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INTRODUCTION

Gelatinous zooplankton are ubiquitous in coastal
ecosystems and can prey voraciously on co-occurring
zooplankton and ichthyoplankton. Although the role of
predators in influencing zooplankton community
structure is well established for freshwater lakes
(Brooks & Dodson 1965), top-down effects are more
difficult to establish as a primary factor structuring
marine ecosystems. Nevertheless, several studies have
shown inverse relationships between medusae and
their prey (e.g. Möller 1984, Behrends & Schneider
1995). Anthropogenic effects such as overfishing,
eutrophication, introduction of alien species, and cli-

mate change may lead to shifts to ‘jelly’ dominated
communities in some areas (Purcell et al. 1999, Mills
2001, Purcell 2005, Lynam et al. 2006). We need to con-
sider both changes in populations and predation
impact of gelatinous predators if we hope to under-
stand or predict marine ecosystem dynamics fully.

Most of what we know about jellyfish predation
comes from studies of relatively small medusae in
semi-enclosed bays or estuaries, or under experimen-
tal conditions. Gut content analyses of larger individu-
als (Graham & Kroutil 2001, Purcell 2003, Uye & Shi-
mauchi 2005) show that, like smaller medusae, larger
forms can feed across a broad range of zooplankton,
including copepods, other gelatinous taxa, meroplank-
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ton and fish eggs. Reports on predation impact by
large medusae vary widely. In the Bering Sea, Brodeur
et al. (2002) estimated that Chrysaora melanaster con-
sumed one-third of the standing stock of zooplankton
during the summer season. In subregions of Prince
William Sound, Alaska, Purcell (2003) calculated pre-
dation by scyphomedusae on copepod standing stock
to be at most 0.3% d–1 and on larvaceans up to 7% d–1,
although stations with the largest jellyfish aggrega-
tions were excluded from her analysis. Uye & Shi-
mauchi (2005) reported the Aurelia aurita population
in the Sea of Japan could consume 26% d–1 of the
available net zooplankton biomass.

This study quantifies diet and feeding rates for large
medusae from a coastal upwelling region. These areas
are known for exceptionally high seasonal productiv-
ity, and it has traditionally been assumed that most ani-
mal biomass is transferred though crustacean zoo-
plankton and then fish via relatively direct trophic
pathways. Nevertheless, gelatinous taxa, including
large medusae, are consistently abundant in shelf
regions of both the California Current (Shenker 1984,
Suchman & Brodeur 2005) and Benguela upwelling
systems (Sparks et al. 2001, Lynam et al. 2006), with
the summertime biomass of Chrysaora fuscescens off
the Oregon coast reaching 50 to 65 mg C m–3. Copepod
biomass off Newport, Oregon in recent years has had
summer peaks within the same order of magnitude
(~15 to 50 mg C m–3, Peterson et al. 2006). Given the
high biomass of medusae in upwelling regions and
their prodigious feeding rates in other geographic
areas, it is reasonable to suggest that predation by
medusae in upwelling systems may significantly
impact zooplankton populations.

In this article we document predation patterns ex-
hibited by large scyphomedusae that appear season-
ally in the northern California Current. We present

diet data for 3 species (Aurelia labiata, Chrysaora
fuscescens, and Phacellophora camtschatica) and cal-
culate feeding rates in relation to prey densities for
C. fuscescens. Finally, using abundances of C. fusces-
cens and other zooplankton species collected through-
out a broad region of the northern California Current
during August 2002, we use our estimates of feeding
rates to predict predation potential of C. fuscescens on
the standing stock of the most common zooplankton
taxa.

MATERIALS AND METHODS

Gut contents of medusae. During summer 2002 and
2003, we sampled 10 stations to collect 3 species of
scyphomedusae (Chrysaora fuscescens, Aurelia labi-
ata, and Phacellophora camtschatica) for gut content
analysis or gut evacuation measurements. At the same
time, we performed vertical net tows to assess the
abundance and taxonomic composition of potential
prey (Table 1, Fig. 1A).

Medusae were captured individually, either by
divers (Stn 8, Fig. 1A) or from the deck of a research
vessel (all other stations). At Stn 8, divers free-dove
using a clear vinyl bag net on a pole to capture individ-
ual jellies, and while still under water, moved the jelly-
fish into individual plastic bags before removing them
to the boat. Jellyfish near the surface were directly
placed into bags. For other stations, we carefully
dipped each medusa from the top 2 to 3 m of surface
waters using a clear vinyl bag net with mesh bottom
attached to a 4 m fiberglass extension pole. Those
medusae analyzed for diet were preserved individu-
ally (immediately following capture) in a 2 l container
using a 5% buffered formalin solution; those used in
gut evacuation experiments were placed in 19 l buck-
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Table 1. Chrysaora fuscescens, Aurelia labiata, Phacellophora camtschatica. Details for stations where scyphomedusae were
collected for gut content analysis and summary of medusan size and gut contents. Stations are numbered in chronological order

Medusa species Station Collection Station location Station N Bell  Prey ingested Zooplankton 
date depth diameter per medusa density 

(m) (cm ± SD) (N ± SD) (m–3 ± SD)

Chrysaora fuscescens 1 23 Jul 02 44.65°N, 124.18°W 62 5 17.4 ± 0.4 2896 ± 499 1605.2
2 23 Jul 02 44.65°N, 124.29°W 83 2 20.4 ± 5.0 2943 ± 1675 1712 ± 119
3 23 Jul 02 44.65°N, 124.41°W 92 1 15.3 2905 1535 ± 108
5 12 Aug 02 43.87°N, 124.22°W 60 7 19.0 ± 2.9 314 ± 185 2553 ± 51
7 17 Aug 02 44.00°N, 124.20°W 55 1 28.3 480 2925 ± 186
8 12 Sep 02 44.43°N, 124.12°W 26 6 20.1 ± 2.1 789 ± 437 36705 ± 343
9 24 Jul 03 44.65°N, 124.10°W 28 4 13.3 ± 6.0 262 ± 371 10566 ± 78

10 8 Aug 03 44.61°N, 124.12°W 30 5 18.5 ± 3.9 392 ± 258 9957 ± 80
Species total = 31

Aurelia labiata 4 5 Aug 02 41.90°N, 124.61°W 507 8 23.6 ± 3.1 1002 ± 783 1085 ± 151

Phacellophora camtschatica 6 13 Aug 02 42.69°N, 124.47°W 26 11 15.3 ± 4.1 95 ± 86 3794 ± 505
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ets containing filtered seawater for up to 6 h before
they were preserved. In the laboratory (within 1 yr of
preservation) we determined gut contents of medusae
by identifying and counting zooplankton present in
gastric cavities, oral arms, and surrounding formalin.
An average of 2 d of laboratory time per medusa was
required to enumerate all ingested prey.

When live medusae are preserved in formalin, they
regurgitate a significant proportion of the prey in their
gut pouch and oral arms (Fig. 2). Loss rates averaged
34.5 to 51% (by species). In order to obtain accurate
data on gastric contents at time of collection and vari-
ability between individuals, each medusa was pre-
served in a separate container, and all surrounding
fluid was examined during enumeration of prey.

We did not measure size of living medusae used for
gut content analysis because extra handling could
cause loss of prey. Since medusae shrink when pre-
served in formalin, we quantified shrinkage through

repeated measurements of bell diameters of 10 Chry-
saora fuscescens individuals not used for gut content
analysis; first measurements were on live specimens,
followed by 8 weekly measurements of the same group
preserved in formalin. We discontinued measurements
after 2 mo since diameter decreased after 1 d and
remained stable thereafter. We used average shrink-
age (n = 10) to estimate diameters of live medusae pre-
served for gut contents.

We sampled the zooplankton assemblage using a
50 cm diameter, 202 µm mesh net towed vertically from
5 m above the sea floor to the surface (30 m min–1); at
Stn 4 (depth 507 m), we sampled the upper 100 m. Vol-
umes of water filtered (5.3 to 23.2 m3) were determined
using readings from a calibrated TSK flowmeter. Zoo-
plankton was preserved in 5% buffered formalin. At
least two 1 ml piston pipette subsamples were counted
for each tow to determine zooplankton abundance
(279 to 1783 zooplankters counted per station).

Gut evacuation experiments. To determine diges-
tion times for prey items eaten by Chrysaora fusces-
cens, we measured gut evacuation rates twice:
(1) 24 July 2003 at Stn 9 (44.61° N, 124.12° W, surface
temperature 7.5°C) and (2) 8 August 2003 at Stn 10
(44.65° N, 124.10° W, surface temperature 9.1°C) 
(Table 1, Fig. 1A). Medusae dipped from surface
waters were either preserved immediately in buffered
formalin (time = 0), or were placed in 19 l containers
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filled with 80 µm-filtered seawater and maintained in
darkness at ambient temperature for 2 to 6 h. During
Expt 1, C. fuscescens medusae were preserved after 0,
2, 4 and 6 h (n = 2 for each interval, except n = 4 at
time = 0); medusae from Expt 2 were preserved after 2,
3, 4 and 6 h (n = 2 for each interval, except n = 5 at
time = 0). Throughout, we monitored medusae to be
sure they continued pulsing normally.

We estimated digestion time by prey category for
each trial by calculating linear regressions of average
number of prey present at time zero through the earli-
est time that prey type was largely absent (average
number <20% than at time = 0) (similar to Purcell
2003). The average of the x-intercepts (time at prey =
0, from regression) of the 2 trials rounded to the near-
est half hour was used as an estimate of digestion time.

We were careful to include only prey items that
appeared to be digested by medusae in our analysis.
Although bivalve veligers in Chesapeake Bay are able
to survive ingestion by Chrysaora quinquecirrha by
resisting digestion (Purcell et al. 1991), we saw bivalve
and gastropod larvae in various stages of digestion in
Chrysaora fuscescens gastric cavities. Therefore, we
categorized these taxa as prey. In addition, the oral
arms and gastric cavities of C. fuscescens and Phacel-
lophora camtschatica were heavily parasitized by the
amphipod Hyperia medusarum and occasionally by
Cancer spp. megalopae. Since these taxa are known
parasites of medusae, we excluded them from gut con-
tent analyses.

Prey selection. We used an electivity index (C) to
compare feeding patterns among prey taxa and preda-
tor species, as this type of calculation allowed us to
compare stations with variable prey distributions and
test whether apparent differences in prey vulnerability
are statistically significant. For each medusa, we deter-
mined Pearre’s ‘C’ (Pearre 1982) for the most common
prey taxa:

C = (χ2/N)
1⁄2

where χ2 tested for observed (in guts) versus expected
(in environment) proportion of prey, and N = number
of prey counted in gastric pouches + total number of
zooplankton counted in subsamples of net tows. Val-
ues of ‘C’ span –1 to 1 (with –1 strongest selection
against the prey type, 0 neutral, and 1 strongest selec-
tion for the prey type).

Counts of the numbers of zooplankton ingested (cor-
rected for differences in digestion time among prey
taxa; Sullivan et al. 1997) and zooplankton available in
the environment (from counts of subsamples of net
tows) were used to test for statistical significance using
χ2. For Aurelia labiata and Phacellophora camtschat-
ica, we assumed that the proportionate differences in
digestion times for various prey taxa would be consis-
tent with results from digestion experiments with

Chrysaora fuscescens. Other studies have shown that
digestion time for a given prey type vary between
predator species, but vary proportionately (Marti-
nussen & Båmstedt 1999, Suchman & Sullivan 2000);
therefore, we calculated prey selection indices, but not
feeding rates, for A. labiata or P. camtschatica using
digestion times for C. fuscescens.

Feeding rates and daily ration. We determined feed-
ing rates by Chrysaora fuscescens on various zooplank-
ton groups; we assumed that the 24 h feeding and di-
gestion times for copepods were applicable to those
crustacean taxa (including early stages of euphausiids)
not present during gut evacuation measurements. Be-
cause medusae do not satiate at prey densities similar
to or higher than those sampled during our study
(Fancett & Jenkins 1988, Båmstedt et al. 1994, Titelman
& Hansson 2006) and capture zooplankton based on
prey vulnerability rather than active selection (Costello
& Colin 1994), we assumed that (1) feeding rates would
vary linearly across all zooplankton densities and
(2) feeding rates on each prey category would be inde-
pendent of densities of alternative prey. Therefore, for
each Chrysaora fuscescens dissected, ingestion over
24 h was calculated as:

Ingestion (no. prey d–1) = 
[gut contents (no. prey)/digestion time (h)] × 24

We ran multiple linear regressions to estimate feed-
ing by Chrysaora fuscescens across zooplankton densi-
ties and medusa sizes within the study region.

In addition, for each medusa dissected, (1) carbon
content (mg C) was calculated from its diameter using
the conversions provided in Shenker (1985) and
(2) daily carbon ingestion (mg C d–1) was determined
by multiplying ingestion rate and carbon content of
each type of prey (Table 2), adding all prey types.

Mesoscale sampling of Chrysaora fuscescens and
net zooplankton. Abundances and distributions of
medusae and zooplankton were determined from
31 July to 19 August 2002 in the shelf and shelf-break
region between 44.65° N and 41.90° N (off Newport,
OR, USA to Crescent City, CA, USA) (Fig. 1B). Scien-
tists on board the FV ‘Frosti’ collected medusae and
nekton at 101 stations by towing a Nordic 264 rope
trawl in surface waters for 30 min (Suchman & Brodeur
2005). Net zooplankton were collected at 71 compara-
ble stations on the RV ‘New Horizon’ as described
previously. Contour maps summarizing abundance of
Chrysaora fuscescens and copepods, early stages of
euphausiids, and other gelatinous zooplankton in the
region were generated using a Kriging interpolation
algorithm in Surfer 8.0 (Golden Software, Inc.).

We estimated predation impact (fractional removal
of standing stock d–1) of the Chrysaora fuscescens pop-
ulation at each station by multiplying the abundance of
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C. fuscescens (from trawls) by feeding rate from linear
regressions, given known zooplankton densities (from
plankton net tows):

Fraction zooplankton consumed d–1 = (medusae m–3 ×
zooplankton medusa–1 d–1) / zooplankton m–3

For the stations where zooplankton counts were not
available to pair with C. fuscescens abundance, zoo-
plankton densities for target taxa were interpolated
using the zooplankton contour map (30 stations).

RESULTS

We grouped net zooplankton into categories: (1) eu-
phausiid eggs, (2) euphausiid nauplii and calyptopes,
(3) calanoid copepods (adult and copepodite stages), (4)
cyclopoid copepods (adults and copepodites), (5) mol-
luscs, (6) gelatinous taxa, (7) polychaetes, (8) clado-
cerans, and (9) ‘other.’ For digestion experiments and
feeding rate regressions, all copepods were grouped to-
gether. Euphausiids were Euphausia pacifica and Thy-
sanoessa spinifera, both broadcast spawners. Calanoid
copepods included the genera Acartia, Aetideus, Cala-
nus, Candacia, Centropages, Clausocalanus, Eucala-
nus, Lucicutia, Metridia, Paracalanus, Pseudocalanus,
Rhincalanus, Scolecithricella, and Tortanus. Cyclopoids
were primarily Oithona, but Corycaeus was also con-
sumed. Molluscs were bivalve larvae, gastropod larvae,
and pteropods. Polychaetes were primarily larvae of
benthic taxa. Gelatinous taxa included primarily lar-
vaceans but also ctenophores, hydromedusae, salps,
doliolids, and siphonophores.

Digestion experiments

Average gut evacuation time for various zooplankton
groups ranged from 3 to 9 h (Fig. 3), with softer-bodied
taxa disappearing from Chrysaora fuscescens gastric
pouches and oral arms most quickly and molluscs least
quickly. Gelatinous zooplankton averaged 3 h, poly-
chaetes 4.5 h, copepods 6 h and molluscs 9 h.

Diet analysis

Chrysaora fuscescens individuals from 8 stations
showed similar feeding habits, and in each case
ingested zooplankton in proportions different from
those available in the water column (Fig. 4). At all
stations, calanoid copepods dominated the net zoo-
plankton assemblage (42.7 to 78.0%), with cyclopoids
also often abundant. At Stn 8, ‘other’ species was the
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Table 2. Values used for carbon content of zooplankton prey

Taxon µg C Source

Euphausiid eggs 3.2 Gómez-Gutiérrez (2003)
Euphausiid larvae 6 Ross (1982)
Calanoid copepods 5 Martinussen & Båmstedt (1995)
Cyclopoid copepods 1 Martinussen & Båmstedt (1995)
Molluscs 0.2 Martinussen & Båmstedt (1995)
Gelatinous taxa 2 Martinussen & Båmstedt (1995)
Polychaetes 4 Uye (1982)
Cladocerans 1 Martinussen & Båmstedt (1995)
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second most abundant group, comprising primarily
copepod nauplii (29.4% of net zooplankton) and bar-
nacle nauplii (7.4% of net zooplankton), though both
of these were likely undersampled by the 202 µm net.
Copepods were not ingested in proportion to their
abundance in the plankton. Instead, when euphausiid
eggs (~400 µm) were present in the water column,
even at relatively low densities (Stns 1, 2, 3, 5, and 7;
4.4 to 11.5% of total zooplankton), they were the
largest component of the diet of C. fuscescens (32.8 to
91.5% of diet). When euphausiid eggs were absent,

gelatinous zooplankton were the prey type most con-
sumed (Stns 8 and 9). Only at Stn 10, with no early
stages of euphausiids and almost no gelatinous zoo-
plankton available, were calanoid copepods the pri-
mary prey group ingested by C. fuscescens.

Results for Phacellophora camtschatica and Aurelia
labiata were similar in that copepods, despite their avail-
ability in the plankton (70.1 to 73.8%), were not the pri-
mary prey ingested by medusae (Fig. 5). Aurelia labiata
ingested mostly euphausiid eggs (7.8% in plankton,
61.6% ingested), and P. camtschatica ingested gelati-
nous taxa (11.1% in plankton, 65.9% ingested).

Applying a correction to gut contents to account for
differences in digestion time among prey types refined,
but did not alter, overall feeding patterns. At some sta-
tions, ingestion patterns were nearly identical with or
without a digestion correction (<1% change for all prey
types, Stns 1, 2, 3 and 7). Similarly, at all stations, pro-
portion of euphausiid eggs and copepods changed little
(maximum 6% change for euphausiid eggs and 4% for
copepods). Fast digestion time for gelatinous zooplank-
ton did increase the relative proportion of these animals
in the diet of scyphomedusae in some cases, particu-
larly at Stns 6, 8, and 9, where uncorrected diet had
fewer gelatinous organisms (uncorrected diet: 24%,
18%, and 16% respectively) (Figs. 4 & 5). Even so, over-
all feeding pattern remained the same. Because this
and other studies (e.g. Purcell 2003) have demonstrated
relatively fast digestion times for soft-bodied taxa, the
digestion correction should provide the most accurate
view of feeding patterns.

When electivities for individual medusae were aver-
aged (significant values of Pearre’s ‘C’, by medusa; χ2,
p < 0.05), general feeding patterns became clear
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(Fig. 6). When euphausiid eggs and gelatinous taxa
were present in the plankton, they were preferentially
ingested by medusae. Cladocerans were also posi-
tively selected, but less strongly than euphausiid eggs
or gelatinous taxa. Copepods were consistently nega-
tively selected.

Feeding rates and predation impact

We limited our analysis of feeding
rate to Chrysaora fuscescens because
it was the only species of medusa for
which we had adequate data (number
of individuals = 31, and number of sta-
tions = 8; Table 1). Zooplankton densi-
ties by station ranged from 1535 to
36 705 m–3. Live bell diameters of C.
fuscescens ranged from 10.6 to 28.3

cm, with averages of 13.3 to 28.3 cm per station. Pre-
served medusae were 0.85 ± 0.02 (SD) of the live size.
Numbers of prey ingested by each medusa ranged
from 39 to 5329, with averages of 262 to 2943
medusa–1 by station (Table 1).

Medusae dissected ingested an average of 1.3% of
their carbon content d–1, with no significant differences
between average daily ration at stations with and with-
out euphausiid eggs present as prey (Table 3).

To account for differential prey vulnerability, we
separated zooplankton into groups for linear regres-
sions: (1) euphausiid eggs, (2) other naupliar and
calyptopes larval stages of euphausiids, (3) copepods,
and (4) gelatinous zooplankton (Table 4). Feeding
rates on copepods could not be estimated using linear
regression (p > 0.05). Regressions for other taxa,
though significant, had adjusted r2 values of 0.70 at
most, indicating high variability among individuals or
unidentified covariates. Medusa diameter was never a
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Fig. 6. Chrysaora fuscescens, Aurelia labiata, Phacellophora
camtschatica. Feeding summarized by averaging significant
electivity values (χ2, p < 0.05) of Pearre’s ‘C’ for zooplankton
prey categories, using 0 when ‘C’ was not significant (neutral
selection). Pearre’s ‘C’ ranges from –1 to 1, with positive val-
ues indicating selection for highly vulnerable prey and nega-
tive values selection against prey type. Sample sizes are
available in Table 1. euph: euphausiid; naup calypt: nauplii-

calyptopes. Values are means ± SD

Table 3. Chrysaora fuscescens. Average carbon content of
medusa and gastric contents, by station. Numbers of medusae
dissected and prey counted available in Table 1, and carbon 

conversions in Table 2

Stn mg C medusa–1 mg C d–1 ingested % C d–1

(±SD) (±SD) (±SD)

1 1552 ± 860 38 ± 22 2.7 ± 0.9a

2 1033 ± 73 41 ± 8 3.9 ± 0.4a

3 672 37 5.6a

5 1303 ± 490 5 ± 3 0.4 ± 0.2a

7 2906 6 0.2a

8 1490 ± 368 10 ± 6 0.6 ± 0.3
9 1084 ± 860 4 ± 4 0.4 ± 0.04

10 1226 ± 671 4 ± 3 0.4 ± 0.2
All medusae 1.3 ± 1.5
Euphausiid eggs present 1.9 ± 1.8
No euphausiid eggs present 0.5 ± 0.3

aStations where euphausiid eggs were present. Differ-
ences between medusae from stations with or without
euphausiid eggs were not significant (Mann-Whitney
test, p > 0.05)

Table 4. Chrysaora fuscescens. Simple linear regression of feeding rate as a
function of prey density for specific zooplankton groups, with y = feeding rate by
a single medusa (d–1) and x = density of zooplankton prey (m–3). Medusa diam-
eter was not a significant covariate. ns = not significant (p > 0.05). Sample sizes 

are available in Table 1 and prey proportions in Figs. 4 & 5

Zooplankton group p-value Model r2 adjusted

Euphausiid eggs <0.001 y = (–1.6) + 30.2(x) 0.428
Euphausiid nauplii-calyptopes 0.008 y = 120.2 + 1.2(x) 0.189
Calanoid and cyclopoid copepods ns average = 377 ± 330
Gelatinous zooplankton <0.001 y = 45.4 + 2.7(x) 0.7
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significant covariate, although it may have been had
we used a larger sample size encompassing a wider
range of bell diameters (e.g. Purcell 2003).

We used abundances of Chrysaora fuscescens and
zooplankton to estimate trophic impact of the C. fus-
cescens population throughout the study region during
August 2002. C. fuscescens medusae were present in
55% of trawls (Suchman & Brodeur 2005), with maxi-
mum abundance of 2 individuals 100 m–3 along the
inner continental shelf north of Cape Blanco (Fig. 7A).
Because medusae analyzed for gut contents had
highest feeding rates on euphausiid eggs (up to
20 920 eggs d–1), we expected to see the largest impact
on this zooplankton group. Except for one nearshore
area at 44° N, the highest densities of eggs (up to
1092 m–3, from counts of net tows) were found offshore
from the shelf break in areas spatially separated from
C. fuscescens (Figs. 7B & 8). Where medusae were
most abundant, they removed an average of 32.5%
and up to 60% d–1 of the standing stock of euphausiid
eggs (Tables 5 & 6, Fig. 7C). In contrast, the calculated
maximum removal rates of the standing stocks of cope-
pods (using average feeding rate across copepod den-
sities, Table 4), gelatinous taxa and euphausiid nauplii,
metanauplii, and calyptopes were <1, 10.5 and 12.2%
d–1, respectively (Table 5). As with euphausiid eggs,

predation impact was highest in nearshore areas
where C. fuscescens were most abundant (Fig. 9).
Copepods, the prey category least vulnerable to pre-
dation by C. fuscescens, had highest densities along
the inner shelf, coinciding with the predator’s popula-
tion maximum (Figs. 7 & 9).

DISCUSSION

Our results suggest (1) differential vulnerability of zoo-
plankton prey to scyphomedusae of the Northern Cali-
fornia Current, with early stages of euphausiids and
gelatinous taxa particularly vulnerable to predation
(Fig. 6), and (2) a potential for depletion of the standing
stock of euphausiid eggs in the nearshore zone at times
and locations when medusae are most abundant
(Table 6, Fig. 7). Chrysaora fuscescens in August 2002
was restricted to more northern, nearshore areas of
the study region (Suchman & Brodeur 2005), so preda-
tion on populations of Euphausia pacifica and Thysa-
noessa spinifera over seasonal and interannual time pe-
riods is likely to be focused in these shallow areas close
to shore. Other medusae in the region may also ingest
euphausiid eggs, so we have likely underestimated the
impact of gelatinous predators on euphausiid popula-

168

Fig. 7. Chrysaora fuscescens and Euphau-
siidae. (A) Abundance (no. 100 m–3) and
distribution of C. fuscescens collected in
surface trawls during August 2002. C. fus-
cescens medusae were present in 55% of
trawls in the region (Suchman & Brodeur
2005), with highest abundances near the
coast and north of Cape Blanco. (B) Abun-
dance (no. m–3) and distribution of
euphausiid eggs collected in vertical tows
during August 2002. (C) Predation poten-
tial of C. fuscescens on standing stock of
euphausiid eggs during August 2002 (frac-
tional removal of standing stock d–1). Maxi-
mum predation pressure coincided with
highest abundances of C. fuscescens,
reaching 60% d–1 and averaging 32.5% d–1

nearshore and north of 43.5° N. – – –: shelf
break (200 m isobath). •: locations of
surface trawls (A & C) or plankton tows (B)
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Fig. 8. Chrysaora fuscescens.
Relationship between abun-
dance of C. fuscescens and
euphausiid eggs at mesoscale
sampling stations (Fig. 1).
(A) Includes all stations; (B)
shows same data without 4
stations having highest abun-

dance of C. fuscescens
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tions. In addition, distribution and abundance of preda-
tors and prey can shift with climatic (Peterson et al. 2002,
Lynam et al. 2004), hydrographic (Keister et al. 2000), or
anthropogenic factors (Mills 2001, Purcell et al. 1999),
and these shifts have the potential to intensify trophic
interactions.

Diets of Chrysaora fuscescens, Aurelia labiata, and
Phacellophora camtschatica were similar (Fig. 6).

These results are not surprising, given feeding me-
chanics of medusae. Gut contents integrate across fine
and intermediate-scale prey patchiness as these large
animals swim through their feeding environment,
accumulating prey during the several hours it takes to
digest them (Hansson & Kiørboe 2006). Moreover, the
term ‘prey selection’ should be understood as the
effect of differential vulnerability of prey to encounters
rather than the outcome of active pursuit by the preda-
tor. Previous studies of interactions between scypho-
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Table 5. Chrysaora fuscescens. Summary of predation impact
at 44.45° N, 124.19° W, a mesoscale sampling station with 

highest abundance of C. fuscescens (2 medusae 100 m–3)

Prey taxa Prey ingested % standing 
(no. m–3 d–1) stock d–1

Euphausiid eggs 69 60.6
Euphausiid nauplii,  3 12.2

metanauplii, calyptopes
Gelatinous zooplankton 2 9.7a

Copepods 7b 0.5

aMaximum of 10.5% d–1 at 44.41° N, 124.17° W
bUsing 377 copepods medusa–1 d–1 (Table 4)

Fig. 9. Chrysaora fuscescens and
zooplankton prey. Abundance (no.
m–3) and distribution of (A) cope-
pods, (B) gelatinous zooplankton,
and (C) euphausiid nauplii and
calyptopes, collected by vertical net
tows (•) during August 2002. Pre-
dation potential of C. fuscescens
on standing stock of (D) copepods,
(E) gelatinous zooplankton, and
(F) euphausiid nauplii and calyp-
topes during August 2002 (fractional
removal of standing stock d–1; •:
locations of trawls used to determine
abundance of medusae). Maximum
predation pressure coincided with
highest abundances of C. fuscescens
(see Fig. 7A). – – –: shelf break

(200 m isobath)

Table 6. Chrysaora fuscescens and Euphausiidae. Summary
of average predation rates (% d–1) on euphausiid eggs by
C. fuscescens according to geographic location, with n = num-
ber of stations. Highest impact was in shallow, nearshore
areas in the northern part of the study region. Predation 

impact in other areas was negligible

Station depth % euphausiid eggs ingested d–1 (± SD)
(m) North of 43.5° N South of 43.5° N

<50 32.5 ± 23.2 (n = 5) 0.02 ± 0.02 (n = 4)
50–100 0.5 ± 0.6 (n = 18) 0.01 ± 0.02 (n = 8)
>100 0.03 ± 0.08 (n = 38) 0.03 ± 0.1 (n = 27)
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medusae and zooplankton have suggested that in gen-
eral, larger, slow-escaping prey will be most vulnera-
ble (Suchman & Sullivan 2000) because they are more
readily entrained in the flow created by a swimming
medusa (Costello & Colin 1994). This study supports
this hypothesis, with selection for relatively slow taxa
(early stages of euphausiids, gelatinous zooplankton,
cladocerans) and selection against organisms that
detect and respond to fluid disturbance quickly (cope-
pods) (e.g. Fields & Yen 1997). Euphausiid eggs are
relatively large and have no ability to escape, making
them particularly vulnerable to ingestion following en-
counters with medusae.

Based upon feeding patterns and ingestion rates
reported here, copepod populations in the Northern
California Current were not subject to heavy predation
by Chrysaora fuscescens during August 2002. Preda-
tion on standing stock was always <1% d–1 (Fig. 9).
Similarly, in the central Baltic Sea, predatory impact
of medusae on copepods was 0.06 to 1.15% d–1 (Barz
& Hirche 2005). In Prince William Sound, Alaska,
medusae ingested at most 0.3% d–1 of the copepod
standing stock (Purcell 2003). In each case, medusae
removed other zooplankton prey items (early stages of
euphausiids, cladocerans, larvaceans) at higher rates
than copepods.

When euphausiid eggs were present, they constitu-
ted most of the prey items found in guts of both Chry-
saora fuscescens and Aurelia labiata (Figs. 4 & 5). At
stations close to shore and north of Cape Blanco,
where Chrysaora fuscescens were most abundant,
medusae ingested an average of 32.5% and up to
61% of the standing stock of euphausiid eggs each
day (Tables 5 & 6, Fig. 7). At the same stations, inges-
tion of other vulnerable prey (naupliar and calyptopis
stages of euphausiids, and gelatinous taxa) reached
10 to 12% d–1. The estimate of 61% d–1 is not an arti-
fact of pairing relatively high densities of medusae
with low densities of euphausiid eggs. The highest
densities of medusae (2 individuals 100 m–3) would be
capable of ingesting 660 eggs m–3 d–1 or 60% d–1 at
the station with highest density of eggs (1092 m–3)
(Table 5).

Fig. 8 suggests an inverse relationship between den-
sity of euphausiid eggs and Chrysaora fuscescens, at
least where medusae or eggs were most abundant.
Even though factors such as predation by other taxa,
advection or retention, and spawning frequency and
location will also contribute to distribution of eu-
phausiid eggs, in August 2002, densities of eggs were
highest at stations with relatively few C. fuscescens
medusae. In particular, the one nearshore station north
of Cape Blanco with high euphausiid egg densities (at
44° N, Fig. 7B) coincided with a local minimum of
C. fuscescens (Fig. 7A).

Because we were unable to measure digestion time
of euphausiid eggs, we need to be confident that our
estimate is reasonable, particularly as relatively few
data are available for such large medusae or from field
studies where euphausiid eggs would be abundant.
Clearance rates for Chrysaora fuscescens feeding on
euphausiid eggs were 30 m3 d–1 (Tables 4 & 5), and we
can check whether this rate is reasonable in several
ways. First, it is comparable to clearance rates of
15.5 m3 d–1 reported by Purcell (2003) for smaller
Cyanea capillata ingesting larvaceans in certain sub-
regions of Prince William Sound, Alaska. Second, for
stationary prey, encounter rates will depend upon
encounter area (square of medusa’s bell diameter) and
the swimming speed of the predator (Gerritsen &
Strickler 1977). For example, a medusa of 20 cm diam-
eter swimming 1 cm s–1 can sweep more than 100 m3

d–1. Capture efficiencies will be highest for stationary
prey such as euphausiid eggs, and high capture to
encounter ratios are likely (66% for slow-escaping
prey in the laboratory, Sullivan et al. 1997). Finally,
even with such high clearance rates, carbon analysis
reveals relatively low daily rations for those C. fus-
cescens individuals collected during 2002 and 2003.
For all stations, C. fuscescens ingested an average of
1.3% body C d–1; when euphausiid eggs were present,
the average was 1.9% d–1 (Table 3). These are not par-
ticularly high feeding rates from a carbon perspective
and in fact, suggest that this population may be food-
limited. Other studies have estimated a 2% d–1 meta-
bolic requirement (Sotje et al. 2007), or calculated
>3% d–1 body weight consumed (Brodeur et al. 2002).

Were conditions during this study typical of the re-
gion’s upwelling season? Basin-scale forcing strongly
influences both the biodiversity and biomass of cope-
pod populations off the coast of Oregon (Hooff & Peter-
son 2006). The year 2002 concluded a 4-yr cool period
in the California Current, associated with relatively
low copepod biodiversity and high biomass. From the
end of 2002 through 2006, however, the California
Current warmed, and copepod biodiversity was high
and biomass low. It is reasonable to expect that basin-
scale conditions related to El Niño or the Pacific
Decadal Oscillation will affect not only copepods, but
also influence local populations of gelatinous taxa.
Thus, in a region subject to interannual and inter-
decadal variability in climatic conditions, and with
ecosystem productivity so dependent upon physical
forcing, data collected over several years are needed to
confirm this study’s predictions about the role of gelati-
nous predators.

Nevertheless, given spatial and temporal patterns of
predators and prey, the population of Chrysaora
fuscescens may routinely ingest euphausiid eggs at
rates similar to those in August 2002. Medusae are typ-
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ically present in high densities along the inner shelf
throughout summer months (Shenker 1984, Suchman
& Brodeur 2005), overlapping in space and time with
peaks in egg densities following spawning events
(100s to ~1000 eggs m–3 at a nearshore station off New-
port, Oregon, Feinberg & Peterson 2003). Larvae of
both Euphausia pacifica and Thysanoessa spinifera are
found nearshore during summer months relative to
cross-shelf or offshore distribution of adults, and
spawning may be concentrated close to shore to mini-
mize advection of less mobile early stages (Gómez-
Gutiérrez et al. 2005). In fact, we probably underesti-
mated the magnitude of predation on euphausiid eggs
by other gelatinous predators that commonly occur in
the region. These taxa, including ctenophores, hydro-
medusae (Mitrocoma cellularia, Aequorea spp.) and
the scyphomedusa Aurelia labiata, also ingest euphau-
siid eggs (Larson 1987, this study, and C. Suchman
unpubl. data).

What we cannot determine from this study is the pro-
portion of euphausiid production removed by Chry-
saora fuscescens in the Northern California Current. It
is challenging to resolve euphausiid population dyna-
mics because egg production is highly variable and not
well understood (Feinberg et al. 2007). Cross-shelf dis-
tributions of adult euphausiids, as well as their eggs
and larvae, depend upon complex circulation patterns
related to the coastal upwelling process (Gómez-
Gutiérrez et al. 2005). Given high spatial and temporal
overlap between medusae and euphausiid egg pro-
duction on the Oregon shelf, however, we suggest that
gelatinous predators may play a more important role in
euphausiid population dynamics than previously rec-
ognized.

Our results should have broad implications for
understanding upwelling ecosystems. This snapshot
shows that where medusae are most abundant, they
have the ability to deplete the standing stock of vulner-
able prey. More focused research would be needed to
link predation by gelatinous zooplankton to euphau-
siid population dynamics over seasonal or interannual
time scales. In addition, gelatinous taxa such as
Chrysaora fuscescens compete with fish and other
nekton in the Northern California Current. Euphausiid
eggs can be a large component of the diet of sardines
and other forage fish (Emmett et al. 2005, Brodeur et al.
2008). Other nekton, such as salmonids, ingest later-
stage euphausiids (Peterson et al. 1982, Brodeur &
Pearcy 1992). Analysis of multi-year, mesoscale sam-
pling in the Northern California Current, in combina-
tion with diet studies of fish and medusae, should yield
interesting results. Given the importance of euphausi-
ids to fish and other top predators, and the potential for
changes in abundance and distribution of both preda-
tor and prey taxa with changes in climate, we hope

that other fisheries scientists and managers begin to
monitor gelatinous zooplankton abundance and incor-
porate predation impacts within long-term studies and
ecosystem models.
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