
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles 

5-20-1998 

Effects of wind speed and particulate matter source on surface Effects of wind speed and particulate matter source on surface 

microlayer characteristics and enrichment of organic matter in microlayer characteristics and enrichment of organic matter in 

southern Chesapeake Bay southern Chesapeake Bay 

Kewen Liu 
Virginia Institute of Marine Science 

Rebecca M. Dickhut 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Liu, Kewen and Dickhut, Rebecca M., "Effects of wind speed and particulate matter source on surface 
microlayer characteristics and enrichment of organic matter in southern Chesapeake Bay" (1998). VIMS 
Articles. 288. 
https://scholarworks.wm.edu/vimsarticles/288 

This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in 
VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact 
scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235399114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsarticles/288?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F288&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 103, NO. D9, PAGES 10,571-10,577, MAY 20, 1998 

Effects of wind speed and particulate matter source on surface 
microlayer characteristics and enrichment of organic matter 
in southern Chesapeake Bay 

Kewen Liu • and Rebecca M. Dickhut 

Department of Physical Sciences, School of Marine Science, College of William and Mary, Virginia Institute of Marine 
Science, Gloucester Point 

Abstract. Surface microlayer (SM) samples were collected with a rotating cylinder sampler from 
the York and Elizabeth River estuaries of lower Chesapeake Bay bimonthly from May 1994 
through June 1995. Two intensive samplings were also conducted in the York River during 
different seasons: one in December 1994 and another during June 1995. Four SM samples were 
collected during each intensive sampling within 4 days. All the samples were analyzed for total 
suspended particulates (TSP), particulate nitrogen (PN), particulate organic carbon (POC) and 
dissolved organic carbon (DOC). The thickness of the $M was observed to decrease linearly with 
increased wind speed. TSP and POC in the SM were found to be enriched up to 1000-fold over 
the corresponding subsurface water, and to be exponentially related with wind speed at sampling. 
Enrichment of DOC in the SM relative to subsurface bulk water was also observed at both 

sampling sites. Larger average POC/PN ratios and consistently smaller particle sizes were 
observed in the Elizabeth River compared with the York River, suggesting that the former is 
heavily influenced by atmospheric deposition, as well as urban and terrestrial runoff, whereas in 
situ production of particles dominates in the latter. No seasonal trends were observed in the SM 
characteristics with the exception of particle size fractions in the York River, which fluctuate 
seasonally presumably due to changes in the dominant phytoplankton species. TSP and POC 
concentrations in the SM can be described by a first-order wind-driven mixing model. Wind- 
driven mixing of SM DOC was less apparent than for TSP and POC. 

1. Introduction 

The surface microlayer (SM) is the top 30 to 300 ytm of a water 
body and is the region of an aquatic environment that substances 
depositing from the atmosphere encounter first. Numerous 
substances accumulate at the sea surface including lipids and 
hydrophilic or amphiphilic organic chemicals that exhibit a 
particularly strong interfacial affinity. The accumulation of organic 
matter, especially of organic compounds with tension-active 
properties, also causes a lowering of surface tension values [Jarvis 
et al., 1967]. Consequently, organic matter and contaminants are 
enriched in the SM as compared to corresponding subsurface water 
[Ewing, 1950; Parker and Barsore, 1970; Larsson et al., 1974; 
Hunter and Liss, 1977; Pojasek and Zaficek, 1978; Hardy et al., 
1990; Garabetian et al., 1993; KucMick and Bidleman, 1994; 
Napolitano and Richmond, 1995; Liu and Dickhut, 1997]. 
Nonetheless, the composition of the SM remains uncertain due to 
its dynamic nature and variability in source materials. 

Processes occurring in the surface microlayer make it far more 
important than the size or temporal stability of the reservoir might 
indicate. Potentially important interfacial processes in the SM 
include conversion of dissolved organic materials to particulate 
form, conversions of low-molecular-weight materials into higher- 
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molecular-weight substances, and photochemical transformation 
[Carlson, 1993]. The SM is also a site of high biological activity; 
it has been reported to have difl•rent microbiota and a considerably 
greater nmnber of microorganisms than subsurlhce waters [Hardy, 
1982; Parker and Barsom, 1970; Hardy and Apts, 1989; Cullen et 
al., 1989; Nesterova, 1990; 3rlaki and Hermansson, 1994]. 
Moreover, studies have demonstrated that exposure of fish eggs or 
larvae to contaminated SM from Puget Sound, the North Sea, or 
southern Calilbrnia nearshore areas results in an increase in 

chromosomal abnormalities in developing embryos, larval abnor- 
malities and mortality [Cross et al., 1987; Hardy et al., 1987]. 
Therefore, from an environmental perspective, the SM is perhaps 
one of the most important, but poorly characterized regions of the 
marine environment. 

Chesapeake Bay receives industrial and agricultural pollutants 
from a variety of sources, which include atmospheric deposition 
[Webber, 1983; Glotfelty et al., 1990; Leister and Baker, 1994; 
Skudlark et al., 1994; Dickhut and GustaJ5on, 1995]. The 
concentration, exposure level and residence times of these 
pollutants depend on their biogeochemical cycling in the SM, water 
column and sediments. To better understand the fate and effects 

of atmospherically deposited contaminants in an aquatic environ- 
ment, it is critical to quantitatively understand the structure of the 
SM, as well as the factors controlling the properties of the SM. In 
this paper we describe the spatial and temporal variability of total 
suspended particulates (TSP), particulate organic carbon (POC), 
particulate nitrogen (PN) and dissolved organic carbon (DOC) in 
the SM of two southern Chesapeake Bay tributaries, and relate 
these characteristics to prospective sources of organic matter and 
physical factors that control the stability of the SM. 
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2. Experimental Methods 

2.1. Study Area 

Two estuaries adjacent to lower Chesapeake Bay were sampled 
bimonthly during this 1 year investigation: the York and Elizabeth 
Rivers (Figure 1). The York River site is located at 36ø53.2•, 
76 ø21.3'W and is considered a semiurban site, located •5 km 
northwest of a coal/oil-fired power plant and oil refinery, and 1 km 
east of a major vehicular river crossing. The Elizabeth River site, 
which is located at 37ø14.32q, 76ø14.5•V, is considered an 
industrialized site representative of contaminated river estuaries. 
This site is in close proximity (<5 km) to Lambert's Point coal 
terminals, Norfolk Naval Station, and Portsmouth Naval Shipyard; 
in addition, the site is located centrally within the Hampton Roads 
metropolitan area with a population of about 1.5 million. 

2.2. Sampling 

More than 20 different sampling techniques have been used to 
sample the SM [Hardy, 1982]. Each collects a somewhat different 
depth and type of biological or chemical sample, and this has led 
to difficulty in comparing results of various investigations. Harvey 
[1966] first designed the rotating dram SM sampler consisting of 
a smooth, electrically driven rotating cylinder coated with a readily 
wetted ceramic material. A similar SM sampler, which consists of 
a glass cylinder, was used by Carlson et al. [1988]. Automation 
with continuous removal of SM material from the cylinder and the 
large surface area of dram samplers make collecting large SM 
volumes possible with rotating drum samplers. This type of SM 
sampler was used in this study. 

Our sampler was modified from Harvey's [1966] design. 
Briefly, the sampler consisted of an aluminum frame that supported 

77 ø 76 ø 75 ø 

39 ø 
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37 ø 

Figure 1. Surface microlayer (SM) sampling sites in the southern 
Chesapeake Bay region. 
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Figure 2. Relationship of SM thickness and wind speed for 
selected York River samples. 

a Teflon-coated stainless steel cylinder. The frame of the sampler 
was designed so that the submergence depth of the cylinder could 
be adjusted to achieve optimal sampling efficiency and minimum 
subsurface water contact. A Teflon blade was mounted on the 

sampier's surface to remove the SM material as it was picked up 
by the cylinder. The sampler was deployed from a battery-operated 
vessel to minimize contamination of the samples with hydrocar- 
bons, data which are presented in another paper [Liu and Dickhut, 
1997]. At each site prior to SM sample collection, the cylinder was 
rotated in the surface water for about 15 min to remove material 

that may have adhered to the cylinder during transport. 
Integrated SM samples were collected over approximately a 1 

mile (1.6 km) transect. Sampling was conducted on a bimonthly 
basis at both study sites; however, at the York River site, two 
intensive samplings were conducted over 4 days to evaluate the 
short-term variability in SM properties. The SM samples were 
collected in precleaned 4 L amber glass bottles using a precleaned 
stainless steel funnel and stored in a cooler for transport to the lab. 
Subsequently, the SM samples were homogenized by mixing for 
about 1 min and subsampled for TSP, POC, PN and DOC analyses. 
SM particulate matter was also separated into <25 gm and >_ 25 gm 
fractions using a 25 gm pore size stainless steel screen sieve 
(Baxter) and gravity sieving the SM media. 

2.3. SM Characteristics 

TSP was detennined by filtering homogenized, bulk and sieved 
(25 gm) SM samples through preweighed 47mm glass fiber filters 
(Gelman Type A/E, nominal pore size 1 gm), which were subse- 
quently dried at 60øC for 24 hours. Filters were then weighed 
again to determine TSP, with reported values representing the 
average of three replicates. DOC was determined on the flitrate 
using a Shimadzu TOC-500 carbon analyzer, and POC and PN 
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were determined using a Carlo Erba NA-1500 elemental analyzer 
by the Virginia Institute of Marine Science nutrient analytical 
service laboratory. 

3. Results and Discussion 

3.1 SM Thickness 

The thickness (aF) of the SM collected by the rotating drum 
sampler was determined by the following equation: 

V 

ndlts 

where V (milliliters) is the SM volume collected over time t 
(minutes), d and l are the cylinder diameter (60.9 cm) and length 
(45.7 cm), respectively, and s is the cylinder's speed of rotation 
(RPM). Thicknesses for selected York River SM samples ranged 
from 28.3 to 70.8 [tm. A significant relationship (p<0.05) between 
wind speed and SM thickness at the York River location (Figure 
2) indicates that the operationally defined SM thickness is affected 
by wind speed. Note that the SM thickness sampled decreases 
with wind speed, indicating that oversampling (i.e., collection of 
subsurface water) with increased turbulence is not a problem. 
Rather, the SM thickness sampled increases approximately two 
fold with a drop in wind speed from 4 to 1 m/s. This likely reflects 
real differences in the thickness of the SM, caused by wind stress 
and the viscosity of the materials that accumulate at the air-water 
interface forming the SM. Various models for air-water gas 
exchange propose that the aqueous boundary layer thickness 
decreases with increasing wind speed [Maelntyre et al., 1995, and 
references therein). In the presence of wave-damping surthce 
films, there is also a linear increase in gas exchange coefficients 
with wind speed [Broeeker et al., 1978], presumably due to a 
corresponding decrease in the hydrodynamic film thickness with 
increased wind shear, as observed here. Moreover, at low wind 
speeds the water surface is relatively undisturbed, allowing 
amphiphilic substances to adhere and accumulate at the air-water 
interface. By definition this material is composed of hydrophobic 
moieties that render the SM more viscous and adhesive to the drum 

surface. In comparison, at high wind speeds the SM is disturbed 
and diluted with subsurface water, rendering it less adhesive to the 
Teflon-coated sampling surface. Therefore, low wind speeds result 
in thicker surface microlayers and greater enrichments of organic 
material, as discussed thrther below. 

3.2. SM Geochemical Characteristics 

TSP for the York River SM ranged from 20.3 to 1500 mg/L, 
whereas in the Elizabeth River SM, TSP concentrations varied 
less, ranging from 21.7 to 123 mg/L (Figure 3). The POC/PN ratio 
of the York River SM ranged from 7.6 to 15.7 with an average of 
10.1, and in the Elizabeth River SM, POC/PN ranged from 7.8 to 
34.7 with an average of 19.4 (Figure 3). For both sites, no 
seasonal trends in TSP concentrations or POC/PN in the SM were 

observed. Moreover, the short-term variability in TSP and 
POC/PN at the York River site was as large as the seasonal 
variability. 

On average, TSP concentrations in the York River SM were 
significantly higher (p<0.1) than in the Elizabeth River SM (Figure 
3), whereas subsurface water TSP levels (3.2-25.9 mg/L) were not 
significantly different (p>0.9) between the York and Elizabeth 
Rivers. Nonetheless, TSP levels in the SM of both rivers were 
typically enriched relative to subsurface water concentrations. TSP 
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Figure 3. TSP and POC/PN in the York (log scale) and Elizabeth 
(linear scale) River SMs (error bars correspond to sample variabil- 
ity in the two intensive samplings in the York River). 

concentrations not only depend on sources of the material, but also 
on hydrological and meteorological parameters such as wind speed. 
Lower average wind speeds were recorded during sampling in the 
York River compared with those in the Elizabeth River, allowing 
for greater accumulation of particulate matter at the air-water 
interface in the York River in contrast to the Elizabeth River. In 

addition, as stated above, the Elizabeth River is located in an 
industrial area and is heavily influenced by runoff and discharge 
from the surrounding watershed. The salt marsh basins in this area 
have been depleted or substituted by urban development. In 
contrast, the York River is located in a semirural area and salt 
marsh basins are more numerous than in the Elizabeth River. 
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Therefore, lower TSP in the Elizabeth River SM compared with 
that of the York River may also be due to decreased abundances of 
low-density particles such as salt marsh detritus or phytoplankton. 

Particulates in the Elizabeth River SM had a significantly higher 
(p<0.005) POC/PN ratio (19.4 ñ 9.3) than those in the York River 
SM (10.1 ñ 2.8) (Figure 3). The POC/PN ratio provides particle 
source information; for phytoplankton the ratio is near 6.6 [Redfield 
et al., 1963], and high POC/PN values indicate particle sources 
such as terrestrial input [Canuel et al., 1995], woody debris, or 
petroleum discharge [McGroddy and Fartington, 1995]. The 
POC/PN ratios measured in this study indicate that particulates in 
the Elizabeth River SM are enriched in industrial or terrestrial 

organic matter possibly derived from atmospheric deposition and 
urban runoff. In comparison, in situ biological production likely 
contributes a greater fraction of the TSP to SM particles collected 
in the York River. This is demonstrated by comparing POC, which 
increased similarly with TSP in both river SMs, to POC/PN, which 
in the York River SM was relatively constant for all the samples, 
but in the Elizabeth River SM increased sharply with TSP (Figure 
4). These results suggest a relatively constant source of TSP in the 
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Figure 4. Relationship of (top) POC and (bottom) POC/PN with 
TSP in the York (solid circles) and Elizabeth (open squares) River 
SMs. 

York River compared with the Elizabeth River and suggest that the 
TSP source to the Elizabeth River SM was predominantly alloch- 
thonous. 

Dissolved organic carbon (DOC) exhibited less temporal and 
spatial variability than TSP and POC concentrations. DOC in the 
Elizabeth River SM ranged from 4.34 to 9.97 mg/L and in the York 
River SM ranged from 4.20 to 20.4 mg/L. Dissolved organic 
carbon was significantly higher in both the York River SM 
(p<0.02) and the Elizabeth River SM (p<0.04) than in the sub- 
surface water at each site. This enrichment of dissolved organic 
material in the SM is probably due to its density and hydropho- 
bicity [Maclntyre, 1974], as well as the surface tension properties 
of these materials [Jarvis et al., 1967]. Finally, the SM DOC 
concentrations were found to be significantly (p<0.05) related to 
POC (and thus TSP) concentrations in the York River, with a 
similar, but insignificant relationship observed in the Elizabeth 
River (Figure 5). 

3.3. SM Particle Size Fractionation 

SM particulates were separated into two sizes: >25 pm and 1-25 
[tm. In York River SM samples, the percent mass in each particu- 
late fraction appeared to be seasonal, with small (1-25 pm) 
particles increasing through the winter and spring to an early 
summer maxima of more than 50% of the TSP, whereas the larger 
size fraction of >_25 pm particulates made up the biggest compo- 
nent of the SM TSP in the late summer and winter (Figure 6). In 
the Elizabeth River, however, small particulates accounted tbr 
>50% of the TSP throughout the year, with little seasonal variabil- 
ity in the percent mass of small and large particles (Figure 6). 

Most large particulates in the water column are from colonial 
phytoplankton, zooplankton, fecal pellets and detrital aggregates, 
whereas small particles in the water column are predominantly 
from nanoplankton, detritus, atmospheric deposition, urban runof/• 
and resuspended solids [Ward et al., 1994; Ko and Baker, 1995]. 
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Figure 5. Relationship between DOC and POC in the York and 
Elizabeth River SMs. 
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Figure 6. Particle size contribution to TSP in the York and 
Elizabeth River SMs: 1-25 [tm (solid areas of bars); >25 [tm (open 
areas of bars). 

Again, comparing SM particulate sizes from the two river systems 
suggests that higher primary production in the York River, where 
large diatoms dominate in late summer [Ray et al., 1989] contrib- 
utes to the greater mass percent of large size particulates observed 
in this system compared with the Elizabeth River. 

3.4. Wind Speed Effects on SM Characteristics 

With the exception of particle size fractions, no seasonal trends 
were observed in the SM characteristics. Nonetheless, TSP 
concentrations in the SM were found to be exponentially related 
with wind speed (Figure 7, top). In contrast, TSP in the subsurface 
water, which was sampled at the same time as the SM, was 
independent of wind speed (Figure 7, top). The two relations 

converge as wind speed approaches 4 m/s, which is regarded as the 
upper-limit wind speed for SM existence [UNESCO, 1985]. 
Considering that the suspended particulates in the SM are typically 
hydrophobic or amphiphilic, with densities lower than water, wind- 
driven mixing would be the principal mechanism that distributes 
suspended particulates collected at the air-water interface into the 
water column. This process can be described as first-order mixing 
with TSP fluctuation in the SM resulting from wind force (shear 
stress) such that 

d(rs• - rs•): _ • (rs• - rs•) (2) du 

where kmax is the wind-driven mixing coefficient (s/m), TSP, s• and 
TSPsrr represent total suspended particulate concentrations in the 
SM and subsurface water, respectively, and u is the wind speed 
(m/s), which was measured at 10 m above water level for the 
Elizabeth River and 40 m above sea level in the York River. 

Applying the integrated form of (2) to the TSP data for the York 
and Elizabeth Rivers yields significant linear relationships 
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Figure 7. (top) Relationship between TSP and wind speed in the 
York River, (bottom) fits to the first order mixing model of TSP in 
the York and Elizabeth River SMs. 
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(p<0.05) between the natural log of the TSP gradient between the 8 
SM and subsurface water, and wind speed (Figure 7, bottom). The 
slope in this relation depends on the wind shear at the air-water ,.• 
interface, and the intercept depends on the quantity of particulate • 6- 
material available for mixing. Similar results were observed for • 
the intensive sampling from December 1994 in the York River a 

L) 4- 
compared with the data collected throughout the year (regression {• 
slopes not significantly different at p>0.5), which supports the idea a, 

that the wind mixing coefficient and the SM TSP concentration of • 2- this site are controlled by physical rather than biogeochemical L) 
factors. Moreover, using the same model for TSP and wind data • 
from the Elizabeth River site gave similar results as those observed •' 
for the York River, with no significant difference between slopes • 0- 
(p>0.5), even though the wind speeds and SM TSP range were 
much narrower than those in the York River SM. Similar slopes 
for plots of the integrated form of(2) for both sites indicate that the 

4- 
wind-driven mixing of the SM was comparable at both locations. •.• 
In contrast, differences in the intercepts for the York River relation • 
and that of the Elizabeth River reflect the greater TSP enrichment • 
relative to subsurface water in the York River SM compared to that = 
of the Elizabeth River (FigUre 7, bottom). L) 2- 

TSP enrichment in the SM is affected by both wind speed and I• 
the source of particulate matter to the water column, as noted ' 
above. For example, greater enrichment of TSP in the York River 

SM is due to both lower average wind speeds (Figure 7) and • 0- 
greater production of large, buoyant particles (Figure 6) at this site I• 
compared to the Elizabeth River. Likewise, enrichment of POC _• 
and DOC in the SM relative to subsurface water would be 

expected in correspondence with the relationships between POC 
and TSP (Figure 4), and DOC and POC (Figure 5). Using the 
same type of model used for TSP, we found that accumulation of 
POC and DOC in the SM of both the York and Elizabeth Rivers 

was related to wind speed (Figure 8). The regression slopes tbr 
POC accumulation in both SMs, and DOC in York River, were 
significant (p<0.05); however, no significant relation was found for 
DOC and wind speed in the Elizabeth River (p>0.5). The depend- 
ence of POC on wind speed was expected since it is strongly 
correlated with TSP (Figure 4), which exponentially decreases with 
increasing wind speed (Figure 7). In contrast, for DOC enrichment 
the effect of wind speed is less than for POC, reflecting the weaker 
correlation between these parameters (Figure 5). DOC is smaller 
in volume and more polar than POC; therefore, DOC is more likely 
to be readily distributed between bulk water and SM by other 
mechanisms (e.g., by diffusion) in addition to wind-driven mixing. 
Consequently, wind-driven mixing may not be as important for 
DOC as for POC. 

4. Conclusions 

The data presented here demonstrate a linear dependence of SM 
thickness on wind speed, whereas particulate and organic matter 
levels in the surface microlayer are exponentially related to wind 
speed. This latter relationship implies that accumulation of 
particle and organic matter associated materials such as contami- 
nants in the SM will also be a function of wind shear force at the 

air-water interface. Moreover, the wind speed dependency of these 
SM properties illustrates the dynamic nature of this reservoir. 
Thus, it is likely that accumulation of other materials including 
neuston, and perhaps microbiota, in the SM will also be dependent 
on wind speed. Consequently, wind shear force must be taken into 
account when examining surface microlayer enrichments of various 
biogeochemically important materials. 
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Figure 8. POC and DOC accumulation in the SM fit to the first- 
order mixing model (top) relationship between POC and wind 
speed in the York (open squares) and Elizabeth (solid circles) 
Rivers; (bottom) relationship between DOC and wind speed in the 
York (open squares) and Elizabeth (solid circles) Rivers. 

Enrichment of suspended particles and organic carbon in the 
SM is also related to the sources of these materials to aquatic 
ecosystems. In areas with high in situ production of organic matter 
such as the York River, TSP enrichment in the SM appears to be 
related to the buoyancy and density of these particle types. In 
contrast, small, dense particles presumably derived from runoff and 
atmospheric deposition, appear to accumulate in the SM of urban 
estuaries with low productivity such as the Elizabeth River, and are 
less enriched overall in the surface microlayer. The source of 
particulate materials to the air-water interface will therefore also 
play a role in determining enrichments of various particle-derived 
and associated substances in the surface microlayer. 
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