyo) 38:521–533.

Luetjens, C. M. & A. W. Dorresteijn. 1998. Dynamic changes of the

microtubule system corresponding to the unequal and spiral cleav-

age modes in the embryo of the zebra mussel,Dreissena polymorpha

(Mollusca, Bivalvia). Zygote 6:239–248.

McCombie, H., S. Lap�egue, F. Cornette, C. Ledu & P. Boudry. 2005.

Chromosome loss in bi-parental progenies of tetraploid Pacific

oyster Crassostrea gigas. Aquaculture 247:97–105.

Meraldi, P. & E. A. Nigg. 2002. The centrosome cycle. FEBS Lett.

521:9–13.

Nell, J. A. 2002. Farming triploid oysters. Aquaculture 210:69–88.

Nigg, E. A. 2002. Centrosome aberrations: cause or consequence of

cancer progression? Nat. Rev. Cancer 2:815–825.

Nigg, E. A. 2007. Centrosome duplication: of rules and licenses. Trends

Cell Biol. 17:215–221.

Obata, M., K. Nishimori & A. Komaru. 2006. Change of centrosome

attachment site causes androgenesis in the Freshwater clam Corbic-

ula fluminea: with C. sandai. Venus (Tokyo) 65:247–257.

Palazzo, R. E., J. M. Vogel, B. J. Schnackenberg, D. R. Hull & X. Wu.

1999. Centrosome maturation. Curr. Top. Dev. Biol. 49:449–470.

Pielak, R. M., V. A. Gaysinskaya & W. D. Cohen. 2003. Cytoskeletal

events preceding polar body formation in activated Spisula eggs.

Biol. Bull. 205:192–193.

Pielak, R.M., V. A. Gaysinskaya &W.D. Cohen. 2004. Formation and

function of the polar body contractile ring in Spisula. Dev. Biol.

269:421–432.

Pielak, R. M., C. Hawkins, A. Pyie, J. Bautista, K. G. Lee & W. D.

Cohen. 2005. Polar body formation in Spisula oocytes: function of

the peripheral aster. Biol. Bull. 209:21–30.

Powell, E. N., J. Morson & J. M. Klinck. 2011. Application of a gene-

based population dynamics model to the optimal egg size problem:

why do bivalve planktotrophic eggs vary in size? J. Shellfish Res.

30:403–423.

Schatten, G. 1994. The centrosome and its mode of inheritance: the

reduction of the centrosome during gametogenesis and its restora-

tion during fertilization. Dev. Biol. 165:299–335.

Sluder, G., F. J. Miller & K. Lewis. 1993. Centrosome inheritance in

starfish zygotes II: selective suppression of the maternal centrosome

during meiosis. Dev. Biol. 155:58–67.

Sluder, G., F. J. Miller & C. L. Rieder. 1989. Reproductive capacity of

sea urchin centrosomes without centrioles. Cell Motil. Cytoskeleton

13:264–273.

Smith, E., N.H�egarat, C. Vesely, I. Roseboom, C. Larch,H. Streicher &

R. Kuriyama. 2011. Differential control of Eg5-dependent centro-

some separation by Plk1 and Cdk1. EMBO J. 30:2233–2245.

Steigemann, P. & D. W. Gerlich. 2009. Cytokinetic abscission: cellular

dynamics at the midbody. Trends Cell Biol. 19:606–616.

Stephano, J. L. & M. C. Gould. 2000. MAP kinase, a universal

suppressor of sperm centrosomes during meiosis? Dev. Biol.

222:420–428.

Thiriot-Qui�evreux, C., G. H. Pogson & E. Zouros. 1992. Genetics of

growth rate variation in bivalves: aneuploidy and heterozygosity

effects in a Crassostrea gigas family. Genome 35:39–45.

Wu, X. & R. E. Palazzo. 1999. Differential regulation of maternal vs.

paternal centrosomes. Proc. Natl. Acad. Sci. USA 96:1397–1402.

Zhang, Q., H. Yu, A. Howe, W. Chandler & S. K. Allen, Jr. 2010.

Cytogenetic mechanism for reversion of triploids to heteroploid

mosaics in Crassostrea gigas (Thunberg) andCrassostrea ariakensis.

Aquacult. Res. 4:1658–1667.

Zhang, Z., X. Wang, Q. Zhang & S. K. Allen, Jr. 2014. Cytogenetic

mechanism for the aneuploidy and mosaicism found in tetraploid Pacific

oyster Crassostrea gigas (Thunberg). J. Ocean Univ. China 13:125–131.

MASARU ET AL.706


	Meiotic And Early Zygotic Development In Crassostrea Virginica Observed Through Confocal Microscopy
	Recommended Citation

	tmp.1531152222.pdf.1zLDs

