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RESEARCH ARTICLE

Investigating the Effect of Recruitment
Variability on Length-Based Recruitment
Indices for Antarctic Krill Using an
Individual-Based Population Dynamics
Model
Stéphane Thanassekos1¤*, Martin J. Cox2, Keith Reid1

1. Commission for the Conservation of Antarctic Marine Living Resources Secretariat, Hobart, Tasmania,
Australia, 2. Southern Ocean Ecosystem Change, Australian Antarctic Division, Kingston, Tasmania, Australia

*thanassekos@vims.edu

¤ Current address: Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia,
United States of America

Abstract

Antarctic krill (Euphausia superba; herein krill) is monitored as part of an on-going

fisheries observer program that collects length-frequency data. A krill feedback

management programme is currently being developed, and as part of this

development, the utility of data-derived indices describing population level

processes is being assessed. To date, however, little work has been carried out on

the selection of optimum recruitment indices and it has not been possible to assess

the performance of length-based recruitment indices across a range of recruitment

variability. Neither has there been an assessment of uncertainty in the relationship

between an index and the actual level of recruitment. Thus, until now, it has not

been possible to take into account recruitment index uncertainty in krill stock

management or when investigating relationships between recruitment and

environmental drivers. Using length-frequency samples from a simulated

population – where recruitment is known – the performance of six potential length-

based recruitment indices is assessed, by exploring the index-to-recruitment

relationship under increasing levels of recruitment variability (from ¡10% to

¡100% around a mean annual recruitment). The annual minimum of the proportion

of individuals smaller than 40 mm (F40 min, %) was selected because it had the

most robust index-to-recruitment relationship across differing levels of recruitment

variability. The relationship was curvilinear and best described by a power law.

Model uncertainty was described using the 95% prediction intervals, which were

used to calculate coverage probabilities and assess model performance. Despite
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being the optimum recruitment index, the performance of F40 min degraded under

high (.50%) recruitment variability. Due to the persistence of cohorts in the

population over several years, the inclusion of F40 min values from preceding years

in the relationship used to estimate recruitment in a given year improved its

accuracy (mean bias reduction of 8.3% when including three F40 min values under

a recruitment variability of 60%).

Introduction

Krill is an important link between lower trophic levels (phytoplankton) and high-

order predators such as penguins and whales, in the Antarctic marine ecosystem

[1]. Krill has also been the focus of both long-term scientific research and

commercial fishery (e.g. [2–4]). Multiple sources of data from scientific surveys

and the fishery have generated databases that provide information on key life-

history characteristics of krill such as growth, mortality and recruitment.

Typically, scientific research on krill has focussed on the summer period when

logistics and operational factors are more amenable; however, the commercial

fishery for krill operates year-round [5]. The Commission for the Conservation of

Antarctic Marine Living Resources Scheme of International Scientific Observation

(CCAMLR SISO; www.ccamlr.org), was initiated in 1992 to collect data from the

krill fishery, including representative length-frequency data, from commercial

captures on board fishing vessels. Recent increases in observer coverage levels in

the krill fishery [6] has provided an increase in the data available from the fishery

both spatially and temporally. The database of krill lengths represents an

opportunity to investigate krill population dynamics, at scales not typically

feasible using data from scientific surveys.

Depending on the areas, the longevity of krill in the wild is estimated to range

between 4 and 7 years, with an age at maturity of about 3 years [7]. Given the

relatively short life-cycle and relatively high mortality rate of krill, variation in the

level of recruitment is a major contributor to inter-annual variability in the

abundance of krill (e.g. [8]). Measuring recruitment directly (where all new

individuals in the population are recorded) in wild populations is typically only

possible in a very small number of closed terrestrial systems (e.g. St Kilda Soay

sheep [9]) and is impractical for marine taxa. Several studies of krill have

developed methods to estimate recruitment based on changes in the population

size-structure using length measurements of individual krill caught with nets (e.g.

[10, 11]). The rationale behind these methods is that recruitment (i.e. the number

of one-year old individuals entering the population) can be estimated based on

the increase in the proportion of smaller (and by inference younger) individuals in

the population. These proportional indices of recruitment have been instrumental

in investigating krill population dynamics (e.g. [12–14]) and ecosystem processes

(e.g. [15–17]), and more recently, within integrated assessment frameworks
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[18, 19]. Quantifying the relationship between inter-annual changes in recruit-

ment and in environmental variables such as ice-cover [20–22] and ocean currents

[13, 23], is crucial to our understanding of the drivers of population dynamics,

and enables extrapolation to future krill population states. Such analyses,

however, rely on assumptions about the relationship between absolute population

recruitment and proportional indices of recruitment derived from length-

frequency data.

In many studies, krill recruitment is estimated using a proportional index ‘R1’

defined as the ratio of the number of 1-year-old individuals to the total number of

individuals (e.g. [12, 24]). This ratio can be calculated by using maximum

likelihood to fit age-specific mixtures of normal distributions to population level

length distribution data [10]. As there are currently no cost-effective and precise

methods to age krill [25], the allocation of modes in length distributions to age-

classes is dependent upon an underlying growth model. Therefore while there is

no practical method to estimate absolute recruitment using length frequency data,

there is a need develop and validate alternative methods for that purpose.

Ideally, for a population with constant recruitment, a length-based index

should accurately reflect recruitment and changes in recruitment should be

reflected in changes in the index. That said, the relationship between krill

recruitment indices and absolute recruitment has to date not been quantified and

this has two important implications. Firstly, the performance of a given index –

that is how accurately an index represents absolute recruitment – is unknown. In

an extreme example, this may lead to an index returning the same estimated

recruitment under low or high recruitment. In this circumstance, the recruitment

index would contain no, or misleading information. Secondly, krill recruitment

varies inter-annually (e.g. [2]) and it is extremely unlikely that a given recruitment

index will perform equally well across all levels of biologically plausible ranges of

recruitment variability. Indeed, a priori it is reasonable to expect the performance

of recruitment indices to decrease with increasing recruitment variability

especially where the absolute level of recruitment is not affected by recruitment in

the previous year whereas a relative index is. Nevertheless, as it is not possible to

determine recruitment variability directly, it is important that a recruitment index

performs adequately across the largest range of recruitment variability.

Since recruitment and its variability cannot be observed directly, regression

analyses based on simulated data offer a means to examine the relationship

between a length-based index and recruitment and especially to investigate the

uncertainty arising from increased recruitment variability.

The relationships between recruitment and length-based indices of recruitment

of krill were investigated at differing levels of recruitment variability in a

population simulated using an individual-based model. In order to produce

results that have direct relevance to the interpretation of the data collected as part

of the CCAMLR SISO, individual krill were subsampled within the model

according to a length-dependent selectivity function estimated for krill

commercial fishing gear [26].

Krill Length-Based Recruitment Indices and Recruitment Variability
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The specific goals of this work were to: (i) investigate the relationships between

length-based indices and recruitment, (ii) select an optimum recruitment index

from a suite of recruitment indices under various levels of recruitment variability;

(iii) use a regression analysis to determine the relationship between the

recruitment index and absolute recruitment; (iv) determine the performance of

the selected recruitment index, and (v) reduce uncertainty in the recruitment

index-absolute recruitment relationship by including consecutive index values

from preceding years.

Methods

2.1 Candidate length-based recruitment indices

Based on length frequency distributions, recruitment can be estimated using order

statistics. Two order statistics, the median length (mm) and the proportion of

individuals smaller than 40 mm (F40, %) were used in this investigation (Fig. 1).

The size of 40 mm was chosen as an appropriate cut-off to segregate recruits from

older cohorts, once recruits became dominant in length frequency distributions (

Fig. 1, after April). Using a cut-off size instead of fitting a normal distribution to

each length frequency mode [10] was chosen as a simpler and less ambiguous

approach when compared to the often difficult and sometimes subjective task of

determining modes using observations. Recruitment (i.e. the sum of one-year old

individuals entering the population in a given year) is a single annual event while

length-frequencies – and therefore length-based indices – are known to vary at the

sub-annual scale (e.g. [3, 11]). Typically krill recruitment is summarised as an

annual index [10–12], therefore, the monthly recruitment indices, median length

(mm) and F40 (%) are summarised by calculating their annual minimum, annual

maximum and annual span (maximum-minimum), resulting in six candidate

indices of annual recruitment. Using a krill population dynamics model in which

recruitment was set randomly each year, the distribution of each index as a

function of recruitment was investigated to determine which index would provide

the optimum indicator of recruitment.

2.2 Simulations

Krill recruitment and its variability cannot be observed directly, so a model of krill

population dynamics (Fig. 2), parameterised using values from the primary

literature was used to simulate biologically plausible krill populations under

various levels of recruitment variability.

2.2.1 Simulating a krill population

The model (Fig. 2), developed using R 3.0.3 [27], had a monthly resolution and

for each individual in the population, the likelihood of survival, the growth

increment and the probability of capture by the fishery were sequentially

computed at each time-step. The population was tracked for ten years and in each

Krill Length-Based Recruitment Indices and Recruitment Variability
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ten-year simulation a random number of recruits were released each summer.

During each simulation, the monthly median length and F40 were computed from

all individuals available for capture by the fishery. The number of recruits entering

the population and the monthly median length and F40 values in the final year

were calculated and stored. Increasing levels of recruitment variability were

achieved by releasing a number of recruits randomly set around a mean 46106

individuals over a range increasing from ¡10% to ¡100% by 10% increments

(i.e. 10 levels of recruitment variability). For each level of recruitment variability,

2,000 simulations were run, resulting in a total of 20,000 ten-year simulations. The

model outputs were used to investigate the link between recruitment and each of

the recruitment indices (Section 2.1) under different levels of recruitment

variability.

Recruitment: Annual recruitment was simulated by releasing a random number

of 1-year old individual krill into the model over the course of the summer period

(25% in November and January and 50% in December).

Mortality: Siegel [7] reviewed krill life history parameters and determined

realistic estimates of natural mortality ranged between 0.66 yr21 and 1.35 yr21

(mean51.0 yr21). To apply this mean rate in our model it must be converted via

the following relationship [28]:

M
100

~1{e{m u m~{log(1{
M

100
) ð1Þ

where M is the proportional rate used in the individual-based model (in %

Figure 1. Euphausia superba. Deriving recruitment indices from length frequency distributions. Monthly
length-frequency distributions simulated in the last year of ten-year population dynamics with constant
summer recruitment of 46106 individuals. Grey histograms indicate the frequencies of individuals smaller
than 40 mm, the blue line indicates the monthly median length (mm) and the red line indicates the proportion
of individuals smaller than 40 mm (F40, %).

doi:10.1371/journal.pone.0114378.g001
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time21) and m is the exponential decay rate used in population dynamics models

(in time21); in this case, a mortality rate of 1.0 yr21 or 0.0833 month21

corresponds to 8% month21. A constant mortality rate of 8% month21 was

therefore used to determine the transition of each individual between time-steps.

At each time-step, a probability PM was drawn at random from a uniform

distribution bound between 0 and 100%, and where PM.M the individual

survived and entered the next time-step. Upon entry into the next time-step, the

age of the individual was incremented by a month.

Growth: Each recruit was assigned an initial length drawn at random from a

normal distribution (mean521.742 mm, standard deviation52 mm); the initial

mean estimated using a von Bertalanffy growth curve commonly used for krill

[29], and a standard deviation resulting in realistic dispersions of lengths around

each mode (Fig. 1). Subsequent individual growth was computed at each time-

Figure 2. Antarctic krill (Euphausia superba) population model flow chart of monthly computations
(here December of the 8th year) in a given ten-year simulation. Summer recruitment is simulated by
releasing a random number of recruits each year in the population (25% in November and January and 50% in
December). For each individual, mortality, growth and capture are computed sequentially (see text for details),
and, all individuals available for capture are included in the computation of length-based recruitment indices.

doi:10.1371/journal.pone.0114378.g002
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step using a seasonally-varying von Bertalanffy growth model in line with the

model presented by Siegel (1987 [30]; See Information S1).

2.2.2 Simulating capture by the fishery

The proportion of individuals available for capture by the fishery was determined

by a length-dependent selectivity function. An individual was considered to be

available for capture based on the commercial fishery selectivity ogive given in

Krag et al. (2014 [26]) such that at each time-step, a probability PS was drawn at

random from a uniform distribution bound between 0 and 1 and the individual

was available when:

PSv
1

1ze({0:45|(L{32:72))
ð2Þ

where L is the length of the individual. No further sub-sampling (i.e. inclusion of

sampling error) was applied; therefore all surviving individuals that were available

for capture by the fishery were included in the computation of monthly length-

based indices (but not removed from the population). The selectivity ogive used

in the model is the best currently available estimate for commercial krill fishing

gear. It is however important to note that it is based on a 15.4 mm diamond mesh

size [26] and that our findings would only apply for krill sampled with a gear of

similar mesh size and type.

2.2.3 Simulating recruitment variability

Different levels of recruitment variability were simulated within bounds defined

by a recruitment variability amplitude (Rvar). The number of recruits released

each year in the model R(y) was computed as the sum of a mean value Rm and a

deviation Rd (R(y) 5Rm+Rd). Deviations of different amplitude were achieved

using a number drawn at random (RR, %) from a uniform distribution bound

between –Rvar and +Rvar; with Rvar (%) corresponding to a recruitment

variability amplitude ranging from 10% to 100% and:

Rd~Rm|RR {RvarƒRRƒzRvarð Þ ð3Þ

For example, with Rm546106 and Rvar550%, the number of recruits released

in a given year was randomly set between 26106 and 66106 (i.e. 46106¡50%).

Using a mean recruitment of Rm546106, each Rvar value (10% to 100% by 10%

increment) was used in 2000 simulations of ten-year krill population dynamics.

The numbers of individuals (46106) and simulations (2000) enabled producing a

sufficiently representative set of simulations and individual histories to investigate

the effect of recruitment variability on the population size structure. The ten-year

duration of each simulation ensured reaching population stable state under

constant recruitment.

Krill Length-Based Recruitment Indices and Recruitment Variability
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2.3 Selecting the optimum recruitment index

Within the krill population model, recruitment variability, absolute recruitment

and the corresponding values of each length-based index are known. Comparing

recruitment to each recruitment index under different levels of recruitment

variability, the performance of each index was assessed using two criteria:

(i) the recruitment index is monotonically related to absolute recruitment – this

is important as no other information can be used determine absolute

recruitment, so any underlying absolute recruitment to recruitment index

relationship must be capable of being predicted using simple (single

explanatory variable) regression, and

(ii) the recruitment index is unbiased across all ranges of recruitment variability.

This is important because the variability of recruitment in reality is unknown,

so the relationship between recruitment and the recruitment index should

ideally, remain unchanged under any level of recruitment variability.

2.4 Predicting recruitment using a recruitment index

Once the optimum length-based recruitment index, I, was found amongst those

tested, a simple formula, R5f(I), to estimate recruitment as a function of that

index was determined by regression analysis. A regression analysis was performed

on the model outputs (recruitment versus index values). For each amplitude of

recruitment variability the change in performance of the index as a function of

recruitment variability was assessed.

2.5 Assessing predictive performance

The purpose of f(I) is predictive, and is not intended for inference. In order to

assess the predictive performance of f(I), the prediction error (%) was computed

using:

Prediction error %ð Þ~100|
Rpredicted{Rsimulated

Rsimulated
ð4Þ

In addition, the performance of f(I) in capturing recruitment uncertainty was

assessed at each level of recruitment variability by computing coverage

probability, here defined as the percentage of simulated recruitment values that

fell inside the 95% predicted recruitment intervals.

2.6 Predicting recruitment using past index values

A recruitment event can potentially impact krill population size structure over

several years, and additional information describing current recruitment may be

contained in index values from previous years. Using the optimum length-based

recruitment index from the candidate indices, the relationship between

recruitment in the last year of simulations and values of that index in preceding

Krill Length-Based Recruitment Indices and Recruitment Variability
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years was investigated. For instance, given a formula (f) between recruitment (R)

and an index I on year 10 (y10):

R(y10)~f (I(y10)) ð5Þ

A multiannual formula where:

R(y10)~f (I(y10),I(y9),I(y8),I(y7),I(y6), . . . ) ð6Þ

was determined by multiple regressions of the model outputs. The effect of the

inclusion of an increasing number of consecutive index values was assessed

through changes in the prediction error (Eq. 4) computed for the regressions

under three selected amplitudes of recruitment variability (Rvar530%, 60%,

90%).

Results

3.1 Selecting a recruitment index

The selection of the optimum recruitment index from the six candidate indices

was based on (i) the distribution of index values as a function of recruitment and

(ii) the impact of recruitment variability on these distributions (Fig. 3). The

indices derived from F40 – the proportion of individuals smaller than 40 mm –

had a monotonic relationship with absolute recruitment across all ranges of

recruitment variability (Fig. 3A–C), making F40 indices potentially useful

measures of krill recruitment. The indices derived from the median length had

more complex relationships with absolute recruitment (Fig. 3D–F). The span and

maximum of the median (Fig. 3E, F) had highly non-monotonic responses, and

were eliminated as potential indices.

Out of all indices considered, the minimum F40 index (Fig. 3A) followed the

clearest monotonic trend with recruitment and provided the strongest

differentiation between low and high recruitment. In contrast to this, the span of

F40 index (Fig. 3B) covered a wide range of recruitment values, making a

regression analysis problematic. The maximum of F40 index (Fig. 3C) had poor

coverage of lower recruitment values and had no clear relationship with

recruitment. The minimum of median index (Fig. 3D) had difficulty accounting

for lower recruitment with high index variability when absolute recruitment was

less than 36106 individuals.

Increasing recruitment variability resulted in an increased variability in all

indices. Amongst all indices, the minimum F40 had the lowest variability across all

levels of recruitment variability. Furthermore, the relationship between recruit-

ment and minimum F40 was consistently following a curvilinear trend across

levels of recruitment variability.

The minimum F40 (F40 min) was therefore selected as the optimum

recruitment index, and its relationship with recruitment (R) was best described

using a linear regression of log-transformed values (i.e. a power law), with an

Krill Length-Based Recruitment Indices and Recruitment Variability
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intercept (b0) and a slope (b1):

log Rð Þ~b0zb1| log F40minð Þ u R~eb0|F40minb1 ð7Þ

Subsequent analyses are carried out on the F40 min index.

3.2 Regression predictive performance

The curvilinear regression (Eq. 7) was fitted to model outputs from each level of

recruitment variability (Fig. 4). The regression successfully captured increasing

recruitment variability as demonstrated by a widening of the prediction intervals

(Fig. 4). The predictive performance of each regression was assessed by

calculating coverage probability as the percentage of simulated recruitment

values falling inside the prediction intervals (Fig. 5). The 95% prediction

intervals were selected, so when a model is performing predictions inadequately,

less than 95% of simulated recruitment values will fall inside the prediction

intervals. Based on coverage probability, the regression performed adequately up

to 50% recruitment variability (Fig. 5). Above 50% recruitment variability, the

predictive performance progressively degraded with ,95% of recruitment

simulations falling inside the 95% prediction intervals. Under the widest range of

Figure 3. Euphausia superba. Simulated recruitment to recruitment index relationship under contrasting levels of recruitment variability (Rvar, %; see
section 2.2.3). Model outputs are provided for the last year of 2,000 ten-year simulations per Rvar value.

doi:10.1371/journal.pone.0114378.g003
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recruitment variability (Rvar5100%) where recruitment was randomly set

between 0 and 86106 individuals, 93.2% of the absolute recruitment values fell

inside the 95% prediction intervals (Fig. 5). The regression parameters obtained

under Rvar5100% are given in table 1.

Figure 4. Euphausia superba. Curvilinear F40 min regression fits (green line, Eq. 7) for each amplitude of
recruitment variability. Recruitment values (y-axes) falling outside of the 95% prediction intervals (red lines)
are shown as white points, those inside as black points.

doi:10.1371/journal.pone.0114378.g004

Krill Length-Based Recruitment Indices and Recruitment Variability
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The range of prediction errors (Eq. 4) increased with the increasing recruitment

variability from ranging between 27.4% and +8.8% at Rvar510% to ranging

between 286.3% and +942.5% at Rvar5100% (Fig. 6). Although the median of

all prediction errors remained close to zero, the boxplots illustrate that the

predictive error distribution was asymmetric, with overestimates being more

prevalent. This was due to the fact that the simulated recruitment was bound

between values determined by Rvar (e.g. between 0 and 86106 individuals under

Rvar5100%), while the regression could freely extrapolate estimated recruitment

to higher values.

3.3 Multiannual Recruitment Formula

To improve predictions of recruitment, a multiannual linear regression of the log-

transformed model outputs was used where explanatory variables were past values

of minimum F40 (F40 min). Using three years as an example, the number of

recruits released in the tenth year of simulations (Ry10) was estimated as:

Figure 5. Coverage probability (%) – the percentage of simulated recruitment falling inside the 95%
prediction intervals of the curvilinear regression (Eq. 7) – for each amplitude of recruitment variability
(Rvar, %; see section 2.2.3).

doi:10.1371/journal.pone.0114378.g005
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log Ry10
� �

~b0zb1| log F40miny10
� �

zb2| log F40miny9
� �

zb3| log F40miny8
� � ð8Þ

Including past consecutive values of minimum F40 to predict recruitment

narrowed the range of prediction errors for simulations under low recruitment

Table 1. Parameter values for the relationship between recruitment and the minimum F40 (Eq. 7) under a simulated recruitment variability (Rvar) of 100%.

b0 b1

Mean fit 10.0249 (2.953561023) 1.4088 (0.238761023)

Upper 10.9033 1.4078

Lower 9.1465 1.4098

Parameters for the 95% prediction interval are included (upper and lower). The parameter variance estimates are given in parenthesis for the mean fit.

doi:10.1371/journal.pone.0114378.t001

Figure 6. Curvilinear regression prediction error (%, Eq. 4) for each amplitude of recruitment variability
(Rvar, %; see section 2.2.3). Prediction error was computed between the simulated recruitment and the
recruitment predicted by the regression using the minimum F40 (Eq. 7). In this boxplot, the range of each box
corresponds to the interquartile range (IQR) and the whiskers extend to an additional 1.5IQR. Values falling
beyond the whiskers are marked with circles.

doi:10.1371/journal.pone.0114378.g006
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variability (Rvar530%, Fig. 7A). The improvement was less evident under

moderate recruitment variability (Rvar560%, Fig. 7B), in which case including

three consecutive values of minimum F40 brought a similar improvement to

when including more values. Under high recruitment variability (Rvar590%,

Fig. 7C) the narrowing of the range of errors was almost negligible, particularly

when including more than 3 consecutive values of minimum F40. The mean bias

reduction (mean of absolute errors) resulting from the inclusion of three

consecutive values was 16.5%, 8.3% and 3.6% under Rvar values of 30%, 60% and

90% respectively.

Discussion

The recruitment index F40 min (minimum proportion of individuals smaller than

40 mm in a given year) was selected as the optimum index from six candidate

indices. F40 min was selected as optimum because in addition to its monotonic

relationship that held across a range of recruitment variability, the index-to-

recruitment relationship could be expressed using simple curvilinear regression.

In simulations of high recruitment variability (Rvar >60%, Fig. 4), the log-linear

model did not perfectly capture the underlying index-to-recruitment relationship.

Whilst more complex regressions may have achieved this in specific instances, it is

unlikely that these models would have performed equally for all amplitudes of

recruitment variability. In this research, we were seeking a model that performed

well across a range of recruitment variability; in reality recruitment variability is

unknown so one cannot apply a more complex model to suit high variability

situations, hence a model that performed best over a range of recruitment

variability was selected. Important to the process of recruitment metric selection

was the underlying population model and the calculation of recruitment indices

on a monthly basis, both of which will be discussed in subsequent paragraphs.

The impact of recruitment variability on length-based recruitment indices was

investigated using an individual-based population model. The model captured

complex population-level processes emerging from cyclical and variable recruit-

ment by accounting for the co-existence of cohorts belonging to recruitment

events of different intensities. Varying the range over which recruitment took

place led to simulated pulses in krill numbers, a phenomena observed at South

Georgia [3], and enabled us to test recruitment index performance against a

biologically plausible, albeit simulated, krill population.

Proportional indices of recruitment such as F40 have traditionally been

computed using length data available from a single survey or pooled at an annual

Figure 7. Prediction error (%, Eq. 4) computed between the simulated recruitment and the recruitment
estimated with the multiannual formula using past values of minimum F40 (Eq. 8), as a function of the
number of values of minimum F40 included in the regression (from 1 to 6), for three amplitudes of
recruitment variability (A–C; Rvar, %; see section 2.2.3). In this boxplot, the range of each box
corresponds to the interquartile range (IQR) and the whiskers extend to an additional 1.5IQR. Values falling
beyond the whiskers are marked with circles.

doi:10.1371/journal.pone.0114378.g007
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scale [2, 7, 8, 11–13, 17, 20, 22, 24]. However, due to growth and mortality, length-

frequencies vary at the sub-annual scale (e.g. [3], Fig. 1). Therefore, pooling length

data into a single annual length-frequency distribution may conflate several

underlying population processes, potentially confounding the signal produced by

recruitment events. When searching for the optimum length-based recruitment

index, order statistics – median and F40– were calculated on length data

aggregated by month (see section 2.1). Monthly order statistics were summarised

into a single annual recruitment estimate and the minimum value of F40 within a

given year was found to be the optimum index of the recruitment that occurred in

the summer of that year.

Increasing recruitment variability resulted in increased uncertainty in length-

based recruitment indices (Figs. 3–5). Recruitment variability up to 50% was

successfully captured using the 95% prediction intervals calculated from the

curvilinear regression based on F40 min (Figs. 6, 7). True recruitment variability

cannot be determined, so it is not possible a priori to select a particular regression

from those determined (Fig. 4). In the absence of additional information on

recruitment variability, it is recommended that the curvilinear model fitted to the

widest range of recruitment variability (Rvar5100%) is used. Under high

recruitment variability, the improvement brought by the use of a multiannual

formula was only minimal (Fig. 7C). Whilst under low and moderate recruitment

variability, the multiannual formula yielded improved predictions, it performed

poorly under high recruitment variability. Outside of the simulation, true

recruitment variability is unknown so it is not possible to determine when to use

such formula. Therefore the simpler single-year formula obtained under high

recruitment variability is recommended to estimate annual recruitment (Table 1).

High population variability was not always accurately represented by the

curvilinear regression, with less than 95% of the simulated population falling

inside the 95% prediction intervals when recruitment variability exceeded 50%.

Large prediction errors in situations of high recruitment variability suggest

length-based indices are of limited value, a fact that has been previously raised in

the case of fish stock assessments (e.g. [31]). More positively, the approach

presented here provides an objective mechanism through which to assess the

utility of recruitment indices, and which enable researchers to incorporate

uncertainty when considering the links between recruitment and environmental

drivers. Furthermore, our results indicated that using these indices to track

recruitment events could provide an objective approach to estimate the

magnitude and confidence associated with these events. In particular, the

uncertainty around recruitment estimates appeared to increase with the

magnitude of the recruitment event, suggesting that whilst being beneficial,

correlation analysis between estimated recruitment and environmental drivers will

be more difficult for highly uncertain, large recruitment events.

Since a recruitment event will impact the population size structure over several

years, a length-frequency distribution at a given instant may carry information on

recruitment events that occurred in previous years. Including information on the

population size structure over the years preceding a given recruitment event could
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improve the accuracy of that recruitment estimate. Improvement in length-based

recruitment estimates via multiannual estimates has been suggested in previous

studies (e.g. [11]), and was successfully demonstrated here when recruitment

variability was less than 60% (Fig. 7). In this study, improvement in the prediction

of recruitment was itself dependent on recruitment variability since increased

recruitment variability weakened the link between current and previous

recruitment indices. Nevertheless, an improvement in the accuracy of the

recruitment predictions was obtained under all ranges of recruitment variability,

and, given that the actual variability of recruitment in the real world is unknown

adopting such an approach could be beneficial. However, as stated above, the

improvement was only minimal (mean bias reduction of 3.6% under Rvar590%)

under high recruitment variability.

In addition to analysis of ecological significance, the results presented here

could be beneficial to the management of the krill fishery. Stock assessment

models are designed to estimate population parameters by determining the set of

parameters enabling the best fit between simulations and observations, including

length-frequencies distributions (e.g. [19]). Stock assessment models could benefit

from the method of recruitment estimation presented here for their initialisation

through a time-series of estimated recruitment. Additionally, model verification

could be performed through a comparison of stock-assessment and simulation

model outputs (Eq. 7).

The underlying model used to simulate population dynamics was parame-

terised using values drawn from the published literature. In order to establish the

baseline response, the model structure was intentionally kept simple and made to

replicate behaviour of an average population sampled homogeneously. More

complex modelling schemes could be devised in the future to account, in

particular, for biological variability, such as inter-annual changes in growth,

mortality, recruitment timing and duration, as well as spatial and temporal biases

in sampling effort and investigate their impact on length-based recruitment

estimates. In addition, recruitment was set to occur each year in simulations

independently of the status of the adult population. A complete mechanistic life

cycle model could be formulated in the future to account for the maturation of

individuals in the population and their participation in the spawning stock. Such

level of detail would enable investigating processes affecting recruitment

variability such as generation time, lifespan and age at maturity. The approach of

decoupling recruitment from the reproductive status of the population is robust

in that it makes no assumptions about the links between the two and enables the

performance of recruitment indices to be assessed without formulating hypothesis

on these links.

Despite the relatively simple model structure, the findings presented still bring a

significant improvement in our ability to extract information from length

measurements. The modelling approach described here, could be applied to any

species targeted by a length-based survey, provided a temporal coverage enabling

the determination of the bounds of the chosen length-based index (e.g. the

determination of the minimum F40 in a given year in our case). A potential future
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application of this approach is the estimation of recruitment based on time-series

of krill length measurements collected as part of the CCAMLR Scheme of

International Scientific Observation, which could unveil crucial information on

the population dynamics of Euphausia superba.

Supporting Information

Figure S1. NOAA Optimum Interpolation of monthly Sea Surface Temperature

V2 (within 65 S̊ to 53 S̊ and 64˚W to 34˚W), showing the mean (line), range (grey

area), and the sinusoidal fitted function (–1# SV(t) # +1; dotted line) used in the

seasonally varying von Bertalanffy (vB) growth sub-model.

doi:10.1371/journal.pone.0114378.s001 (TIF)

Figure S2. Euphausia superba, model outputs. Simulated length-at-age (A),

showing the mean (solid line), standard deviation (grey area) and extremes

(dotted lines); selected levels of availability for capture (Eq. 2, see main text) are

shown as horizontal lines and the post-recruitment durations in months for the

mean length to reach levels of 5% and 50% are indicated. The remainder of panels

(B–D) show model outputs for the last 25 months of simulations overlayed on the

recruitment frequency distribution (grey histograms). The number of individuals

(B) in the population (solid line, left y-axis) and in captures (dotted line, right y-

axis) are shown; the captured individuals being those included in the computation

of the monthly median length (mm; C) and proportion of individuals smaller

than 40 mm (F40, %; D). In the last year of simulation, the maximum (upward

triangle) and minimum (downward triangle) of the median length and F40 are

shown, as well as the span of values (vertical double arrow).

doi:10.1371/journal.pone.0114378.s002 (TIF)

Information S1. Krill growth model equations and outputs.

doi:10.1371/journal.pone.0114378.s003 (DOCX)
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