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I. INTRODUCTION

Water quality problems in a tidal system generally result from a combination of
physical and biogeochemical processés as human activities exert an excessive stress on
the system. Therefore, water quality management in estuarine and coastal waters has
received increased attention in recent years as human activities in these areas increase.
Since many processes (physical transport, biogeochemical transformations, anthropogenic
processes, etc) affect the water quality in the water column, it is difficult to assess the
relative importance of each process. To this end, a mathematical model based on
physical and biogeochemical principles is useful both to aid in understanding the system
and to provide consistent, rational predictions of dynamic responses of the system to
changes in specified factors. This report documents the development of a laterally
integrated two-dimensional model consisting of hydrodynamic and water quality models.

Most mathematical models of water quality consist of a hydrodynamic model and a
water quality model, linked either externally or internally. The hydrodynamic model
generates time-series records of water velocity and surface elevation that are used in the
simulation of physical transport processes in the water quality model. So far, advances
in hydrodynamic modeling far exceed those in water quality modeling, mainly because
the mathematical expressions describing biochemical processes, compared to those
describing physical processes, are much cruder approximations of the processes being
modeled, and thus subject to less accuracy. Also the field data that can be obtained
from the current sampling techniques have finer spatial and temporal resolutions, and are
of higher quality for the hydrodynamic parameters than the water quality ones. These
differences in data quantity and quality make the calibration and verification of the
hydrodynamic model easier and more reliable.

Primarily because of their simplicity, one-dimensional longitudinal models have
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been widely employed for water quality management in lakes, estuaries and coastal
waters (Shanahan & Harleman 1982; Thomann & Fitzpatrick 1982; Williams & Kuo
1984; Cerco et al. 1987; Ambrose et al. 1988; Kuo et al. 1991). These models are
based on the one-dimensional momentum, continuity and salt balance equations and the
mass balance equations for dissolved oxygen (DO) and other water quality parameters,
assuming no vertical and lateral parameter variations. Despite its limitation, the one-
dimensional approach has helped us to understand many aspects of the natural system
and is still being employed for systems in which there is virtually no sectional variation.
The flow patterns in partially mixed estuaries, however, call for an explicit
description of vertical structures of velocity and density in the numerical modeling of
hydrodynamic transport (Wang et al. 1990). Besides, the vertical variations in DO often
are large. These leave only two choices for the modeling of DO distribution in partially
mixed estuaries: three-dimensional or laterally integrated two-dimensional models.
Estuarine flow and DO distribution are three-dimensional in nature. To simulate
these completely, a three-dimensional model with time-dependent momentum and
continuity equations, mass-balance equations with detailed description of the biochemical
kinetics, and sources and sinks of all dissolved constituents is necessary. It seems that
the state-of-the-art computer technology enables us to do three-dimensional simulations,
particularly of hydrodynamics (Caponi 1977; Oey et al. 1985; Blumberg & Mellor 1987
Hamrick 1992). The current sampling capacity, however, cannot provide us with the
quantity and quality of field data that are indispensable for the calibration and
verification of the model, particularly the water quality model. Shanahan & Harleman
(1982) have pointed out the necessity to consider both hydrodynamics and biochemistry
ina compatibie and even-handed fashion. In practice, the application of the three-
dimensional water quality model to a natural body of water is complicated in terms of

tractability and economy, and sometimes not warranted in terms of desired results.
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Relatively narrow, straight estuaries are suitable for laterally integrated two-
dimensional models assuming that all properties are uniformly distributed laterally across
the estuary at their respective average values (Wang et al. 1990). The assumption of no
lateral variation can be applied to estuaries where both tidal pumping and dispersion
produced by tidal trapping are not important.

Tidal pumping refers to the situations where the flow is distributed differently in a
cross-section during ebb and flood, and is principally caused by the Coriolis force and
irregular bathymetry (Fischer et al. 1979). In simplifying the three-dimensional
phenomena into two-dimensional frame work, some approximations are inevitable. The
typical example is that a vertical two-dimensional model cannot account for the effects of
the Coriolis force and irregular bathymetry.

The importance of the Coriolis force can be estimated using the nondimensional
Kelvin number (K), which is K = B/R, where B is a typical width and R, is the external
Rossby radius of deformation, and R, = C,/f where f is the Coriolis parameter and C, is
the wave celerity (Kundu 1990). The celerity (C,) of a long surface gravity wave is
equal to (gH)'?, where g is the gravitational acceleration and H is a typical depth. When
K is of order unity or greater, Coriolis force becomes important. When K is less than
0.01, it is not important. The internal structure of the estuary can be more responsive to
the Coriolis force because it is governed by motions with typicaily much smaller phase
speeds. In this case, the internal R, should be based on celerities of the internal waves,
that depend upon the vertical structure of the stratification (Wang et al. 1990).

Tidal trapping is a term used to describe the effects of side embayments, small
branching channels and shallow regions of an estuary, and occurs in almost all estuaries
and in many tidal rivers (Fischer et al. 1979). A portion of water with its contained
substances is stored temporarily in side channel, while the main flow proceeds along the

estuary’s major axis. If the recapture of the stored volume is out of phase with the main
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flow, longitudinal mixing occurs when the tide reverses.

Numerous laterally integrated two-dimensional hydrodynamic models have been
applied to estuaries (Bowden & Hamilton 1975; Blumberg 1975 and 1977; Hamilton
1977; Kuo et al. 1978; Wang & Kravitz 1980; Edinger & Buchak 1980 and 1981;
Perrells & Karelse 1981). Among these, the one developed by Kuo et al. (1978)
accounts for tidal trapping by modeling the side embayment area. This hydrodynamic
model was modified and used in the present study to simulate the flow field and salinity
distribution, and the corresponding water quality model was developed to simulate the
distributions of DO and other related water quality parameters. The development of
hydrodynamic model is described in Chapter 2, and that of water quality model in
Chapter 3. The model operation, i.e., what the model actually does, is described in
Chapter 4. The complete finite difference formulations are presented in Appendix A.
Source programs are listed in Appendix B. The operating manual to control the input

data files is provided in Appendix C.



II. DESCRIPTION OF THE HYDRODYNAMIC MODEL

2-1. Basic Equations

The laterally integrated two-dimensional hydrodynamic model developed by Kuo et
al. (1978) was extensively modified and used to calculate the flow field and salinity.
With a right-handed Cartesian coordinate system with the x-axis directing seaward and
the z-axis directing upward (Fig. 2-1), the governing equations are,

ouB) , d(wB)

ax 3z @D
3 3 |
—(B — | uB)dz = 2-2
=B+ axJH(" )dz = q 2-2)
owB) , duBu) , duBw) _ _Bdp _ 9 pouy , d , pu (2-3)
at ox 0z p§§+a(*36_x)+52(286_z)
L= -pg @4
0z
d(sB) . Od(sBu) . O(sBw) 9 x gos 3 x g9s (2-5)
o Tax oz b)) * 5 &B) 5,
where
t = time,

7 = position of the free surface above mean sea level,

u & w = laterally averaged velocities in the x and z directions, respectively,

s = laterally averaged salinity,

B & B, = river width and width at the free surface including side storage area,
H = total depth below mean sea level,

q, = point source discharge,

q = lateral inflow including exchange with side storage area and q,,

p & p = pressure and water density,



g = gravitational acceleration,

A, & A, = turbulent viscosities in the x and z directions, respectively,

K, & K, = turbulent diffusivities in the x and z directions, respectively,

S, = source or sink of salt.
Equations 2-1 and 2-2 are the laterally and sectionally, respectively, integrated continuity
equations for an incompressible flow. Equation 2-3 is the laterally integrated equation of
motion for an incompressible but non-homogeneous flow, and represents the momentum
balance along the longitudinal axis of an estuary. When the hydrostatic approximation,
i.e., gravity is the dominant force in the vertical direction, is applied to the equation of
motion in the z direction, the result is the hydrostatic equation (Eq. 2-4). Equation 2-5
is the laterally integrated mass-balance equation for salt. The density is related to the
salinity by the simplified equation of state,

p = p,(1 +ks) (2-6)

where p, is the density of freshwater and k is constant (7.5 x 10* ppt?). This equation
is usually regarded as a satisfactory approximation because of the large horizontal
gradients of salinity in estuarie} (Hamilton 1977).

Equations 2-1 through 2-3 are solved by a finite difference method to obtain the
time-varying solution of the free surface elevation () and the laterally averaged velocity
fields (u and w). The pressxire term (p) is evaluated using Eq. 2-4 with the water

density (p) from Eq. 2-6, and salinity (s) using Eq. 2-5.

2-2. Boundary Conditions
2-2-1. Free surface
The condition of no mass flux through the free surface is effected by specifying

zero vertical velocity and diffusion coefficient there. The wind stress term is used to



account for momentum introduced into the estuary. That is, at z = 9,

pAzg_I: = CDpa Uw | le (2-7)

where Cp, is the dimensionless drag coefficient (ca. 1.3 X 10%), p, is the air density (1.2

x 10? g cm?) and U, is the wind speed at the height of 10 m above surface.

2-2-2. Bottom

The condition of no mass flux through the bottom is effected by specifying zero
vertical velocity and diffusion coefficient there. The bottom stress, which accounts for
resistance by friction at the estuarine bottom, is calculated using a quadratic law. That
is, at z = -H,

T, = Azg_Z' = Cd'ullull (2-8)

where 7, is the bed shear stress, u, is the velocity at the first grid point above bottom
and C, is the friction coefficient on the order of 10°. Two options are provided in this

model to calculate C4, which are:

C, gn?Az™® (2-9)

or

Ca

-2
2 [m(;ﬁ) - 1] (2-10)
where n is the Manning’s friction coefficient, « is the von Karman constant (ca. 0.4), Az
is the bottom layer thickness and z, is the bottom roughness height. Equation 2-10 is
based upon the logarithmic velocity profile over the bottom layer. This velocity profile
may be modified by acceleration and stratification, though the present formulation does

not account for this modification. When estimating the total frictional force, Blumberg’s

approximation (1975), 7,[1 + (dB/3z)2]* = 7, 0B/dz, is used.



2-2-3. Upstream boundary
The landward boundary (x = 0) of the model is chosen at the fall line or landward
limit of tidal influence. It is assumed that the freshwater discharge and salinity are

known at this boundary. They are, respectively, at x = 0,

u = _Q;_t)- and s = known , (2-11)

where Q(t) is the freshwater discharge through the upstream boundary and A is the
cross-sectional area there. Velocity (u) is assumed to be constant over depth at this
boundary. Since the tide propagates farther upriver than the salt does, the salinity at the

upstream boundary is specified to be zero.

2-2-4. Downstream boundary

The seaward boundary (x = f) is located near the mouth of the estuary. The
surface elevation is specified as a function of time either with harmonic functions or with
the field measurements at this boundary.

In calculating velocities at the open boundary, the horizontal velocities are linearly
extrapolated to a fictitious model transect outside the mouth, and the advective and
diffusive terms are calculated over this fictitious model segment. An alternative
approach is to assume that the dominant momenturﬁ balance in partially mixed estuaries
takes place between the effects of surface slope, density gradient, and turbulent shear
stress neglecting the horizontal advection and diffusion of momentum at the mouth. The
difference between the results of the two methods is negligible, and the former method is
adopted for this model.

Finally, a condition for the salt balance equation (Eq. 2-5) must be given. An
"oceanic" or "bay" salinity is assumed to exist off the mouth of the estuary. During

flood tide, the bay water is advected into the estuary, increasing the salinity at the mouth



until the bay salinity is achieved. Following the suggestion of Thatcher & Harleman
(1972), a period of adjustment is allowed after the flow starts to flood and before the
salinity at the mouth reaches the bay value. In the model, an input parameter is assigned
for the specification of this adjustment period, and the salinity is assumed to increase
linearly with time during this period. During ebb tide (u > 0), the horizontal salinity
profile is assumed to have advected out of the mouth as a "frozen" pattern, i.e.,
neglecting the diffusion. That is, atx = ¢,

% = -g-; u (2-12)
2-3. Turbulence Closure Model

The three-dimensional equations for volume, momentum and salt expressed in
terms of the instantaneous flow field and salinity distribution, need to be averaged over a
time interval longer than the turbulence time scale but much shorter than the tidal period,
to derive the equations in terms of mean quantities. This time-averaging of momentum
and mass balance equations gives rise to Reynolds stress and flux terms, which account
for the diffusive exchange of momentum and salt, respectively, by small-scale turbulent
motion. Then these time-averaged equations are laterally averaged to obtain the basic
equations in Section 2-1-1. In a system with lateral inhomogeneity, the spatial-averaging
in the lateral direction of the momentum and mass balance equations produces dispersion
terms. These dispersion terms, owing to their similar mathematical appearance to
Reynolds terms, are usually incorporated into the Reynolds terms and treated as one
term to represent the mixing of momentum or salt. In Equations 2-3 and 2-5, therefore,
A,, A,, K, and K, should be interpreted as lateral average values that take account of
both diffusive and dispersive processes (Fischer 1967).

The system of equations would be closed only through the parameterization of



Reynolds stress and flux terms. Formulation of the Reynolds stress and flux terms
mathematically, i.é., the turbulence closure model, has been, and still is, one of the most
problematic steps for the laterally integrated two-dimensional or three-dimensional
numerical models. The current practice ranges from a simple eddy viscosity approach to
more complicated second order closure schemes (Blumberg 1986). The most reasonable
way, with the current understanding of the turbulent mixing processes, is to choose
cautiously the best method for an application and to calibrate it by comparison with field
data (Wang et al. 1990). The oldest, yet still the most popular method of parameterizing
the Reynolds terms, is the one based upon the eddy viscosity hypothesis. In Equations
2-3 and 2-5, the Reynolds terms are already expressed in terms of eddy viscosities (A,
and A)) and diffusivities (K, and K,).

2-3-1. Vertical turbulent mixing coefficients

The vertical coefficients (A, and K,) are strongly affected by the flow velocity, the
relative roughness of the flow channel and the vertical stratification. Their values can
vary over several orders of magnitude at a fixed point in an estuary during a tidal cycle
(Odd & Rodger 1978).

In the present model, the mixing length concept, first conceived by Prandtl, is used
for A, and K,. For flow with two parallel plane boundaries in a wide channel of depth
h, Rossby & Montgomery (1935) proposed the mixing length form:

A4, = az’(l —%)2 |%-‘zf| 6u(R) @-13)

Z
Z

K, = o22-271 %) om) (2-14)

where Z is the distance from the surface, « is a constant to be determined empirically,
and ¢, and ¢ are the stability functions for momentum and mass, respectively. The

local Richardson number (R,), a measure of stability, is defined by,
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. 8%y -
R - -£EDHGD (2-15)

The stability functions in Equations 2-13 and 2-14 account for the inhibition of the
vertical exchange of momentum and mass (salt) by a stable density structure. Many
studies have been performed for ¢, and ¢, and there seem to be as many sets of
formulations for them. Although the effect of the stratification on the vertical turbulent
exchange is a function of R;, the theory does not dictate what form this function should
have (Perrells & Karelse 1981).
A. Munk-Anderson type formulation: A review of the various formulations for ¢,,
and ¢ shows the following general forms (Bowden & Hamilton 1975; Blumberg 1986),
S = (1 + By R™ (2-16)
¢s = (1 +BsR)* (2-17)
where By, Bs, qu and qg are constants to be determined empirically. In the numerical
modeling, these constants can be determined through model calibration. For a given
condition, however, different sets of these constants can exist. That is, there are too
many degrees of freedom. Results from previous studies were used to determine some
of these constants. For gy and qg, this model adopts the values of Munk & Anderson
(1948), qm = -1/2 and qs = -3/2, which indicates that a stable density gradient reduces
the vertical turbulent exchange of mass more than that of momentum. In the numerical
modeling, the constants including B and s are usually evaluated through comparison of
model results with field measurements of a conservative substance such as salt. This
practice makes the evaluation of By, which affects the vertical exchange of momentum,
somewhat ambiguous. A priori there is no particular reason to consider that 8y # Bs.
Since the difference in the effect of density structure on momentum and salt is already
included in choosing the constants, qy and g, it is assumed that By, is equal to ;.

When the wind effect is included, the resulting formulations for A, and X, are,
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A = aZ?(1- Z)2| |(1+BR)’ +a fT_exp(—.“_".Z) (2-18)

K

Z

aZ?(1- Z)2| 1(1 +BR) 2 + o Ef.exp( ol (2-19)

where H,,, T and L are the height, period and length, respectively, of wind-induced
waves, and the constants (o, 8 and o) are determined through model calibration. The
second terms in Equations 2-18 and 2-19 account for the turbulent mixing by wind-
induced waves, and the first part, o, +H,*T, is the formulation proposed by Ichiye
(1967). The depth dependence deduced by Pritchard (1960) using the James River data,
consists of two parts; exponential decay with depth, exp(-27Z/L), and shape function
with depth, Z(1-Z/h). In the study of the wind effects on turbulent mixing in lakes,
Ford (1976) used the exponential decay but not the shape function. The shape function
having a parabolic shape with depth renders the wind effect zero at the surface (Z = 0).
The present model includes only the exponential decay term, which does not reduce the
wind mixing just below the surface. |

Pritchard (1960) also included the stability function in the wind mixing term to
account for the inhibition of mixing due to stratification. The winds blowing over an
estuary influence the velocity structure as well as the salinity structure. In a vertical
two-dimensional model, however, the former responds only to the longitudinal
component of wind, while the latter is not a function of wind direction. In the events of
wind blowing across an estuary, therefore, the validity of using Au/Az as an estimate of
the velocity shear near the surface may be doubtful and so is that of using R, calculated
from Au/Az as a measure of stability. Besides, the vertical density gradient may be
negligible in the surface mixing layer that is mostly affected by wind, and thus the
stability function is not applied to the wind mixing term in Equations 2-18 and 2-19.

For stable conditions (R, > 0), Equations 2-18 and 2-19 are used to calculate A,

12



and K,. The unstable situation is usually taken care of by the convective adjustment
process in which the unstable portion of water is neutralized by using average value
(Bryan & Cox 1967; Blumberg 1986). This adjustment, if used in the model, does not
allow the unstable condition to exist at all. In the present model, When R; < 0, A, and
K, are calculated with Equations 2-18 and 2-19 without including the effect of the
stability functions, that is, assuming R; = 0. This treatment, although it would allow the
vertical instability to exist longer than it should, does allow the existence of the unstable
conditions, which have been frequently observed in Virginia estuaries including James,
York and Rappahannock estuaries (Brooks 1983).
B. Mellor and Yamada Level 2 turbulence model: Mellor & Yamada (1974 and
1982) developed a hierarchy of turbulence closure models depending upon the various
degrees of approximations and simplifications made. The Levels 4, 3 and 2'2 models
require the solution of additional partial differential equations, and the simple Level 2
model gives a set of algebraic equations for A, and K, that are comparable to Equations
2-18 and 2-19. The present model has the Mellor and Yamada (M&Y) Level 2
turbulence model (Mellor & Yamada 1974 and 1982) as a second choice to estimate the
vertical turbulent mixing coefficients.

The M&Y Level 2 model, like Equations 2-18 and 2-19, is based upon the local
equilibrium, in which the turbulent kinetic energy produced by shear and buoyancy is
balanced by the energy dissipation. The stability functions in the M&Y Level 2 model

may be expressed as,

o, = |L KRR -R,R) ’ (2-20)
" (1 -R)” (1 -R,'R)

6. = L |0 -RRP (A -R,"R) : 2-21)
*  P¥| (1-RY (1-R,'R)
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B, - 64 .. .
R, = 5~ 112A1 +' 35, = critical flux Richardson number (2-22)
R - Bl (1 - 3C1) - 6/11 (2_23)
n B,(1 - 3C) + 124, + 94,

B, - 64
R, = ! ! 24
7 B, + 34, + 3B, @24

_ 11 Ry _ R, R, (2-25)

R, = 3 P,”-IT,; R + PR, R} + 2P ’N-ITﬂ-(—R; -2R, + (PR’

Here, the flux Richardson number (Ry) is the ratio of the buoyant production to shear
production of turbulent energy, i.e., Ry = (¢s/dp) R;, and PN is the turbulent Prandtl
number at neutral conditions. Using the constants in Mellor & Yamada (1982),

(A, B, Ay, B,, C,, PN = (0.92, 16.6, 0.74, 10.1, 0.08, 0.80) (2-26)

the followings are obtained;

(Re, R, Rp, R) = (0.191, 0.234, 0.223, 0.196) @-27)
\
R - 0.656(R,. +0.178 - |R? - 0.323R, + 0.0318 | (2-28)

where R, is the critical Richardson number above which mixing ceases to exist due to
the stable stratification. From Equations 2-18 and 2-19, then, the vertical mixing

coefficients, including the wind effect, are expressed as,

S
I

3

- - 3 2

_ a'zz(l _Z)zI% (1 5’24Rj) (1 4‘27Rj) + awHw exp(_ 211-7) (2_29)
R 'az' | T(A-Ry® (1-4.48K) T 3

1

' - 3 - 3 2

K @ 721 _E)zli‘)y_l (1-5.24R)’ (1-4.27R) . awH" exp(- 2,,.2) (2-30)
£ 0.8 h” oz (1-R)* (1-4.48R) T L

where o’ and «, are determined through model calibration. Equations 2-29 and 2-30
with R, estimated from Eq. 2-28 are used to calculate A, and K, when -10 < R; < R,
= 0.196 (or -11.8 < R; < R, = 0.191). When R, is greater than R, the background

14



value of 0.1 cm? sec? is used for A, and K, to avoid numerical instability. When R; <
-10, A, and K, are calculated with Equations 2-29 and 2-30 assuming R; = -10. Note
that since the stability functions (Equations 2-20 and 2-21) are defined and meaningful
even for unstable condition, the R, are allowed to be negative till -10 below which the R,
is assumed to be -10. This treatment is to prevent the calculation of mixing coefficients

from overflowing in the source program.

2-3-2. Horizontal turbulent mixing coefficients

The horizontal mixing coefficients (A, and K,) are of the order of 10° of the
vertical mixing coefficients (Dyer 1973). Results of diffusion measurements in English
estuarine waters showed that K, ranged from 10* to 10° cm? sec? (Talbot & Talbot
1974). Festa & Hansen (1976) studied the importance of exact values of A, and K,.
Varying the momentum exchange coefficient from A, = A, to A, = 10°A, caused
negligible effects on the results of their tidal average model. The change, however, in
the mass exchange coefficient from K, = K, to K, = 10’K, did produce significant
changes in their results.

The horizontal mixing terms, despite their relative insignificance in the momentum
balance, are retained in the model for the stability consideration. The present model
uses constant values for A, and K, and they are adjusted, within the range of 10* to 10°

cm? sec!, through model calibration.

2-4. Method of Solution
2-4-1. Grid system and geometry

The system of equations is solved using finite difference method with a uniform
grid of spatially staggered variables. The geometry of the grid system used in the model

and the location of variables within the grid are shown in Fig. 2-1. The grid system has
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n defined at the middle of each segment, while s, B, p and p at the center of the grid
cell. The variables, w, A, and K,, are defined at the bottom face of the grid cell, while
the grid containing u, A, and K, is staggered by half the segment length as these are
defined at the grid cell walls. This staggered grid structure, also used by many other
investigators, permits easy application of the boundary conditions and evaluation of the
dominant pressure gradient force without interpolation or averaging (Blumberg 1977).
The geometry in the laterally integrated two-dimensional model is represented by
the width at each depth at the center of each grid cell. A typical cross-section is
illustrated in Fig. 2-2, which shows how the model accounts for the variation of width

with depth.

2-4-2. Vertical integration

Large vertical gradients of variables (u and s) require a grid size that is much
smaller in the vertical direction than in the horizontal direction. To accomplish this, the
fluid motion is considered in horizontal slices with an exchange of momentum and mass
between these slices. Integration over the height of the k™ layer can be performed by
assuming that all variables are practically constant through the depth of any layer.
Employing Leibnitz’s rule and the boundary condition of no mass flux normal to the

boundaries, the following equations can be obtained:

%?— = —Bl—l[WbBb - %(ulBlhl) +q] (2-31)
_ 1 d
Wr = F[Wb b ~ 3;(“1531:”&) + (@)l (2-32)

T

S Bl + S BUM) + Wi, ~ WuB,

_BMdp, . 8., ouy v, ou, _ ou )
—;'("a_x-)k I AWBME] + B, - (AB=-), (2-33)
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S5BAD * S Bsh) + wisiBr - WP,

d d d d
= SIEBAGI) + KB, - KB, + S, (2-34)

where
Uy, By, hy & (q,);x = longitudinal velocity, width, thickness and point source discharge
distributed to the k™ layer, respectively,
u,, W, & B, = longitudinal velocity, vertical velocity and width at the bottom of a
layer, respectively,
ur, Wy & B; = longitudinal velocity, vertical velocity and width at the top of a layer,
respectively.
The term S, in Eq. 2-34 may represent the effect of the change in storage volume on
the flanks (Fig. 2-2) with the change in tidal elevation. The subscript 1 means the
interaction occurs only at the top layer. The storage in each segment will act as a source
for the main channel on the falling tide and act as a sink on the rising tide. The salinity
in the storage area remains the same on the falling tide, but changes on the rising tide
because of the mixing between the incoming water from the main channel and the water

in the storage area.

2-4-3. Finite difference treatment

A two-time level finite difference scheme is used to solve Equations 2-31 through
2-34. Three-time level (leapfrog) schemes are advantageous in dealing with the Coriolis
term. They, however, tend to have problems of time-step splitting wherein the
numerical solution alternates between physical and computational modes at each time
step, even with viscous terms present (Roache 1972). The computational mode arises
from using a second-order difference equation to approximate a first-order differential

equation, and is a source of error (Haltiner & Williams 1980). The application of either
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Euler-backward scheme (Blumberg 1977; Wang & Kravitz 1980) or weak time filter
(Asselin 1972; Blumberg & Mellor 1987) has been used to eliminate the instability
resulting from time-step splitting. In the present study, the vertical two-dimensional
hydrodynamic model does not include the Coriolis term and thus a two-time level
scheme is used to approximate the time derivative terms in Equations 2-31, 2-33 and
2-34.

Equation 2-31 is solved explicitly to obtain the free surface elevation (), and
Equations 2-33 and 2-34 are solved to get the longitudinal velocity (u) and salinity (s),
respectively. Then, Eq. 2-32 is solved for the vertical velocity (w). To ensure stability,

1) the pressure gradient term in Eq. 2-33 is evaluated using 5 at a new time step,

2) the vertical mixing terms in Equations 2-33 and 2-34 are treated implicitly,

3) the horizontal mixing terms in Equations 2-33} and 2-34 are retained.
The implicit treatment of the vertical mixing terms results in the tri-diagonal matrix in
the vertical direction, which is solved using a LINPACK subroutine (SGTSL.FOR)
developed at the Argonne National Laboratory. Further development of the pressure
term is given in Section 2-4-5. The complete finite difference forms of Equations 2-31
through 2-34 are presented in Appendix A.

In numerical modeling of the advection term, central and upwind (or upwind
weighted) difference schemes are two routinely used ones. The upwind (or upwind
weighted) difference scheme introduces the artificial numerical diffusion and thus suffers
from severe inaccuracies, although the numerical diffusion makes the scheme stable and
guarantees non-negative mass concentrations (Roache 1972). The use of fine grid
spacing can alleviate this problem, but the consideration of computational aspects (speed
and storage), particularly in the longitudinal direction, makes it impractical for the
modeling of two or three-dimensional turbulent flows. On the other hand, the central

difference scheme, which is second-order in accuracy and free of numerical diffusion, is
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non-convergent particularly in regions where advection dominates diffusion (Roache
1972).

The unstable feature of a central difference scheme becomes more problematic in
the mass balance equation (Eq. 2-34) than in the momentum balance equation (Eq. 2-33) _
in which the sink term (friction) tends to dissipate this oscillatory behavior. Primary
dynamic balance in partially mixed estuaries is between the surface slope, density
gradient and vertical gradient of turbulent shear stresses (Pritchard 1956). Since the
horizontal and vertical advection terms are not important in the momentum equation,
they are approximated with the central difference scheme in Eq. 2-33.

The dominant salt balance, however, takes place between horizontal advection and
vertical turbulent diffusion (Pritchard 1954), making the accurate numerical treatment of
horizontal advection essential to the faithful model behavior. While the relatively small
vertical advection term can be treated with the central difference scheme in Eq. 2-34, the
horizontal advective transport should be modeled with minimal introduction of artificial
numerical oscillation or diffusion. The QUICKEST (Quadratic Upstream Interpolation
for Convective Kinematics with Estimated Streaming Terms) scheme, that has been
successfully applied to the modeling of the advection term (Leonard et al. 1978; Hall &
Chapman 1985; Johnson et al. 1991), is used for the horizontal advection term in Eq.

2-34.

2-4-4. QUICKEST scheme

The scheme, derived by Leonard (1979), addresses the problems of estimating the
concentrations at the cell walls by both central and upwind difference schemes. The
QUICKEST scheme is based on a conservative control volume formulation and estimates
cell wall concentrations with a quadratic interpolation using concentrations in two

adjacent cells and that at the next upstream cell. This method has the properties of high
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accuracy (third-order accurate in space) and significantly reduced numerical diffusion.

Considering only advective transport, the estimated concentration at the right wall face

of cell i (s,) is,

c
" = L(s,+8.) - =2(5,,-5) + L(C2-1)CURV (2-35)
2 2 ¥ 6 r r
where
= _ At
C, = Courant number = Eui*’ (2-36)

CURYV, = CURY; for u;,; = 0 where CURY, = s§;,; - 25; + s;;
CURV,,, foru,, <0
Equation 2-35 shows that the Courant number determines the contribution of each cell

concentration to the cell wall concentration; the larger C, (i.e., the faster the flow), the

more contribution from the upstream cell.

2-4-5. Pressure gradient term
From the hydrostatic equation (Eq. 2-4), Ap = - pgAz. Using this equation with

the grid system,
h,_ h
Pea ~ P = 80,y —;—l t pk—zf) (2-37)

which gives the pressure gradient averaged over the k™ layer,

+ 1.9 (2-38)

ap, _ (op & 9P, by
FrUB L X"

k-1 ax
and this is the one appeared in Eq. 2-33. Therefore, with (dp/dx), known, all other
(dp/9x),’s can be calculated.

The pressure gradient can be decomposed into the barotropic and baroclinic terms,
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n

ap _ o, 1o 239
= pg§+gl—dz (2-39)

and the average pressure gradient for the top layer is,

[ 2P| R PN 2-40
(== 80, x+2(7’+17x- ( )

in which 5**!, the surface elevation at a new time step, is used for the stability

consideration.

2-4-6. Stability

The following stability criteria should be met to have a stable, convergent set of

solutions,
Ax
At < —ﬁ_- (2-41)
g
A < .Au_x (2-42)
2
A < %(‘;") (2-43)

X

where At is the time step and Ax is the segment length in the x direction. The Courant-
Fredrick-Levy (CFL) condition (Eq. 2-41) arises from the use of #**! in evaluating the
surface slope (in Eq. 2-40) in the momentum equation (Eq. 2-33). The use of " instead
would make the numerical scheme used in this model unconditionally unstable. Equation
2-42 is the condition that the QUICKEST scheme for the horizontal advection term in
the salt balance equation (Eq. 2-34) is stable up to C, equal to one. The last diffusion
condition (Eq. 2-43) is due to the explicit treatment of the horizontal mixing term in Eq.
2-33. The analogous condition for Eq. 2-34 is not necessary since A, is always greater

than, or equal to, K,. The implicit treatment of the vertical mixing terms in Equations
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2-33 and 2-34 removes the diffusion condition in the z direction. Of the three
conditions, the CFL condition is the most limiting stability requirement. For Ax = 2500

mand h = 10 m, At < 250 sec.
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III. DESCRIPTION OF THE WATER QUALITY MODEL

3-1. Basic Equations
The water quality model is based on the equation describing the mass-balance of a
dissolved or suspended substance in the water column. The equations that are solved by

the finite difference method have the general form:

3(cB) , 9(cBu) , d(cBw) 9 kB9 + 8 kB + BS + BS 3-1
ot x 0z ax( "Bax) " az( ‘BBZ) i : G-D
where

¢ = laterally averaged concentration of dissolved or suspended substance,
. = time rate of external addition (or withdrawal) of mass across the boundaries,

= time rate of internal increase (or decrease) of mass by biochemical reaction

processes.

The physical parameters (u, w, K,, and K,) in the physical transport terms in Eq. 3-1 are
provided from the hydrodynamic model. The physical transport terms, both advective
and diffusive, are identical for all dissolved and suspended substances, and treated in the

same manner as those in the mass balance equation for salt (Eq. 2-5). The last two

terms of Eq. 3-1 represent the external sources (or sinks) and internal sources (or sinks)
due to the biochemical reactions, and differ for different substances.

In this study, the water quality model consists of eight interlinked components
including phytoplankton population (Chl), organic nitrogen (N1), ammonia nitrogen
(N2), nitrite-nitrate nitrogen (N3), organic phosphorus (P1), inorganic (ortho)
phosphorus (P2), carbonaceous biochemical oxygen demand (CBOD) and DO (Fig. 3-1).
Each of these water quality parameters can be represented by the same equation as Eq.

3-1, but with its own representations of external (S,) and internal (S;) source and sink
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terms. Each rectangular box in Fig. 3-1 represents a component being simulated by the
model. The arrows between components represent the biochemical transformation of one
substance to the other. An arrow with one end unattached to a component (rectangular
box) represents an internal source (or sink) due to the biochemical reaction or an
external source (or sink). The mathematical expressions used in this model for the
terms, S, and S;, for each of the eight components are the extension of the one-
dimensional water quality model described in Kuo et al. (1991). They are presented in
the following sections with emphases given to the modifications made.

One nutrient not included in this model is silica. Silica is a limiting nutrient only
for diatoms and thus it is generally modeled only when diatoms are simulated as a
separate phytoplankton group (Bowie et al. 1985). The present model uses the
chlorophyll ’a’ concentration to quantify the whole phytoplankton population. Besides,
diatoms are not predominant in summer in the western shore tributaries and lower
Chesapeake Bay (Morse 1947; Pattern 1963; Marshall 1967 and 1980; Marshall &
Lacouture 1986). Since the goal of the present model is to simulate the summer

conditions and to study hypoxia, the silica cycle is not included in this model.

3-2. Boundary Conditions

As in the hydrodynamic model, the boundary conditions need to be specified in the
water quality model at four boundaries; free surface, bottom, upstream boundary and
downstream boundary. At the free surface, the wind-induced DO reaeration is
incorporated into the model using Eq. 3-9d (Banks & Herrera 1977). There is no other
mass flux through the free surface. The mass fluxes at the bottom are specified
specifically for each parameter by settling and benthic fluxes. The concentrations of the
parameters to be modeled are assumed to be known at the upstream boundary (Eq.

2-11). The downstream boundary conditions are treated in the same manner as salinity
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as described in Section 2-2-4.

3-3. Phytoplankton Population

The phytoplankton population occupies a central role in the schematic system of
Fig. 3-1. It influences, to a greater or lesser extent, all of the remaining constituents.
No simple aggregate measurement is entirely satisfactory to quantify the phytoplankton
population (Ambrose et al. 1988). Because of the wealth of chlorophyll data available
and the lack of alternative data sets, the concentration of chlorophyll ’a’ is used as a
measure of the phytoplankton population in this model.

The present model of chlorophyll (Chl) includes growth and nonpoint source inputs
as sources, and respiration and mortality as sinks. For the settling of Chl, those settling
down from the overlying layer act as a source, while those settling down to the bottom

or to an underlying layer act as a sink for a layer. The mathematical representation is,

S, = (G-R - PCH (3-2a)
Ko WChi
S, = 75()\‘ Chl,_,-Chl) + (3-2b)
where

A, = O for k = 1 (at top layer),
1 for2 < k < N, and N is the number of layers at each segment,
Chl = concentration of chlorophyll ’a’ (ug 1),
G = growth rate of phytoplankton (day™),
R = respiration rate of phytoplankton (day),
P = mortality rate due to predation and other factors (day™),
Koy = settling rate of phytoplankton (cm day™?),

Az = layer thickness (cm),
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WChl = external loading of Chl (ug day™) including nonpoint source,

V = layer volume (liter).
For the top layer, Az is adjusted to account for the surface fluctuation.
A. Growth: Phytoplankton growth depends on nutrient availability, ambient light and
temperature. A multiplicative relationship between temperature, light and nutrient
limitations is assumed. The functional forms used in the model can be found in Bowie

et al. (1985) and are as follow,

G = k.0, L{,I,k,Chl,Az)- N(N2,N3, P2) (3-2¢)

a’’s?

where

k,, = optimum growth rate at 20°C (day™),

6, = constant for temperature adjustment of growth rate,

T = temperature (°C),

L = attenuation of growth due to suboptimal lighting,

I, = total daily solar radiation (langleys day™),

I, = optimum solar radiation rate (langleys day™),

k, = light extinction coefficient (cm™) at zero chlorophyll concentration,

N = attenuation of growth due to nutrient limitations.

N2, N3 & P2 = concentrations (mg 1) of ammonia nitrogen, nitrite-nitrate nitrogen

and inorganic phosphorus, respectively,

1) Temperature: The exponential function of temperature adjustment with a reference
temperature of 20°C is used for the growth. This function, based on the Arrhenius
relationship, is used whenever temperature adjustment is needed in the model.
2) Light: The light effect (L) is based on the available solar energy and the attenuation
of light through the water column. From the Beer-Lambert law and the Steele (1965)

formulation, the light effect integrated over the layer depth may be expressed as,
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~ e _I, _ _ I, (3-2d)
K A7 [exp .I:exp( K [H +Az]) exp Tsexp( K.H) (]
K, = k, +K,,Chl (3-2¢)
24 V7. -t ,
I =1 —_ d f
f a[td-tu] 2sm[1rtd_tu] if r,<t<iy
= 0 if t<t ort>t (3-2f)
where

= constant = 2.7183,

H, = depth from the free surface to the top of the layer (cm),

K, = light extinction coefficient (cm™) corrected for self-shading of plankton,

K,y = light extinction due to self-shading of plankton (cm™ per ug 1),

I, = solar radiation at time t (langleys day™),

t = time of day (in hours),

t, & t; = time (in hours) of sunrise and sunset, respectively.
3) Nutrient: The nutrient effect (N) is based on the minimum limiting nutrient concept
assuming nitrogen and phosphorus the major growth limiting nutrients. Using the fixed
stoichiometry model based on conventional Monod or Michaelis-Menten Kinetics, the

nutrient effect may be expressed as,

(3-2g)

N = min|_N2+N3 P2
K, +N2+N3’" K, +P2

where
K & K, = half-saturation concentrations (mg 1*) for uptake of inorganic nitrogen
and inorganic phosphorus, respectively.

B. Respiration: Respiration is the reverse of the photosynthesis process and thus
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contributes to the reduction of algal biomass. The respiration rate (R) at which algae

oxidize organic carbon to CO, is expressed as a function of temperature (Bowie et al.

1985).
R = R(Q0)-6,7® (3-2h)

where

R(20) = respiration rate at 20°C (day™),

6, = constant for temperature adjustment of respiration rate.
C. Mortality: The predatory mortality rate should be dependent on the time-variable
herbivore population, which is in turn dependent upon the phytoplankton population. To
avoid adding an additional trophic level to the model, however, both the predatory and
non-predatory mortality rate (P) are combined into a single loss term, which is assumed

to be a function of temperature.
P = P(20)-6,”% (3-2i)

where
P(20) = mortality rate at 20°C (day™),

0; = constant for temperature adjustment of mortality rate.

3-4. Organic Nitrogen

For the nitrogen cycle, three variables are modeled: organic nitrogen (N1),
ammonia nitrogen (N2) and nitrite-nitrate nitrogen (N3). In the modeling of N1, the
following processes are included; ammonification to N2, input due to algal respiration
and death, settling, benthic release, and external loading. The mathematical

representation is,
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K ,,N1

S = ~_™M " 4+ a(R F C 3-3
‘ K,,,+NI a,(R+a P)F,Chl (3-32)
K B,-\B
S, = MG\ NI -NI) + BenNI B,-\,B,., . WNI (3-3b)
Az Az B, |4
where

N = 1lforl <k < N-1,
0 for k = N (at bottom layer),

N1 = concentration of organic nitrogen (mg 1),

K, = ammonification rate of N1 to N2 (mg 1! day!) = K,,,(20)-6,7%,

K,12(20) = ammonification rate at 20°C,

6, = constant for temperature adjustment of ammonification rate,

K., = half-saturation concentration for ammonification (mg 17),

a, = ratio of nitrogen to chlorophyll in phytoplankton (mg N per ug Chl),

a, = fraction of consumed phytoplankton recycled by zooplankton,

K,;; = settling rate of N1 (cm day™?),

F, = fraction of metabolically produced nitrogen recycled to the organic pool,

BenN1 = benthic flux of N1 (g m? day?),

WN1 = external loading of N1 (mg day™’) including point and nonpoint sources.
The model reads in the benthic fluxes of N1, N2, N3, P1, P2 and CBOD, and sediment
oxygen demand (SOD) in g m? day! and multiplies them by 100 to correct for the

dimensional consistency (note Az is in ¢cm).

3-5. Ammonia Nitrogen
The present model of N2 includes the following processes; ammonification from

N1, input from algal respiration and death, benthic release and external loading as
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sources, while nitrification to N3 and uptake by algae as sinks. The mathematical

representation is,

K, N2 po KNI
5, = - + M2 g R+aP)Y1-F)Chl - a,G-PR-Chl  (3-4
‘TR WIK,D0 K1 | WReHATI - a, (3-42)

S = BenN2 B,-\,B, + WN2

¢ Az B, vV (3-4b)
where
K., = nitrification rate of N2 to N3 (mg 1" day™?) = K;(20)+685™%,
K,,3(20) = nitrification rate at 20°C,
0s = constant for temperature adjustment of nitrification rate,
K23 = half-saturation concentration for nitrification (mg 1),
K,. = half-saturation concentration for oxygen limitation of nitrification (mg 17),
DO = concentration of dissolved oxygen (mg 1),
PR = preference of phytoplankton for N2 uptake, which is given by
N2 N3 . N2 K, (3-40)

K_+N2)(K, +N3) (N2+N3)(K,, +N3)

BenN2 = benthic flux of N2 (g m? day™),

WN2 = external loading of N2 (mg day™) including point and nonpoint sources.
Nitrification by aerobic autotrophs (Nitrosomonas and Nitrobacter) requires oxic
conditions, and thus the inhibition of nitrification by low DO is included (Ambrose et al.
1988). Nitrification may be formulated using first-order rate equation, which increases
nitrification as ammonia concentration increases. At the high level of ammonia,
however, nitrification being an enzymatic reaction by bacteria cannot proceed faster than
its maximum rate and thus is zero order, i.e., independent of substrate concentration

(Wild et al. 1971; Huang & Hopson 1974). Nitrification, therefore, is formulated using
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Monod kinetics so as to have first-order kinetics at lower ammonia concentrations
(limited by substrate availability) and to have zero-order kinetics at higher concentration
(limited by bacteria availability). In the present model, this Monod or saturation-type
formulation is used for all processes that transform one parameter to another including
ammonification and mineralization of organic phosphorus. The fact that ammonia is
preferably, to nitrate, taken up by phytoplankton for growth is incorporated into the

model by using the ammonia preference term.

3-6. Nitrite-Nitrate Nitrogen
Included in the modeling of N3 are sources from nitrification, benthic release and
external loading, and sinks due to algal uptake and denitrification. The mathematical

representation is,

K .,.N2
5 = - DO __ _ , Ga-prycHl (3-52)
K,,;+N2 K ,+DO
B -\ B
Se = _Kn33——K—h3-3—-N3 + BenN3 k x2 k+1 + WN3 (3"5b)
K, +DO Az B, 17
where

K33 = denitrification rate (day™) = K;33(20) - 05",

K,33(20) = denitrification rate at 20°C,

6, = constant for temperature adjustment of denitrification rate,

K,;; = half-saturation concentration for denitrification (mg 1),

BenN3 = benthic flux of N3 (g m? day?),

WN3 = external loading of N3 (mg day™) including point and nonpoint sources.
Denitrification, which occurs only under extremely low DO conditions, is limited by DO

availability. This limitation is incorporated into the model using Monod type expression
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(Ambrose et al. 1988).

3-7. Organic Phosphorus

For the phosphorus cycle, two variables are modeled: organic phosphorus (P1) and
inorganic phosphorus (P2). The present model of P1 includes the following processes;
mineralization to P2, input due to algal respiration and death, settling, benthic release,

and external loading. The mathematical representation is,

S, = _ _KoiP1 + a (R+aP)F Chl 3-6a
T xS ®eDE (-6

hpl2
BenPl1 Bk-)‘szq + WPl

-6
Az B, v (3-6)

K
S, = 2"5 ,P1,,-Pl) +

where
P1 = concentration of organic phosphorus (mg 1),
K,;; = mineralization rate of P1 to P2 (mg 1" day™) = K,1,(20)-6,"%,
K,12(20) = mineralization rate at 20°C,
0, = constant for temperature adjustment of mineralization rate,
Kip1» = half-saturation concentration for mineralization (mg 1),
a, = ratio of phosphorus to chlorophyll in phytoplankton (mg P per ug Chl),
K, = settling rate of P1 (cm day™),
F, = fraction of metabolically produced phosphorus recycled to the organic pool,
BenP1 = benthic flux of P1 (g m? day™),

WP1 = external loading of P1 (mg day™) including point and nonpoint sources.

3-8. Inorganic (or Ortho) Phosphorus

The following processes aré included to model P2; mineralization from P1, input
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from algal respiration and death, uptake by algae for growth, settling, benthic release,

and external loading. The mathematical representation is,

S = Kyi2P! +a(R+ 1-F)Chl - a G-Chl 3-7
. - ta, a P)( ) a,G-C (3-7a)

! K, +PI

BenP2 Bk—)‘szﬂ + WP2

Az B 7 (3-70)

K
S, = ;;2 (\P2,,-P2) +

k

where
K,y = settling rate of P2 (cm day™),
BenP2 = benthic flux of P2 (g m? day™),

WP2 = external loading of P2 (mg day™) including point and nonpoint sources.

3-9. Carbonaceous Biochemical Oxygen Demand
In the modeling of CBOD, the followings are included; CBOD decay, input from
algal death, settling, benthic release, and external loading. The mathematical

representation is,

S, = -K.CBOD + a.a_(aP)Chl (3-82)
s, = Xsoo\ cBOD, ,-cBOD) + 502 _ Koo BiNBi | WBOD 54,
¥ Az K,,+DO B, v

where

CBOD = concentration of carbonaceous biochemical oxygen demand (mg 1),
K, = first-order decay rate of CBOD (day™) = K (20) -0,

K. (20) = CBOD decay rate at 20°C,

6; = constant for temperature adjustment of CBOD decay rate,

a, = ratio of carbon to chlorophyll in phytoplankton (mg C per ug Chl),

a,, = ratio of oxygen demand to organic carbon recycled = 2.67,
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Kpop = settling rate of CBOD (cm day™),
SOD = sediment oxygen demand (g m? day™),
Kpo = half-saturation concentration for benthic flux of CBOD,
WBOD = external loading of CBOD (mg day™) including point and nonpoint
sources.
Under anoxic conditions, SOD increases CBOD flux into the water column, which is

incorporated into the model using Monod type expression.

3-10. Dissolved Oxygen

The present model of DO includes the following processes; sources from
photosynthesis, reaeration through surface and external loading, and sinks due to decay
of CBOD, nitrification, algal respiration and sediment oxygen demand (SOD). The

mathematical representation is,

K,.N2 po R
. = -K.CBOD - z + PQ-G-—)Chl 3-9a
Sl [4 ano Kh23+N2 Km-‘ +D0 acaco( Q G RQ) ( )
B, -\B
‘ Az K, ,+DO B, v
where

a,, = ratio of oxygen consumed per unit of ammonia nitrogen nitrified = 4.57,

PQ = photosynthesis quotient (moles O, per mole C),

RQ = respiration quotient (moles CO, per mole O,),

K, = reaeration rate (day?),

DO, = saturation concentration of DO (mg 17),

WDO = external loading of DO (mg day™) including point and nonpoint sources.
As a counterpart to CBOD flux .term in Eq. 3-9b, SOD is inhibited by low DO
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conditions.
The reaeration coefficient (K includes reaeration by turbulence generated by

bottom friction (O’Connor & Dobbins 1958) and that by surface wind stress (Banks &

Herrera 1977), that is,

Ko - |K, l W, o -
eq

where
K.(20) = reaeration rate at 20°C (day™),
K., = proportionality constant = 393.3 in CGS unit,
= weighted velocity over cross-section = X(u,B.h,)/Z(B.h,),
h,, = weighted depth over cross-section = L(B.hy)/B,,
B, = width at the free surface,

W,.. = wind-induced reaeration (cm day™),

72.8U% - 317U, + 3.72U.2 (3-9d)

where U, is the wind speed (in m sec?) at the height of 10 m above surface. The

reaeration rate is assumed to be temperature-dependent (Thomann & Mueller 1987),

K. = K(20)-6,7% (3-9¢)

r

where 0, = constant for temperature adjustment of DO reaeration rate.
Saturated dissolved oxygen concentration (DO,) is calculated as a function of water

temperature and salinity (s in ppt) from a polynomial fitted to the tables of Green &

Carritt (1967).
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DO, = 0.146244-10> - 0.367134T + 0.4497-10727?

- (0.966-107 - 0.205-102T - 0.2739-107395)S (399

3-11. Method of Solution

Equation 3-1 for each of eight water quality parameters is approximated with a
finite difference scheme and solved for the time varying concentration field in the same
way as the mass balance equation for salt (Eq. 2-5) in the hydrodynamic model.
Wherever the equation of one water quality parameter involves other water quality
parameters, the concentrations of the other parameters are expressed in terms of known
values at the beginning of the time step. Therefore, the biochemical interaction terms in
the coupled equations do not introduce additional unknowns for the finite difference

equation of each individual water quality parameter over that of salt.
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IV. MODEL OPERATION (EXECUTION)

This chapter gives the general description of what the model does when one
prepares the input files as described in Appendix C and runs the model. When applying
this model to any system, data for geometry and calibrated constants are required. The
geometric data include segmentation of the system (the number of segments and layers)
and the main channel width, depth, side storage area, drainage area, etc (see Appendix
C). The calibrated constants include Manning’s friction coefficient (or bottom roughness
height) and constants in vertical mixing coefficients (Eq. 2-18 or Eq. 2-29) in the
hydrodynamic model, and a number of biogeochemical coefficients in the water quality
model (see Appendix C).

In addition, for each model simulation, initial and boundary conditions are
required. Initial conditions, the conditions at the beginning of a model simulation, need
to be specified for velocities (u and w), surface elevation (n) and salinity (s) in the
hydrodynamic model, and eight parameters (DO, Chl, CBOD, N1, N2, N3, P1 and P2)
in the water quality model. To drive the model, the following external forcing variables
are needed as boundary conditions:

(@) 7 and s at the downstream boundary,

(b) freshwater inflow at the upstream boundary (fall line),

(c) surface wind stress,

(d) concentrations for eight water quality parameters at both up and downstream
boundaries,

(e) point and distributed source inputs for eight water quality parameters,

(f) benthic fluxes of nutrients and SOD,

(g) temperature,

(h) solar radiation.
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When the model runs, it starts with initial conditions and calculates u, w, 7, s and
eight water quality' parameters at each grid cell at each time step until the time that one
specifies to stop the model run. It takes relatively short time for u, w and 5 to be
stabilized, i.e., for the model solution to be independent of initial conditions. For the
present model, it takes less than 10 tidal cycles for u, w and 5 to be stabilized.
Therefore, any arbitrary conditions can be used as initial conditions for u, w and 5
("cold start") as long as one does not use the model results for the first 10 tidal cycles.
It, however, takes much longer time for masses to be stabilized. Considerable effort,
thus, is required to specify the initial conditions for masses such as s and water quality
parameters.

As the model calculation proceeds, it is constrained by the above-mentioned
boundary conditions. The first three conditions (a-c) drive the hydrodynamic model to
solve the continuity, momentum and salt balance equations, which gives the information
of the physical transport processes. The following five conditions (d-h), with the
information of the physical transport processes from the hydrodynamic model, drive the
water quality model to solve eight mass balance equations, giving the distribution of
eight water quality parameters. Detailed description of input data file organization is
given in Appendix C.

At each time that one specifies to write the model results, the hydrodynamic model
gives the following informations at every grid cell in four output files:

1) instantaneous u, w, 7, s, vertical viscosity, and vertical diffusivity, and their
averages over the previous tidal cycle,

2) range of surface current velocity, tidal range, and time of high tide and low tide
during the previous tidal cycle,

3) time of, and salinity at, slackwaters during the previous tidal cycle.

At each time that one specifies to write the model results, the water quality model gives
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the following informations at every grid cell in one output file:

1) instantaneous concentration of eight water quality parameters,

2) their daily averages, maximums and minimums over the previous day.
The times for the water quality output can be specified independent of those for the
hydrodynamic output. Detailed description of output data file organization is given in

Appendix C.
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APPENDIX A. FINITE DIFFERENCE EQUATIONS

In this Appendix, the finite difference formulations are given for Equations 2-31
through 2-34. The grid system is shown in Fig. 2-1 using the subscripts i and k to
represent the number of intervals in the x and z directions, respectively. The subscripts

1 and 2 denote the time levels old and new, respectively.

A-1. Free Surface Elevation
Equation 2-31 is solved to get 5 at the top layer only, and thus k is always 1 in the

following two equations,

_ At B, *B;4 _ 1 _ Qix -
My = My ¥ B,,+575, 3 Wikt E(TMPM TMP) + = (A-1)
and |
TMP. = By tBy (b + ) + () (A-2)

i 2 2 ik,1

where
Q. = lateral volume inflow including the point source discharge and exchange with
side storage area,
STB, = equivalent width of the storage area = SST;/Ax.
The inclusion of STB; in the denominator of Eq. A-1 accounts for the effect of the side

storage area, SST;, and is explained in Section A-5.

A-2. Conservation of Longitudinal Momentum
The implicit treatment of the vertical viscosity term in Eq. 2-33 results in the

equations containing the N XN tri-diagonal matrix where N is the number of layers at

A-1



each segment. The equations in the vertical direction may be expressed as,

[Alw] = [F] (A-3)
That is,
(D, E, 0 0 (u,, [ F,
C,D,E, 0O 0 u,, F,
0 . 0 . .
0 . ¢ D, E ol|lu,l| = | A (A-4)
0 . . 0 . .
0 Cyva Dy Eyy | Uiy Fy,
0 Cv Dy ) W2 | F, )

and the non-zero elements, C,, D, E; and F,, are given by,

B . .+ B +B. +B.
E = = 2 i-1,k i-1,k+1 ik+1 (A ~ 4 ) (A-S)
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I
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(B, +\ ", )+(h +A ; .
kAN M) (YA, ) ( %_Q)i,m ~ N, STSink,,

- 2(B_,,*B,
1+ B P t0ix X

HAdvM,, = {(Bi-l,k +B, ) (B N Mg YA PN, ) Uika

+ (Bi,k +Bm,k) (h, N Mgt h,+\ niol,l) um,k,l} (ui,k,l + ui+l,k,1)
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wind stress at the water-air interface,

D
1l

A = 1 for k = 1 (at top layer),
Ofor2 <k <N,
N

1l

1forl <k < N-1,

0 for k = N (at bottom layer).

(A-9)

(A-10)

The term STSink;, in Eq. A-8 represents the sink of momentum due to the side storage

area, SST;, and is explained in Section A-5.

A-3. Conservation of Salt

The implicit treatment of the vertical diffusion term in Eq. 2-34 results in the

equations containing the N XN tri-diagonal matrix in the vertical direction. In matrix

notation,

[AS][s] = [FS]

(A-11)

which takes the same form as Eq. A-4, and the non-zero elements, CS,, DS,, ES, and

FS,, are given by,
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(A-12)

(A-13)

(A-14)

(A-15)

(A-16)

(A-17)

where 5%, is the salinity at the downstream wall face of cell given by Eq. 2-35. The

term STSinkS;, in Eq. A-15 represents the exchange of salt between the conveying main

channel and the side storage area, and is explained in Section A-5.

A-4. Conservation of Water Mass

The laterally integrated continuity equation (Eq. 2-32) is solved to get w, and the

finite difference formulation is,



A, 2
Wit = m (B +Bi,k+2) Wik t e (Qp)i,m
- Ak; {(Bi,kﬂ B p) Ui gy ~ Biogp vBis) “i,k+1,2}] (A-18)

where Q, is the volume discharge from point sources and B, ,, is assumed to be B;; .,
for k = N-1. Equation A-18 is solved to get w;,, for 1 < k < N-1, and the vertical

velocity is zero at the bottom of the bottom layer, i.e., at k = N.

A-5. Treatment of Embayment as Storage Area

Dispersion produced by tidal trapping may be important for some parts of the
estuary with substantial areas of side embayments, small branching channels, or shallow
flanks. A portion of water with its contained substances is stored temporarily in side
embayments, while the main flow proceeds along the estuary’s major axis on the rising
tide. If recapture of the stored volume is out of phase with the main flow on the falling
tide, longitudinal mixing occurs when the tide reverses.

The present model calculates the longitudinal and vertical variations of the
dependent variables along the conveying main channel but cannot calculate the variations
in the side embayment area. It can account for the exchange of momentum and mass
between the main channel and side embayment by treating the latter as temporary storage
area. Since only the time variations of water surface elevation at the storage area affect
the main channel conditions, and the total depth in the side embayment is usually
shallow, the exchange of momentum and mass may be assumed to happen only at the top
layer.

For the mass exchange of water, it is necessary to include the equivalent width of

the storage area (STB)) in the denominator of continuity equation (Eq. A-1) because the
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surface elevation of the storage area rises and falls in accordance with the main channel.
When the water enters into storage area (i.e., on the rising tide), the storage area in each
segment will act as a sink for both momentum and mass, and the mass concentration in
the storage area will change because of the mixing between the incoming water and the
water in the storage area. When the water leaves the storage area (i.e., on falling tide),
the storage area is assumed to act as a source for the mass only (not momentum), and
the mass concentration in the storage area remains the same for conservative substances.
For the non-conservative substances, the mass concentration on falling tide will be
determined solely by the biochemical processes in the storage area.

For the momentum exchange, therefore, it is needed to include a sink term,
STSink;,;, in Eq. A-8 only on rising tide, that is,

STSink,, = 2(STB,_, +STB) %g‘ui,l,v A = %0, Mgy, >0 (A-19)
For the mass exchange of a dissolved substance like salt, a sink (or source) term,

STSinkS; ;, is needed to be added in Eq. A-15;

Ni2 " Mix

STSinkS,, = STB, 5o
> At sdy
if = My >0 (A-202)
STS, = STS, - STH;; + s;1,(;5-n;1)
' STH,,
STSinks,, = STB,2 "1 g5, if n, - 1, <0 (A-20b)
where

STS,; = salinity in the storage area,

STH;, = depth at the storage area at time step n.
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APPENDIX B. SOURCE PROGRAMS

The model, both hydrodynamic and water quality models, is written in FORTRAN

77 following the ANSI x3.9 (1978) except DO WHILE’ and ’END DO’. This,

however, is the extension of and thus understood by many FORTRAN 77 compilers such

as "Lahey F77L-EM/32" compiler. The model source program consists of the following

ten files;

1Y)
2
3

4)

)

6)

7

8

9)
10)

MODEL-2D.FOR (page B-2) is the main control program,

HYD-2D.FOR (page B-11) has the subroutines for hydrodynamic model,
WQ-2D-IN.FOR (page B-30) has the subroutines for input/output of water quality
model,

WQ-2D.FOR (page B-46) has the subroutines for the main part of water quality
model,

SGTSL.FOR (page B-63) is a LINPACK subroutine to solve a general tri-diagonal
matrix,

COMMON.INC (page B-65) has the common blocks for hydrodynamic model,
BLKDATA.INC (page B-65) has the block data for COMMON.INC,
COM-WQI1.INC (page B-66) has a common block for water quality model; it
includes COMMON.INC,

COM-WQ2.INC (page B-66) has another common block for water quality model,
BLKD-WQ.INC (page B-66) has the block data for COM-WQI1.INC and
COM-WQ2.INC.

This appendix lists these ten source programs.



B-1. MODEL-2D.FOR

Program V2DModel
Last revised on 1/19/1993.
This program is to solve a vertical 2-dimensional hydrodynamic
(Continuity, and Momentum & Salt Balance Eqns), and water quality (Mass

Balance Egns for 8 water quality parameters) models.

The source code consists of

1) MODEL-2D.FOR (this file): main control program,

2) HYD-2D.FOR: subroutines for hydrodynamic model (HYM),

3) WQ-2D-IN.FOR: subroutines for input/output of water quality model
(WQM) ,

4) WQ-2D.FOR: subroutines for main part of WQM,

5) SGTSL.FOR: a LINPACK subroutine to solve tridiagonal matrix,

6) COMMON.INC: common blocks for HYM,

7) BLKDATA.INC: block data for COMMON.INC,

8) COM-WQ1l.INC: common block for WQM, which includes COMMON.INC,

9) COM-WQ2.INC: another common block for WQM,

10) BLKD-WQ.INC: block data for COM-WQl.INC & COM-WQ2.INC.

C: Written in Fortran 77 (ANSI X3.9-1978) except DO WHILE & END DO, which

C is the extension of many Fortran 77 compilers.

C: iX & i2 limit the maximum # of transect (longitudinal dir) & layer

C (vertical dir), respectively.

loNoNoNoNe Ko NeNo Ko RoNoNoRoNoNeo Ny,

INCLUDE ‘COM-WQl.INC’
Data IterN,NTSfM/2*0/, TinTC/0.0/, Day/1.0/

OPEN(5, FILE='HYD.IN’)
OPEN(7, FILE='HYD.OUT’)
OPEN(12, FILE='TRANGE.OUT')
OPEN(14, FILE='SLACK.OUT')
OPEN(15, FILE='E.OUT')

901 FORMAT(101I5)
READ(5,901) iwQ,isSalt,iDisch,iTide,iSatDB,iPS,iUBC
READ(5,901) iwWave, iHAdv,iTurb, iBotSh,iSDBC
IF (iWQ .EQ. 1) THEN
WRITE(7,801)'* Water quality submodel is run ’
OPEN(11,FILE="WQ.IN')
OPEN(8, FILE='WQ.OUT’)

ELSE

WRITE(7,801)’* No water quality simulation ‘
END IF
IF (iSalt .EQ. 1) THEN

WRITE(7,801)‘* Salt is modeled ’
ELSE

WRITE(7,801)’'* Salt is not modeled ’
END IF

IF (iDisch .EQ. 1) THEN
WRITE(7,801) '* Time-dependant freshwater discharge through UB *
OPEN(10,FILE="FLOW.IN')

ELSE
WRITE(7,801)'* Steady freshwater discharge through UB ‘
END IF
IF (iTide .EQ. 1) THEN
WRITE(7,801)'* Hourly tidal heights are used for DBC ’
OPEN(6,FILE='TIDE.IN’)
ELSE
WRITE(7,801)'* Tides generated by harmonics for DBC ’
END IF

IF (isatDB .EQ. 1) THEN
WRITE(7,801)'* Unsteady salinity for downstream bdry condition ‘'
OPEN(9,FILE='S-DBC.IN’)
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ELSE
WRITE(7,801)'* Steady salinity for downstream bdry condition ’

END IF
IF (iPS .EQ. 1) THEN
WRITE(7,801)‘* Daily varying point source discharges ’
OPEN(13,FILE='PSQ.IN’)
ELSE
WRITE(7,801)‘'* Timewise constant point source discharges ’
END IF

IF (iUBC .EQ. 1) THEN
WRITE(7,801)‘* No momentum (only mass) flux from f.w. discharge’

ELSE

WRITE(7,801)‘'* Both momentum & mass flux from f.w. discharge .
END IF
IF (iwave .EQ. 1) THEN

WRITE(7,801)‘'* Daily varying parameters for wind mixing ’

OPEN(20,FILE='WIND-W.IN')

ELSE

WRITE(7,801)‘* Timewise constant parameters for wind mixing ‘
END IF

IF (iHAdv .EQ. 3) THEN
WRITE(7,801)'* QUICKEST scheme for horizontal advection in MBE ’
ELSE IF (iHAdv .EQ. 2) THEN

WRITE(7,801) ‘* Upwind weighted horizontal advection scheme ‘
ELSE
STOP '** Error in input: iHAdv should be either 2 or 3 !’
END IF
IF (iTurb .EQ. 3) THEN
WRITE(7,801)'* Munk & Anderson stability fcn for turbulence ‘
ELSE IF (iTurb .EQ. 2) THEN
WRITE(7,801) ‘* Mellor & Yamada Level 2 for turbulence ’
ELSE
STOP ‘** Error in input: iTurb should be either 2 or 3 !}’
END IF

IF (iBotSh .EQ. 3) THEN
WRITE(7,801)'* Use Manning coeff. to calc. bottom shear stress.’
ELSE IF (iBotSh .EQ. 2) THEN
WRITE(7,801)‘* use bottom roughness to calc. bottom shear stres’
ELSE
STOP ‘** Error in input: iBotSh should be either 2 or 3 1!}’
END IF
IF (iSDBC .EQ. 3) THEN
WRITE(7,801)‘* SUBR SOpBdry calculates S(MU,k,2). 4
ELSE IF (iSDBC .EQ. 2) THEN
WRITE(7,801)'* S(MU,k,2) = SFLDM(k): do not use SUBR SOpBdry. '’
ELSE
STOP '‘** Error in input: iSDBC should be either 2 or 3 It{’
END IF
801 FORMAT (AS0)
C**********************************************************************C
CALL ReadM(DTT,rNTSiH,NTSiD,DTH)
iTprn = NINT( Tout(IncP)/DTT )
iTPsl = NINT( (Tout(IncP)-1.0)/DTT )
CALL CalcGrid
CALL ReadH(rNTSiH,Day,NS2PS)
CALL HCalcC .
WRITE(7,'(//RA31/)’) ' ***** Hydrodynamic Output *****’
IF (iWQ .EQ. 1) THEN
CALL WQC1
CALL WQC2
CALL WQIC
CALL WQinput
CALL GetWNPS
END IF



c**********************************************************************c
C Point where iteration with time begins.
C: call WQInput at 0000 hrs of each day, ie, MOD(NTSfM,NTSiD)=0 if
C iTdep=1.
Chhkhhh kTR IR KRR IR IKRRIRKIRRKKARKRKAKRRRRR AT AR ARk A kAR Ak Rhkhhk Ak
DO WHILE (IterN .LE. iTmax)
IF (IterN .EQ. iTprn) THEN
CALL HOut (iTPsl)
IncP = IncP + 1

iTprn = NINT( Tout (IncP)/DTT )
iTPsl = NINT( (Tout(IncP)-1.0)/DTT )
END IF

IF (iWwQ .EQ. 1) THEN
IF (IterN .EQ. iWQTP) THEN
CALL WOut
IncW = IncW + 1
iWQTP = NINT( WQout (IncW) / DTD )
iWQTPsl = NINT( (WQout(IncwW)-1.0) / DTD )

END IF
END IF
IterN = IterN + 1
NTSfM = NTSfM + 1
TinTC = IterN * DTT

TinDay = IterN * DTD
Hour = NTSfM * DTH
IF (MOD(NTSfM,NTSiD) .EQ. O0) THEN
Day = TinDay + 1.0
NTSfM = NTSfM - NTSiD
CALL MidNite(Day,NS2PS)
IF (iWQ .EQ. 1 .AND. iTdep .EQ. 1) CALL WQinput
END IF
IF (iDisch .EQ. 1) THEN
IF (NTSfM .LE. iFDTL) THEN
QatUB = QML1l+ (QML2 - QML1)/rFDTL * REAL(NTSfM)
CALL GetQLat
IF (iWQ .EQ. 1) CALL GetWNPS
END IF
END IF

CALL HCalcAll(rNTSiH, IterN)
IF (iTPsl1.GE.0 .AND. IterN.GT.iTPsl) CALL Hmean(TinTC)

IF (iWQ .EQ. 1) THEN
CALL WCalcAll(IterN)
IF (iWwQTPsl .GE. 0 .AND. 1IterN .GT. iWQTPsl) CALL WQmean
END IF
END DO

CLOSE(5)
CLOSE(6)

CLOSE(7)

CLOSE (8)

CLOSE (9)

CLOSE (10)
CLOSE(11)
CLOSE(12)
CLOSE(13)
CLOSE (14)
CLOSE(15)
CLOSE(16)
CLOSE (17)
CLOSE (18)
CLOSE (19)
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CLOSE (20)

STOP

END
Chhkhhhhhhkhkihkkk

SUBROUTINE MidNite(Day,NS2PS)
C**********************************************************************C

INCLUDE ‘COMMON.INC’

Dimension xPSQ(iX)

Data xPSQ/ixX*0.0/

IF (iTide .EQ. 1) CALL ReadTD(Day)
IF (iSsatDB .EQ. 1) THEN
= KB(MU)
READ(9,9002) (SFLDM(k), k=1,n)
WRITE(7,803)‘* Salinity at DB at the ', Day,
* ‘ th days:’, (SFLDM(k), k=1,n)
END IF
IF (iPS .EQ. 1) THEN
WRITE(7,803)'* PS discharges (m**3/s) at the ’, Day,
* ‘ th days:’
DO 50 m=1,NS2PS
READ(13,9003) i, xPSQ(i)
WRITE(7,807) i, ‘:’, xPSQ(i)
n = KB(i)
DO 51 k=1,n
PSQ(i,k) = 1.0E6 * xPSQ(i) * B(i,k)/TotB(i)

51 CONTINUE
50 CONTINUE
END IF

IF (iDisch .EQ. 1) THEN
QOML1 = QML2
READ(10,9003) i, QML2
WRITE(7,806)‘* Discharge (m**3/s) at UB at the ‘, Day,
* ’ th days = ‘, QML2
QML2 = QML2 * 1.0E6
END IF
IF (iWave .EQ. 1) THEN
READ(20,9002) HtP, Wave2, WndSpd, WndDir
WRITE(7,803)'* Wind mxing parameters at the ‘, Day,

* ‘ th days:’

WRITE(7,802)‘': Height**2 / Period (cm**2/s) = ’, HtP,
* ‘+ 2 * pi / Length (/cm) = ', Wave2,
* ‘s Wind speed (m/s) at 10 m high= ‘', WndSpd,
* : ‘: Wind dir (deg) ccw from east = ‘, WndDir

Wavel = CwWave * HtP
WwndDir = WndDir * ‘1, 74533E-2
DO 60 i=ML,MU
WS = WndSpd * COS(PaXLS(l) - WndDir)
WStrs(i) = Wdrag * WS * ABS(WS)
60 CONTINUE
END IF
9002 FORMAT(9X, 10F8.3)
9003 FORMAT(9X, IS5, 9F7.3)
9004 FORMAT (1515)
802 FORMAT(/, (A33, F10.3))
803 FORMAT(/, A32, F8.3, A9, /, (9F8.3))
806 FORMAT(/, A34, F8.3, all, F8.3)
807 FORMAT(I3, Al, F8.3)
RETURN
END
Chkkkhkkkhkhkkkkdkkkk

SUBROUTINE HCachll(rNTSLH IterN)
C**********************************************************************C

C Calculate all HYD variables for the (n+l)st (2 in the program) time step
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C (2 time level, finite difference scheme is used).
c**********************************************************************c

100

11

10

INCLUDE ‘COMMON.INC’

CALL HReset
CALL CalcE
CALL CEgnl(rNTSiH)
CALL CalcP
CALL AdvDif
CALL MEqgqn
IF (isalt .EQ. 1) THEN
CALL SBEgQn
IF (iSDBC .EQ. 3) THEN
CALL SOpBdry
ELSE
n = KB(MU)
DO 100 k=1,n
S(MU,k,2) = SFLDM(k)
CONTINUE
END IF
END IF
IF (Ns2sal .EQ. 1) THEN
IF (IterN .EQ. iTSIC) THEN
print*, ’‘Specify salt IC at days ‘, TinDay, iTSIC
DO 10 i=ML,MU
n = KB(1i)
DO 11 k=1,n
S(i,k,2) = SIC(i,k)
CONTINUE
sts(i) = sIC(i,1)
CONTINUE
END IF
END IF
CALL CEgn2
RETURN
END

Chhhkkhhkkkhkkhkkkk

SUBROUTINE WCalcAll(IterN)

c**********************************************************************c
C: SUBR EqnN1l, where HydN/HydNSt are calculated, be called prior to EgnN2.
C: SUBR EgnN2, where rNit/rNitSt are calculated, prior to EqQnN3 & EgnDO.
C: SUBR EqnPl, where HydP/HydPSt, should be called prior to EqnP2.

ChRIEKRIKIKKIKKKIIKRAIKERIRKRRKIRKRKRRRRKARR AR AR IR RN AR R AR IR RA AR AR ANk kb hkhhkh kX

INCLUDE ‘COM-WQl.INC’

CALL WReset
CALL Phyto
CALL EqnN1l
CALL EqgnN2
CALL EqnN3
CALL EgnPl
CALL EgnP2
CALL EgnChl
CALL EqnBOD
CALL EQnDO

IF (iWwQDBC .EQ. 3) THEN

CALL WDnBdry

ELSE
n = KB(MU)
DO 100 k=1,n
N1(MU,k,2) = DnN1(k)
N2 (MU, k,2) = DnN2(k)
N3 (MU,k,2) = DnN3(k)
P1(MU,k,2) = DnP1l(k)
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P2 (MU,k,2) = DnP2(Kk)
Chl (MU,k,2) = DncChl (k)
CBOD (MU,k,2) = DnBOD (k)
DOC(MU,k,2) = DnDO(k)
100 CONTINUE
END IF
IF (NS2WQ .EQ. 1) THEN
IF (IterN .EQ. iTWQIC) THEN

print*, ’‘Specify WQ IC at days ‘, TinDay, iTWQIC
DO 10 i=ML,MU

n = KB(i)
Nl(i,k, 2) = rN1lIC(i, k)
N2(i,k,2) = rN21C(i,k)
N3(i,k,2) = rN3IC(i,k)
P1(i,k,2) = PlIC(i,k)
P2(i,k,2) = P2IC(i,k)
Chl(i,k,2) = ChlIC(i,k)
CBOD(i,k,2) = BODIC(i,k)
DOC(i,k,2) = DOIC(i,k)

11 CONTINUE

StN1l(i) = rN1lIC(i,1)

StN2(i) = rN2IC(i,1)

StN3(i) = rN3IC(i,l1)

StP1(i) = P1lIC(i,1)

StP2(i) = P2IC(i,1)

StChl(i) = chlIC(i,1)

StBOD(i) = BODIC(i,1l1)

StDO(i) = DOIC(i,1l)

10 CONTINUE
END IF
END IF
RETURN

END
Chhdekkhhihhhhkik

SUBROUTINE Hmean(TinTC)
CrREEIKEEKKRKR IR IAKRARRAKAERRKRAA IR RIKRARRAARIARRRRRNARRARRRRRRAARRRRANRA AR
C Calculate the sum of Ada, U, S, W, EPz & Ez
C and the maximum & minimum Ada and surface U over the last tidal cycle.
C**********************************************************************C

INCLUDE ‘COMMON.INC’

AvgN = AvgN + 1.0

DO 2100 i=ML,MU
n = KB(i)
Tavg(i) = Tavg(i) + Ada(i,2)
DO 2101 k=1,n

Uavg(i,k) = Uavg(i,k) + U(i, k,2)
Savg(i,k) = Savg(i,k) + S(i,k,2)
Wavg(i,k) = Wavg(i,k) + W(i,k)

EPzAvg(i,k) = EPzAvg(i,k) + EPz(i,k)
EzAvg(i,k) = EzAvg(i,k) + Ez(i, k)
2101 CONTINUE
IF (Ada(i,2) .GT. Amax(i)) THEN
Amax(i) = Ada(i,2)
THI(i) = TinTC
END IF
IF (Ada(i,2) .LT. Amin(i)) THEN
Amin(i) = Ada(i,2)
TLO(i) = TinTC
END IF
IF (U(i,1,2) .GT. Umax(i)) Umax(i) = U(i,1,2)
IF (U(i,1,2) .LT. Umin(i)) Umln(l) = U(i,1,2)
IF (U(i,1,1) .GT. 0.0 .AND. U(i,1,2) .LE. 0.0) THEN
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TSBF (i) = TinDay
n = KB(i)
DO 2102 k=1,n
SSBF(i,k) = S(i,k,2)
2102 CONTINUE
END IF
IF (U(i,1,1) .LT. 0.0 .AND. U(i,1,2) .GE. 0.0) THEN
TSBE(i) = TinDay
n = KB(1i)
DO 2103 k=1,n
SSBE(i,k) = S(i,k,2)
2103 CONTINUE
END IF
2100 CONTINUE
RETURN
END
Chhkhkkkkhkhkhkkkhkkdk

SUBROUTINE HOut (iTPsl)
c**********************************************************************c

C Print out the HYD variables (Rda, U, S, W , EPz & Ez).
c**********************************************************************c

INCLUDE ’'COMMON.INC’

WRITE(7,901)’* Ada (cm) ‘
WRITE(7,903) Tout(IncP)
DO 1100 i=ML,MU
WRITE(7,902) i, ‘:’, Ada(i,2)
1100 CONTINUE

WRITE(7,901)‘* U (cm/s) ’
WRITE(7,903) Tout(IncP)
DO 1110 i=ML,MU
n = KBU(i)
WRITE(7,902) i, *:°, (U(i,k,2), k=1,n)
1110 CONTINUE

WRITE(7,901)’* S (ppt) ’
WRITE(7,903) Tout(IncP)
DO 1120 i=ML,MU
n = KB(i)
WRITE(7,902) i, ‘s, (S(i,k,2), k=1,n)
1120 CONTINUE

WRITE(7,901)°'* W (10**-3 cm/s) .
WRITE(7,903) Tout(IncP)
DO 1130 i=ML,MU
n = KB(i)
WRITE(7,902) i, ‘:’, (W(i,k)*1.0E3, k=1,n)
1130 CONTINUE

WRITE(15,901)‘* EPz (Diffusivity) ‘
WRITE(15,903) Tout(IncP)
DO 1140 i=ML,MU
n = KB(i)
WRITE(15,902) i, ':’, (EPz(i,k), k=1,n)
1140 CONTINUE

WRITE(15,901)'* Ez (Viscosity) 4
WRITE(15,903) Tout(IncP)
DO 1150 i=ML,MU
= KB(i)
WRITE(15,902) i, ‘:’, (Ez(i,k), k=1,n)
1150 CONTINUE
903 FORMAT( '’ at ‘, F13.8, ' tidal cycles after model starts’)
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904 FORMAT( ' over a cycle before ‘, F13.8, ' cycles after start’)

IF (iTPsl .GE. 0) THEN
DO 2200 i=ML,MU
Tavg(i) = Tavg(i) / AvgN

n = KB(1i)

DO 2201 k=1,n
Uavg(i,k) = Uavg(i,k) / AvgN
Ssavg(i,k) = Savg(i,k) / AvgN
Wavg(i,k) = Wavg(i,k) / AvgN * 1.0E3

EPzAvg(i,k) = EPzAvg(i,k) / AvgN
EzAvg(i,k) = EzAvg(i,k) / AvgN
2201 CONTINUE
2200 CONTINUE

WRITE(7,901) ‘* Mean Ada (cm) ’
WRITE(7,904) Tout(IncP)
DO 2210 i=ML,MU
WRITE(7,902) i, ‘:’, Tavg(i)
2210 CONTINUE

WRITE(7,901)‘* Mean U (cm/s) .
WRITE(7,904) Tout(IncP)
DO 2220 i=ML,MU
n = KBU(i)
WRITE(7,902) i, ‘:’, (Uavg(i,k), k=1,n)
2220 CONTINUE

WRITE(7,901)’* Mean S (ppt) .
WRITE(7,904) Tout(IncP)
DO 2230 i=ML,MU
n = KB(i)
WRITE(7,902) i, ‘:’, (Savg(i,k), k=1,n)
2230 CONTINUE

WRITE(7,901)'* Mean W (in 10**-3 cm/s) ’
WRITE(7,904) Tout(IncP)
DO 2240 i=ML,MU
n = KB(i)
WRITE(7,902) i, ‘:’, (Wavg(i,k), k=1,n)
2240 CONTINUE

WRITE(15,901)'* Mean EPz (diffusivity)
WRITE(15,904) Tout(IncP)
DO 2260 i=ML,MU
n = KB(i)
WRITE(15,902) i, ’:’, (EPzAvg(i,k), k=1,n)
2260 CONTINUE

WRITE(15,901)'* Mean Ez (viscosity)
WRITE(15,904) Tout (IncP)
DO 2270 i=ML,MU ’
-n'= KB(1i)
WRITE(15,902) i, ‘:‘, (EzAvg(i,k), k=1,n)
2270 CONTINUE

WRITE(7,901)'* DistT & Max, Min & Max-Min of tidal current ‘
WRITE(7,904) Tout(IncP)
WRITE(7,907) (i, DistT(i), Umax(i),Umin(i), Umax(i)-Umin(i),
* i=ML, MU)
DO 10 i=ML,MU '
THI(i) = (THI(i) - THI(MU)) * 12.42
IF (THI(i) .LT. 0.0) THI(i) = THI(i) + 12.42
TLO(i) = (TLO(i) — TLO(MU)) * 12.42
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IF (TLO(i) .LT. 0.0) TLO(i) = TLO(i) + 12.42
10 CONTINUE
WRITE(12,901)‘'* DistS & Max, Min, Max-Min of Ada & THI, TLO
WRITE(12,904) Tout(IncP)
WRITE(12,906) (i, DistS(i), Amax(i),Amin(i), Amax(i)-Amin(i),
* THI(i),TLO(i), i=ML,MU)
WRITE(14,904) Tout(IncP)
WRITE (14,901)’* DistS and Time & Sal at SB Flood
DO 20 i=ML,MU
n = KB(i)
WRITE(14,905) i, DistS(i), TSBF(i), (SSBF(i,k), k=1,n)
20 CONTINUE
WRITE(14,901)‘* DistS and Time & Sal at SB Ebb
DO 30 i=ML,MU
n = KB(i)
WRITE(14,905) i, DistS(i), TSBE(i), (SSBE(i,k), k=1,n)
30 CONTINUE
905 FORMAT(I2, F6.1, F9.5, 10F7.3)
906 FORMAT(I2, 6F12.4)
907 FORMAT(I2, 4F12.4)

AvgN = 0.0
DO 2280 i=ML,MU
Tavg(i) = 0.0

n= KB(i)
DO 2281 k=1,n
Uavg(i,k) = 0.0
Savg(i,k) = 0.0
Wavg(i,k) = 0.0
EPzAvg(i,k) = 0.0
EzAvg(i,k) = 0.0
2281 CONTINUE
Amax (i) = -1000.0
Umax (i) = -1000.0
Amin(i) = 1000.0
UMin(i) = 1000.0
2280 CONTINUE
END IF

901 FORMAT(//, A48)

902 FORMAT (I3, Al, 20F7.2)
RETURN
END
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B-2. HYD-2D.FOR

Chhhkrhkhkhkkkkkkkkk
SUBROUTINE ReadM(DTT,rNTSiH,NTSiD,DTH)
CrRARIEKKIXKKKKEKIKERRIEIAA KRR ARREKAAAKAARKAANAAARRRKRARR AR AR RRAR AR R **C
C Read in parameters for geometry & model control from unit #5.
CrRERKRERKEKKR KRR RIRRRRRERKR AR ARRAKRARAINRRKRARRN AR AR AR AR AR AR RN *C
INCLUDE ’'COMMON.INC’

WRITE(7,°(//BA45/) ') '***** Parameters for Geometry & Control *%¥xx’

KB(i) = # of layers in the ith segment.

Note that the BC’s for Ada & S are specified at the center of the most
downstream segment (MU).

: Note that all calculations will be done in CGS unit.

aQaaQn

READ(5,9001) ML, MU, Kmax
READ(5,9002) Darea

WRITE(7,804)'* Upstream boundary transect number = ‘', ML,

* * Downstream boundary transect number = ‘, MU,

* * Max. # of layers in any segment = ‘', Kmax
WRITE(7,801)’* Drainage area (km**2) upstream of UB = ‘,Darea

ML1 = ML + 1
MLsl = ML - 1
MUl = MU + 1
MUsl = MU - 1

READ(5,9001) (KB(i), i=ML,MU)
READ(5,9002) (H({k), k=1,Kmax)
WRITE(7,'(/RA22/,(10X,I3,F8.1))’)'** Layer thickness (m)’,
* (k, H(k), k=1,Kmax)
DO 1300 k=1,Kmax
H(k) = H(k) * 100.0
DH(k) = 2.0 * H(k)
1300 CONTINUE
WRITE(7,’(/A20 20X,A5/A7,20I7) ') ‘** Estuary width (m)’,
‘Layer’, ‘Segment’, (k, k=1,Kmax)
DO 1310 i=ML,MU
n = KB(i)
READ (5,9002) (B(i,k), k=1,n)
WRITE(7,'(I3,A1,20F7.1)°) i, ':’, (B(i,k), k=1,n)
TotB(i) = 0.0
DO 1311 k=1,n
B(i,k) = B(i,k) * 100.0
TotB(i) = TotB(i) + B(i,k)
1311 CONTINUE
1310 CONTINUE

C: Convert SSTm to cm after divided by DX.

C: SSTm = sfc storage area (St) at mean tide, not covered by B*DX.

C: StH = St depth (When SSTm=0, 1.0 is assigned to StH to avoid
O-division).

C: DX is also the distance bet/ the center of 2 succeissive segments.

READ(5,9002) (SSTm(i), i=ML,MU)

READ (5,9002) (StSlop(i), i=ML,MU)

READ (5,9002) (StH(i), i=ML,MU)

READ(5,9002) (ARD(i), i=ML,MU)

READ(5,9002) DX, DmDB, DTs

WRITE(7,801)'* Sfc storage area(in 10**6 m**2) at mean tide’
WRITE(7,803) (SSTm(i), i=ML,MU)

WRITE(7,801)‘'* Depth (in m) in surface storage area ‘
WRITE(7,803) (StH(i), i=ML,MU)
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WRITE(7,801)'* Change (in cm) in St width / cm rise in Ada °
WRITE(7,803) (StSlop(i), i=ML,MU)

WRITE(7,801)'* Drainage area (km**2) feeding into each seg
WRITE(7,803) (ARD(i), i=ML,MU)

WRITE(7,801)’'* Distance between transects (m) = ’, DX,
* ‘ Time interval (sec) = ‘, DTs,
* ‘s km from real mouth to most DB segment = ', DmDB

Tmp = 1.0E8 / DX
DO 1340 i=ML,MU
SSTm(i) = SSTm(i) * Tmp
StH(i) = StH(i) * 100.0
1340 CONTINUE

DTT = DTs / 44712.0
DTD = DTs / 86400.0
DTH = DTs / 3600.0

rNTSiH = 3600.0 / DTs
NTSiD = NINT(1.0/DTD)

DXinKM = DX / 1.0E3
DistS(MU) = DmDB
DistT(MU) = DmDB + DXinKM*0.5
DO 1360 i=MUsl,ML,-1
DistT(i) = DistT(i+l) + DXinKM
DistS(i) = DistS(i+1l) + DXinKM
1360 CONTINUE
DX = DX * 100.0
c**********************************************************************c
READ(5,9003) Tmax, NP
READ (5,9002) (Tout(m), m=1,NP)
WRITE(7,801)'* Number of tidal cycles for model to be run =’, Tmax
WRITE(7,804)‘ Number of times to print output = ', NP
WRITE(7,801)'* Times (in tidal cycles) to print output: ‘
WRITE(7,803) (Tout(m), m=1,NP)
iTmax = NINT(Tmax/DTT)
9001 FORMAT(15I5)
9002 FORMAT (10F8.0)
9003 FORMAT (F8.0,I8)
801 FORMAT(/, (RA46, F15.7))
803 FORMAT( (10F8.3))
804 FORMAT(/, (RA40, I5))
RETURN
END
c***************
SUBROUTINE CalcGrid
C**********************************************************************c

INCLUDE ‘COMMON.INC’

rMD(i) = mean depth at the ith transect = Depth(i,k) + HMZ(i, k).

Depth(i,k) = depth below the mean surface to the bottom of the kth
layer at the ith transect (i.e., to the point where W is defined).

HMZ (i,k) = depth above the sed. bottom to the bottom of the kth layer
at the ith transect.

Note that above 3 are defined at the center of each segment, where W
(and thus Ez, EPz) is defined.

oo o0

aaaoaQaaaa

DO 1400 i=ML,MU
rMD(i) = 0.0
n = KB(i)
DO 1401 k=1,n
rMD(i) = rMD(i) + H(k)
Depth(i,k) = rMD(1i)
1401 CONTINUE
DO 1402 k=1,n
HMZ (i,k) = rMD(i) - Depth(i,k)
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1402 CONTINUE
1400 CONTINUE
(ot 22 222 R SRR R RS RS R R0 2 X22 22RiX 2 R 2 2R X 0
DO 1700 i=ML,MUsl
BT(i) = B(i,1l) / DTs
n = KB(i)
DO 1701 k=2,n
BHT(i,k) = B(i,k) * H(k) / DTs
1701 CONTINUE
1700 CONTINUE

: Set KBU(i) = # of layers for U definition at each transect.
C: Note KBU(i) should always be .LE. KB(i) (see the Fig. 2-1 in manual).

KBU(ML) = KB(ML)
DO 1500 i=ML1,MU

k = KB(i)

KBU(i) = k

IF (B(i-1,k) .LT. 1.0E-5) KBU(i) = KB(i-1)
c IF (B(i-1,k) .EQ. 0.0) KBU(i) = KB(i-1)

1500 CONTINUE
C Set 2 bdry transects equal at each end to calculate U & Ada gradient.

KB(MLsl) = KB(ML)
n = KB(ML)
DO 1510 k=1,n
B(MLsl,k) = B(ML,k)
1510 CONTINUE
KB(MUl) = KB(MU)
n = KB(MU)
DO 1520 k=1,n
B(MU1,k) = B(MU,k)
1520 CONTINUE
KBU(MU1) = KB(MU1)

C BU/BW = addition of 2 B’s of adjacent segments or layers, respectively.

DO 1600 i=ML,MU1
iEC(i) = KB(i) - KB(i-1)

n = KB(1i)

DO 1601 k=1,n
BU(i,k) = B(i-1,k) + B(i,k)
BW(i,k) = B(i,k) + B(i,k+1)
BU2H(i,k) = BU(i,k) * DH(k)

1601 CONTINUE
1600 CONTINUE
DO 1650 i=ML,MU
IF (iEC(i) .GT. O .AND. iEC(i+l1) .LT. O0) THEN
PRINT*, 'There is a hole at the bottom of segment ', i
STOP ‘** Check bottom geometry for hole(s).’
END IF
1650 CONTINUE
RETURN
END
c***************

SUBROUTINE ReadH(rNTSiH,Day,NS2PS)
L R R R R R e L R RS 2SS I S L2 T2 o]

C Read in parameters from unit #5.
c**********************************************************************c
INCLUDE ‘COMMON.INC’
Common /HarTD/Ampl(9),Phase(9)
Parameter (Cef=91.0, F=0.3333)
Dimension xPSQ(iX)
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Data xPSQ/iX*0.0/
WRITE(7,‘(//RA40/) ") '***** Parameters for Hydrodynamics *#***x/

C: When iWQ=1, SUBR WQInput in WQ-2D-~IN.FOR may (if iTdep=1 there) read in
C time-varying temperature (Temp in degC) from ‘WQ.IN’, every midnight.

READ(5,9001) TempC
WRITE(7,805)'* Time-constant estuarine temp (degC) = ', TempC
Tmp = TempC * TempC

Tl = 5.89E3 + 38.0*TempC - 0.375*Tmp
T2 = 5.89091E3 + 37.7752*TempC - 0.336262*Tmp
T3 = 1.70591 + 0.01*TempC

Read in parameters for BC’s at the sfc.
WndDir (degree) = 0 to the east and increases counterclockwise.
Note WndDir is that to which the wind blows.

QOO aaan

% oe oo

READ(5,9001) Cstar, RhoAir
READ(5,9001) (Paxis(i), i=ML,MU)
Wdrag = 4.0E4 * Cstar * RhoAir

WRITE(7,805)‘* Air density (g/cm**3) = ',RhoAir,
* ‘ Drag coefficient (in CGS unit) = ’,Cstar,
* ‘: Wind stress (force/area/vel**2=g/cm**3) = ’,Wdrag
WRITE(7,808)'* Principal axis angle (deg) at each transect ',

* (Paxis (i), i=ML,MU)

DO 10 i=ML,MU
Paxis(i) = Paxis(i) * 1.74533E-2
10 CONTINUE _

Read in parameters for BC’s at the bottom.

k (~ 2.5E-3) = Frik/2 = portion of bottom stress. When rMan is ~0.015
to 0.03, g & H(k) should be in MKS unit. Since g & H(k) are in CGS
unit, conversion factor (CF) of 100**(2/3)=21.544 is needed
(Cef=2g/CF=91, where g=980.0).

e oo

[pNoNoNo Ne!

READ (5,9001) (rMan(i), i=ML,MU)
IF (iBotSh .EQ. 3) THEN
WRITE(7,804)'* Manning friction coeff. (in MKS unit) ‘,
* (rMan(i), i=ML,MU)
DO 1700 i=ML,MU
n = KBU(i)
DO 1701 k=1,n
Frik(i,k) = Cef * rMan(i) * rMan(i) / H(k)**F
1701 CONTINUE
1700 CONTINUE
ELSE IF (iBotSh .EQ. 2) THEN
WRITE(7,804)'* Bottom roughness (cm): about 0.1 cm ‘,
* (rMan(i), i=ML,MU)
cl = 2.0 * 0.4*0.4
DO 1705 i=ML,MU
n = KBU(1i)
DO 1706 k=2,n

al = H(k) / rMan(i)
a2 = LOG(al)
a3 = a2 - 1.0
Frik(i,k) = cl / (a3*a3)
1706 CONTINUE
1705 CONTINUE

END IF
C: Assume constant EPx & Ex.

9000 FORMAT (4ES8.3)
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READ (5,9000) rk

WRITE(7,805)'* Proportionality constant for salinity = ', rk
READ(5,9000) CTurb, CRi, CWave, CHD
WRITE(7,805)'* Constant for turbulent mixing coeff. = ’,CTurb,
* ‘: Constant for Richardson number = ’,CRi,
* ‘: Constant for wave part in mixing coeff = ‘,CWave,
* ‘s Multiplier for horizontal mixing coeff = ‘,CHD
DO 2700 i=ML,MU

n = KB(i)

DO 2701 k=1,n
EPx(i,k) = CHD
Ex(i,k) = CHD
2701 CONTINUE
2700 CONTINUE
IF (iUBC .EQ. 1) THEN
n = KB(ML)
DO 2702 k=1,n
EPx (ML, k)
EPx (ML, k)
2702 CONTINUE
END IF

0.0
0.0

n

C Parameters used for computing E & EP caused by wind-induced waves.

READ(5,9001) HtP, Wave2, WndSpd, WndDir
IF (iWave .EQ. 1) THEN
READ(20,9002) HtP, Wave2, WndSpd, WndDir

WRITE(7,806) ‘'* Wind mxing parameters at the *, Day,
* * th days: '

WRITE(7,805)‘: Height**2 / Period (cm**2/g) = ’,HtP
* ,'t 2 * pi / Length (/cm) = ’,Wave2
* ,'t Wind speed (m/s) at a height of 10 m = ’,Wndspd
* ,': Wind direction (deg) ccw from east = ' ,WndDir

Wavel = CWave * HtP

ELSE

WRITE(7,804)'* Wind wave characteristics ’

WRITE(7,805)': Height**2 / Period (cm**2/s) = ‘,HtP
* ,': 2 * pi / Length (/cm) = ’ Wave2
* , 't Wind speed (m/s) at a height of 10 m = ’,WndSpd
* ,’t Wind direction (deg) ccw from east = ’,WndDir

Wavel = CWave * HtP
END IF

WndDir = WndDir * 1.74533E-2
DO 60 i=ML,MU
WS = WndSpd * COS(Paxis(i) - WndDir)
WStrs(i) = Wdrag * WS * ABS(WS)
60 CONTINUE

READ(5,9001) (Alpha(i), i=ML,MU)
WRITE(7,805)'* Weighting factor for horz mass advection '
WRITE(7,804)‘: when using upwind scheme ‘,
* (Alpha(i), i=ML,MU)
DO 1800 i=ML,MU ‘

CAlpha(i) = 1.0 - Alpha(i)

n = KB(i)

DO 1801 k=1,n
Gam(i,k) = Alpha(i)
Del(i,k) = CAlpha(i)

1801 CONTINUE
1800 CONTINUE

C Initialize S by interpolating with SalUp & SalDn for the top layer (k=1)

C from i=MLsl-MU, and assign the values at k=1 to the remaining layers.
C: StS(i) = S at the storage area (ie, embayed area) at the ith transect.
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READ(5,’(2F8.0,1I8)’) SalUp, SalDn, NLS

WRITE(7,801)'** Initial upstream salinity (ppt) = ', SalUp,
* ’ Initial downstream salinity (ppt) = ’, SalDbn,
L Initial salt intrusion limit i.t.o. transect # = ’, NLS

801 FORMAT(/, 2(A42, F20.7, /), A52, I10)
READ(5,9004) NS2sal
IF (Ns2Sal .EQ. 1) THEN
READ(5,9001) TSIC
WRITE(7,801)'* Time (in d) to specify the following § =’, TSIC
DO 110 i=ML,MU
n = KB(i)
READ(5,9001) (SIC(i,k), k=1,n)
WRITE(7,807) i, ‘:’, (8IC(i,k), k=1,n)
110 CONTINUE
iTSIC = NINT(TSIC/DTD)
END IF

DO 1710 i=MLsl,NLS
S(i,1,1) = saluUp
1710 CONTINUE
DDS = (SalDn-SalUp) / REAL(MU-NLS)
DO 1720 i=NLS,MU
Tmp2 = REAL(MU-i)
S(i,1,1) = salbn - DDS*Tmp2
1720 CONTINUE
DO 1730 i=MLsl1,MU
S(i,1,2) = S(i,1,1)
Sts(i) = s(i,1,1)
n = KB(i)
DO 1731 k=2,n
S(i,k,1)
S(i,k,2)
1731 CONTINUE
1730 CONTINUE

C These will be used for calculating S BC's at open bdry in SUBR SOpBdry.
C: SFLDM = S in incoming water at open bdry transect during flood tide.
C: MST = TOFH in DTs scale.

n = KB(MU)
READ(5,9001) TOFH
READ(5,9001) (SFLDM(k), k=1,n)
WRITE(7,805)‘* Time lapse to reach SFLDM after SBF (hr) =‘, TOFH
IF (isatDB .EQ. 1) THEN
READ(9,9002) (SFLDM(k), k=1,n)

WRITE(7,803)‘* Salinity (ppt) at DB at the ‘, Day,
* ‘ th days:’, (SFLDM(k), k=1,n)
ELSE
WRITE(7,804)'* Constant salinity at downstream bdry; ‘,
* (SFLDM(k), k=1,n)
END IF
MST = NINT( TOFH*3600.0/DTs )
n = KB(ML)

READ(5,9001) (S(MLsl,k,2), k=1,n)
DO 1990 k=1,n
S(MLsl,k,1) = S(MLsl, k,2)
1990 CONTINUE
WRITE(7,804)'* Constant salinity at upstream bdry; ‘,
* (S(MLsl1,k,2), k=1,n)

C Use the FUNC HTide to initialize Ada(i,l) at open bdry (i=MU), and

C assign this value to the next time step, Ada(MU,2).

C: Note Ada’s are already initialized (Oed) for i=MLsl1-MUsl in BLKDATA.INC
C: Initialize H1(i,t) = H(1l)+Ada(i,t) for i=MLsl-MU.
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READ(5,9003) (Ampl(m), Phase(m), m=1,9)
IF (iTide .EQ. 1) THEN
CALL ReadTD (Day)
CALL OTide(Ada(MU,2),rNTSiH)
ELSE
WRITE(7,802) (Ampl(m), Phase(m), m=1,9)
Ada(MU,2) = HTide(TinDay)
END IF
Ada(MU,1) = Ada(MU,2)
DO 1740 i=MLsl,MU
H1(i,1) = H(1l) + Ada(i,1)
H1(i,2) = H1(i,1)
1740 CONTINUE
DO 1750 i=ML,MU
StH1(i,1) = StH(i) + Ada(i,1)
StH1(i,2) = StH1(i,1)
SST(i) = SSTm(i) + StSlop(i)*Ada(i,2)
1750 CONTINUE
802 FORMAT(/, ‘* Tidal amplitudes (cm) & phases (rad)’,
*/ 5X,’'M2 ’,F8.2,F16.3 / 5X,’S2 ’',F8.2,F16.3 / 5X,'N2 ’',F8.2,F16.3,
*/ 5X,'Kl ‘,F8.2,F16.3 / 5X,'M4 ’,F8.2,F16.3 / 5X,’01 ’,F8.2,F16.3,
*/ 5X,'MM ',F8.2,F16.3 / 5X,’'SSA’,F8.2,F16.3 / 5X,'SA ',F8.2,F16.3)
c***********************************************‘k**********************c
READ (5,9004) NS2PS
IF (iPS .EQ. 1) THEN

iups = 13
WRITE(7,806)'* PS discharges (m**3/s) at the *, Day,
* ‘ th days ’
ELSE
iupPs = 5
WRITE(7,804)'* Timewise constant PS discharge (m**3/s); ‘
END IF

DO 30 m=1,NS2PS

READ (iUPS,9005) i, xPSQ(i)

WRITE(7,807) i, ‘:’, xPSQ(i)

n = KB(i)

DO 31 k=1,n

PSQ(i,k) = 1.0E6 * xPSQ(i) * B(i,k)/TotB(i)

31 CONTINUE
30 CONTINUE

C: QML1/QML2 = U at the upstream bdry (i=ML) at previous/present day.

n = KBU(ML)
XaML = 0.0
DO 50 k=1,n
XAML = XAML + H(k)*B(ML,k)
50 CONTINUE
READ(5,9001) QML2
IF (iDisch .EQ. 1) THEN
READ(10,9001) FDTL
READ(10,9005) i, OQML2
WRITE(7,805)‘* Time lag (days) to adjust f.w. discharge =‘, FDTL
WRITE(7,806)'* Discharge (m**3/s) at UB at the ‘, Day,

* ’ th days = ‘', QML2
QML2 = QML2 * 1.0E6
iFDTL = NINT(FDTL/DTD)
rFDTL = REAL(iFDTL)
ELSE

WRITE(7,805)'* Constant f.w. discharge (m**3/s) at UB = ‘', QML2
QML2 = QML2 * 1,0E6
QatUB = QML2
CALL GetQLat
END IF
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QML1 = QML2

C Initialize U - Take QML2 as U at i=ML1
C: Disch = freshwater discharge at i=ML1
C: Cross = X-sectional area at the point where U'’s are defined
C: Note that W’s are already initialized in BLKDATA.INC (Oed).

DO 1770 i=ML1,MU1
n = KBU(i)
Cross = 0.0
DO 1771 k=1,n
Cross = Cross + H(k)*BU(i,k)/2.0
1771 CONTINUE
U(i,1,1) QML2 / Cross
U(i,1,2) = U(i,1,1)
DO 1772 k=2,n
U(i,k,1) = U(i,1,1)
U(i,k,2) = U(i,1,2)
1772 CONTINUE
1770 CONTINUE
9001 FORMAT(10F8.0)
9002 FORMAT(9X, 10F8.3)
9003 FORMAT (2F8.0)
9004 FORMAT (1515)
9005 FORMAT(9X, 15, F7.3)
803 FORMAT(/, A34, F8.3, B9, /, (9F8.3))
805 FORMAT(/, (RA44, F15.5))
804 FORMAT(/, A46, /, (10F7.3))
806 FORMAT(/, A34, F8.3, All, F8.3)
807 FORMAT (I3, Al, 10F8.3)
808 FORMAT(/, R46, /, (10F8.1))
RETURN
END

Chhkhhkhkhkhhkhhkk

SUBROUTINE HCalcC
(R R R R R R T T I T T R R T T2 2 2 2 T

C Calculates the invariant constants, once and for all.
c**********************************************************************c

INCLUDE 'COMMON.INC’
Parameter (g=980.0)

dtx = DTs / DX
DTi2 = 2.0 / DTs

DTo2 DTs / 2.0
DX2 = 2.0 * DX

DX4 = 4.0 * DX

DXS2 = 2.0 * DX * DX
DXS4 = 2.0 * DXS2
DXi2 = 2.0 / DX
DXiG = g / DX

G4m = -4.0 * g
RETURN

END

Chkhkkhkhkhhhkhhkkh

SUBROUTINE ReadTD (Day)
c**********************************************************************c

Common/ObsTD/Tdata(0:25),rNTC

rNTC = 0.0
Tdata(0) = Tdata(24)
READ(6,9001) (Tdata(m), m=1,24)
DO 10 m=1,24
Tdata(m) = Tdata(m) * 30.48
10 CONTINUE
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C Cal

WRITE(7,801)'* At the ’, Day, ’ th days, tidal heights (cm) are:’,
* (Tdata(m), m=1,24)

FORMAT (7X, 12F6.2)

FORMAT(/, A9, F8.3, A33, /, (9F8.2))

RETURN

END

*hkhkkkkk

SUBROUTINE GetQLat
S T T I L T T,

INCLUDE ‘COMMON.INC’

QLAatUB = QatUB / Darea
n = KBU (ML)
IF (iUBC .EQ. 1) THEN
DO 10 k=1,n
U(ML,k,2) = 0.0
CONTINUE
QLat (ML,1) = QatUB + QLAatUB*ARD (ML)
ELSE
U(ML,1,2) = QatUB / XAML
DO 20 k=2,n
U(ML,k,2) = U(ML,1,2)
CONTINUE
QLat (ML,1) = QLAatUB*ARD (ML)
END IF
DO 30 i=ML1,MUsl
QLat(i,1) = QLAatUB*ARD (i)
CONTINUE
RETURN
END

*kkkkkkkk

FUNCTION HTide(Time)
******************************************************************C

culate the tidal height at the open bdry, Ada(MU,TinDay), from tidal

C amplitudes (Ampl) & phases (Phase).

C: Si
Chkkk

1200

Chkxkk

Chkhx

Chkk*

gma = angular speed in rad/d for each of M2,S82,N2,K1,M4,01,MM,SSA,SA.
KKK IAK AR IR AR A KRR RARK AR RRA AR AR ARRARRAR R AR IR AR AR AR AR AR AR ARC
Common /HarTD/Ampl (9),Phase(9)

Dimension Sigma(9)

Data Sigma/12.141,12.566,11.913,6.3,24.282,5.84,0.228,0.034,0.017/

HTide = 0.0
DO 1200 m=1,9
HTide = HTide + Ampl(m) * COS(Phase(m) + Time*Sigma(m))
CONTINUE
RETURN
END

dkkk ko dkkk

SUBROUTINE OTide(Y,rNTSiH)
******************************************************************c

Common/ObsTD/Tdata(0:25),rNTC

rNTC = rNTC + 1.0
TmpDT = MOD (rNTC,rNTSiH)
IF (TmpDT .LE. 0.01) THEN
m = NINT(rNTC/rNTSiH)
Y = Tdata(m)
ELSE '
m = rNTC/rNTSiH + 1.0
Y = Tdata(m-1) + TmpDT * (Tdata(m) - Tdata(m-1)) / rNTSiH
END IF
RETURN

END
khkhhhkhrkrkh*h
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SUBROUTINE HReset
(i 2 2 X232 222 SRR SRR R R R RS R st x 2d Rd 2 R e
C: Reset variables for a new time step: Ada & Hl for i=MLsl-MU; S & U for
C i=ML-MU, and extrapolate U at i=MUl using U’s at i=MU & MUsl.
C: Calculate density, Rho(i,k), for i=ML-MU.
CRAERKRKIRKKAKKRKKRKRKAKRARKRKRRRARKARARARARANARARARANRARAARARRARRARKNRRAARA ARk ANC

INCLUDE 'COMMON.INC’

DO 100 i=MLsl,MU
Ada(i,1l) = Ada(i,2)
H1(i,1) = H1(i,2)
100 CONTINUE
DO 110 i=ML,MU
StH1(i,1) = StH1(i,2)
SST(i) = SSTm(i) + StSlop(i)*Ada(i,2)
BU2H(i,1) = BU(i,1) * (H1(i-1,1)+H1(i,1))
n = KB(i)
DO 111 k=1,n
IF (iBotSh .EQ. 2) Uo(i,k) = U(i, k,1)
U(i,k,1) = U(i,k,2)
S(i,k,1) = s(i,k,2)
c Rho(i,k) = (Tl + 3.0*S(i,k,1)) / (T2 - T3*S(i,k,1))
Rho(i,k) = 1.0 + rk*s(i,k,1)
111 CONTINUE
110 CONTINUE

n = KBU(MU1)
DO 120 k=1,n
U(MU1,k,1) = U(MU1,k,2)
120 CONTINUE
RETURN
END

Ck e kde ke kodk ok kkkkkkk

SUBROUTINE CalcP
CREREKRIEKIKKAKRKREKR AR AR KRAKRARAIARRRKRRARRARARRRARRKRARARRARARRARRARKR AN AR R R R ANC
C: Calculate the longitudinal pressure gradient, Press(i,k), for i=ML1-MU.
C: Note KBU(i) instead of KB(i) because we only need Press (gradient)
C where U’'s are defined. This is why mean values are used for Ada & Rho.
c**********************************************************************c

INCLUDE ‘COMMON.INC’

DO 300 i=ML1,MU

C k=1
Tmp = (H1(i-1,2)+H1(i,2))*0.5 * (Rho(i,1l)-Rho(i-1,1))
Press(i,1) = (Rho(i-1,1)+Rho(i,1l))*(Ada(i,2)-Ada(i-1,2)) + Tmp
n = KBU(i)
IF (n .NE. 1) THEN

C k=2

Tmpl = H(2) * (Rho(i,2) - Rho(i-1,2))
Press(i,2) = Press(i,l) + Tmp + Tmpl
C k=3-KBU
DO 301 k=3,n
Tmp2 = H(k) * (Rho(i,k) - Rho(i-1,k))
Press(i,k) = Press(i,k-1) + Tmpl + Tmp2
Tmpl = Tmp2

301 CONTINUE
END IF
300 CONTINUE
RETURN
END

Chihkkhhkkhkhkkkkk

SUBROUTINE CalcE
ChA AR IR KR KRR AR KRR R AR AR KA AR KRR KK RRKRARAA AR KRR R AR AR KRR KRR KRRk h kA h* k% C
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C Calculate vertical eddy viscosity (Ez) & turbulent diffusivity (EPz) for
C i=ML-MU using the values at the previous time step (ie, time step 1).
C: IF DU <= 1.0E-5, then Ez/EPz are set to be very small value, say O0.1l.
C: IF EPz/Ez < 0.1, then EPz/Ez = 0.1.
C: Note when KB(i)=1, EPz/Ez = 0.0 (as sepcified in BLKDATA.INC).
C**********************************************************************c
INCLUDE ‘COMMON.INC’
Parameter (Rfc=0.191,Rf1=0.234,R£f2=0.223)

DO 400 i=ML,MU
n = KB(i) - 1
TotH = rMD(i) + Ada(i,l)
No = KB(i) - iEC(i)
NoA = KB(i) + iEC(i+1)
DO 401 k=1,n
IF (iEC(i+l) .GE. 0) THEN
IF (k .LT. No) THEN
DU = U(i,k,1)+U(i+1,k,1) - (U(i,k+1,1)+U(i+1,k+1,1))
ELSE IF (k .EQ. No) THEN
DU = U(i,k,1)+U(i+1,k,1) - 2.0*U(i+1,k+1,1)
ELSE
DU = 2.0 * (U(i+l,k,1) - U(i+1,k+1,1))
END IF
ELSE
IF (k .LT. NoA) THEN
DU = U(i,k,1)+U(i+1,k,1) - (U(i,k+1,1)+U(i+1,k+1,1))
ELSE IF (k .EQ. NoA) THEN
DU = U(i,k,1)+U(i+l,k,1) - 2.0*U(i,k+1,1)
ELSE
DU = 2.0 * (U(i,k,1) - U(i,k+1,1))
END IF :
END IF
IF (iUBC.EQ.1 .AND. i.EQ.ML) DU=2.0*(U(i+l,k,1)-U(i+l,k+1,1))
IF (k .EQ. 1) THEN
Thick = H1(i,1l) + H(2)
ELSE
Thick = H(k) + H(k+1)
END IF
ABSDU = ABS(DU)
DRho = Rho(i,k) - Rho(i,k+1)
IF (iTurb .EQ. 3) THEN
IF (DRho .GT. -1.0E-5) THEN
Ri = 0.0
ELSE
IF (ABSDU .GE. 1.0E-5) THEN
~ Ri = G4m * Thick * DRho/(Rho(i,k)+Rho(i,k+1l)) / (DU*DU)
ELSE
EPz(i,k) = 0.09
Ez(i,k) = 0.09
GO TO 401
END IF
END IF
ELSE IF (iTurb .EQ. 2) THEN
IF (ABSDU .GE. 1.0E-5) THEN
Ri = G4m * Thick * DRho/(Rho(i,k)+Rho(i,k+1)) / (DU*DU)
IF (Ri .LT. -10.0) Ri = -10.0
Rf = 0.656 * (Ri + 0.178 - SQRT((Ri - 0.323)*Ri + 0.0318))
ELSE
EPz(i,k) = 0.09
Ez(i,k) = 0.09
GO TO 401
END IF
END IF
Z = Depth(i,k) + Ada(i,l)
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IF (Wavel .EQ. 0.0) THEN
WaveZ = 0.0
ELSE
WaveZ = Wavel * EXP(-Wave2*Z)
END IF
rML = Z * HMZ(i,k) / TotH
VSML = CTurb * rML*rML * ABSDU/Thick
IF (iTurb .EQ. 3) THEN
Div = 1.0 + CRi*Ri
XX = VSML / SQRT(Div)
EPz(i,k) = xx/Div + WaveZ
Ez(i,k) = xx + Wavel
IF (EPz(i,k) .LT. 0.1) EPz(i,k) =
IF (Ez(i,k) .LT. 0.1) Ez(i,k) = O.
ELSE IF (iTurb .EQ. 2) THEN
IF (Rf .GE. Rfc) THEN
EPz(i,k) = 0.11 + WaveZ
Ez(i,k) = 0.11 + WaveZ
ELSE
yy = 1.0 - Rf/Rfc
Terml = yy*SQRT(yy) / (1.0 - Rf)
Term2 = (1.0 - Rf/Rfl) / (1.0 - Rf/Rf2)
xx = SQRT(Term2)
EPz(i,k) = Terml * xx * VSML / 0.8 + WaveZl
Ez(i,k) = Terml * Term2*xx * VSML + WaveZ
IF (EPz(i,k) .LT. 0.1) EPz(i,k) = 0.1
IF (Ez(i,k) .LT. 0.1) Ez(i,k) = 0.1
END IF
END IF
401 CONTINUE
400 CONTINUE

0.1
1

n = KB(ML) - 1
DO 410 k=1,n

EPz(MLsl,k) = EPz(ML,k)
Ez(MLsl,k) = Ez(ML,k)
410 CONTINUE
RETURN
END

Chkhkhkhkhkhkhkhkhhkhkk

SUBROUTINE CEqnl(rNTSiH)
o e AR R R L TR R I TS X Tl

C Solve CONTINUITY Eq to get water sfc elevation, Ada(i,2), for i=MLsl-MU.
C: Ada(MLsl,2) is extrapolated from Ada(ML,2) & Ada(ML1l,2), and

C Ada(MU,2) is from FUNCTION HTide or SUBR OTide.

C: Total width = B(i,1)+SST(i) instead of B(i,l) - see pxx in the report.
C: Note that QLat is in volume per second.
***********************************************************************c

INCLUDE ‘COMMON.INC’

Tmpl = U(ML,1,1) * BU2H(ML,1)
DO 500 i=ML,MUsl
Tmp2 = U(;+1 1,2) * BU2H(i+l,1)
Ada(i,2) = Ada(i,l) + DTo2/(B(i,1)+SST(i))*( BW(i,1)*W(i, 1)
* - (Tmp2-Tmpl)/DX2 + (QLat(i,1)+PSQ(i,1))*DXi2 )
Tmpl = Tmp2
H1(i,2) = H(1l) + Ada(i,2)
StH1(i,2) = StH(i) + Ada(i,2)
DelA(i) = Ada(i,2) - Ada(i,l)
SDoODT(i) = SST(i) * DelA(i) / DTs
500 CONTINUE

IF (iTide .EQ. 1) THEN
CALL OTide(Ada(MU,2),rNTSiH)
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ELSE
Ada(MU,2) = HTide(TinDay)
END IF
H1(MU,2) = H(1l) + Ada(MU,2)
Ada(MLsl,2) = 2.0*Ada(ML,2) ~ Ada(ML1,2)
H1(MLsl,2) = H(1) + Ada(MLsl,2)
RETURN
END

Chihhhhhkkkhkkhkhk

SUBROUTINE AdvDif
c**********************************************************************c
C Calculate advective & diffusive terms in MOMENTUM, SALT BALANCE & DO
C BALANCE Eqns (for i=ML-MU in ME & for i=ML-MUsl for MBE).

C: HAdvM/HDifM = horizontal advective/diffusive terms in ME.

C: HAdvS/HDifsS = transport terms in SBE.
C: HAdv/HDif = portion of horizontal advective/diffusive terms in DO BE.
C: VAdv/VDif = vertical advective/diffusive terms in DO BE.

oL R R e T T S TR T T 22 22 Yo
INCLUDE ‘COMMON.INC’

Cl For i=ML-MUsl
Cla top layer (k=1) : VAdv & VDif = 0 here.
Clb remaining layers (k=2 to KB(i))
C : VAdv(i,k) & VDif(i,k) = at top of the kth layer (bottom of (k-1)th).
C : Note that VDif(i,2) = VDif at bottom of the 1lst layer.
Cla
HAM1 = BU2H(ML,1) * U(ML,1,1)
HDM1 = BU2H(ML,1) * Ex(ML,1)
DO 600 i=ML,MUsl
HAM2 = BU2H(i+1,1) * U(i+1,1,1)
HDM2 = BU2H(i+1,1) * Ex(i+l1,1)
HAdv(i,1) = HAM2 / Dx4
HDif(i,1) = BU2H(i+l,1) * EPx(i+l,1) / DXS4
HAdvM(i,1) = (HAM1 + HAM2) * (U(i,1,1) + U(i+1,1,1))
HDifM(i,1) = (HDM1 + HDM2) * (U(i+l,1,1) - U(i,1,1))
HAM1 = HAM2
HDM1 = HDM2

Clb
n = KB(i)
DO 601 k=2,n
HAdv(i,k) = BU2H(i+1,k) * U(i+l,k,1) / DX4
HDif (i,k) = BU2H(i+1,k) * EPx(i+1,k) / DXS4
VAdv(i,k) = W(i,k-1) * BW(i,k-1) / 4.0
IF (k .EQ. 2) THEN
VDif(i,2) = EPz(i,1) * BW(i,1) / (H1(i,2) + H(2))
ELSE .
VvDif(i,k) = EPz(i,k-1) * BW(i,k-1) / (H(k-1) + H(k))
END IF '
IF (k .LE. KBU(i)) THEN
HAdVM(i,k) = (BU2H(i,k)*U(i,k,1) + BU2H(i+1,k)*U(i+1,k,1))
* * (U(i,k,1) + U(i+1,k,1))
HDifM(i,k) = (BU2H(i,k)*Ex(i,k) + BU2H(i+1,k)*Ex(i+1,k))
* * (U(i"'l,k,l) - U(i,k,l))
END IF

601 CONTINUE
600 CONTINUE

C2 For i=MLsl

n = KB(MLsl)

DO 620 k=1,n '
HAdv(MLsl,k) = BU2H(ML,k) * U(ML,k,1) / DX4
HDif (MLsl,k) = BU2H(ML,k) * EPx(ML,k) / DXS4

620 CONTINUE
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C3 For i=MU: Ada & Ex are extrapolated from values at i=MUsl & MU1l.

Ada(MU1l,1) = 2.0*Ada(MU,1) - Ada(MUsl,1)

H1(MUl,1) = H(1) + Ada(MUl,1)
BU2H(MU1,1) = BU(MU1,1) * (H1(MU,1)+H1(MU1,1))
n = KBU(MU)
DO 610 k=1,n

Ex(MU1,k) = 2.0*Ex(MU,k) - Ex(MUsl, k)

HAAVM(MU,k) = (BU2H(MU,k)*U(MU,k,1) + BU2H(MU1,k)*U(MU1,k,1))
* * (U(MU,k,1)+U(MU1,k,1))

HDifM(MU,k) = (BU2H(MU,k)*Ex(MU,k) + BU2H(MU1,k)*Ex(MU1,Xk))
* *

(U(MU1,k,1)-U(MU,k,1))
610 CONTINUE
RETURN
END
Chhhkkkhkkdkkikkkk
SUBROUTINE MEqn
C**********************************************************************C
Cl Solve the horizontal MOMENTUM Egn. to get U(i,k,2) for i=ML1-MU.
C2 For i=MUl, do the extrapolation.
C: Assuming that the main conveying channel loses all the momentum of
water particles entering into storage area ({St) during flood (when
DAda > 0.0), and receive no momentum (since water coming from St may
not have momentum in x-dir of main channel) from the water particles
coming from St during ebb, sink term (Sink, which is 0 during ebb) is
needed during flood. For the mathematical formulation, see the
explanation in SUBR SBEgn.
Since only the time variation of momentum & mass in St will affect the
main channel and also St is usually very shallow, the exchange of
momentum & mass may be assumed to occur only at the top layer (ie,
communication only through the sfc and no lateral diffusion of momentum
& mass bet/ St and main channel).
WUBt /WUBb = W*U*B (vertical advective term) at the top/bottom of the
kth layer at the ith transect.
SidF = friction at the bottom of each layer.
BdShr = bed shear in (cm/s)**2.
Note that kth layer has bottom area of (BU(i,k)-BU(i,k+1)) / 2.0.
Cl-a top layer (k=1)
C : WUBt = 0.
C : Note that WStrs/Rho = (cm/s)**2.,
Cl-b for k=2 to KBU(i)-1
C : Note that there’s no Sink any more.
Cl-c bottom layer (k=KBU(i))
C : WUBb = O.
C : In SidF, only BU(i,k) since there’s no BU(i,k+1) when k=KBU(i).
C**********************************************************************c
INCLUDE ‘COMMON.INC’
Dimension CCu(i2),DDu(iZ2),EEu(iz),BBu(iZ2)
Data CCu,DDu,EEu,BBu/60*0.0/

*

O()?()O()O(?O()O()O()O()

o oo

DO 700 i=ML1l,MU
Cl-a
DAda = Ada(i-1,2)+Ada(i,2) - (Ada(i-1,1)+Ada(i,1l))
x1 = BU(i,1) + BU(i,2)
x2 H1(i-1,2) + H1(4i,2)
WUBb = (U(i,1,1)+U(i,2,1)) * (W(i-1,1)+W(i,1)) * x1 / 4.0
WandP = BU(i,1l) / (Rho(i-1,1)+Rho(i,1))
* * (WStrs(i) - DXiG*x2*Press(i,1l))
IF (iBotSh .EQ. 2) THEN

al = H1(1,1) / rMan(i)
a2 = LOG(al)
a3 = a2 - 1.0
Frik(i,1) = 0.32 / (a3*a3)
END IF
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Cl-b

701

Cl-c

702
700
c2

710

BdShr = Frik(i,1) * U(i,1,1) * ABS(U(i,1,1))
SidF = BdShr * (BU(i,1)-BU(i,2))
IF (DAda .GT. 0.0) THEN

Sink = U(i,1,1) * (SST(i-1)+SST(i)) * DAda * DTi2
ELSE

Sink = 0.0
END IF
CCu(l) = 0.0
EEu(l) = -2.0 * (Ez(i-1,1)+Ez(i,1)) * x1 / (x2 + DH(2))
DDu(1l) = BU(i,1)*x2/DTs - EEu(1l)

BBu(l) = BU2H(i,1)/DTs*U(i,1,1) + WUBb - SidF - Sink + WandP
+ (HAdvM(i-1,1)-HAdvM(i,1))/DX4 + (HDifM(i,1)-HDifM(i-1,1))/DXS2

n = KBU(i)
IF (n .NE. 1) THEN

IF (n .NE. 2) THEN
DO 701 k=2,n-1
x3 = BU(i,k) + BU(i,k+1)
x4 = BU2H(i,k) / DTs
WUBt WUBb
WUBb = (U(i,k,1)+U(i, k+1,1)) * (W(i-1,k)+W(i,k)) * x3 /4.0
Bdshr = Frik(i,k) * U(i,k,1) * ABS(U(i,k,1))
SidF = BdShr * (BU(i,k)-BU(i, k+1))
CCu (k) EEu(k-1)
EEu(k) = -2.0*(Ez(i-1,k)+Ez(i,k)) * x3 / (DH(k)+DH(k+1))
DDu(k) = x4 - CCu(k) - EEu(k)
BBu(k) = x4*U(i,k,1) + (HAdvM(i-1,k)-HAdvM(i,k))/DX4
+ WUBb-WUBt + (HDifM(i,k)-HDifM(i-1,k))/DXS2 - SidF
- DXiG*BU2H(i,k)*Press(i,k)/(Rho(i-1,k)+Rho(i,k))
CONTINUE
END IF

x5 BU2H(i,n) / DTs
WUBt = WUBb
BdShr = Frik(i,n) * U(i,n,1) * ABS(U(i,n,1))
SidF = BdShr * BU(i,n)
cCu(n) = EEu(n-1)
EEu(n)
DDu(n) x5 = CCu(n)
BBu(n) = x5*U(i,n,1l) + (HAdvM(i-1,n)-HAdvM(i,n))/DX4
- WUBt + (HDifM(i,n)-HDifM(i-1,n))/DXS2 - SidF
- DXiG*BU2H(i,n)*Press(i,n)/(Rho(i-1,n)+Rho(i,n))
END IF
CALL SGTSL(n,CCu,DDu,EEu,BBu, info)
IF (info .NE. 0) THEN
PRINT*, info, ‘' th element of the diagonal = 0.‘
STOP ‘in SUBR MEgn’
END IF
DO 702 k=1,n
U(i,k,2)
CONTINUE

BBu (k)

CONTINUE

n

= KBU(MU1)

DO 710 k=1,n

U(MU1,k,2) = 2.0*U(MU,k,2) - U(MUsl, k,2)

CONTINUE
RETURN
END
CrkAkkkRkARAXKKKK

SUBROUTINE SBEqn
c**********************************************************************c

C Solve the MASS BALANCE Eqn. for SALT to get S(i,k,2) for i=ML1-MUsl.
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: In St, for conservative substance like S.
1. During flood (DelA >= 0), water enters into St along with S.

a. St acts like sink for momentum & mass from main channel’s viewpoint.

: S = Sink / (B*(H+Ada2)), where Sink = S [S in incoming water] *
SST*DelA/DTs [volume change per unit length in x-dir in St for DTs]
* DTs [time interval].
StS changes due to contribution from incoming main channel water.
StS = (StS*(H+Adal) + S*DelA) [(S in St * depth in St in time 1)
mix (S in incoming water * depth increase from time 1 to 2} /
(H+Ada2) [new St depth at time 2).
2. During ebb,
a. St provides S (but no momentum) to main channel.

: Since water in St flows into main channel, use StS instead of S.

: Note that since DelA < 0, -Sink > O.
b. Note that it is assumed that StS changes only when flooding.
WSBt /WSBb = W*S*B (vertical advective transport term) at the top/bottom
of the kth layer at the ith transect.
Cl Top layer (k=1) : WSBt = 0.
C2 For k=2 to KB(i)-1] : Note that there’s no Sink any more.
C3 Bottom layer (k=KB{(i)) : WSBb = O.
Chhkhkdhkhhhhhhhkhhkhhkhhkhhkkhhhkhhhhhhrhhhhkhhrhkhhhkrhhkhkhhhhhhkhkkhhkhkhrhkkdk(
INCLUDE ‘COMMON.INC’
Dimension BB(iZ),xC(i2),xD(iZ),xE(iZ)
Dimension Al(iX,iZ),A2(iX,i2),CURV(iX,i%)
Data BB,xC,xD,xE, Al,A2, CURV,Adj/3661*0.0/

U

0(20()O(30(30(30(30(30(10

QUICKEST scheme is used for the horizontal advection term.
CURV(MU,k) = O by assuming $(MU1l,k) = 2*S(MU,k) - S(MUsl, k)
CURV(MLsl,k) = 0 by assuming S(MLs2) = 2*S(MLsl) - S(ML,k)

oo

IF (iHAdv .EQ. 3) THEN
DO 20 i=ML,MUsl
n = KB(i)
DO 24 k=1,n
CURV(i,k) = S(i+l,k,1) - 2.0*s(i,k,1) + S(i-1,k,1)
24 CONTINUE
nsl = KB(i-1) + 1
IF (n .GE. nsl) THEN
DO 22 k=nsl,n
C assuming S(i-1,k,1) = S(i,k,1)
CURV(i,k) = S(i+l1,k,1) - S(i,k,1)
22 CONTINUE
END IF
npl = KB(i+l) + 1
IF (n .GE. npl) THEN
DO 23 k=npl,n
C assuming S(i+1,k,2) = S(i,k,2)
CURV(i,k) = -S(i,k,1) + s(i-1,k,1)
23 CONTINUE
END IF
20 CONTINUE
END IF
DO 10 i=MLsl,MUsl
n = KB(1i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Gam(i+1l,k) = Alpha(i+l)
IF (U(i+l1,k,1) .LT. 0.0) Gam(i+l,k) = CAlpha(i+1)
Del(i+1,k) = 1.0 - Gam(i+l,k)
Al(i,k) = (Gam(i+l,k)*S(i,k,1) + Del(i+l,k)*S(i+1,k,1))
* * HAdv(i, k)
ELSE IF (iHAdv .EQ. 3) THEN
x1 = dtx * U(i+l,k,1)
COUR2(i,k) = x1 * 0.5
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CK(i,k) = (1.0 - x1*x1) / 6.0
Adj = (S(i,k,1)+S(i+1,k,1))*0.5
* = COUR2(i,k)*(S(i+l,k,1)-S(i,k,1))
IF (U(i+l,k,1) .GE. 0.0) THEN
Al(i,k) = HAAv(i,k)*(Adj - CK(i,k)*CURV(i,k))
ELSE
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURV(i+l,k))
END IF
END IF
A2(i,k) = HDif(i,k)*(S(i+1,k,1) ~ S(i,k,1))
11 CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
sSink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
IF (DelA(i) .GT. 0.0) THEN
Sink = S(i,1,1) * SDoDT(i)
StS(i) = (StS(i)*StH1(i,1l) + S(i,1,1)*DelA(i)) / StH1(i,2)
ELSE
Sink
END IF
ELSE
sts(i)
END IF
END IF
WSBb = VAdv(i,2) * (S(i,1,1)+S(i,2,1))
cc(i,1) = 0.0
EE(i,1) = - VDif(i,2)
DD(i,1) = BT(i)*H1(i,2) - EE(i,l)
BB(1l) = BT(i)*H1(i,1)*S(i,1,1) + Al(i-1,1)-Al(i,1l) + WSBb
* + A2(i,1l)-A2(i-1,1) - Ssink

StS(i) * SDoDT(i)

0.0

xC(1l) = CC(i,1)
xD(1) = DD(i,1)
xE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
WSBt = WSBb
WSBb = VAdv(i,k+l) * (S(i,k,1)+S(i,k+1,1))
CC(i,k) = EE(i,k-1)
EE(i,k) = - VDif(i,k+1)
DD(i,k) = BHT(i,k) - cC(i,k) - EE(i, k)
BB(k) = BHT(i,k)*S(i,k,1) + Al(i-1,k)-Al(i, k)
* + WSBb-WSBt + A2(i,k)-A2(i-1,k)
xC(k) = CC(i,k)
xD(k) = DD(i,k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

WSBt = WSBb

cc(i,n) = EE(i,n-1)

EE(i,n) = 0.0

DD(i,n) = BHT(i,n) - CC(i,n)

BB(n) = BHT(i,n)*S(i,n,1) + Al(i-1,n)-Al(i,n) - WSBt
* + A2(i,n)-A2(i-1,n)

XC(n) = CC(i,n)

xD(n) = DD(i,n)

xE(n) = EE(i,n)

END IF
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CALL SGTSL(n,xC,xD,xE,BB, infoS)
IF (infoS .NE. 0) THEN
PRINT*, infoS, ‘ th element of the diagonal = 0.’
STOP ‘in SUBR SBEgn’
END IF
DO 802 k=1,n
s(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
c***************

SUBROUTINE SOpBdry
ChREIERKRKRKIKARKRERKAIKKRRERRKAAKRKRARRARRIRRAARAR AR RIRAANRR R AR N ARk AR AN A ARk R ARC
C Calculate S(i,k,2) at the seaward bdry (i=MU).

Cl. During ebb (when U >= 0.0), the horizontal S profile is assumed to be

(o] advected out of mouth as a "frozen" pattern (ie, neglect diffusion).
Cc S(MU,k,3) = S(MU,k,2) - (S(MU,k,2)-S(MUsl,k,2))/DX * U(MU,k,2)*DT.
C2. During flood,

C : From the beginning of flood to MST, some period of adjustment (MST

C time steps) is allowed after the flow starts to flood and before S

¢ reaches the bay value. S(MU,k,3) = S(MU,k,2) + (SFLDM-S(MU,k,2))/MST.
C : After MST, S(MU,k,3) = SFLDM(k).

Chhhhkhhhhdkhhkhhhhhkhhhkhhhkhhhhhhhhhhkhhhhhhhhhhhkhhkhhhkhkhhkhhkhhhkhkhkhkkkhkrkkk*C

INCLUDE ‘COMMON.INC’
Dimension DS(iZ),Ncount(iZ)
Save/HLocal/, DS,Ncount
Data Ncount/15*10000/

n = KB(MU)
DO 900 k=1,n
IF (U(MU,k,1) .GE. 0.0) THEN
Ncount (k) = O
Change = dtx * U(MU,k,1)
S(MU,k,2) = S(MU,k,1)*(1.0-Change) + S(MUsl,k,1l)*Change
ELSE
IF (Ncount(k) .GE. MST) THEN
S(MU,k,2) = SFLDM(k)
ELSE
IF (Ncount(k) .EQ. 0) DS(k) = (SFLDM(k)-S(MU,k,1)) / MST
Ncount (k) = Ncount(k) + 1
S(MU,k,2) = S(MU,k,1) + DS(k)
END IF
END IF
900 CONTINUE
RETURN
END
c***************

SUBROUTINE CEgn2

c**********************************************************************c
C Solve CONTINUITY Eqn. to get W(i,k) for the current time step for

C i=ML-MU and k=1 to KB(i)-1.

C: W at k=KB(i) is always O as given by bdry condition (BC).

C: Note that all W(i,k)‘’s have been initialized to 0 at the BLKDATA.INC.
C: Note formulation is such that calculation is done from k=KB(i)-1 to 1.
Cl1 For k=KB(i)-1

C : Since there’s no B(i,k+2) for this layer, B(i,k+l1l) is used instead.
C2 From k=KB(i)-2 to 1
c**********************************************************************c

INCLUDE ‘COMMON.INC’
DO 1000 i=ML,MU

n = KB(i) - 1
IF (n .NE. O) THEN
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Cc1

W(i,n) = ( 2.0*B(i,n+1)*W(i,n+1) - H(n+1)/DX*
( U(i+l,n+1,2)*BU(i+1,n+1)-U(i,n+1,2)*BU(i,n+l) )
+ (QLat(i,n+1)+PSQ(i,n+1))*DXi2 ) / BW(i,n)

c2
m=n-1
DO 1001 k=m,1,-1
W(i,k) = ( BW(i,k+1)*W(i,k+1) - H(k+1l)/DX*
* ( U(i+1,k+1,2)*BU(i+1,k+1)-U(i,k+1,2)*BU(i,k+l) )
* + (QLat(i,k+1)+PSQ(i,k+1))*DXi2 ) / BW(i,k)
1001 CONTINUE
END IF
1000 CONTINUE
RETURN
END

Chkhkkkhkhkhhkhkhkkhkkk
BLOCK DATA HFirst

o L e R RS R R S S 22 2 2 Tl
INCLUDE ’‘'COMMON.INC’

INCLUDE ‘BLKDATA.INC’
END :
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B-3. WQ-2D-IN.FOR

C*

C*

% % % de K de Kk ok gk Kk ok kK

SUBROUTINE WQC1
L R T L T e T R T T T T T T T Yo}

C Read in constant parameters from ‘WQ.IN‘.

C:
(o]

C:
c

Ccl
C:
c2
Cc3
C*

Cl

9
C*

NS2 = # of segments for which parameters will be read.
Setting NS2=2 establishes uniform values, otherwise NS2 should = MU.
Since we don’‘t have field data fine enough to see the difference
between each layer, generally 1-D arraies are used for WQC'’s.
Parameters related to WQ model control parameter
iTdep = 1 means time-dependent water quality input conditions.
Parameters related to nutrient transfer.
Parameters related to CBOD decay.
*********************************************************************c

INCLUDE ‘COM-WQl.INC’

READ(11,9003) iTdep,iSun, iBCWQ, iNPS, iWQPS, iWQDBC
IF (iTdep .EQ. 1) THEN

WRITE(8,801)'* Time-varying water quality input conditions. ‘
ELSE

WRITE(8,801)'* Steady water quality input conditions. ’
END IF

IF (iSun .EQ. 1) THEN
OPEN(16,FILE='SOLAR.IN’)

WRITE(8,801) '* Time-varying solar radiation parameters. ‘
ELSE

WRITE(8,801) '* Constant solar radiation parameters. ‘
END IF

IF (iBCWQ .EQ. 1) THEN

OPEN(17,FILE="WQBC.IN')

WRITE(8,801) ‘* Time-varying up-downstream boundary conditions. ’
ELSE :

WRITE(8,801) ‘'* Constant up-downstream boundary conditions. ’
END IF
IF (iNPS .EQ. 1) THEN

OPEN(18,FILE='NPS.IN‘)

WRITE(8,801)‘* Time-varying non-point source input. ’

READ(18,9001) xxF

WRITE(7,804)‘* Time lag (days) to adjust fw discharge =’, xxF
ELSE

WRITE(8,801) ‘* Constant non-point source input. ’
END IF
IF (iWQPS .EQ. 1) THEN

OPEN(19,FILE='PS.IN’)

WRITE(8,801) '* Time-varying point source input. ’
ELSE

WRITE(8,801) '* Constant point source input. ’
END IF

IF (iNPS.EQ.1 .OR. iWQPS.EQ.1 .OR. iSun.EQ.1l .OR. iBCWQ.EQ.1l) THEN
IF (iTdep .NE. 1) STOP '** iTdep should be 1 (time-varying)’

END IF
IF (iWQDBC .EQ. 3) THEN
WRITE(8,801)‘* SUBR WDnBdry calculates C(MU,k,2). ’
ELSE IF (iSDBC .EQ. 2) THEN
WRITE(8,801)‘* C(MU,k,2) = DnC(k): do not use SUBR WDnBdry. ’
ELSE
STOP ’'** Error in input: iWQDBC should be either 2 or 3 !i’
END IF

801 FORMAT(AS0)
003 FORMAT(10I5)

KERIEKRKKKRKKKKKKEIKEKKEKRRKEKAR KKK AR EARRIRKRARKRKARIRAKRARARRARRRAR AR R AR AR RN RAC

READ (11,9002) NPWQ
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READ(11,9001) (WQout(m), m=1,NPWQ)

WRITE(8,802) NPWQ, (WQout(m), m=1,NPWQ)

iTmp = NINT( WQout (NPWQ) / DTD )

IF (iTmp .GT. iTmax) STOP ‘** WQout (NPWQ) > max. run time’

802 FORMAT(/, ‘* Ouput will be printed ’, I2, ‘ times, at the ’,
*

‘following days after model start:‘’, /, 8F10.6)
iWQTP = NINT( WQout(IncW) / DTD )
iWQTPsl = NINT( (WQout(IncW)-1.0) / DTD )

ChRERKIIAIKIKRK IR R KIAA KA RRE RN AR ARNEARRARRA AR KRR RN RN ARRARXC

11
10

61

60
c2

20

30
805

*

* % * ¥ *

DO 10 i=ML,MU
XAm(i) = 0.0
n = KBU(i)
DO 11 k=2,n
XAL(i,k) = BU(i,k) * H(k)
XAm(i) = XAm(i) + XAL(i,k)
CONTINUE
CONTINUE

DO 60 i=ML,MUsl
= KB(i) - 1
DO 61 k=1,n
Bfrac(i, k)
CONTINUE
Bfrac(i,n+l)
CONTINUE

(B(i,k) - B(i,k+1)) / B(i,k)
1.0

READ(11,9001) TheN12, TheN23, TheN33, TheP12
WRITE(8,803)‘'* Exp. base for temp. dependence of rate constants'

WRITE(8,804)° : of N hydrolysis = , TheN12,
* : of Nitrification = ', TheN23,
* : of Denitrification = ’, TheN33,
* : of org. P mineralization = ', ThePl2
READ(11,9002) NS2
READ(11,9001) (xKnl2(i), i=2,NS2)
READ(11,9001) (xKn23(i), i=2,NS2)
READ(11,9001) (xKn33(i), i=2,NS2)
READ(11,9001) (xKpl2(i), i=2,NS2)
IF (NS2 .EQ. 2) THEN
DO 20 i=ML,MU
xKnl2(i) = xKnl2(2)
xKn23 (i) = xKn23(2)
xKn33 (i) = xKn33(2)
xKpl2 (i) = xKpl2(2)
CONTINUE
END IF
WRITE(8,803)’* Rate constant (mg/L/day) at 20C of ’
WRITE(8,801)° Knl2, Kn23, Kn33 (/day), Kpl2

WRITE(8,805) (i, ‘s, xKan(i),xKn23(1),xKn33(x),pr12(i),1-ML MU)
DO 30 i=ML,MU

xKnl2(i) = xKnl2(i) * DTD

xKn23(i) = xKn23(i) * DTD

xKn33(i) = xKn33(i) * DTD

xKpl2(i) = xKpl2(i) * DTD
CONTINUE

FORMAT (I2, Al, 4F13.5)
READ(11,9001) rKhl2, rKh23,rKnit,rKden, rKhpl2, rKDO
WRITE(8,803)'* Half-satuaration concentration (mg/L) !

WRITE(8,804)‘ : of N hydrolysis = ’, rKhl2,
* s of Nitrification = ', rKh23,
* ¢+ of Nitrification 02 limitation = ’, rKnit,
* : of Denitrification = ’, rKden,
* : of org. P mineralization = ', rKhpl2,
* : of SOD for DO & CBOD = ', rKDO
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c3
READ (11,9002) NS2
READ(11,9001) (xKc(i), i=2,NS2)
IF (NS2 .EQ. 2) THEN
DO 40 i=ML,MU
xKec (i) = xKc(2)

40 CONTINUE
END IF
READ(11,9001) TheKc
READ(11,9001) TheDA, rKro
WRITE(8,803)‘'* CBOD decay rate (/day) at 20C !
WRITE(8,806) (i, ‘:’, xKc(i), i=ML,MU)
WRITE(8,804)': Exp.base. for temp.dep. for CBOD decay =’, TheKc,
* ‘s Exp.base. for temp.dep. for DO reaerat =’, TheDA,
* ‘s Constant for DO reaeration in CGS unit =’, rKro
rKro = rKro / SQRT(2.0)
DO 50 i=ML,MU

xKc (i) = xKc(i) * DTD

50 CONTINUE

806 FORMAT(I2, Al, F10.5)

9001 FORMAT (10F8.0)

9002 FORMAT(I5)

803 FORMAT(/, AS0)

804 FORMAT(/, (RA42, F10.5))
RETURN
END

Chhhkdkhkhhkkkkk

SUBROUTINE WQC2
c**********************************************************************c
C Read in constants from ‘WQ.IN'‘.

Cl related to Settling rates
C2 related to Phytoplankton related coefficients
C: Since CH20+02 = H20+CO2, aco (ratio of O demand to organic C recycled)
Cc = 02/c = 32/14 = 2.67.
c***********************************************************************
INCLUDE ‘COM-WQ1l.INC’
Parameter (aco=2.67)

c1
READ(11,9002) NS2
READ(11,9001) (rKnll(i), i=2,NS2)
READ(11,9001) (rKplli(i), i=2,NS2)
READ(11,9001) (rKp22(i), i=2,NS2)
READ(11,9001) (rKchl(i), i=2,NS2)
READ(11,9001) (rKbod(i), i=2,NsS2)
IF (NS2 .EQ. 2) THEN
DO 10 i=ML,MU
rKnll(i) = rKnll(2)
rKpll(i) = rKpll(2)
rKp22 (i) = rKp22(2)
rKchl(i) = rKchl(2)
rKbod(i) = rKbod(2)
10 CONTINUE
END IF
WRITE(8,801)’'* Settling and loss rate (cm/day) of ‘
WRITE(8,802)" N1, P1, P2, chl, CBOD'
WRITE(8,803) (i, ‘:’, rKnll(i), rKpll(i), rKp22(i), rKchl(i),
* rKbod (i), i=ML,MU)
DO 20 i=ML,MU
rKnll(i) = rKnll(i) * DTD
rKpll(i) = rKpll(i) * DTD
rKp22(i) = rKp22(i) * DTD
rKchl(i) = rKchl(i) * DTD
rKbod(i) = rKbod(i) * DTD

20 CONTINUE

B-32



c2
READ(ll 9001) ac,an,ap,ar, PQ,RQ, rKmn,rKmp, xKgr,rls,
Resp20 Graz20, Fn,Fp, ThetaG ThetaR, ThetaD

WRITE(8,801)'* Phytoplankton (pp) related coefficients !
WRITE(8,804)’: Carbon/Chl ratio (mgC to ugChl) in pp =, ac,
* * N/Chl ratio (mgN to ugChl) in pp =, an,
* ‘ org.P/Chl ratio (mgP to ugChl) in pp =, ap,
* ‘s Proportion of consumed pp recycled by zp =‘, ar,
* ‘: Photosynthesis quotient (moles 02/mole C)=', PQ,
* ‘ Respiration quotient (moles CO2/mole 02) =', RQ,
* ‘s Half-sat. conc. (mg/L) for inorg.N uptake=’, ern,
* ! for orthophosphorus uptake=’, rKmp,
* ‘s Optimum growth rate of pp (/day) at 20C) =’, xKgr,
* ‘s Optimum solar radiation rate (langleys/d)=’', rls,
* ’: Endogenous resp. rate (/day) at 20C =’,Resp20,
* ‘: Grazing-other mortality rate (/d) at 20C =’,Graz20,
* ‘s Fraction of made N recycled to org. pool =', Fn,
* ’ of metabolically produced P recycled =’, Fp,
* ‘s Exp. base for temp. dependency of growth = ,ThetaG,
* ‘ of respiration =’,ThetaRr,
* 4

of grazing & other mortality =’,ThetaD
ac = ac * aco
PQ = PQ * ac
xKgr = xKgr * DTD
Resp20 = Resp20 * DTD
Graz20 = Graz20 * DTD
9001 FORMAT(10F8.0)
9002 FORMAT(IS)
801 FORMAT(/, A50)
802 FORMAT (A50)
803 FORMAT(I2, Al, 5F10.5)
804 FORMAT((2X, A44, F15.5))
RETURN
END
Chhkhkhkkkhkkhkkhhkkk

SUBROUTINE WQIC
(o I T2 2 2 22T Tl

C Read in initial conditions.
C**********************************************************************c

INCLUDE ‘COM-WQl.INC’

9002 FORMAT(I5)
801 FORMAT(/, A38, F10.5)
802 FORMAT(I2, Al, 20F7.4)
803 FORMAT(I2, Al, 20F7.3)
9001 FORMAT (10F8.3)
READ(11,9001) xN1,xN2,xN3,xP1l,xP2,xChl,xBOD,xDO
DO 100 i=ML,MU

n = KB(i)

DO 101 k=1,n
rN1IC(i,k) = xN1
rN2IC(i,k) = xN2
rN3IC(i,k) = xN3
P1lIC(i,k) = xP1
P2IC(i, k) = xP2
ChlIC(i,k) = xChl
BODIC(i,k) = xBOD
DOIC(i,k) = xDO
N1l(i,k,2) = xN1
N2(i,k,2) = xN2
N3(i,k,2) = xN3
P1(i,k,2) = xP1
P2(i,k,2) = xP2

Cchl(i,k,2) = xChl
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CBOD(i,k,2) = xBOD
DOC(i,k,2) = xDO

101 CONTINUE
StN1(i) = xN1
StN2(i) = xN2
StN3(i) = xN3
StP1(i) = xP1
StP2(i) = xP2
StChl(i) = xChl
StBOD(i) = xBOD

StDO(i) = xDO
100 CONTINUE
READ(11,9002) NS2WQ
IF (NS2WQ .EQ. 1) THEN
READ(11,9001) TWQIC
WRITE(8,801)‘* Time (in d) to specify the WQ ICs = ’, TWQIC
iTWQIC = NINT(TWQIC/DTD)
WRITE(8,801)’: Initial condition for N1 ‘
DO 10 i=ML,MU
n = KB(i)
READ(11,9001) (rNlIC(i,k), k=1,n)
WRITE(8,802) i, ’‘:’, (rN1lIC(i,k), k=1,n)
10 CONTINUE
WRITE(8,801)': Initial condition for N2 ’
DO 20 i=ML,MU
n = KB(i)
READ(11,9001) (rN2ICc(i,k), k=1,n)
WRITE(8,802) i, ‘:’, (rN2IC(i,k), k=1,n)
20 CONTINUE
WRITE(8,801)‘: Initial condition for N3 ’
DO 30 i=ML,MU
n = KB(i)
READ(11,9001) (rN3I1C(i,k), k=1,n)
WRITE(8,802) i, ‘:’, (rN3IC(i,k), k=1,n)
30 CONTINUE
WRITE(8,801)‘: Initial condition for P1 ‘
DO 40 i=ML,MU
n = KB(i) _
READ(11,9001) (P1lIC(i,k), k=1,n)
WRITE(8,802) i, ‘:’, (PlIC(i,k), k=1,n)
40 CONTINUE
WRITE(8,801)‘: Initial condition for P2 ‘
DO S0 i=ML,MU
n = KB(1i)
READ(11,9001) (P2IC(i,k), k=1,n)
WRITE(8,802) i, ‘:‘, (P2IC(i,k), k=1,n)
50 CONTINUE
WRITE(8,801)‘: Initial condition for Chl . 4
DO 60 i=ML,MU
n = KB(i)
READ(11,9001) (chlIic(i,k), k=1,n)
WRITE(8,802) i, ‘:‘, (chlic(i,k), k=1,n)
60 CONTINUE
WRITE(8,801)’: Initial condition for CBOD ‘
DO 70 i=ML,MU
n = KB(i)
READ(11,9001) (BODIC(i,k), k=1,n)
WRITE(8,802) i, ‘:’, (BODIC(i,k), k=1,n)
70 CONTINUE
WRITE(8,801)‘: Initial condition for DO ‘
DO 80 i=ML,MU :
n = KB(i)
READ(11,9001) (DOIC(i,k), k=1,n)
WRITE(8,802) i, ‘:’, (DOIC(i,k), k=1,n)
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80 CONTINUE

END IF
DO 90 i=ML,MU
n = KB(i)
DO 91 k=1,n
N1(i,k,2) = rN1IC(i,k)
N2(i,k,2) = rN2IC(i, k)
N3(i,k,2) = rN3IC(i,k)
P1(i,k,2) = P1IC(i,k)
P2(i,k,2) = P2IC(i, k)

chl(i,k,2) = ChlIC(i,k)
CBOD(i,k,2) = BODIC(i,k)
DOC(i,k,2) = DOIC(i,k)

91 CONTINUE
StN1(i) = rN1IC(i,1)
StN2(i) = rN2IC(i,1)
StN3(i) = rN3IC(i,1)
StP1(i) = P1IC(i,1)
StP2(i) = P2IC(i,1)
stchl(i) = chlIc(i,1)
StBOD(i) = BODIC(i,1)

StDO(i) = DOIC(i,1)
90 CONTINUE
RETURN
END
C% % & Kk & de ke de Kk Kk kode ke ke

SUBROUTINE WQinput
o R R R T T T T T T T 2 2 Y]

C Read in parameters that may vary w/t time.
C**********************************************************************c
INCLUDE ‘COM-WQ1l.INC'
Character Title*50
Dimension xBnN1(iX,iZ),xBnN2(iX,iZ),xBnN3(iX,i2),xBnP1(iX,i2),
* xBnP2(iX,iZ),xBnBOD(iX,iZ),xBnDO(iX,iZ)
Dimension xBN1(iX),xBN2(iX),xBN3(iX),xBP1(iX),xBP2(iX),xBBOD(iX),
*  xBDO(iX)
Dimension xBN1St (iX),xBN2St(iX),xBN3St(iX),xBP1St(iX),xBP2St(iX),
* xBBODSt (iX),xBDOSt (iX)
Save/Local/,xBnN1,xBnN2, xBnN3,xBnP1, xBnP2, xBnBOD, xBnDO,
* xBN1St,xBN2St,xBN3St,xBP1St,xBP2St,xBBODSt, xBDOSt,
* TBN1l,TBN2,TBN3,TBP1l,TBP2,TBBOD,TBDO
Data xBnN1,xBnN2,xBnN3,xBnP1l,xBnP2,xBnBOD,xBnDO/8400*0.0/

READ(11,802) Title
WRITE(8,801) Title
READ(11,9001) NDG, NS2

DO WHILE (NDG .NE. 99)
c1
C Set UpConc = 0 if non-point source is specified.

IF (NDG .EQ. 1) THEN
IF (iBCWQ .EQ. 1) THEN
iu = 17
WRITE(8,801)‘*1 Time-varying boundary conditions ’
ELSE
iv = 11
WRITE(8,801)‘*1 Time constant boundary conditions ‘
END IF
n = KB(MLsl)
READ(iU,9006) (N1(MLsl,k,2), k=1,n)
READ (iU,9006) (N2(MLsl,k,2), k=1,n)
READ (iU, 9006) (N3(MLsl,k,2), k=1,n)

B-35



READ (iU,9006) (P1(MLsl,k,2), k=1,n)
READ (iU,9006) (P2(MLsl,k,2), k=1,n)
READ (iU, 9006) (Chl(MLsl,k,2), k=1,n)
READ (iU, 9006) (CBOD(MLsl,k,2), k=1,n)
READ (iU,9006) (Doc(MLsl,k,2), k=1,n)
DO 100 k=1,n

N1l (MLsl,k,1) = N1(MLsl1,k,2)
N2 (MLsl,k,1) = N2(MLsl,k,2)
N3(MLsl,k,1) = N3(MLsl,k,2)
P1(MLsl,k,1) = P1(MLsl,k,2)
P2(MLsl1,k,1) = P2(MLsl,k,2)
Chl(MLsl,k,1) = Chl(MLsl, k,2)
CBOD (MLsl,k,1) = CBOD(MLs1,k,2)
DOC(MLsl,k,1) = DOC(MLsl,k,2)
100 CONTINUE
n = KB(MU)

READ (iU,9006) (DnN1l(k), k=1,n)

READ (iU, 9006) (DnN2(k), k=1,n)

READ(iU,9006) (DnN3(k), k=1,n)

READ(iU,9006) (DnPl(k), k=1,n)

READ(iU,9006) (DnP2(k), k=1,n)

READ(iU,9006) (DnChl(k), k=1,n)

READ(iU,9006) (DnBOD(k), k=1,n)

READ(iU,9006) (DnDO(k), k=1,n)

WRITE(8,802)° N1, N2, N3, P1, P2,
* ! Chl, CBOD, DO ‘

WRITE(8,801)': Upstream boundary !

n = KB(MLsl)

WRITE(8,803) (k, ’:’, Nl(MLsl,k,2),N2(MLsl,k,2),N3(MLsl,k,2),

* P1(MLsl,k,2),P2(MLsl,k,2), Chl(MLsl,k,2),CBOD(MLsl,k,2),
* DOC(MLs1,k,2), k=1,n)
WRITE(8,801) ‘: Downstream (open) boundary ’
n = KB(MU)
WRITE(8,803) (k, ’‘:‘, DnN1(k),DnN2(k),DnN3(k), DnPl(k),DnP2(k),
* DnChl (k),DnBOD(k},DnDO(k), k=1,n)

c2
C PNl in kg/d and point source loadings (WPNl) will be divided by Vol;
C: WPN1l = PN1l(kg/d) / Vol(cm**3) = C mg/L/d (C = 1.0E9)

ELSE IF (NDG .EQ. 2) THEN
IF (iWwQPS .EQ. 1) THEN

iupPs = 19
WRITE(8,801) ‘*2 Daily point source input in kg/day
ELSE
iugps = 11
WRITE(8,801)‘*2 Constant point source input in kg/day
END IF
WRITE(8,802)’ PSQ(m**3/s), N1, N2, N3, P1, ’
* * P2, CBOD, DO 4

x1 = 1.0E9 / DX * DTD
DO 10 m=1,NS2
READ(iUPS,9003) i, xPSQ, PN1,PN2,PN3, PP1,PP2, PBOD,PDO
WRITE(8,803) i, ‘:’, xPSQ, PN1l,PN2,PN3, PP1l,PP2, PBOD,PDO
x2 = x1 / TotB(i)

WPN1(i) = PN1 * x2
WPN2(i) = PN2 * x2
WPN3(i) = PN3 * x2
WPP1(i) = PPl * x2
WPP2(i) = PP2 * x2
WPBOD (i) = PBOD * x2
WPDO(i) = PDO * x2
10 CONTINUE

c3
C QLat(i,1l) in cm**3/s & DSN1 in mg/L (DSChl in ug/L)
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C and non-point source loadings (WN1l) will be divided by Vol;
C: WN1l = QLat(cm**3/s) * DSN1l(mg/L) / Vol(cm**3) = C mg/L/d (C = 8.64E4)
C: need to /B(i,l) in GetWNPS

ELSE IF (NDG .EQ. 3) THEN
IF (iNPS .EQ. 1) THEN

iu = 18
WRITE(8,801)'*3 Daily NPS input through UB in mg/L ’
ELSE
iv = 11
WRITE(8,801)'*3 Constant NPS input through UB in mg/L ‘
END IF
READ(iU,9003) i, DsQ,DSN1,DSN2,DSN3,DSP1,DSP2,DSChl,DSBOD,DSDO
WRITE(8,802) Q(m**3/g), N1, N2, N3, P1, ’,
* * P2, Chl(ug/L), CBOD, DO '

WRITE(8,804) i,’:’,DSQ,DSN1,DSN2,DSN3,DSP1,DSP2,DSchl,DSBOD,DSDO
x3 = 8.64E4 / DX * DTD

DSN1 = DSN1 * x3
DSN2 = DSN2 * x3
DSN3 = DSN3 * x3
DSP1 = DSP1 * x3
DSP2 = DSP2 * x3
DSChl DSChl * x3

DSBOD = DSBOD * x3
DSDO = DSDO * x3
c4
C Negative values, including SOD (xBnDO), are losses to sed.
C: Ben will be divided by h & thus Ben(g/m**2/d) / h(cm) = 100 mg/L/d.

ELSE IF (NDG .EQ. 4) THEN

WRITE(8,801)‘'*4 Benthic flux release rate (g/m**2/d) at 20C '
WRITE(8,802)‘: will be adjusted by (B(i,k)-B(i,k+1))/B(i, k) ’
READ (11,9002) (xBN1(i), i=ML,MU)

READ(11,9002) (xBN1St(i), i=ML,MU)

READ(11,9002) (xBN2(i), i=ML,MU)

READ(11,9002) (xBN2St(i), i=ML,MU)

READ(11,9002) (xBN3(i), i=ML,MU)

READ(11,9002) (xBN3St(i), i=ML,MU)

READ(11,9002) (xBP1l(i), i=ML,MU)

READ(11,9002) (xBP1St(i), i=ML,MU)

READ(11,9002) (xBP2(i), i=ML,MU)

READ(11,9002) (xBP2St(i), i=ML,MU)

READ(11,9002) (xBBOD(i), i=ML,MU)

READ(11,9002) (xBBODSt(i), i=ML,MU)

READ (11,9002) (xBDO(i), i=ML,MU)

READ(11,9002) (xBDOSt (i), i=ML,MU)

WRITE(8,807) ‘1) N1 ’
WRITE(8,9002) (xBN1(i), i=ML,MU)

WRITE(8,807)’2) N2 ‘
WRITE(8,9002) (xBN2(i), i=ML,MU)

WRITE(8,807)’3) N3 ‘
WRITE(8,9002) (xBN3(i), i=ML,MU)

WRITE(8,807)‘4) Pl ‘
WRITE(8,9002) (xBP1l(i), i=ML,MU)

WRITE(8,807) ‘5) P2 ‘
WRITE(8,9002) (xBP2(i), i=ML,MU)

WRITE(8,807)'6) CBOD '
WRITE(8,9002) (xBBOD(i), i=ML,MU)

WRITE(8,807)‘7) DO ’
WRITE(8,9002) (xBDO(i), i=ML,MU)

WRITE(8,807)’1St) N1 ’
WRITE(8,9002) (xBN1St(i), i=ML,MU)

WRITE(8,807)’25t) N2 ‘

WRITE(8,9002) (xBN2St(i), i=ML,MU)
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WRITE(8,807)'3St) N3 ‘
WRITE(8,9002) (xBN3St(i), i=ML,MU)

WRITE(8,807) ‘4St) P1 ’
WRITE(8,9002) (xBP1St(i), i=ML,MU)
WRITE (8,807)’55t) P2 '
WRITE(8,9002) (xBP2St(i), i=ML,MU)
WRITE(8,807)’6St) CBOD ’
WRITE(8,9002) (xBBODSt (i), i=ML,MU)
WRITE(8,807)‘7St) DO ’

WRITE(8,9002) (xBDOSt(i), i=ML,MU)
xx = DTD * 100.0
DO 19 i=ML,MUsl

n = KB(1i)

DO 18 k=1,n
xBnN1(i,k) = xBN1l(i) * Bfrac(i,k) * xx
xBnN2(i,k) = xBN2(i) * Bfrac(i,k) * xx
xBnN3(i,k) = xBN3(i) * Bfrac(i,k) * xx
xBnP1l(i,k) = xBP1(i) * Bfrac(i,k) * xx
xBnP2(i,k) = xBP2(i) * Bfrac(i,k) * xx

xBnBOD(i,k) = xBBOD(i) * Bfrac(i,k) * xx
xBnDO(i,k) = xBDO(i) * Bfrac(i,k) * xx

18 CONTINUE
xBN1St (i) = xBN1St(i) * xx
xBN2St (i) = xBN2St(i) * xx
xBN3St (i) = xBN3St(i) * xx
xBP1St (i) = xBP1St(i) * xx
xBP2St (1) = xBP2St(i) * xx

xBBODSt (i) = xBBODSt (i) * xx
xBDOSt (i) = xBDOSt (i) * xx
19 CONTINUE
READ(11,9002) TBN1l, TBN2, TBN3, TBPl, TBP2, TBBOD, TBDO
WRITE(8,802)‘': Exp. bases for Temp. correction for the above '
WRITE(8,9002) TBN1,TBN2,TBN3, TBP1l,TBP2, TBBOD, TBDO
C5
C Default value for Turb is 0.01 (/cm).

ELSE IF (NDG .EQ. 5) THEN
READ(11,9002) (Turb(i), i=ML,MU)
WRITE(8,801)'*5 Light extinction coeff. (/cm) at O Chl conc. '
WRITE(8,806) (i, ‘:’, Turb(i), i=ML,MU)
Ccé6
C Default value for WRea is O.

ELSE IF (NDG .EQ. 6) THEN
READ(11,9002) (WRea(i), i=ML,MU)
WRITE(8,801) '*6 Wind-induced reaeration of DO (cm/day) ‘
WRITE(8,806) (i, ‘:’, WRea(i), i=ML,MU)
c7
C Temperature should be read in after reading benthic fluxes since these
C parameters must be temperature corrected.

ELSE IF (NDG .EQ. 7) THEN
READ(11,9002) Temp
WRITE(8,807) '*7 Temperature (deg C) = ', Temp
Tmp = Temp * Temp
TDOs = 14.62 - 0.367*Temp + 4.497E-3*Tmp
STDOs = -9,66E-2 + 2.05E-3*Temp

(o] Tl = 5.89E3 + 38.0*Temp - 0.375*Tmp
(o] T2 = 5.891E3 + 37.8*Temp - 0.336*Tmp
(o] T3 = 1.7 + 0.01*Temp

x20 = Temp - 20.0

xN12 = TheN12**x20

xN23 = TheN23**x20

®¥N33 = TheN33**x20
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c8

31

30

xP12 = ThePl2**x20
xxKc = TheKc**x20
xxBN1 = TBN1**x20
xxXBN2 = TBN2**x20
XXBN3 = TBN3**x20
xxBP1l = TBP1**x20
xxBP2 = TBP2**x20

xxBBOD = TBBOD**x20
xxBDO = TBDO**x20
DO 30 i=ML,MUsl

rKnl2(i) = xKnl2(i) * xN12

rKn23(i) = xKn23(i) * xN23

rKn33(i) = xKn33(i) * xN33

rKpl2(i) = xKpl2(i) * xP1l2

rKc(i) = xKc(i) * xxKc

n = KB(i)

DO 31 k=1,n
BenN1l(i,k) = xBnN1l(i,k) * xxBN1l
BenN2(i,k) = xBnN2(i,k) * xxBN2
BenN3(i,k) = xBnN3(i,k) * xxBN3
BenPl(i,k) = xBnP1l(i,k) * xxBP1l
BenP2(i,k) = xBnP2(i,k) * xxBP2

BenBOD(i,k) = xBnBOD(i,k) * xxBBOD
BenDO(i,k) = xBnDO(i,k) * xxBDO

CONTINUE

StBN1(i) = xBN1St(i) * xxBN1
StBN2(i) = xBN2St (i) * xxBN2
StBN3(i) = xBN3St(i) * xxBN3
StBP1(i) = xBP1St(i) * xxBP1
StBP2(i) = xBP2St(i) * xxBP2

StBBOD(i) = xBBODSt(i) * xxBBOD
StBDO(i) = xBDOSt (i) * xxBDO

CONTINUE

RespR = Resp20 * ThetaR**x20

GrazR = Graz20 * ThetaD**x20
xDie = RespR + ar*GrazR

CNdie = an * xDie

CNdiel CNdie * Fn

CNdie2 CNdie * (1.0-Fn)

CpPdie = ap * xDie

CPdiel = CPdie * Fp

CPdie2 = CcPdie * (1.0-Fp)

BODdie = ac * ar * GrazR

DOresp = ac / RQ * RespR

rKgr = 2.718 * xKgr * ThetaG**x20
TDOaer = TheDA**x20 * DTD

ELSE IF (NDG .EQ. 8) THEN
IF (iSun .EQ. 1) THEN

WRITE(8,801)'*8 Daily~-varying solar radiation parameters ‘

IF (NS2 .EQ. 1) THEN
READ(16,9006) rIa, TU, TD
WRITE(8,807)': Hours from midnight to sun rise
‘e to sun set
’: Total daily radiation (langleys/day)
ELSE
READ(16,9006) rla
WRITE(8,807)': Total daily radiation (langleys/day)
END IF
ELSE
WRITE(8,801) '*8 Constant solar radiation parameters
READ(11,9006) rIa, TU, TD
WRITE(8,807)‘: Hours from midnight to sun rise
‘e to sun set
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* s Total daily radiation (langleys/day) = ’, rla
END IF
PTT = 3.1416 / (TD-TU)
rIn = - 12.0 * PTT * (rIa/ris)
END IF
READ(11,9001) NDG, NS2
END DO
FORMAT (215)
FORMAT ( 10F8. 3)
FORMAT (9X, I5, 9F7.3)
FORMAT (151I5)
FORMAT (9X, 10F8.3)
FORMAT(/, A48)
FORMAT (2A49)
FORMAT(I2, Al,
FORMAT(I2, Al,
FORMAT(I2, Al,

9001
9002
9003
9004
9006
801
802
803
804
805

8F9.3)
9F9.3)
7F9.3)

806
807
809

FORMAT(I2, Al,
FORMAT(/, (R41,
FORMAT(I2, Al,

F9.3)
F10.5))
10F7.3)

RETURN
END

Chhhkhhkhkdkkhkhkhkkk

SUBROUTINE WQmean

Chrhrh kAR AR AT AR AT AR IR IAR IR A Ik Ik Ak hkh kA ko kA Tk kR kA Ak kkk

INCLUDE ’'COM-WQl.INC’
INCLUDE ’‘COM-WQ2.INC’

AvgNWQ = AvgNWQ + 1.0

DO 2100 i=ML,MU

n = KB(1i)
DO 2101 k=1,n
AvgN1(i,k) = AvgN1l(i,k) + N1(i,k,2)
AvgN2(i,k) = AvgN2(i,k) + N2(i,k,2)
AvgN3 (i, k) = AvgN3(i,k) + N3(i,k,2)
AvgPl(i,k) = AvgPl(i,k) + P1(i,k,2)
AvgP2(i,k) = AvgP2(i,k) + P2(i, k,2)
AvgChl(i,k) = AvgChl(i,k) + Chl(i,k,2)
AvgBOD (i, k) = AvgBOD(i,k) + CBOD(i,k,2)
AvgDO(i,k) = AvgDO(i,k) + DOC(i,k,2)
IF (N1(i,k,2) .GT. rNlMax(i,k)) rNlMax(i,k) = N1(i,k,2)
IF (N2(i,k,2) .GT. rN2Max(i,k)) rN2Max(i,k) = N2(i, k,2)
IF (N3(i,k,2) .GT. rN3Max(i,k)) rN3Max(i,k) = N3(i,k,2)
IF (P1(i,k,2) .GT. PlMax(i,k)) PlMax(i,k) = P1(i,k,2)
IF (P2(i,k,2) .GT. P2Max{i,k)) P2Max(i,k) = P2(i,k,2)
IF (chl(i,k,2) .GT. ChlMax(i,k)) ChlMax(i,k) = Chl(i,k,2)
IF (CBoD(i,k,2) .GT. BODMax(i,k)) BODMax(i,k) = CBOD(i,k,2)
IF (DOC(i,k,2) .GT. DOMax(i,k)) DOMax(i,k) = DOC(i,k,2)
IF (N1(i,k,2) .LT. rN1Min(i,k)) rNlMin(i,k) = N1(i,k,2)
IF (N2(i,k,2) .LT. rN2Min(i,k)) rN2Min(i,k) = N2(i,k,2)
IF (N3(i,k,2) .LT. rN3Min(i,k)) rN3Min(i,k) = N3(i,k,2)
IF (P1(i,k,2) .LT. P1Min(i,k)) P1Min(i,k) = P1(i,k,2)
IF (P2(i,k,2) .LT. P2Min(i,k)) P2Min(i,k) = P2(i,k,2)
IF (Chl(i,k,2) .LT. ChlMin(i,k)) ChlMin(i,k) = chl(i,k,2)
IF (cBOD(i,k,2) .LT. BODMin(i,k)) BODMin(i,k) = CBOD(i,k,2)
IF (DOC(i,k,2) .LT. DOMin(i,k)) DOMin(i,k) = DOC(i,k,2)
2101 CONTINUE
2100 CONTINUE
RETURN
END

Chhakhkhhkhhkhhkhkkhk
SUBROUTINE WOut

ChRArIAKRKKIIKRKKKIAIIRKRAR R IR R A AT IR RRRAR Rk Ak hhhdhkhhhhkkhhkhkhkhhhkkkhhhkkkhhk*xC

INCLUDE 'COM-WQl.INC’
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INCLUDE '‘COM-WQ2.INC'
Parameter (C1=1000.0, C2=-1000.0)

WRITE(8,901) ‘* N1 (mg/L) ’
WRITE(8,902) WQout (IncW)
DO 10 i=ML,MU
n = KB(i)
WRITE(8,903) i, ‘:’, (N1(i,k,2), k=1,n)
10 CONTINUE

WRITE(8,901)‘* N2 (mg/L) ’
WRITE(8,902) WQout (IncW)
DO 20 i=ML,MU
n = KB(i)
WRITE(8,990) i, *:’, (N2(i,k,2), k=1,n)
20 CONTINUE

WRITE(8,901) ‘* N3 (mg/L) ‘
WRITE (8,902) WQout (IncwW)
DO 30 i=ML,MU
n = KB(i)
WRITE(8,990) i, ’:’, (N3(i,k,2), k=1,n)
30 CONTINUE

WRITE(8,901)‘* Pl (mg/L) '
WRITE(8,902) WQout (IncW)
DO 40 i=ML,MU
n = KB(i)
WRITE(8,990) i, ’:’, (P1(i,k,2), k=1,n)
40 CONTINUE

WRITE(8,901) ‘* P2 (mg/L) '
WRITE(8,902) WQout (IncW)
DO 50 i=ML,MU
n = KB(i)
WRITE(8,990) i, ‘:’, (P2(i,k,2), k=1,n)
50 CONTINUE

WRITE(8,901)* chl (ug/L) ’
WRITE(8,902) WQout (IncW)
DO 60 i=ML,MU
n = KB(1i)
WRITE(8,904) i, ':’, (Chl(i,k,2), k=1,n)
60 CONTINUE

WRITE(8,901)’* CBOD (mg/L) ’
WRITE (8,902) WQout (IncW)
DO 70 i=ML,MU
n = KB(i)
WRITE(8,903) i, ":‘, (CBOD(i,k,2), k=1,n)
70 CONTINUE

WRITE(8,901)‘* DO (mg/L) ‘
WRITE(8,902) WQout (IncW)
DO 80 i=ML,MU
n = KB(i)
WRITE(8,904) i, ‘:’, (DOC(i,k,2), k=1,n)
80 CONTINUE
901 FORMAT(/, Al8)
902 FORMAT('’ at ’, F13.8, ‘' days after model starts’)
903 FORMAT(I2, Al, 10F7.3)
904 FORMAT(I2, Al, 10F7.2)
990 FORMAT(I2, Al, 10F7.4)
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IF (iwQTPsl .GE. O) THEN
DO 90 i=ML,MU

n = KB(i)
DO 91 k=1,n
AvgNl(i,k) = AvgNl(i,k) / AvgNWQ
AvgN2(i,k) = AvgN2(i,k) / AvgNWQ
AvgN3(i,k) = AvgN3(i,k) / AvgNWwQ
AvgPl(i,k) = AvgPl(i,k) / AvgNWQ
AvgP2(i,k) = AvgP2(i,k) / AvgNWQ
AvgChl(i,k) = AvgChl(i,k) / AvgNwWQ
AvgBOD(i,k) = AvgBOD(i,k) / AvgNWQ
AvgDO(i,k) = AvgDO(i,k) / AvgNWQ
91 CONTINUE
90 CONTINUE
905 FORMAT( over a day before ‘, F13.8, ‘' days after start’)

WRITE(8,901)'* Max N1 (mg/L) ‘
WRITE(8,905) WQout (IncW)
DO 100 i=ML,MU
n = KB(1i)
WRITE(8,903) i, ‘:’, (rNlMax(i,k), k=1,n)
100 CONTINUE
WRITE(8,901) ‘* Min N1 (mg/L) ‘
WRITE(8,905) WQout (IncW)
DO 110 i=ML,MU
n = KB(i)
WRITE(8,903) i, ‘:’, (rNlMin(i,k), k=1l,n)
110 CONTINUE
WRITE(8,901) ‘* Mean N1 (mg/L)
WRITE (8,905) WQout (Incw)
DO 120 i=ML,MU
n = KB(i)
WRITE(8,903) i, ’:‘, (AvgN1l(i,k), k=1,n)
120 CONTINUE

WRITE(8,901) ‘* Max N2 (mg/L) ‘
WRITE(8,905) WQout (IncW)
DO 130 i=ML,MU
n = KB(1i)
WRITE(8,990) i, ‘:’, (rN2Max(i,k), k=1,n)
130 CONTINUE
WRITE(8,901)‘* Min N2 (mg/L) ‘
WRITE (8,905) WQout (IncW)
DO 140 i=ML,MU
n = KB(1i)
WRITE(8,990) i, ‘:’, (rN2Min(i,k), k=1,n)
140 CONTINUE
WRITE(8,901) * Mean N2 (mg/L)
WRITE(8,905) WQout (IncW)
DO 150 i=ML, MU
n = KB(i)
WRITE(8,990) i, ‘:’, (AvgN2(i,k), k=1,n)
150 CONTINUE

WRITE(8,901)'* Max N3 (mg/L) ‘
WRITE(8,905) WQout (IncW)
DO 160 i=ML,MU
n = KB(i)
WRITE(8,990) i, ‘:’, (rN3Max(i,k), k=1,n)
160 CONTINUE
WRITE(8,901)‘* Min N3 (mg/L) ’
WRITE (8,905) WQout (IncW)
DO 170 i=ML,MU
n = KB(i)
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170

180

190

200

210

220

230

240

250

260

WRITE(8,990) i, ‘:’, (rN3Min(i,k), k=1,n)
CONTINUE
WRITE(8,901) ‘* Mean N3 (mg/L) °
WRITE (8,905) WQout (IncW)
DO 180 i=ML,MU

n = KB(1i)

WRITE(8,990) i, ‘:’, (AvgN3(i,k), k=1,n)
CONTINUE

WRITE(8,901)‘* Max Pl (mg/L) ’
WRITE (8,905) WQout (IncW)
DO 190 i=ML,MU
n = KB(1i)
WRITE(8,990) i, ‘:’, (P1lMax(i,k), k=1,n)
CONTINUE
WRITE(8,901)’* Min Pl (mg/L) '
WRITE (8,905) WQout (IncW)
DO 200 i=ML,MU
n = KB(1i)
WRITE(8,990) i, ‘:’, (P1Min(i,k), k=1,n)
CONTINUE
WRITE(8,901)'* Mean Pl (mg/L) '
WRITE (8,905) WQout (IncW)
DO 210 i=ML,MU
n = KB(i)
WRITE(8,990) i, ’:’, (AvgPl(i,k), k=1,n)
CONTINUE

WRITE(8,901)'* Max P2 (mg/L) ’
WRITE(8,905) WQout (IncW)
DO 220 i=ML,MU

n = KB(1i)

WRITE(8,990) i, ‘:’, (P2Max(i,k), k=1,n)
CONTINUE
WRITE(8,901)'* Min P2 (mg/L) ‘
WRITE(8,905) WQout (IncwW)
DO 230 i=ML,MU

n = KB(i)

WRITE(8,990) i, ‘:’, (P2Min(i,k), k=1,n)
CONTINUE
WRITE(8,901)‘'* Mean P2 (mg/L) *
WRITE (8,905) WQout (IncW)
DO 240 i=ML,MU

n = KB(1i) :

WRITE(8,990) i, ‘:‘, (AvgP2(i,k), k=1,n)
CONTINUE

WRITE(8,901)‘* Max Chl (ug/L) ’
WRITE (8,905) WQout (IncW)
DO 250 i=ML,MU

n = KB(1i)

WRITE(8,904) i, ‘:’, (ChlMax(i,k), k=1,n)
CONTINUE
WRITE(8,901)‘* Min Chl (ug/L)
WRITE(8,905) WQout (IncW)
DO 260 i=ML,MU

n = KB(i)

WRITE(8,904) i, ‘:’, (ChlMin(i,k), k=1,n)
CONTINUE
WRITE(8,901) ‘* Mean Chl (ug/L) *
WRITE(8,905) WQout (IncW)
DO 270 i=ML,MU

n = KB(i)

WRITE(8,904) i, ‘:’, (AvgChl(i,k), k=1,n)
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270 CONTINUE

WRITE(8,901) ‘* Max CBOD (mg/L)
WRITE (8,905) WQout (IncW)
DO 280 i=ML,MU
n = KB(i)
WRITE(8,903) i, ‘:’, (BODMax(i,k), k=1,n)
280 CONTINUE
WRITE(8,901)‘* Min CBOD (mg/L) '
WRITE(8,905) WQout (IncW)
DO 290 i=ML,MU
n = KB(i)
WRITE(8,903) i, ‘:’, (BODMin(i,k), k=1,n)
290 CONTINUE
WRITE(8,901)'* Mean CBOD (mg/L)’
WRITE(8,905) WQout (IncW)
DO 300 i=ML,MU
n = KB(i)
WRITE(8,903) i, ‘:’, (AvgBOD(i,k), k=1,n)
300 CONTINUE

WRITE(8,901)'* Max DO (mg/L) '
WRITE(8,905) WQout (IncW)
DO 310 i=ML,MU
n = KB(i)
WRITE(8,904) i, ’:’, (DOMax(i,k), k=1,n)
310 CONTINUE
WRITE(8,901) ‘* Min DO (mg/L) !
WRITE (8,905) WQout (IncW)
DO 320 i=ML,MU
n = KB(i)
WRITE(8,904) i, ‘:’, (DOMin(i,k), k=1,n)
320 CONTINUE
WRITE(8,901) ‘'* Mean DO (mg/L)
WRITE(8,905) WQout (IncW)
DO 330 i=ML,MU
n = KB(i)
WRITE(8,904) i, ‘:’, (AvgDO(i,k), k=1,n)
330 CONTINUE

AvgNWQ = 0.0
DO 340 i=ML,MU
n= KB(1i)

DO 341 k=1,n
AvgN1l (i, k)
AvgN2 (i, k)
AvgN3 (i, k)
AvgPl (i, k)
AvgP2(i,k)
AvgChl (i, k)
AvgBOD (i, k)
AvgDO(i,k) = O.
rN1lMax(i,k) =
rN2Max (i, k) =
rN3Max(i,k) = C2
P1Max (i, k) c2
P2Max (i, k) c2
ChlMax(i,k) = c2
BODMax(i,k) = C2
DOMax(i,k) = C2

wwwaon

00000

MNVOee ¢« OOO0OOO
oo

o

QqQ

rN1Min(i,k) = Cl1
rN2Min(i,k) = C1
rN3Min(i,k) = C1

P1Min(i,k) = c1
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P2Min(i,k) = C1
chilMin(i,k) = c1
BODMin(i,k) = C1
DOMin(i,k) = c1

341 CONTINUE
340 CONTINUE
END IF
RETURN
END

Chkhhkkkhhkhhhhhhd
BLOCK DATA WData
L R R R R R R R R T L L T T T L s R I T T T T 7]
INCLUDE ’‘COM-WQl.INC’
INCLUDE ‘COM-WQ2.INC’
INCLUDE ’'BLKD-WQ.INC’
END
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B-4. WQ-2D.FOR

C ¥ e de ke Je K de ke de ke ke ok ok k Kk

SUBROUTINE WReset
R R R e Y I T T 2 T el

C Reset WQ variables (WQC) for a new time step for i=ML to MU.
c**********************************************************************c

INCLUDE ‘COM-WQl.INC’

DO 110 i=MLsl,MU

n = KB(i)

DO 111 k=1,n
N1(i,k,1) = N1(i,k,2)
N2(i,k,1) = N2(i,k,2)
N3(i,k,1) = N3(i,k,2)
P1(i,k,1) = P1(i,k,2)
P2(i,k,1) = P2(i,k,2)
chl(i,k,1) = chl(i,k,2)
CBOD(i,k,1) = CBOD(i,k,2)
poc(i,k,1) = poc(i,k,2)

111 CONTINUE
110 CONTINUE
RETURN
END
Chhhkkkkhhkhhkrkkk

SUBROUTINE GetWNPS
R T T T Yol

C: QLat(i,1) from SUBR GetQLat

C: Assume (conc in lateral inflow into segment i) = (conc at fall line).
C**********************************************************************c

INCLUDE ’‘COM-WQl.INC’

DO 10 i=ML,MUsl

WN1(i) = QLat(i,1) * DSN1 / B(i,1)
WN2(i) = QLat(i,1) * DSN2 / B(i,1)
WN3(i) = QLat(i,1) * DSN3 / B(i,1)
WP1(i) = QLat(i,1) * DSP1 / B(i,1)
WP2(i) = QLat(i,1) * DSP2 / B(i,1)
Wchl(i) = QLat(i,l) * DSChl / B(i,1)

WBOD(i) = QLat(i,1l) * DSBOD / B(i,1)
WDO(i) = QLat(i,1l) * DSDO / B(i,1)
10 CONTINUE
RETURN
END
C***************

SUBROUTINE Phyto
C**********************************************************************C
C Calculate for i=ML-MUsl pp growth term (/day) in main channel (G) & in
C sfc storage area (StG), and preference of pp for N2 (PR2, StPR2) & N3
C (PR3, StPR3) : m = main channel and sa = storage area.

C: G = StG = 0 during night.
C: Since PR/StPR occurs only with G/StG, don’t care about these at night.
c**********************************************************************c
INCLUDE ‘COM-WQl.INC’
Parameter (Cl1=1.8E-4)

IF (Hour .GT. TU .AND. Hour .LT. TD) THEN

rLite = rIn * SIN( PTT * (Hour-TU) )
ELite = EXP(rLite)
DO 10 i=ML,MUsl

C-m
C For k=1, Hs=0 & TLite = EXP(rLite * EXP(-Turb(i) * Hs)) = ELite
TLite = ELite
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n = KB(i)
DO 11 k=1,n
Hb = Depth(i,k) + Ada(i,1)
IF (k .EQ. 1) THEN
dz = Hb
ELSE
dz = H(k)
END IF
rKe = Turb(i)
IF (Chl(i,k,1) .GT. 0.0) rKe = rKe + Cl*Chl(i,k,1)
BLite = EXP(rLite / EXP(rKe*Hb))
rKe = rKe * dz

IF (N2(i,k,1) .GT. 0.0) THEN
IF (N3(i,k,1) .GT. 0.0) THEN
xN = N2(i,k,1) + N3(i k,1)
rNutN = xN / (xN + rKmn)
PR2(i,k) = ( N3(i,k,1)/(N2(i,k,1)+rKmn) + rKmn/xN )
* * N2(i,k,1) / (N3(i,k,1)+rKmn)
ELSE
rNutN = N2(i,k,1) / (N2(i,k,1) + rKmn)
PR2(i,k) = 1.0
END IF
ELSE
PR2(i,k) = 0.0
IF (N3(i,k,1) .GT. 0.0) THEN
rNutN = N3(i,k,1) / (N3(i,k,1) + rKmn)
ELSE
rNutN = 0.0
END IF
END IF
PR3(i,k) = 1.0 - PR2(i,k)
IF (P2(i,k,1) .GT. 0.0) THEN
rNutP = P2(i,k,1) / (P2(i,k,1) + rKmp)
ELSE
rNutP
END IF
G(i,k) = rKgr/rKe * (BLite-TLite) * AMINI1(rNutN,rNutP)
TLite = BLite
11 CONTINUE
C-St

0.0

IF (SST(i) .NE. 0.0 .AND. StH1(i,2) .GT. 0.0) THEN
IF (StN2(i) .GT. 0.0) THEN
IF (StN3(i) .GT. 0.0) THEN
xStN = StN2(i) + StN3(i)
SNutN = xStN / (xStN + rKmn)
StPR2(i) = ( StN3(i)/(StN2(i)+rKmn) + rKmn/xStN )
* * StN2(i) / (StN3(i)+rKmn)
ELSE
SNutN = StN2(i) / (StN2(i) + rKmn)
StPR2(i) = 1.0
END IF
ELSE
StPR2(i) = 0.0
IF (StN3(i) .GT. 0.0) THEN
SNutN = StN3(i) / (StN3(i) + rKmn)
ELSE
SNutN = 0.0
END IF
END IF
StPR3(i) = 1.0 - StPR2(i)
IF (StP2(i) .GT. 0.0) THEN
SNutP = StP2(i) / (StP2(i) + rKmp)
ELSE
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SNutP = 0.0
END IF

StKe = Turb(i) * StH1(i,1)
IF (StChl(i) .GT. 0.0) StKe = StKe + C1*StChl(i)*StH1(i,1)
StBL = EXP( rLite / EXP(StKe) )
StG(i) = rKgr/StKe * (StBL-ELite) * AMINI1(SNutN,SNutP)
END IF
10 CONTINUE
ELSE
DO 20 i=ML,MUsl
StG(i) = 0.0
n = KB(i)
DO 21 k=1,n
G(i,k) = 0.0

21 CONTINUE
20 CONTINUE
END IF
RETURN
END

Chddkdedkdkkkkkhkkd

SUBROUTINE EgnN1
CRAKKAKEKRIKAK KRR KA RKA KRNI KA KRA IR IR KRR IR RANA KRR R AR AN ARk Rk kR * X
C Solve the MASS BALANCE Eqn. for N1l to get N1l(i,k,2) for i=ML-MUsl.
C: Since Hyd is calculated here, this SUBR be called prior to EgnN2.
C**********************************************************************c
INCLUDE ‘COM~-WQl.INC’
Dimension Al(iX,iZ),A2(iX,iZ), BB(i2),xC(iZ),xD(iZ),xE(i2)
Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

IF (iHAdv .EQ. 3) THEN
DO 20 i=ML,MUsl

n = KB(i)

DO 24 k=1,n
CURVN1(i,k) = N1(i+1l,k,1)-2.0*N1(i, k,1)+N1(i-1,k,1)
CURVN2(i,k) = N2(i+1,k,1)-2.0*N2(i,k,1)+N2(i-1,k,1)
CURVN3(i,k) = N3(i+l,k,1)-2.0*N3(i,k,1)+N3(i-1,k,1)
CURVP1(i,k) = P1(i+l,k,1)-2.0*P1(i,k,1)+P1(i-1,k,1)
CURVP2(i,k) = P2(i+l,k,1)-2.0*P2(i,k,1)+P2(i-1,k,1)

CURVChl(i,k) = Chl(i+1,k,1)-2.0*Chl(i,k,1)+Chl(i-1,k,1)
CURVBOD(i,k) = CBOD(i+1,k,1)-2.0*CBOD(i,k,1)+CBOD(i-1,k,1)
CURVDO(i,k) = DOC(i+1,k,1)-2.0*DOC(i,k,1)+DOC(i-1,k,1)
24 CONTINUE
nsl = KB(i-1) + 1
IF (n .GE. nsl) THEN
DO 22 k=nsl,n

CURVN1(i,k) = N1(i+l,k,1)-N1(i,k,1)
CURVN2(i,k) = N2(i+l,k,1)-N2(i,k,1)
CURVN3(i,k) = N3(i+l,k,1)-N3(i,k,1)
CURVP1(i,k) = P1(i+l,k,1)-P1(i,k,1)
CURVP2(i,k) = P2(i+l,k,1)-P2(i,k,1)
CURVCh1 (i, k) = Chl(i+1,k,1)-Chl(i,k,1)
CURVBOD (i,k) = CBOD(i+1,k,1)~-CBOD(i,k,1)
CURVDO(i,k) = DOC(i+1,k,1)=-DOC(i,k,1)
22 CONTINUE
END IF

npl = KB(i+l) + 1
IF (n .GE. npl) THEN
DO 23 k=npl,n

CURVN1(i,k) = =N1(i,k,1)+N1(i-1,k,1)
CURVN2 (i, k) = =~N2(i,k,1)+N2(i-1,k,1)
CURVN3(i,k) = =N3(i,k,1)+N3(i-1,k,1)
CURVP1(i,k) = -P1(i,k,1)+P1(i-1,k,1)
CURVP2(i,k) = -P2(i,k,1)+P2(i-1,k,1)
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CURVChl(i,k) = -Chl(i,k,1)+Chl(i~1,k,1)
CURVBOD (i,k) = -CBOD(i,k,1)+CBOD(i~1,k,1)
CURVDO(i,k) = -DOC(i,k,1)+DOC(i-1,k,1)
23 CONTINUE
END IF
20 CONTINUE
END IF
DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+1,k)*N1(i,k,1) + Del(i+1,k)*N1(i+1,k,1))
* * HAdv(i,k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (N1(i,k,1)+N1(i+l,k,1))*0.5
* - COUR2(i,k)*(N1(i+1,k,1)-N1(i, k,1))
IF (U(i+l,k,1) .GE. 0.0) THEN
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVN1(i,k))
ELSE
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVN1(i+1,k))
END IF
END IF
A2(i,k) = HDif(i,k)*(N1(i+l,k,1) - N1(i,k,1))
11 CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
HydNSt (i) = rKnl2(i)*StN1(i) / (rKh12+StN1(i))
Bio = CNdiel*StChl(i) - HydNSt (i)
* + (StBN1(i) ~ rKnll(i)*StN1l(i))/StH1(i,1)
IF (DelA(i) .GT. 0.0) THEN
Sink = N1(i,1,1) * SDoDT(i)
Phys = (StN1(i)*StH1(i,1) + N1(i,1,1)*DelA(i))/StH1(i,2)
StN1(i) = Phys + Bio
ELSE
Sink = StN1l(i) * SDoDT(i)
StN1(i) = StN1(i) + Bio
END IF
ELSE
StN1l(i) = 0.0
END IF
END IF
HydN(i,1) = rKnl2(i)*N1(i,1,1) / (rKhl2+N1(i,1,1))
SoNl1l = CNdiel*Chl(i,1,1) - HydN(i,l) + ( BenN1l(i,1)
* - rKnll(i)*N1(i,1,1) + WN1(i)+WPN1(i) )/H1(i,1)
WCBb = VAdv(i,2) * (N1(i,1,1)+N1(i,2,1))
BB(1) = BT(i)*H1(i,1)*(N1(i,1,1) + SoNl) + Al(i-1,1)-Al(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink
IF (isalt .NE. 1) THEN

cc(i,1) = 0.0
EE(i,1) = - VDif(i,2)
DD(i,1) = BT(i)*H1(i,2) - EE(i,1)
END IF
xC(1) = cc(i,1)
xD(1) = DD(i,1)
xE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
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HydN(i,k) = rKnl2(i)*N1l(i,k,1) / (rKhl2+N1l(i,k,1))
SoN1 = CNdiel*Chl(i,k,1) - HydN(i,k) + ( BenN1l(i, k)
* © + rKnll(i)*(N1(i,k-1,1)-N1(i,k,1)) + WPN1(i) )/H(k)
WCBt WCBb
WCBb = VAdv(i,k+1) * (N1(i,k,1)+N1(i,k+1,1))
BB(k) = BHT(i,k)*(N1(i,k,1) + SoNl1l) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
IF (iSsalt .NE. 1) THEN
cc(i,k) = EE(i,k-1)
EE(i,k) = ~ VDif(i,k+l)
DD(i, k) BHT(i,k) - CC(i,k) - EE(i,k)
END IF
xC(k)
xD (k)
xE (k)
801 CONTINUE
END IF

[

cc(i,k)
DD(i,k)
EE(i,k)

HydN(i,n) = rKnl2(i)*N1l(i,n,1) / (rKhl2+N1l(i,n,1))
SoN1l = CNdiel*Chl(i,n,1l) - HydN(i,n) + ( BenN1l(i,n)
* + rKnll(i)*(N1(i,n-1,1)-N1(i,n,1)) + WPN1(i) )/H(n)
WCBt = WCBb
BB(n) = BHT(i,n)*(Nl(i,n,1) + SoN1l) + Al(i-1,n)~Al(i,n) - WCBt
* + A2(i,n)-A2(i-1,n)
IF (isalt .NE. 1) THEN
CcC(i,n) = EE(i,n-1)
EE(i,n) = 0.0
DD(i,n) BHT(i,n) - CC(i,n)
END IF
xC(n)
xD(n)
xE (n)
END IF
CALL SGTSL{n,xC,xD,xE,BB,infoN1)
IF (infoNl1l .NE. 0) THEN
PRINT*, i, infoNl, ‘ th element of the diagonal = 0.’
STOP ‘in SUBR EqnN1’
END IF
DO 802 k=1,n
N1(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN

END
CQhdhkhhdhhhhhhkhkk

SUBROUTINE EgnN2
c**********************************************************************c
C Solve the MASS BALANCE Eqn. for N2 to get N2(i,k,2) for i=ML-MUsl.
C: Since rNit calculated here, this SUBR be called prior to EgnN3 & EgnDO.
c**********************************************************************c
INCLUDE ‘COM-WQl.INC’
Dimension Al(iX,iZ2),A2(iX,iZ), BB(iZ),xC(iZ),xD(iZ),xE(iZ)
Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

cCc(i,n)
DD(i,n)
EE(i,n)

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+1,k)*N2(i,k,1) + Del(i+1,k)*N2(i+1,k,1))
* * HAdv (i, k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (N2(i,k,1)+N2(i+1,k,1))*0.5
* - COUR2(i,k)*(N2(i+l,k,1)-N2(i, k,1))
IF (U(i+l,k,1) .GE. 0.0) THEN
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Al(i, k)

ELSE
Al(i, k)

END IF

END IF
A2(i,k) = HDif(i,k) * (N2(i+l,k,1) - N2(i,k,1))
11  CONTINUE
10 CONTINUE

HAdv(i,k)*(Adj - CK(i,k)*CURVN2(i,k))

"

HAAv (i, k)*(Adj - CK(i,k)*CURVN2(i+1,k))

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
StNit(i) = rKn23(i)*StN2(i) / (rKh23+StN2(i))

* * StDO(i) / (rKnit+StDO(i))
Bio = (CNdie2 - an*StPR2(i)*StG(i))*StChl(i) - StNit(i)
* + HydNSt (i) + StBN2(i)/StH1(i,1)

IF (DelA(i) .GT. 0.0) THEN
Sink = N2(i,1,1) * SDoDT(i)
Phys = (StN2(i)*StH1(i,1l) + N2(i,1,1)*DelA(i))/StH1(i,2)
StN2(i) = Phys + Bio
ELSE
Sink = StN2(i) * SDoDT(i)
StN2(i) = StN2(i) + Bio

END IF
ELSE
StN2(i) = 0.0
END IF
END IF
rNit(i,1) = rKn23(i)*N2(i,1,1) / (rKh23+N2(i,1,1))
* * DOC(i,1,1) / (rKnit+DOC(i,1,1))

SoN2 = (CNdie2 - an*PR2(i,1)*G(i,1))*Chl(i,1,1) - rNit(i,1)
* + HydN(i,1) + (BenN2(i,1) + WN2(i)+WPN2(i))/H1(i,1)

WCBb = VAdv(i,2) * (N2(i,1,1)+N2(i,2,1))

BB(1) = BT(i)*H1(i,1)*(N2(i,1,1) + SoN2) + Al(i-1,1)-Al(i,1)

* + WCBb + A2(i,1)-A2(i-1,1) - Sink
xC(1) = cc(i,1) "
xD(1) = DD(i,1)

xE(1) ; EE(i,1)

n = KB(i)
IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
rNit(i,k) = rKn23(i)*N2(i,k,1) / (rKh23+N2(i, k,1))

* * DOC(i,k,1) / (rKnit+DOC(i,k,1))
. SoN2= (CNdie2 - an*PR2(i,k)*G(i,k))*Chl(i,k,1) - rNit(i,k)
* + HydN(i,k) + ( BenN2(i,k) + WPN2(i) )/H(k)

WCBt = WCBb
WCBb = VAdv(i,k+1) * (N2(i,k,1)+N2(i, k+1,1))
BB(k) = BHT(i,k)*(N2(i,k,1) + SoN2) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)=-A2(i-1,k)
xC(k) = CC(i, k)
xD(k) = DD(i, k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

rNit(i,n) = rKn23(i)*N2(i,n,1) / (rKh23+N2(i,n,1))
* * DOC(i,n,1) / (rKnit+DOC(i,n,1))
SON2 = (CNdie2 - an*PR2(i,n)*G(i,n))*Chl(i,n,1) - rNit(i,n)
* + HydN(i,n) + (BenN2(i,n) + WPN2(i))/H(n)
WCBt = WCBb
BB(n) = BHT(i,n)*(N2(i,n,1) + SoN2) + Al(i-1,n)-Al(i,n) ~ WCBt
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* + A2(i,n)-A2(i-1,n)

xXC(n) = CC(i,n)

xD(n) = DD(i,n)

xE(n) = EE(i,n) .
END IF

CALL SGTSL(n,xC,xD,xE,BB,infoN2)
IF (infoN2 .NE. 0) THEN
PRINT*, i, infoN2, ’ th element of the diagonal = 0.’
STOP ‘in SUBR EqnN2’
END IF
DO 802 k=1,n
N2(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
c***************

SUBROUTINE EQnN3
ol R e R R R T T T 2 T 2 T T )

C Solve the MASS BALANCE Eqn. for N3 to get N3(i,k,2) for i=ML-MUsl.
ChhhhkhkhrAkARXARKARAKKARARARAA R AR IR AR ARk R A h Ak ARk ARk kA Rk kA Rk Ak k%O
INCLUDE ‘COM-WQl.INC’
Dimension Al(iX,1iZ),A2(iX,i2), BB(i2),xC(iZ),xD(iZ),xE(iZ)
Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i, k) = (Gam(i+1,k)*N3(i,k,1) + Del(i+1l,k)*N3(i+1,k,1))
* * HAdv (i, k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (N3(i,k,1)+N3(i+1,k,1))*0.5
* - COUR2(i,k)*(N3(i+1,k,1)-N3(i,k,1))
IF (U(i+1,k,1) .GE. 0.0) THEN
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVN3(i,k))
ELSE
Al(i,k) = HAAv(i,k)*(Adj - CK(i,k)*CURVN3(i+1,k))
END IF
END IF
A2(i,k) = HDif(i,k) * (N3(i+l,k,1) - N3(i,k,1))
11  CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
Bio = StNit(i) - an*StPR3(i)*StG(i)*StChl(i) + StBN3(i)/
* StH1(i,1) - rKn33(i)*rKden/(rKden+StDO(i))*StN3(i)
IF (DelA(i) .GT. 0.0) THEN
Sink = N3(i,1,1) * SDoDT(i)
Phys = (StN3(i)*StH1(i,1) + N3(i,1,1)*DelA(i))/StH1(i,2)
StN3(i) = Phys + Bio
ELSE
Sink = StN3(i) * SDoDT(i)
StN3(i) = StN3(i) + Bio

END IF
ELSE
StN3(i) = 0.0
END IF
END IF
SoN3 = rNit(i,1) - an*PR3(i,1)*G(i,1)*Chl(i,1,1)
* - rKn33(i)*rKden/(rKden+DOC(i,1,1))*N3(i,1,1)
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* + ( BenN3(i,1) + WN3(i)+WPN3(i) )/H1(i,1)

WCBb = VAdv(i,2) * (N3(i,1,1)+N3(i,2,1))

BB(1) = BT(i)*H1(i,1)*(N3(i,1,1) + SoN3) + Al(i-1,1)-Al(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink

xC(1l) = CC(i,1)
xD(1) = DD(i,1)
xE(1l) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
SON3 = rNit(i,k) - an*PR3(i,k)*G(i,k)*Chl(i,k,1)

* ~ rKn33(i)*rKden/(rKden+DOC(i,k,1))*N3(i,k,1)
* + (BenN3(i,k) + WPN3(i))/H(k)

WCBt = WCBb

WCBb = VAdv(i,k+1) * (N3(i,k,1)+N3(i,k+1,1))

BB(k) = BHT(i,k)*(N3(i,k,1) + SoN3) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
xC(k) = cC(i, k)
xD(k) = DD(i,k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

wounou

SoN3 = rNit(i,n) - an*G(i,n)*PR3(i,n)*Chl(i,n,1l) + (BenN3(i,n)
* + WPN3(i))/H(n) - rKn33(i)*rKden/(rKden+DOC(i,n,1))*N3(i,n,1)

WCBt = WCBb

BB(n) = BHT(i,n)*(N3(i,n,1) + SoN3) + Al(i-1l,n)-Al(i,n) - WCBt

* + A2(i,n)-A2(i-1,n)
xC(n) = €C(i,n)
xD(n) = DD(i,n)
xE(n) = EE(i,n)
END IF

CALL SGTSL(n,xC,xD,xE,BB,infoN3)
IF (infoN3 .NE. 0) THEN
PRINT*, i, infoN3, ‘ th element of the diagonal = 0.’
STOP ‘in SUBR EgnN3’
END IF
DO 802 k=1,n
N3(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
c***************

SUBROUTINE EqgnP1l
CRERKRKRIRRKKARKRKRIIRKREKRKRAKRKR KRR AR IR AR A RI IR ARR AR R AR AR NI ARk N ARk AR R NC
C Solve the MASS BALANCE Eqn. for Pl to get Pl(i,k,2) for i=ML-MUsl.

C: Since HydP is calculated here, this SUBR be called prior to EgnP2.
CREIARKKIAKRKEKITKRKRKKARARKR AR ARKRARARARKRARKRRKRRKRRAARARKRKRR KRR AR RAR AR RN R ARk R RC

INCLUDE ’‘COM-WQl.INC'

Dimension Al(iX,iZ),A2(iX,i2), BB(iZ),xC(iZ),xD(iZ),xE(iZ)

Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+l,k)*P1(i,k,1l) + Del(i+l,k)*P1(i+l1,k,1))
* * HAdv (i, k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (P1(i,k,1)+P1l(i+1,k,1))*0.5
* - COUR2(i,k)*(Pl(i+l,k,1)-P1(i, k,1))
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IF (U(i+1,k,1) .GE. 0.0) THEN
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVP1l(i,k))
ELSE
Al(i,k)
END IF
END IF
A2(i,k) = HDif(i,k) * (Pl(i+l1,k,1) - P1(i,k,1))
11  CONTINUE
10 CONTINUE

HAdv (i, k)*(Adj - CK(i,k)*CURVP1(i+1,k))

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
HydPst (i) = rKpl2(i)*stP1(i) / (rKhpl2+StP1l(i))
Bio = CPdiel*StChl(i) - HydPSt(i)
* + (StBP1(i) - rKpll(i)*StP1(i))/StH1l(i,1)
IF (DelA(i) .GT. 0.0) THEN
Sink = P1(i,1,1) * SDoDT(i)
Phys = (StP1(i)*StH1(i,l1l) + P1(i,1,1)*DelA(i))/StH1(i,2)
StP1(i) = Phys + Bio
ELSE
Sink = StP1(i) * SDoDT(i)
StP1(i) = StP1(i) + Bio
END IF
ELSE
StP1(i) = 0.0
END IPF
END IF
HydP(i,1) = rKpl2(i)*P1(i,1,1) / (rKhpl2+P1(i,1,1))
SoP1 = CPdiel*Chl(i,1,1) - HydP(i,l) + ( BenPl(i,l)
* - rKpll(i)*P1(i,1,1) + WP1(i)+WPP1(i) )/H1(i,1)
WCBb = VAdv(i,2) * (P1(i,1,1)+P1(i,2,1))
BB(1) = BT(i)*H1(i,1)*(P1(i,1,1) + SoPl) + Al(i-1,1)-Al(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink

xXC(1l) = CC(i,1)
xD(1) = DD(i,1)
xE(l) = EE(i,1)
n = KB(1i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
HydP(i,k) = rKpl2(i)*Pl(i,k,1) / (rKhpl2+Pl(i,k,1))
SoP1 = CpPdiel*Chl(i,k,1) - HydP(i,k) + ( BenPl(i, k)
* + rKpll(i)*(P1(i,k-1,1)-P1(i,k,1)) + WPP1(i) )/H(k)
WCBt = WCBb
WCBb = VAdv(i,k+1l) * (P1(i,k,1)+P1(i,k+1,1))
BB(k) = BHT(i,k)*(P1(i,k,1) + SoP1l) + Al(i-1,k)-Al(i, k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
xC(k) = cc(i,k)
xD(k) = DD(i,k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

HydP(i,n) = rKpl2(i)*P1l(i,n,1) / (rKhpl2+Pl(i,n,1))
SoPl = CPdiel*Chl(i,n,1l) - HydP(i,n) + ( BenPl(i,n)
* + rKpll(i)*(P1(i,n-1,1)-P1(i,n,1)) + WPP1(i) )/H(n)
WCBt = WCBb )
BB(n) = BHT(i,n)*(P1(i,n,1l) + SoPl) + Al(i-1l,n)-Al(i,n) - WCBt

* + A2(i,n)-A2(i-1,n)
xC(n) = CC(i,n)
xD(n) = DD(i,n)
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xE(n) = EE(i,n)
END IF
CALL SGTSL(n,xC,xD,xE,BB,infoP1l)
IF (infoPl .NE. O) THEN
PRINT*, i, infoPl, ‘’ th element of the diagonal = 0.’
STOP ‘in SUBR EgnPl’
END IF
DO 802 k=1,n
P1(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
c***************

SUBROUTINE EgnP2
ol R R R e eSS SR 2 2]

C Solve the MASS BALANCE Eqn. for P2 to get P2(i,k,2) for i=ML1-MUsl.
c**********************************************************************c
INCLUDE ‘COM-WQl.INC’
Dimension Al(iX,iZ),A2(iX,iZ), BB(iZ),xC(iZ),xD(iZ),xE(i2)
Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAQv .EQ. 2) THEN
Al(i,k) = (Gam(i+l,k)*P2(i,k,1) + Del(i+l,k)*P2(i+l,k,1))
* * HAdv(i,k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (P2(i,k,1)+P2(i+1,k,1))*0.5
* - COUR2(i,k)*(P2(i+1,k,1)=-P2(i,k,1))
IF (U(i+1,k,1) .GE. 0.0) THEN
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVP2(i,k))
ELSE
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVP2(i+1,k))
END IF
END IF
A2(i,k) = HDif(i,k) * (P2(i+l,k,1) - P2(i,k,1))
11 CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
Bio = (CPdie2 - ap*StG(i))*StChl(i) + HydPSt (i)
* + (StBP2(i) - rKp22(i)*StP2(i))/StH1l(i,1)
IF (DelA(i) .GT. 0.0) THEN
Sink = P2(i,1,1) * SDoDT(i)
Phys = (StP2(i)*StH1(i,1l) + P2(i,1,1)*DelA(i))/StH1(i,2)
StP2(i) = Phys + Bio
ELSE
Sink = StP2(i) * SDoDT(i)
StP2(i) = StP2(i) + Bio
END IF
ELSE
stpP2(i) = 0.0
END IF
END IF
SoP2 = (CPdie2 - ap*G(i,l))*Chl(i,1,1) + HydP(i,1) + (BenP2(i,1)
* - rKp22(i)*P2(i,1,1) + WP2(i)+WPP2(i))/H1(i,1)
WCBb = VAdv(i,2) * (P2(i,1,1)+P2(i,2,1))
BB(1l) = BT(i)*H1(i,1)*(P2(i,1,1) + SoP2) + Al(i-1,1)-Al(i,1l)
* + WCBb + RA2(i,1l)-A2(i-1,1) - Sink
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xC(1l) = cc(i,1)
xD(1) = DD(i,1)
xE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
SoP2 = (CPdie2 - ap*G(i,k))*Chl(i,k,1) + HydP(i, k)

* + ( BenP2(i,k) + rKp22(i)*(P2(i,k-1,1)-P2(i,k,1))
* + WPP2(i) )/H(k)

WCBt = WCBb

WCBb = VAdv(i,k+1) * (P2(i,k,1)+P2(i,k+1,1))

BB(k) = BHT(i,k)*(P2(i,k,1) + SoP2) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)

xC(k) = cC(i, k)

xD(k) = DD(i, k)

XE(k) = EE(i,k)

801 CONTINUE
END IF

SoP2=(CpPdie2 - ap*G(i,n))*Chl(i,n,1l) + HydP(i,n) + (BenP2(i,n)
* + rKp22(i)*(P2(i,n-1,1)-P2(i,n,1)) + WPP2(i))/H(n)

WCBt = WCBb ,

BB(n) = BHT(i,n)*(P2(i,n,1) + SoP2) + Al(i-1,n)-Al(i,n) - WCBt

* + A2(i,n)-A2(i-1,n)
xC(n) = CC(i,n)
xD(n) = DD(i,n)
xE(n) = EE(i,n)
END IF

CALL SGTSL(n,xC,xD,xE,BB,infoP2)
IF (infoP2 .NE. 0) THEN
PRINT*, i, infoP2, ‘' th element of the diagonal = 0.’
STOP ’'in SUBR EqnP2’
END IF
DO 802 k=1,n
P2(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
Chhhkhkkhhkhhkkhkkk

SUBROUTINE EgnChl

C**********************************************************************c

C Solve the MASS BALANCE Eqn. for Chl to get Chl(i,k,2) for i=ML1-MUsl.
C: Note that among WQC, only Chl is in ug/L & SoChl is in ug cm/L/day.
c**********************************************************************c

INCLUDE ‘COM-WQ1l.INC’

Dimension Al(iX,iZ),A2(iX,i%), BB(iZ),xC(iZ),xD(iZ),xE(iZ)

Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
" IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+l,k)*Chl(i,k,1) + Del(i+l,k)*Chl(i+l,k,1))
* * HAdv (i, k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (Chl(i,k,1)+Chl(i+l,k,1))*0.5
* - COUR2(i,k)*(Chl(i+l,k,1)-Chl(i, k,1))
IF (U(i+l1,k,1) .GE. 0.0) THEN
Al(i,k) = HAdAv(i,k)*(Adj - CK(i,k)*CURVChl(i, k))
ELSE
Al(i,k) = HAAv(i,k)*(Adj -~ CK(i,k)*CURVChl(i+1,k))
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END IF
END IF
A2(i,k) = HDif(i,k) * (Chl(i+l,k,1) - chl(i,k,1))
11 CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
Bio = (StG(i) - RespR =~ GrazR - rKchl(i)/StH1(i,1l))*stchl(i)
IF (DelA(i) .GT. 0.0) THEN
Sink = Chl(i,1,1) * SDoDT(i)
Phys = (StChl(i)*StH1(i,1) + chl(i,1,1)*DelA(i))/StH1(i,2)
StChl(i) = Phys + Bio
ELSE :
Sink = StChl(i) * SDoDT(i)
StChl(i) = stchl(i) + Bio
END IF
ELSE
stchl(i) = 0.0
END IF
END IF
SoChl = (G(i,1) - RespR - GrazR)*Chl(i,1,1)
* + ( WChl(i) - rKchl(i)*Chl(i,1,1) )/H1(i,1)
WCBb = VAdv(i,2) * (Chl(i,1,1)+Chl(i,2,1))
BB(1l) = BT(i)*H1(i,1)*(Chl(i,1,1) + SoChl) + Al(i-1,1)-Al(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink

xC(1) = cc(i,1)
xD(1) = DD(i,1)
xE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
SoChl = (G(i,k) - RespR - GrazR)*Chl(i,k,1)
* + rKchl(i)*(Chl(i,k-1,1)-Chl(i,k,1))/H(k)
WCBt = WCBb
WCBb = VAdv(i,k+1) * (Chl(i,k,1)+Chl(i,k+1,1))
BB(k) = BHT(i,k)*(chl(i,k,1) + SoChl) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
xC(k) = €C(i, k)
xD(k) = DD(i,k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

Sochl = (G(i,n) - RespR -~ GrazR)*Chl(i,n,1)
* + rKchl(i)*(Chl(i,n-1,1)-Chl(i,n,1))/H(n)
WCBt = WCBb
BB(n) = BHT(i,n)*(Chl(i,n,1) + SoChl) + Al(i-1,n)-Al(i,n)

* - WCBt + A2(i,n)-A2(i-1,n)
xC(n) = CC(i,n)
xD(n) = DD(i,n)
xE(n) = EE(i,n)
END IF

CALL SGTSL(n,xC,xD,xE,BB,infoChl)

IF (infoChl .NE. 0) THEN
PRINT*, i, infoChl, ‘' th element of the diagonal = 0.’
STOP ‘in SUBR EqnChl’

END IF

DO 802 k=1,n
chl(i,k,2) = BB(k)
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802 CONTINUE
800 CONTINUE
RETURN
END
Chkhkkhhkhhhkhhkk

SUBROUTINE EqnBOD
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C Solve the MASS BALANCE Egn. for CBOD to get CBOD(i,k,2) for i=ML1-MUsl.
ChRAIAIREEAREKRAKRKREAKR AR IR AR IR I RR RN IR AR IR IR h Ak ke khhkhk kA hk kO
INCLUDE ‘COM-WQ1l.INC’
Dimension Al1(iX,iZ),A2(iX,iZ), BB(i2),xC(iZ),xD(iZ),xE(iZ)
Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+l,k)*CBOD(i,k,1)+ Del(i+l,k)*CBOD(i+1,k,1))
* * HAAv(i,k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (CBOD(i,k,1)+CBOD(i+1,k,1))*0.5
* - COUR2(i,k)*(CBOD(i+1,k,1)-CBOD(i,k,1))
IF (U(i+l,k,1) .GE. 0.0) THEN
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVBOD(i,k))
ELSE
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVBOD(i+l,k))
END IF '
END IF ’
A2(i,k) = HDif(i,k) * (CBOD(i+l,k,1) - CBOD(i,k,1))
11 CONTINUE
10 CONTINUE

DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
Bio = BODdie*StChl(i) - rKc(i)*StBoD(i) + ( StBBOD(i) -
* StBDO(i)*rKDO/ (rKDO+StDO(i)) —- rKbod(i)*StBOD(i) )
* /StH1(i,1)
IF (DelA(i) .GT. 0.0) THEN
Sink = CBOD(i,1,1) * SDoDT(i)
Phys =(StBOD(i)*StH1(i,1) + CBOD(i,1,1)*DelA(i))/StH1(i,2)
StBOD(i) = Phys + Bio
ELSE
Sink = StBOD(i) * SDoDT(i)
StBOD(i) = StBOD(i) + Bio

END IF
ELSE
StBOD(i) = 0.0
END IF
END IF
So = BODdie*Chl(i,1,1) - rKc(i)*CBOD(i,1,1) + ( BenBOD(i,1)
* - BenDO(i,1)*rKDO/(rKDO+DOC(i,1,1)) - rKbod(i)*CBOD(i,1,1)

* + WBOD(i)+WPBOD(i) )/H1(i,1)

WCBb = VAdv(i,2) * (CBOD(i,1,1)+CBOD(i,2,1))

BB(1) = BT(i)*H1(i,1)*(CBOD(i,1,1) + So) + Al(i-1,1)-Al(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink

xC(1l) = cc(i,1)
xD(1) = DD(i,1)
XE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
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DO 801 k=2,n-1
So = BoDdie*Chl(i,k,1) - rKc(i)*CBOD(i,k,1) +( BenBOD(i,k)
* ' = BenDO(i,k)*rKDO/ (rKDO+DOC(i,k,1)) + WPBOD(i)
* + rKbod(i)*(CBOD(i,k-1,1)-CBOD(i,k,1)) )/H(k)
WCBt = WCBb
WCBb = VAdv(i,k+l) * (CBOD(i,k,1)+CBOD(i,k+1,1))
BB(k) = BHT(i,k)*(CBOD(i,k,1) + So) + Al(i-1,k)-Al(i, k)

* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
xC(k) = CC(i,k)
xD(k) = DD(i, k)
xE(k) = EE(i,k)
801 CONTINUE
END IF
So = BODdie*Chl(i,n,1) - rKc(i)*CBOD(i,n,1) + ( BenBOD(i,n)
* - BenDO(i,n)*rKDO/(rKDO+DOC(i,n,1l)) + WPBOD(i)
* + rKbod(i)*(CBOD(i,n-1,1)-CBOD(i,n,1)) )/H(n)

WCBt = WCBb
BB(n) = BHT(i,n)*(CBOD(i,n,1) + So) + Al(i-1,n)-Al(i,n) - WCBt

* + A2(i,n)-A2(i-1,n)
xC(n) = CC(i,n)
xD(n) = DD(i,n)
xE(n) = EE(i,n)
END IF

CALL SGTSL(n,xC,xD,xE,BB, infoBOD)
IF (infoBOD .NE. 0) THEN
PRINT*, i, infoBOD, ‘' th element of the diagonal = 0.’
STOP 'in SUBR EqnBOD’
END IF
DO 802 k=1,n
CBOD(i,k,2) = BB(k)
802 CONTINUE
800 CONTINUE
RETURN
END
Chhkkkhkkkkkkkkk

SUBROUTINE EgnDO
c**********************************************************************c
C Solve the MASS BALANCE Eqn. for DO to get DOC(i,k,2) for i=ML1-MUsl.
C: DO reaeration occurs only at the top layer (for the remaining layers,
C vertical diffusion will account for the replenishment of DO).

C: Assume St is always DO saturated.
ChRIAXKAKAKXKRKEKAKRKKARAKE KRR KKRAARARIKRARRA IR AR RN RARR KRR AR IR AR AR AR AR ARk Ak *C

INCLUDE ‘COM-WQl.INC’

Parameter (ano=4.57)

Dimension Al(iX,iZ2),A2(iX,iZz), BB(iZ),xC(iZ),xD(iZ),xE(i2)

Data Al,A2, BB,xC,xD,xE, Adj/2461*0.0/

DO 10 i=MLsl,MUsl
n = KB(i)
DO 11 k=1,n
IF (iHAdv .EQ. 2) THEN
Al(i,k) = (Gam(i+1l,k)*DOC(i,k,1) + Del(i+l,k)*DOC(i+1,k,1))
* * HAdv(i, k)
ELSE IF (iHAdv .EQ. 3) THEN
Adj = (DOC(i,k,1)+DOC(i+1,k,1))*0.5
* - COUR2(i,k)*(DOC(i+l,k,1)-DOC(i,k,1))
IF (U(i+1,k,1l) .GE. 0.0) THEN
Al(i,k) = HAdAv(i,k)*(Adj - CK(i,k)*CURVDO(i,k))
ELSE
Al(i,k) = HAdv(i,k)*(Adj - CK(i,k)*CURVDO(i+l,k))
END IF
END IF
A2(i,k) = HDif(i,k) * (DOC(i+l,k,1l) - DOC(i,k,1))
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11 CONTINUE
10 CONTINUE

XAL(ML,1) = BU(ML,1) * H1(ML,1)
TotXA = XAL(ML,1) + XAm(ML)
UXAl = XAL(ML,1) * ABS(U(ML,1,1))
n = KBU(ML)
DO 799 k=2,n
UXAl = UXAl + XAL(ML,k)*ABS(U(ML,k,1))
799 CONTINUE .
VSl = UXAl / (TotXA*TotXA) * BU(ML,1)
DO 800 i=ML,MUsl
Sink = 0.0
IF (SST(i) .NE. 0.0) THEN
IF (StH1(i,2) .GT. 0.0) THEN
StDO(i) = TDOs + (STDOs + 2.739E-4*StS(i))*StsS(i)
IF (DelA(i) .GT. 0.0) THEN
Sink = DOC(i,1,1) * SDoDT(i)
ELSE
Sink = StDO(i) * SDoDT(i)
END IF
ELSE
StDO(i) = 0.0
END IF
END IF
XAL(i+1,1) = BU2H(i+1,1) * 0.5
TotXA = XAL(i+1,1) + XAm(i+1)
UXA2 = XAL(i+l1,1) * ABS(U(i+l,1,1))
n = KBU(i+1)
DO 811 k=2,n
UXA2 = UXA2 + XAL(i+1,k)*ABS(U(i+1,k,1))
811 CONTINUE
VS2 = UXA2 / (TotXA*TotXA) * BU(i+l,1)
rKr = TDOaer * (rKro*SQRT(VS1+VS2) + WRea(i)) / H1(i,b1l)
Vsl = VS2
Dev = TDOs + (STDOs + 2.739E-4*S(i,1,1))*s(i,1,1) - DOC(i,1,1)
SoDO = (PQ*G(i,1) - DOresp)*Chl(i,1,1) - rKc(i)*CBoD(i,1,1) -
* ano*rNit(i,1l) + rKr*Dev + ( WDO(i) + WPDO(i)
* + BenDO(i,1)*DOC(i,1,1)/(rKDO+DOC(i,1,1)) )/H1(i,1)
WCBb = VAdv(i,2) * (DOC(i,1,1)+DOC(i,2,1))
BB(1) = BT(i)*H1(i,1)*(DOC(i,1,1) + SoDO) + Al(i-1,1)-A1(i,1)
* + WCBb + A2(i,1)-A2(i-1,1) - Sink

xC(1) = cc(i,1)
XD(1) = DD(i,1)
XE(1) = EE(i,1)
n = KB(i)

IF (n .NE. 1) THEN
IF (n .NE. 2) THEN
DO 801 k=2,n-1
SoDO = (PQ*G(i,k) - DOresp)*Chl(i,k,1) - ano*rNit(i,k)

* - rKc(i)*CBOD(i,k,1) + ( WPDO(i)

* + BenDO(i,k)*DOC(i,k,1)/(rKDO+DOC(i,k,1)) )/H(k)
WCBt = WCBb
WCBb = VAdv(i,k+1) * (DOC(i,k,1)+DOC(i,k+1,1))

BB(k) = BHT(i,k)*(DOC(i,k,1) + SoDO) + Al(i-1,k)-Al(i,k)
* + WCBb-WCBt + A2(i,k)-A2(i-1,k)
xC(k) = CC(i,k)
xD(k) = DD(i,k)
xE(k) = EE(i,k)
801 CONTINUE
END IF

SoDO = (PQ*G(i,n) - DOresp)*Chl(i,n,1l) - rKc(i)*CBOD(i,n,1)
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* - ano*rNit(i,n) + ( WPDO(i)

* + BenDO(i,n)*DOC(i,n,1)/(rKDO+DOC(i,n,1)) )/H(n)
WCBt = WCBb
BB(n) = BHT(i,n)*(DOC(i,n,1l) + SoDO) + Al(i-1,n)-Al(i,n)

* - WCBt + A2(i,n)-A2(i-1,n)
xC(n) = CC(i,n)
xD(n) = DD(i,n)
xE(n) = EE(i,n)
END IF

CALL SGTSL(n,xC,xD,xE,BB, infoDO)
IF (infoDO .NE. 0O) THEN
PRINT*, i, infoDO, ‘ th element of the diagonal = 0.’
STOP ‘in SUBR EgnDO’
END IF
DO 802 k=1,n
IF (BB(k) .GT. 0.0) THEN
DOC(i,k,2) = BB(k)
ELSE
poc(i,k,2) = 0.0
END IF
802 CONTINUE
800 CONTINUE
RETURN
END
Ch Rk ok ke dkodkode ke ok ok kkokd

SUBROUTINE WDnBdry
c**********************************************************************c
C Calculate C(i,k,2) at the downstream bdry (i=MU).

Cl During ebb (when U >= 0.0), C(MU,k,2) is estimated using C(MUsl, k,1),
C C(MU,k,1), U(MU,k,1), DTs & DX.
C2 During flood,
C : From the beginning of flood to MST, C(MU,k,2) is estimted using
¢ DnC(k), C(MU,k,1) & MST.
C : After MST, C(MU,k,2) = DnC(k).
c**********************************************************************c
INCLUDE ’‘COM-WQl.INC’

Dimension DBN1(iZ),DBN2(iZz),DBN3(iZ),DBP1(iZ),DBP2(i%),DBChl(iZ),

* DBBOD(iZ),DBDO(iZ%),NWQc (iZ)

Save/WLocal/,DBN1,DBN2,DBN3,DBP1,DBP2,DBChl,DBBOD, DBDO, NWQC

Data NWQc/15*10000/

n = KB(MU)
DO 900 k=1,n
IF (U(MU,k,1) .GE. 0.0) THEN
NWQc(k) = O
Change = dtx * U(MU,k,1)
Tmp = 1.0 - Change

N1(MU,k,2) = N1(MU,k,1)*Tmp + N1(MUsl,k,1l)*Change
N2 (MU, k,2) = N2(MU,k,1)*Tmp + N2(MUsl, k,1)*Change
N3(MU,k,2) = N3(MU,k,1)*Tmp + N3(MUsl, k,1l)*Change
P1(MU,k,2) = P1(MU,k,1)*Tmp + P1(MUsl, k,1)*Change
P2(MU,k,2) = P2(MU,k,1)*Tmp + P2(MUsl, k,1)*Change
Chl(MU,k,2) = Chl(MU,k,1)*Tmp + Chl(MUsl, k,1l)*Change
CBOD (MU, k,2) = CBOD(MU,k,1)*Tmp + CBOD(MUsl,k,1)*Change
DOC(MU,k,2) = DOC(MU,k,1)*Tmp + DOC(MUsl, k,1l)*Change
ELSE
IF (NWQc(k) .GE. MST) THEN
N1(MU,k,2) = DnN1(k)
N2(MU,k,2) = DnN2(k)
N3(MU,k,2) = DnN3(k)
P1(MU,k,2) = DnPl(k)
P2(MU,k,2) = DnP2(k)
Cchl(MU,k,2) = DnChl (k)
CBOD (MU, k,2) = DnBOD (k)
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DOC (MU, k,2) = DnDO(k)
ELSE
IF (NWQc(k) .EQ. 0) THEN

DBN1l(k) = (DnN1l(k) - N1(MU,k,1)) / MST
DBN2(k) = (DnN2(k) - N2(MU,k,1l)) / MST
DBN3(k) = (DnN3(k) - N3(MU,k,1)) / MST
DBP1(k) = (DnPl(k) - P1(MU,k,1)) / MST
DBP2(k) = (DnP2(k) - P2(MU,k,1)) / MST
DBchl (k) = (Dnchl(k) - chl(MU,k,1)) / MST
DBBOD(k) = (DnBOD(k) - CBOD(MU,k,1)) / MST
DBDO(k) = (DnDO(k) - DOC(MU,k,1)) / MST

END IF

NWQc (k) = NWQc(k) + 1

N1(MU,k,2) = N1(MU,k,1) + DBN1(k)

N2(MU,k,2) = N2(MU,k,1) + DBN2(k)

N3(MU,k,2) = N3(MU,k,1) + DBN3(k)

P1(MU,k,2) = P1(MU,k,1) + DBP1l(k)

P2(MU,k,2) = P2(MU,k,1) + DBP2(k)

Chl(MU,k,2) = Chl(MU,k,1) + DBChl(k)

CBOD (MU, k,2) = CBOD(MU,k,1) + DBBOD(k)

DOC(MU,k,2) = DOC(MU,k,1) + DBDO(k)

END IF
END IF
900 CONTINUE
RETURN

END
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B-5. SGTSL.FOR

(o W o I o I o T o N o MK o T o W o WK # o T 0 K I o 0 R B0 T2 N o T K # T o I I o T o I o T o T o 20 o o IO I o o I o 0 Ao M9 N o B o B0 BN o BN @ B2 B 9

aaQ

subroutine sgtsli(n,c,d,e,b,info)
integer n,info
real c(1),d(1),e(1),b(1)

sgtsl given a general tridiagonal matrix and a right hand
side will find the solution.

on entry

n integer
is the order of the tridiagonal matrix.

c real(n)
is the subdiagonal of the tridiagonal matrix.
c(2) through c(n) should contain the subdiagonal.
on output c is destroyed.

d real(n)
is the diagonal of the tridiagonal matrix.
on output d is destroyed.

e real(n)
is the superdiagonal of the tridiagonal matrix.
e(1l) through e(n-1) should contain the superdiagonal.
on output e is destroyed.

b real(n)

is the right hand side vector.
on return
b is the solution vector.

info integer

0 normal value.

k if the k-th element of the diagonal becomes
exactly zero. the subroutine returns when
this is detected.

linpack. this version dated 08/14/78 .
jack dongarra, argonne national laboratory.

no externals
fortran abs

internal variables

integer k,kb,kpl,nml,nm2
real t
begin block permitting ...exits to 100

info 0

c(l) = d(1)

nml = n -1

if (nml .lt. 1) go to 40
d(l)
e(l)
e(n) 0.0e0

[ ]

nonu
o
.
o
o
o

do 30 k = 1, nml
kpl = k + 1
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aaa

find the largest of the two rows
if (abs(c(kpl)) .lt. abs(c(k))) go to 10

interchange row

aaa

t = c(kpl)
c(kpl) = c(k)
c(k) =t

t = d(kpl)
d(kpl) = d(k)
d(k) = t

t = e(kpl)
e(kpl) = e(k)
e(k) =t

t = b(kpl)
b(kpl) = b(k)
b(k) = t

10 continue

zero elements

aaa

if (c¢(k) .ne. 0.0e0) go to 20
info = k
c cesssssesessXit
go to 100
20 continue
t = -c(kpl)/c(k)

c(kpl) = d(kpl) + t*d(k)
d(kpl) = e(kpl) + t*e(k)
e(kpl) = 0.0e0
b(kpl) = b(kpl) + t*b(k)
30 continue
40 continue
if (c(n) .ne. 0.0e0) go to 50
info = n
go to 90
50 continue

back solve

0

nm2 = n - 2
b(n) = b(n)/c(n)
if (n .eq. 1) go to 80
b(nml) = (b(nml) - d(nml)*b(n))/c(nml)
if (nm2 .1lt. 1) go to 70
do 60 kb = 1, nm2
k=mm2 - kb + 1
b(k) = (b(k) - d(k)*b(k+1l) - e(k)*b(k+2))/c(k)

60 continue
70 continue
80 continue

90 continue

100 continue
C .
return
end
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COMMON.INC

* % N % X X X % % X ¥ F X ¥ ¥ *

Parameter (iX=80,i2=15,iT=2)
Common/X1/U(iX,i2,iT),S(iX,1%,iT),HAdvM(iX,iZ),HDifM(iX,1i2),

HAdv(iX,iZ),VAdv(iX,iZ),HDif(iX,i2),VDif(iX,iZ),W(iX,1i2),
EPz(iX,1i2),EPx(iX,i2),Ez(iX,iZ),Ex(iX,i2),Press(iX,iZ2),
Rho(iX,iZ),Frik(iX,i2),B(iX,i2),BU(iX,iZ),BW(iX,1iZ),
Depth(iX,iZ2),HMZ(iX,iZ),QLat (iX,iZ),PSQ(iX,iZ),SIC(iX,1iz),
Ada(iX,iT),H1(iX,iT),StH1(iX,iT),StS(iX),rMD(iX),SST(iX),
SSTm(iX),DelA(iX),StH(iX),StSlop(iX),KB(iX),KBU(iX),iEC(iX),
ARD(iX),H(iZ),DH(iZ),SFLDM(iZ),QML2,QML1,XAML,QatUB,Darea,
MST,Wavel,Wave2, iWave,CWave,CTurb, CRi, ML,ML1,MLs1,MU,MU1,MUs1,
iWQ,isalt,iDisch,iTide, iSatDB, iPS, iUBC, iTdep,DX,DTs,DTD,dtx,
Tout (30), iTmax, IncP,Hour,rFDTL, iFDTL,NS2Sal, iTSIC,Wdrag, rk,
WQout (30), IncW,iWQTP, iWQTPsl,TinDay,SDoDT(iX),TotB(iX), iTurb,
BT(iX),BHT(iX,i%),BU2H(iX,iZ),COUR2(iX,i%),CK(iX,i%),CC(iX,1i2),
DD(iX,iZ),EE(iX,iZ),DTi2,DTo2,DX2,DX4,DXS2,DXS4,DXiG,DXi2,G4m,
Alpha(iX),CAlpha(iX),Gam(iX,i%),Del(iX,i%),T1,T2,T3,dtxx,iHAdv,
iBotSh,Frik2(iX,iZ),Uo(iX,1iZ),rMan(iX),Paxis(iX),WsStrs(iX),
iSDBC, iWQDBC

Common/X2/Savg(iX,i2),Uavg(iX,i2),Wavg(iX,i2),EPzAvg(iX,iZ2),

*
*
*

EzAvg(iX,iZ),SSBF(iX,iZ),SSBE(iX,iZ),Tavg(iX),Amax(iX),Umax(iX),
Amin{(iX),Umin(iX),TLO(iX),THI(iX),TSBF(iX),TSBE(iX),AvgN,
DistT(iX),DistS(iX)

BLKDATA.INC

Data U,S/2400*%0.0,2400*30.0/, HAdvM,HDifM/2400*0.0/

Data HAdv,VAdv,HDif,VDif,W,EPz,EPx,Ez,Ex,Frik,B,BU,BW/15600*0.0/
Data QLat,PSQ,Ada,H1,StH1/2880%0.0/, iEC/80%0/

Data Wavel,Wave2/2*0.0/, IncP/l1/, Hour,TinDay/2*0.0/

Data IncW/1/, COUR2,CK/2400*0.0/, cC,DD,EE/3600%0.0/

Data Frik2,Uo/2400*0.0/

Data Savg,Uavg,Wavg,EPzAvg,EzAVG,SSBF,SSBE, Tavg/8480*0.0/

Data AMax,Umax/160*-1.0E5/, AMin,Umin/160*1.0E5/

Data TSBF,TSBE,AvgN/161*%0.0/
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B-8.

B-9.

COM-WQL.INC

% % % % % F %X Ok % ok % * X X ¥ ¥ ¥ % F % % ¥ * % * *

INCLUDE ‘COMMON.INC’
Common/WQV/N1(iX,i2,iT),HydN(iX,1i2),BenN1(iX,i2),WPN1(iX),

rN1IC(iX,i%),WN1(iX),rKnl12(iX),xKnl2(iX),rKnll(iX),StN1(iX),
HydNSt (iX),TheN12,rKh12,CNdiel,DSN1,
N2(iX,iZ,iT),rNit(iX,iZ),PR2(iX,i2),BenN2(iX,iZ),WPN2(iX),
rN2IC(iX,iZ),WN2(iX),rKn23(iX),xKn23(iX),StN2(iX),StNit(iX),
StPR2 (iX),TheN23,rKh23,CNdie2,DSN2, rKnit, rKden,
N3(iX,iZz,iT),PR3(iX,iZ),BenN3(iX,iZ),WPN3(iX),rN3IC(iX,iZ),
WN3(iX),rKn33(iX),xKn33(iX),StN3(iX),StPR3(iX),DSN3,TheN33,
P1(iX,i2,iT),HydP(iX,iZ),BenP1(iX,1iZ),WPP1(iX),P1IC(iX,iZ),
WP1(iX),rKpl2(iX),xKpl2(iX),rKpll(iX),StP1(iX),HydPSt (iX),
TheP12,rKhpl2,CPdiel,DSP1,
P2(iX,i%,iT),BenP2(iX,i2),WPP2(iX),P2IC(iX,iZ),WP2(iX),
rKp22(iX),StP2(iX),CPdie2,DSP2,

Cchl(iX,iZ,iT),G(iX,i2),ChlIC(iX,iZ),WChl(iX),Turb(iX),rKchl(iX),

StChl(iX),StG(iX),rKgr,xKgr,ThetaG,rIs,TU,TD,rIn,PTT,rKmn,
rKmp, RespR, Resp20, ThetaR,GrazR,Graz20, ThetaD,DSChl,
CBOD(iX,1i%2,iT),BenBOD(iX,iZ),WPBOD(iX),BODIC(iX,iZ),WBOD(iX),
rKc(iX),xKc(iX),rKbod(iX), StBOD(iX), TheKc, BODdie,DSBOD,
DOC(iX,iZ,iT),BenDO(iX,iZ),WPDO(iX),DOIC(iX,i2),WDO(iX),

WRea (1iX), StDO(iX),PQ,RQ,DOresp,TDOs, STDOs, TDOaer, TheDA,DSDO,
DnN1(iZ),DnN2(i%),DnN3(iz),DnP1(iZ),DnP2(i2),DnChl(iZz),
DnBOD(iZ),DnDO(iZ), StBN1(iX),StBN2(iX),StBN3(iX),StBP1(iX),
StBP2(iX),StBBOD(iX),StBDO(iX),
CURVN1(iX,iZ),CURVN2(iX,i2),CURVN3(iX,iZ),CURVP1(iX,i2),
CURVP2(iX,iZ),CURVChl(iX,iZ),CURVBOD(iX,iZ),CURVDO(iX,iZ),
iSun, iBCWQ, an, ar, ap,ac,Fn,Fp,XAL(iX,iZ),XAm(iX),NS2WQ,
iTWQIC,Bfrac(iX,1Z), iNPS, iWQPS, rKro, rKDO

Real N1,N2,N3

COM-WQ2.INC

* % ¥ X %

Common /WQPrt /AvgN1(iX,iZ),AvgN2(iX,iZ),AvgN3(iX,iZ),AvgPl(iX,iz),

AvgP2(iX,iZ),AvgChl(iX,i%),AvgBOD(iX,iZ),AvgDO(iX,1iZ),
rN1Max(iX,1i2),rN2Max(iX,1i2),rN3Max(iX,iZ),P1Max(iX,i2),

P2Max(iX,iZ),ChlMax(iX,iZ),BODMax(iX,i2),DOMax(iX,i2),
rNIMin(iX,iZ),rN2Min(iX,i2),rN3Min(iX,i2),P1Min(iX,1iZ),

P2Min(iX,iZ),ChlMin(iX,i%),BODMin(iX,i2),DOMin(iX,i%),AvgNWQ

B-10. BLKD-WQ.INC

*

Data HydN,BenN1,WPN1,WN1,rKnl2,HydNSt,DSN1/2721*0.0/
Data rNit/1200%0.0/, PR2/1200%1.0/, BenN2,WPN2,

WN2,rKn23,StNit/1520*0.0/, StPR2/80*1.0/, DSN2/0.0/

Data PR3,BenN3,WPN3,WN3,StPR3,DSN3/2641*0.0/

Data HydP,BenPl,WPP1l,WP1l,rKpl2,HydPSt,DSP1/2721*%0.0/
Data BenP2,WPP2,WP2,DSP2/1361*0.0/

Data G,WChl1/1280*0.0/, Turb/80*1.0/, StG,DSChl1/81*0.0/
Data BenBOD,WPBOD,WBOD,rKc,DSBOD/l441*0.0/

Data BenDO,WPDO,WDO,WRea,DSDO/1441*0.0/

Data CURVN1,CURVN2,CURVN3,CURVP1,CURVP2,CURVChl, CURVBOD,

*

Data

CURVDO/9600%0.0/

Data rN1lMax,rN2Max,rN3Max,P1Max,P2Max,ChlMax, BODMax,

*

DOMax/9600*-1000.0/

Data rN1Min,rN2Min,rN3Min,P1Min,P2Min,ChlMin, BODMin,

*

DOMin/9600%1000.0/, AvgNWQ/0/
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APPENDIX C. GENERAL DESCRIPTION AND OPERATING MANUAL

C-1. Hardware/Software Requirements

The model has been developed using an IBM 486 PC with the "Lahey F77L-
EM/32" compiler. To compile and run the model, the following hardware is required
(based up iX = 80 and iZ = 15). The source programs occupy ca. 0.2 MB of hard disk
space, the executable file ca. 1 MB and the input files ca. 0.2 MB. Storage requirement
for output files is determined by the number of times to print out the model results: ca.
0.5 MB of hard disk space is needed for printing out the model results once. The
"Lahey F77L-EM/32" compiler requires ca. 5 MB of hard disk space and minimum 2

MB of available memory.

C-2. Program Organization

Program input and output require several data files, each of which is specified in
the program by a logical unit number. Tables C-1 and C-2 list the logical unit numbers
for hydrodynamic and water quality models, respectively. You can run only the
hydrodynamic model. However, the water quality model, supplied with the information
concerning physical transport processes from the hydrodynamic model, should be run
with the hydrodynamic model. Therefore, all input and output units for water quality

model are optional.

C-3. Data Input Description for Hydrodynamic Model
C-3-1. Main input data file (logical unit 5)
VARIABLE (FORMAT)

iWQ, iSalt, iDisch, iTide, iSatDB, iPS, iUBC (715)

: iWQ = 1 causes to run the water quality model (open unit 11 and 8). Otherwise no
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water quality simulation.

: iSalt = 1 if salinity is to be modeled, otherwise salinity not modeled.

: iDisch = 1 if daily varying values are used for freshwater inflow through the
upstream boundary (read from unit 10). Otherwise a constant value is read in from unit
5 and kept throughout the model run.

: iTide = 1 if hourly observations of tidal height at the mouth are used for the
downstream boundary conditions (read from unit 6). Otherwise nine tidal amplitudes
and phases are read in from unit § to generate tidal heights by harmonics.

: iSatDB = 1 if daily varying salinities are used for the downstream boundary
conditions (read from unit 9). Otherwise constant values are read in from unit 5§ and
kept throughout the model run.

: iPS = 1 if daily varying values are used for point source discharge (read from unit
13). Otherwise constant values are read in from unit § and kept throughout the model
run.

: iUBC = 1 causes that only mass (no momentum) is input from freshwater discharge
at the upstream boundary; this is so, when the fall line is well developed to create
supercritical flow at the upstream boundary. Otherwise both mass and momentum are
input from freshwater discharge.
iWave, iHAdv, iTurb, iBotSh, iSDBC (515)

: iWave = 1 if daily varying values are used for wind-induced mixing and momentum
input (read from unit 20). Otherwise constant values (including 0) are read in from unit
5 and kept throughout the model run.

: iHAdv should be either 3 or 2. The horizontal advection term in mass balance
equations is solved using the QUICKEST scheme if iHAdv = 3 or the upwind-weighted
difference scheme if iHAdv = 2.

: iTurb should be either 3 or 2. The vertical mixing terms are evaluated using the
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Munk-Anderson type stability functions (Equations 2-18 and 2-19) if iTurb = 3 or the
Mellor and Yamada Level 2 turbulence scheme (Equations 2-29 and 2-30) if iTurb = 2.
: iBotSh should be either 3 or 2. The bottom shear stress is calculated using the
Manning’s friction coefficient (Eq. 2-9) if iBotSh = 3 or the bottom roughness height

(Eq. 2-10) if iBotSh = 2.

: iISDBC should be either 3 or 2. If iSDBC = 3, the salinity at the downstream

boundary is estimated using the subroutine ’SOpBdry’ in "HYD-2D.FOR’. If iSDBC
2, the salinity at this boundary is independent of tidal phase and the values may be read

from either unit § (constant throughout simulation) or 9 (daily varying).

At this point, control passes to the subroutine 'ReadM’ in '"HYD-2D.FOR’.

ML, MU, Kmax (3I5)
: ML = upstream boundary segment number. For proper operation, ML = 2.
: MU = downstream boundary segment number.
: Kmax = maximum number of layers in any segment.
Note that common and dimension statements presently implemented limit MU to a
maximum value of 80 and Kmax of 15.
Darea (F8.0)
: drainage area (km?) upstream of the fall line, i.e., at the gauging station at the
upstream boundary.
KB(i), i=ML,MU (15I5)
: number of layers at the segment i.
H(k), k=1,Kmax (10F8.0)
: layer thickness (m) at the layer k.
(B(i,k), k=1,KB(i)) i=ML,MU (10F8.0)
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: main channel width (m) at the segment i and the layer k.
SSTm(i), i=ML,MU (10F8.0)

: side storage area (km?) at mean tide at the segment i. Since SSTm(i) is defined at
the center of each segment, SSTm(MU) is not needed, which can be set to any number,
let say, SSTm(MU) = 0.

StSlop(i), i=ML,MU (10F8.0)

: increase in width (in cm) of side storage area for each centimeter increase in surface
elevation at the segment i; StSlop(MU) = 0.

StH(i), i=ML,MU (10F8.0)

: mean depth (m) of side storage area at mean tide at the segment i; StHMU) = 0.
ARD(), i=ML,MU (10F8.0)

: land drainage area (km?) feeding into the segment i, i.e., between the transect i and

i+1; ARD(MU) = 0.

DX, DmDB, DTs (3F8.0)

: DX = Ax = distance (m) between two neighboring transects = distance between
the centers of two neighboring segments.

: DmDB = distance (km) from the river mouth to the center of the most downstream
segment.

: DTs = At = time increment in seconds.
Tmax, NP (F8.0, I8)

: Tmax = duration of model run in tidal cycles.

: NP = number of times during model run to print out the results.
Tout(m), m=1,NP (10F8.0)

: At the time of Tout(m) tidal cycles from model start, the subroutine "HOut’ in
"MODEL-2D.FOR’ prints out



to "HYD.OUT’ (unit 7),
-7, u, w and s at Tout(m) tidal cycles,
- their averages over the last tidal cycle between Tout(m)-1 and Tout(m), and
- range of surface current velocity over the last tidal cycle,
to "TRANGE.OUT’ (unit 12),
- tidal range and time of high tide and low tide during the last tidal cycle,
to ’SLACK.OUT’ (unit 14),
- time of, and salinity at, slackwaters during the last tidal cycle,
to ’E.OUT’ (unit 15)
- the vertical viscosity and diffusivity at Tout(m) tidal cycles, and
- their averages over the last tidal cycle,
Note that the present model implementation allows the maximum of 30 times of output

printing, and that 0 < Tout(m) < Tmax.

At this point, control passes to the main program and hence to the subroutine 'ReadH’ in

"HYD-2D.FOR’.

TempC (F8.0)
: constant estuarine temperature (°C). In water quality model, daily varying
temperature, if desired, can be used.
Cstar, RhoAir (2F8.0)
: Cstar = dimensionless drag coefficient (ca. 1.3 X 10%) = C; in Eq. 2-7.
: RhoAir = air density (ca. 1.2 X 10? g cm?®) = p, in Eq. 2-7.
Paxis(i), i=ML,MU (10F8.0)
: principal axis angle at the transect i. Paxis(i) = 0° to the east and increases

counterclockwise direction.
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rMan(i), i=ML,MU (10F8.0)

: Manning’s friction coefficient at the transect i if iBotSh = 3

: bottom roughness height (cm) at the transect i if iBotSh = 2.
The bottom shear stress is calculated using the Manning’s friction coefficient (Eq. 2-9) if
iBotSh = 3 or the bottom roughness height (Eq. 2-10) if iBotSh = 2.
rk (E8.3)

: proportionality constant relating water density to salinity (7.5 X 10 ppt") = k in
Eq. 2-6.
CTurb, CRi, CWave, CHD (4E8.3)

: CTurb = constant for turbulent mixing coefficients = « in Eq. 2-18.

: CRi = constant for Richardson number = § in Eq. 2-18.

: CWave = constant for wind-induced mixing = a,, in Eq. 2-18.

: CHD = timewise constant horizontal mixing coefficient (cm? sec™).
HtP, Wave2, WndSpd, WndDir (4F8.0)

: HtP = H /T (cm? sec?) in Eq. 2-18.

: Wave2 = 27/L (cm™) in Eq. 2-18.

: WndSpd = wind speed (m sec?) at a height of 10 m = U,, in Eq. 2-7.

: WndDir = wind direction (degree) to which the wind blows.
The height (H,,), period (T) and length (L) of the wind-induced waves can be evaluated,
for example, using the Sverdrup-Munk-Bretschneider forecasting curves (U.S. Army
Coastal Engineering Research Center 1973). Note that, like Paxis(i), WndDir = 0° to
the east and increases counterclockwise direction. Regardless of iWave, this line is read

in from unit 5 but will not be used in model calculation if iWave = 1.

At this point, if iWave = 1, a line of HtP, Wave2, WndSpd, WndDir is read in from

unit 20, which is explained in Section C-3-2.
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Alpha(i), i=ML,MU (10F8.0)

: weighting factor for advective mass transport at the transect i. Regardless of
iHAdv, these factors are read in from unit 5 but will not be used if iHAdv = 3.
SalUp, SalDn, NLS (2F8.0, 18)

: Salinity field is initialized using linear interpolation of SalDn (salinity at the
downstream boundary) and SalUp (salinity at the segment NLS, usually 0), where NLS
is the segment number to which salt is initially intruded.

NS2Sal (I5)

: NS2Sal = 1 if one likes to specify the salinity distribution at any time. Otherwise

salinity is initialized using SalUp, SalDn and NLS at time zero, i.e., when model starts.

TSIC (F8.0) if NS2Sal = 1
(SIC(i,k), k=1,KB(i)) i=ML,MU (10F8.0) if NS2Sal = 1

: TSIC is the time (in days) to specify the read-in salinity distribution, SIC(i,k).

TOFH (F8.0)
SFLDM(k), k=1,KB(i) (10F8.0)

: TOFH is the time (in hours) required for the salinity at the downstream boundary to
reach the downstream boundary condition, SFLDM(k), after SBF. TOFH also is used
for eight water quality parameters. Regardless of iSatDB, SFLDM(k) is read in from

unit 5 but will not be used in model calculation if iSatDB = 1.

At this point, if iSatDB = 1, SFLDM(K) is read in from unit 9, which is explained in

Section C-3-3.

S(MLsl,k,2), k=1,KB(MLs1) (10F8.0)
: constant salinity at the upstream boundary (usually 0). Segment MLsl = segment

(ML-1).



Ampl(m), Phase(m), m=1,9 (2F8.0)

: amplitudes (cin) and phases (radian) for the nine most important tidal components in
the following order: M2, S2, N2, K1, M4, O1, MM, SSA, SA. Regardless of iTide,
these nine lines of data are read in from unit 5 but will not be used in model calculation

if iTide = 1.

At this point, if iTide = 1, control passes to the subroutine ’ReadTD’ in
"HYD-2D.FOR’, which is explained in Section C-3-4.

NS2PS (I5)

: number of segments, which point source discharge feeds into.
i, xPSQ(), m=1,NS2PS (9X, IS, F7.3) if iPS # 1

: 1 = segment number; ML < i < MU.

: xPSQ(i) = constant point source discharge (m*® sec™) feeding into segment i.

At this point, if iPS = 1, NS2PS lines are read in from unit 13, which is explained in

Section C-3-5.

QML2 (F8.0)
: constant freshwater discharge rate (m? sec™) through the transect ML (i.e., through
the upstream boundary transect). Regardless of iDisch, this line is read in from unit §

but will not be used in model calculation if iDisch = 1.

At this point, if iDisch = 1, two lines (FDTL and QML?2) are read in from unit 10,
which is explained in Section C-3-6.

End of logical unit S.
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At this point, control comes back to the main program. If iWQ = 1, control passes to

the subroutine "WQC1’ in "WQ-2D-IN.FOR’, which is explained in Section C-4.

C-3-2. Time-varying wind parameters (logical unit 20)
HtP, Wave2, WndSpd, WndDir (9X, 4F8.3)

: If iWave = 1, the daily varying four parameters are read in from a separate file
(unit 20). The format is that the first 9 columns are used for the sampling date and
ignored when being read, and each line has four values (4F8.3). One line is read in
every midnight.

End of logical unit 20.

C-3-3. Time-varying salinity at downstream boundary (logical unit 9)
SFLDM(k), k=1,KB(i) (9X, 10F8.3)

: If iSatDB = 1, the daily varying SFLDM(k) is read in from a separate file (unit 9).
The format is that the first 9 columns are used for identifying the date and ignored when
being read, and the next 10 columns for SFLDM(k). One line is read in every midnight.

End of logical unit 9.

C-3-4. Time-varying surface elevation at downstream boundary (logical unit 6)
Tdata(m), m=1,24 (7X, 12F6.2)

: If iTide = 1, the subroutine ’ReadTD’ in "HYD-2D.FOR’ reads in Tdata(m), for
the boundary tidal heights at the segment MU, from a separate file (unit 6), which
contains hourly-measured tidal heights (in ft). The format is that the first 7 columns are
used for the sampling date and ignored when being read, and every line has 12 values
(12F6.2). Two lines are read in every midnight. The read-in Tdata(m) is converted into

cm and used in the subroutine *OTide’ in "HYD-2D.FOR’ to calculate the tidal heights
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at the downstream boundary at each time step.

End of logical unit 6.

C-3-5. Time-varying point source discharges (logical unit 13)
i, xPSQ(), m=1,NS2PS (9X, IS, F7.3)

: If iPS = 1, the daily varying xPSQ() is read in from a separate file (unit 13). The
format is that the first 9 columns are used for the sampling date and ignored when being
read, and the next 5 columns are for i (segment number into which xPSQ feeds) and the
next 7 columns for xPSQ(i). NS2PS lines are read in every midnight.

End of logical unit 13.

C-3-6. Time-varying freshwater inflow through upstream boundary (logical unit 10)

FDTL (F8.0)
i, QML2 (9X, IS, F7.3)

: If iDisch = 1, the daily varying QML2 into the transect i (= ML) is read in from
another separate file (unit 10). FDTL, which is the time lag (in days) to adjust for
varying freshwater discharge, occupies 8 columns of the first line, and the rest of the file
is for QML2, the format of which is the same as that of logical unit 13.

End of logical unit 10.

C-4. Data Input Description for Water Quality Model

As mentioned at the end of Section C-3-1, control passes to the subroutine

'WQC1’ in "'WQ-2D-IN.FOR’ if iWQ = 1.

VARIABLE (FORMAT)
iTdep, iSun, iBCWQ, iNPS, iWQPS, iWQDBC (615)
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: iTdep = 1 causes time-varying water quality input conditions so that the subroutine
"WQInput’ in ’WQ-2D-IN.FOR’ will be called every midnight. If any of iSun, iBCWQ,
iNPS, iWQPS equals 1, iTdep must be 1. Otherwise constant water quality conditions.

: iSun = 1 causes the daily varying parameters for solar radiation to be read in from
unit 16. Otherwise constant parameters are read in from unit 11 and kept throughout the
model run.

: iBCWQ = 1 causes the daily varying boundary conditions for water quality
parameters to be read in from unit 17. Otherwise constant conditions are read in from
unit 11 and kept throughout the model run.

: iNPS = 1 causes the daily varying nonpoint source loadings to be read in from unit
18. Otherwise constant loadings are read in from unit 11 and kept throughout the model
run. At this point, if INPS = 1, a line is read in for FDTL from unit 18.

: iWQPS = 1 causes the daily varying point source loadings to be read from unit 19.
Otherwise constant loadings are read in from unit 11 and kept throughout the model run.

: iWQDBC should be either 3 or 2. If iWQDBC = 3, the downstream boundary
conditions are estimated using the subroutine "'WDnBdry’ in "WQ-2D.FOR’. If
iWQDBC = 2, the boundary conditions are independent of tidal phases and the values

may be read from either unit 11 (constant throughout simulation) or 17 (daily varying).

NPWQ (I5)

: NPWQ = number of times to print out the results.
WQout(m), m=1,NPWQ (10F8.0)

: At the time of WQout(m) days from model start, the subroutine *"WOut’ in
"WQ-2D-IN.FOR’ prints out to "'WQ.OUT’ (unit 8),

- N1, N2, N3, P1, P2, Chl, CBOD, DO at WQout(m) days, and

- their daily averages, maximums and minimums over WQout(m)-1 and WQout(m)
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days.
Note that the presént model implementation allows the maximum of 30 times of output

printing, and that 0 < WQout(m) < Tmax.

TheN12, TheN23, TheN33, TheP12 (4F8.0)

: constants for temperature adjustment of ammonification, nitrification, denitrification
and organic phosphorus mineralization rates, respectively.
NS2 I5)

: number of segments for which nutrient transfer coefficients will be read. Setting
NS2 = 2 establishes uniform values, otherwise NS2 > MU.

xKn12(i), i=2,NS2 (10F8.0)
xKn23(i), i=2,NS2 (10F8.0)
xKn33(i), i=2,NS2 (10F8.0)
xKp12(i), i=2,NS2 (10F8.0)
: rate in mg I'! day’ for ammonification, nitrification, denitrification (day") and
organic phosphorus mineralization at 20°C, respectively.
rKh12, rKh23, rKnit, rKden, rKhp12 (5F8.0)

: half-saturation concentrations in mg 1 for ammonification, nitrification, oxygen

limitation of nitrification, denitrification and organic phosphorus mineralization,

respectively.

NS2 (I5)

: number of segments for which CBOD decay rates will be read. Setting NS2 = 2
establishes uniform values, otherwise NS2 > MU.
xKc(i), i=2,NS2 (10F8.0)

: CBOD decay rate at 20°C in day™.

TheKc (F8.0)
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: constant for temperature adjustment of CBOD decay rate.
TheDA, rKro (2F8.0)
: TheDA = constant for temperature adjustment of DO reaeration rate.

: 1Kro = proportionality constant for DO reaeration (393.3 in CGS unit).

At this point, control comes back to the main program and thence to the subroutine

"WQC?2’ in "WQ-2D-IN.FOR’.

NS2 (I5)
: number of segments for which settling rates will be specified. Setting NS2 = 2
establishes uniform values, otherwise NS2 > MU.
rKnl1(i), i=2,NS2 (10F8.0)
rKpl11(i), i=2,NS2 (10F8.0)
rKp22(i), i=2,NS2 (10F8.0)
rKchl(i), i=2,NS2 (10F8.0)
rKbod(i), i=2,NS2 (10F8.0)
: settling rates of organic nitrogen, organic phosphorus, inorganic phosphorus,
chlorophyll and CBOD, respectively, in cm day’. Note that the present model

implementation uses the same settling rates in the main channel and the storage area.

ac, an, ap, ar, PQ, RQ, rKmn, rKmp, xKgr, rls,
Resp20, Graz20, Fn, Fp, ThetaG, ThetaR, ThetaD (10F8.0)

: ac, an, ap = carbon/chlorophyll (mg C per ug Chl), nitrogen/chlorophyll (mg N per
pg Chl), phosphorus/chlorophyll (mg P per ug Chl) ratios, respectively, in algal biomass
(typically 0.05, 0.007 and 0.001, respectively).

: ar = proportion of consumed phytoplankton recycled by zooplankton. To conserve
nitrogen and phosphorus, ar = 1.

: PQ = ratio of oxygen produced to carbon fixed (moles O, per mole C).
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: RQ = ratio of CO, liberated to oxygen consumed (moles CO, per mole O,).

: TKmn, erp = half-saturation concentrations for growth limitation due to nitrogen
and phosphorus, respectively, in mg 17,

: xKgr = optimum growth rate at 20°C in day™.

: rIs = saturation light intensity in langleys day™.

: Resp20 = respiration rate at 20°C in day.

: Graz20 = predatory and other mortality rate at 20°C in day™.

: Fn, Fp = fraction of metabolically produced nitrogen and phosphorus, respectively,
recycled to the organic pool.

: ThetaG, ThetaR, ThetaD = constants for temperature adjustment of growth rate,

respiration rate, and grazing and other mortality rate, respectively.

At this point, control comes back to the main program and thence to the subroutine

"WQIC’ in "WQ-2D-IN.FOR’.

xN1, xN2, xN3, xP1, xP2, xChl, xBOD, xDO (8F8.0)

: spacewise constant initial concentrations in mg 1" (except xChl in ug I'). These
values are used if NS2WQ = 1.

NS2WQ (I5)

: NS2WQ = 1 causes to specify the initial conditions at any time. Otherwise the
spacewise constant values (xN1,xN2,xN3,xP1,xP2,xChl,xBOD,xDO) are used for initial
conditions at time zero, i.e., when model starts.

TWQIC (F8.0) if NS2WQ = 1

: TWQIC is the time (in days) to specify the following initial conditions in mg 1"
(except ChIIC in pg 17).

(rN1IC(i,k), k=1,KB(i)) i=ML,MU (10F8.0) if NS2WQ =1
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(rN2IC(i,k), k=1,KB(i))
(rN3IC(i,k), k=1,KB(i))
k=1,KB(i))
k=1,KB()) i=
(ChIIC(i,k), k=1,KB(1))
(BODIC(i), k=1,KB(i)
(POIC(,K), k=1,KB(i))

(P1IC(i,k),
(P2IC(i,k),

Control comes back to the main program and thence to the subroutine "WQInput’ in

"WQ-2D-IN.FOR’.

Title (A49)

: alpha information describing the input data that follow. The date at which the data

(10F8.0)
(10F8.0)
(10F8.0)
(10F8.0)
(10F8.0)
(10F8.0)
(10F8.0)

if NS2WQ
if NS2WQ
if NS2WQ
if NS2WQ
if NS2WQ
if NS2WQ
if NS2WQ

are read in, can be an example of Title.

NDG, NS2 (2I5)

: NDG = integer identifying a particular data group; the present model

implementation has eight possible data groups.

: NS2 = number of values to be read in each data group.

1) If NDG = 1, then boundary conditions

Pk i ek pemd ek pumd b

- from unit 17 if iBCWQ = 1 (daily varying conditions), or

- from unit 11 if iBCWQ # 1 (constant conditions).

N1(MLsl,k,2),
N2(MLs1,k,2),
N3(MLsl,k,2),
P1(MLs1,k,2),
P2(MLsl,k,2),
Chl(MLs1,k,2),
CBOD(MLs1,k,2),
DOC(MLsl,k,2),

k=1,KB(MLs1)
k=1,KB(MLs1)
k=1,KB(MLsl)
k=1,KB(MLsl1)
k=1,KB(MLsl)
k=1,KB(MLs1)
k=1,KB(MLsl)
k=1,KB(MLs1)

(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)
(9X, 10F8.3)

: upstream boundary conditions in mg 1" (except Chl in pg I').
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DnN1(k), k=1,KBMU) (9X, 10F8.3)
DnN2(k), k=1, KB(MU) (9X, 10F8.3)
DnN3(k), k=1,KBMU) (9X, 10F8.3)
DnP1(k), k=1,KBMU) (9X, 10F8.3)
DnP2(k), k=1,KBMU) (9X, 10F8.3)
DnChl(k), k=1, KBMU) (9X, 10F8.3)
DnBOD(k), k=1, KB(MU) (9X, 10F8.3)
DnDO(k), k=1,KBMU) (9X, 10F8.3)

: downstream boundary conditions in mg 1! (except Chl in ug 17).
Note that

: NS2 for this group can be any arbitrary number.

: Even if iBCWQ = 1, the general input file (unit 11) should have a line containing
NDG and NS2 whenever boundary conditions need to be updated. Actual values for
both downstream and upstream conditions are read in every midnight from a separate file
(unit 17).

: For the freshwater discharge through the upstream boundary, the present model
implementation can take care of two different cases; only the mass input (UBC = 1) or
both momentum and mass fluxes (UBC # 1) from discharge. When iUBC = 1, the
mass input from freshwater discharge will be incorporated by being treated as nonpoint
source and by not including the advective and diffusive transport through the upstream
boundary transect. This can be done by setting EPx(ML,k) and Ex(ML,k) in the
subroutine ’ReadH’ and U(ML,k,2) in *GetQLat’ to be zero if iUBC = 1. The
upstream boundary conditions and Alpha(ML) can be any values. When iUBC # 1, the
freshwater discharge will be treated as the advective flux through the upstream
boundary, and thus Alpha(ML) should be 1 if iHAdv = 2 (i.e., upwind-weighted

difference scheme).

2) If NDG = 2, then point source input

- from unit 19 if iWQPS = 1 (daily varying), or

C-16



- from unit 11 if iWQPS # 1 (constant).

i, xPSQ,PN1,PN2,PN3,PP1,PP2,PBOD,PDO, m=1,NS2 (9X, IS, 8F7.3)

: i = segment number into which the point source input feeds; ML < i < MU.

: xPSQ = point source discharge rate (m* sec™).

: PN1 to PDO = waste loadings (in kg day™) from point source(s).
Note that

: Even if iWQPS = 1, the general input file (unit 11) should have a line containing
NDG and NS2 whenever point source data need to be updated. NS2 lines of actual
values are read in every midnight from unit 19.

: The discharges (xPSQ) read in here are not used in model calculation but the values

read in hydrodynamic model from unit 13 (time-varying) or 5 (constant) are used.

3) If NDG = 3, then nonpoint source input
- from unit 18 if iNPS = 1 (daily varying), or
- from unit 11 if iNPS # 1 (constant).
i, DSQ,DSN1,DSN2,DSN3,DSP1,DSP2,DSChl,DSBOD,DSDO (9X, 15, 9F7.3)

: i = segment number into which DSQ feeds (usually i = ML).

: DSQ = nonpoint source discharge in m? sec’!.

: DSN1 to DSDO = concentrations in mg 1! (except DSChl in pg 17).

Note that

: NS2 for this group can be any arbitrary number.

: Even if iNPS = 1, the general input file (unit 11) should have a line containing
NDG and NS2 whenever nonpoint source data need to be updated. One line of actual
values is read in every midnight from unit 18.

: The discharges (DSQ) read in here are not used in model calculation but the values

read in hydrodynamic model from unit 10 (time-varying) or 5 (constant) are used.
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4) If NDG = 4, then benthic fluxes

xBN1(),  i=ML,MU (10F8.0)
xBN1St(), i=ML,MU (10F8.0)
xBN2(),  i=ML,MU (10F8.0)
xBN2St(i), i=ML,MU (10F8.0)
xBN3(@), i=ML,MU (10F8.0)
xBN3St(), i=ML,MU (10F8.0)
xBP1(i), i=ML,MU (10F8.0)
xBPISt(i), i=ML,MU (10F8.0)
xBP2(i), i=ML,MU (10F8.0)
xBP2St(), i=ML,MU (10F8.0)
xBBOD(), i=ML,MU (10F8.0)
xBBODSt(i), i=ML,MU (10F8.0)
xBDOG), i=ML,MU (10F8.0)
xBDOSt(i), i=ML,MU (10F8.0)

TBN1,TBN2,TBN3,TBP1,TBP2,TBBOD,TBDO (10F8.0)

: xBN1(i) to xBDO(i) = benthic exchange rates in the main channel of the segment i
at 20°C in g m? day™.

: xBN1St(i) to xBDOSt(i) = those in the side storage area.

: TBN1 to TBDO = constants for temperature adjustment of exchange rates.
Note that

: NS2 for this group can be any arbitrary number.

: Negative values are losses to sediment and positive values sources from sediment.

: Whenever updating the benthic exchange rates, since they need to be adjusted for

temperature, the data group 7 (temperature) should also be read in.

5) If NDG = §, then turbidity
Turb(i), i=ML,MU (10F8.0)

: light extinction coefficient (cm™). NS2 for this group is arbitrary.

6) If NDG = 6, then wind reaeration

WRea(i), i=ML,MU 10F8.0)
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: wind-induced reaeration (cm day™) estimated using Eq. 3-9d. NS2 for this group is
arbitrary. |

7) If NDG = 7, then temperature
Temp (F8.0)

: temperature (°C). Note that this data group must be read after data group 4 (bottom
exchange rates including SOD) and CBOD decay rate in the subroutine "'WQC1’ in
"WQ-2D-IN.FOR’, since these parameters must be temperature-adjusted. NS2 for this

group can be any arbitrary number.

8) If NDG = 8, then sunlight parameters
- from unit 16 if iSun = 1 (daily varying), or
- from unit 11 if iSun # 1 (constant).

rla, TU, TD (9X, 3F8.3) ifiNS2 =1
rla 9X, F8.3) ifiNS2 # 1

: rla = total solar radiation over one day (langleys day™).

: TU, TD = hours from midnight to sunrise and sunset, respectively.
Note that

: Even if iSun = 1, the general input file (unit 11) should have a line containing
NDG and NS2 whenever solar parameters need to be updated. One line of actual values
is read in every midnight from unit 16.

: NS2 = 1 means that all 3 parameters will be updated, whereas only rla will be read
in if NS2 # 1. Regardless of iSun, NS2 should be 1 at the first call of the subroutine
"WQInput’ since TU and TD as well as rla are needed.

If NDG = 99, exit from the subroutine *"WQInput’.
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Note that if iTdep = 1, the subroutine *"WQInput’ will be called every midnight.
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Table C-1. Data file organization for hydrodynamic model.

DESCRIPTION

LOGICAL READ or EXAMPLE

UNIT

general input including geometry, program
control parameters and hydrodynamic data

daily varying freshwater discharge rate
at the upstream boundary transect

time-varying tidal height at the
downstream boundary segment

daily varying salinity condition at the
downstream boundary segment

daily varying point source discharge rate

daily varying wind condition

general model output

output having tidal range, and time of
high water and low water

output having time and salinity at
slackwater

output having vertical viscosity and
diffusivity
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5

10

13

20

12

14

15

read

read

read

read

read

read

write

write

write

write

WRITE (REMARK)

HYD.IN
FLOW.IN
(optional)

TIDE.IN
(optional)

S-DBC.IN
(optional)

PSQ.IN
(optional)

WIND-W.IN
(optional)

HYD.OUT

TRANGE.OUT

SLACK.OUT

E.OUT



Table C-2. Data file organization for water quality model.

DESCRIPTION LOGICAL READ or EXAMPLE
UNIT WRITE (REMARK)

general input including program control 11
parameters and water quality data

daily varying solar radiation, and 16
time of sunrise and sunset

daily varying boundary condition 17
for water quality parameters

daily varying nonpoint source loading 18
daily varying point source loading 19
general model output 8
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read

read

read

read

read

write

WQ.IN
(optional)

SOLAR.IN
(optional)

WQBC.IN
(optional)

NPS.IN
(optional)

PS.IN
(optional)

WQ.0OUT
(optional)
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