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THESIS ABSTRACT  

 
      

Climate change assessments predict that rates of relative sea level rise will increase in the future, 

leading to enhanced inundation of low-lying coastal regions and a 20 – 50 % decline in salt 

marsh area by 2100. Global sea level rise began accelerating in the late 19th to early 20th century, 

and local rates along the U.S. mid-Atlantic coast are twice as fast as global estimates. Frequent 

flooding and salt stress associated with sea level rise lead to coastal transgression, and the 

survival of ecosystems depends on their ability to migrate inland faster than they erode and 

submerge. Here, I compared aerial imagery analyses and field measurements to test the 

hypothesis that marsh migration into retreating terrestrial forests is fundamentally tied to sea 

level rise, and that sea level rise does not necessarily lead to overall habitat loss. 

 For my first chapter, I compared the areal salt marsh extent between historical 

topographic maps and modern aerial imageries across the entire Chesapeake Bay, and found that 

marsh migration into terrestrial forests largely compensated for marsh erosion at the seaward 

edge during the last century. This emphasizes that the location of coastal ecosystems changes 

rapidly on centennial timescales, and that sea level rise does not necessarily lead to overall 

habitat loss. For my second chapter, I reconstructed the position of coastal treelines through time 

at five study sites along the U.S. mid-Atlantic coast to identify long- and short- term drivers of 

coastal forest retreat. My findings suggest that 20th century migration rates greatly exceed pre-

industrial rates (< 1875 CE), and have generally accelerated throughout the last century in 

parallel with accelerating rates of relative sea level rise. 

Previous work predicts widespread marsh loss as a response to sea level rise, but 

underestimates the potential for marshes to migrate inland. Although anthropogenic barriers may 

locally prevent marsh migration into retreating coastal forests, my work finds that about 400 km2 

(100,000 acres) of uplands have converted to marshes in the Chesapeake region since the late 

1800s, and that this process was responsible for the formation of about 1/3 of all marsh area. 

Beyond the Chesapeake, my work reveals that forest retreat is fundamentally tied to the rate of 

sea level rise, and is accelerating through time. Therefore, management efforts that allow 

marshes to migrate into adjacent uplands may help preserve marshes by exploiting their ability to 

quickly adapt to environmental change. 
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CHAPTER 1 
 

 
Massive upland to wetland conversion compensated for historical marsh loss in 

Chesapeake Bay, USA1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 Published as 

Schieder, N.W., D.C. Walters, and M.L. Kirwan. 2018. Massive upland to wetland conversion compensated for 

historical marsh loss in Chesapeake Bay, USA. Estuaries and Coasts. In press. https://doi.org/10.1007/s12237-

017-0336-9.  
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ABSTRACT  

 
      

Sea level rise leads to coastal transgression, and the survival of ecosystems depends 
on their ability to migrate inland faster than they erode and submerge. We compared 
marsh extent between 19th century maps and modern aerial photographs across the 
Chesapeake Bay, the largest estuary in North America, and found that Chesapeake 
marshes have maintained their spatial extent despite relative sea level rise rates that 
are among the fastest in the world. In the mapped region (i.e. 25 % of modern 
Chesapeake Bay marshland), 94 km2 of marsh was lost primarily to shoreline erosion, 
whereas 101 km2 of marsh was created by upland drowning. Simple projections over 
the entire Chesapeake region suggest that approximately 400 km2 (100,000 acres) of 
uplands have converted to wetlands, and that about a third of all present-day marsh 
was created by drowning of upland ecosystems since the late 19th century. Marsh 
migration rates were weakly correlated with topographic slope and amount of 
development of adjacent uplands, suggesting that additional processes may also be 
important. Nevertheless, our results emphasize that the location of coastal ecosystems 
changes rapidly on century timescales, and that sea level rise does not necessarily lead 
to overall habitat loss.  
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INTRODUCTION 

Sea level rise leads to coastal transgression, and the survival of ecosystems depends on their 

ability to migrate inland faster than they erode and submerge (Brinson et al. 1995; FitzGerald et 

al. 2008; Curray 2016). Global sea level rise rates began accelerating sharply in the late 19th or 

early 20th century, with an approximate tripling in sea level rise rates in the last 150 years in 

many parts of the world (Kemp et al. 2009; Church et al. 2013). Late 20th century relative sea 

level rise rates are 3-4 times higher along the U.S. mid-Atlantic coast than the global average due 

to changes in the Gulf Stream and spatial variability in subsidence (Ezer and Corlett 2012; 

Sallenger et al. 2012). When those changes exceed the ability of marshes and other coastal 

systems to adapt, ecosystems will be forced to migrate inland or submerge (Brinson et al. 1995; 

FitzGerald et al. 2008; Craft et al. 2009; Kirwan and Megonigal 2013). Accelerated sea level rise 

therefore threatens tidal marshes and other coastal environments, which are well known for 

ecosystem services such as carbon sequestration, storm protection, and nutrient transformation 

(Barbier et al. 2011).  

Feedbacks between flooding, plant growth, and sediment deposition allow marshes to 

adapt to changes in sea level in the vertical dimension. Increases in flooding duration tend to 

enhance sediment deposition on the marsh surface, plant productivity, soil building, and marsh 

elevation gain (Reed 1995; Friedrichs and Perry 2001; Cahoon et al. 2006; Kirwan and 

Megonigal 2013; Kirwan et al. 2016a). However, the strength of this feedback depends 

fundamentally on the availability of mineral sediments, so that marshes in sediment deficient 

areas remain vulnerable to sea level rise (Kirwan et al. 2010; Day et al. 2011; D’Alpaos et al. 

2012; Weston 2014). Marshes are fundamentally unstable in the lateral dimension, where erosion 

of marsh edges is a primary contributor to marsh loss even in the absence of sea level rise 

(Fagherazzi et al. 2013). Marsh erosion rates typically vary between ~0.1 - 3 m yr-1, depending 
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on wave power, the elevation of marsh relative to water level, and vegetation-mediated soil 

strength (Schwimmer 2001; Mariotti and Fagherazzi 2010; Gedan et al. 2011; Fagherazzi et al. 

2013; McLoughlin et al. 2015; Ford et al. 2016; Silliman et al. 2016). Accelerations in the rate of 

sea level rise potentially enhance erosion rates by increasing water depth, wave height, and the 

height of the marsh-tidal flat scarp (Mariotti and Fagherazzi 2010; Marani et al. 2011).  

 Marshes also respond to sea level rise by migrating inland and replacing terrestrial 

ecosystems (Brinson et al. 1995; Raabe and Stumpf 2016; Kirwan et al. 2016a). Progressive 

flooding leads to the development of wetland soils and vegetation (Hussein 2009; Anisfeld et al. 

2017). In coastal forests, inundation and salt stress lead to seedling mortality so that forests do 

not regenerate following the death of adult trees during storms or other events (Clark 1986; 

Williams et al. 1999; Kirwan et al. 2007). These processes allow new marshes to form along a 

moving upland boundary as a function of the rate of sea-level rise and upland slope (Brinson et 

al. 1995; Hussein 2009; Smith 2013; Raabe and Stumpf 2016). Upland-to-wetland conversion 

has been described along the margin of many marshes throughout North America, and is thought 

to be important to future marsh survival at regional scales along the Gulf and mid-Atlantic coasts 

(Doyle et al. 2010; Feagin et al. 2010; Morris et al. 2012; Smith 2013; Raabe and Stumpf 2016; 

Clough et al. 2016; Enwright et al. 2016). However, steep topography and anthropogenic barriers 

commonly limit marsh migration in other places (Feagin et al. 2010; Kirwan and Megonigal 

2013; Torio and Chmura 2013; Wasson et al. 2013; Enwright et al. 2016; Field et al. 2016).  

 The vulnerability of marshes to sea level rise therefore depends at least in part on the 

competition between erosion and migration, but it is unclear how the balance between these 

processes has changed historically, or will change under accelerated rates of sea level rise in the 

future. Previous work focuses largely on either erosion or migration alone, and suggests that both 
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processes may accelerate in parallel with sea level rise (Hussein 2009; Mariotti and Fagherazzi 

2010; Kirwan et al. 2016b). Recent work along a portion of the Florida Gulf Coast suggests 

migration into uplands has exceeded historical erosion rates (Raabe and Stumpf 2016), and 

modeling proposes that marsh migration rates are more sensitive to sea level rise than edge 

erosion rates (Kirwan et al. 2016a). These observations suggest a counter-intuitive expansion of 

marshes with sea level rise along undeveloped coasts, but this idea remains largely untested, 

especially at regional scales with large human populations that may present barriers to migration. 

Here, we compare the extent of marshes from 19th century maps of the Chesapeake region to 

modern imagery, and find that marsh migration into adjacent uplands has allowed Chesapeake 

marshes to survive the fastest relative sea level rise rates on the Atlantic coast. 

 
 

METHODS 

Regional setting 

This study concentrates on the marshes and low-elevation coastal region surrounding the 

Chesapeake Bay, the largest coastal-plain estuary in North America (Fig. 1). Chesapeake Bay is 

a classic, drowned river valley estuary, with microtidal tides, and a total watershed area of 

approximately 166,000 km2 (Perry et al. 2001; Chesapeake Bay Program 2015). Marshes occupy 

about 1,200 km2 of the Chesapeake region (Stevenson et al. 1985; Chesapeake Bay Program 

2015), including approximately 20 % of the Chesapeake Bay shoreline (Rosen 1980). Typical 

vegetation communities in regularly flooded marshes include Spartina alterniflora and 

Schenoplectus americanus, and irregularly flooded marshes include Spartina patens, Distichlis 

spicata, and Juncus romerianus. Adjacent low-gradient uplands are dominated by Pinus taeda 
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and Juniperus virginiana, and the marsh-forest transition zone typically includes Phragmites 

australis, Iva frutescens, and Myrica cerifera (Perry et al. 2001; Kirwan et al. 2007).  

Historical relative sea level rise rates in the Chesapeake Bay range between 3 and 6 mm 

yr-1 (http://tidesandcurrents.noaa.gov/sltrends/sltrends.html) and are about twice as fast as 

eustatic sea level rise rates as a result of subsidence (1.6 – 2.0 mm yr-1) (Engelhart et al. 2009). 

Relative sea level rise in the Chesapeake Region has accelerated from 1 – 3 mm yr-1 in the 

1930’s to 4 – 10 mm yr-1 in 2011 due to climate warming, changes in ocean currents, and 

groundwater withdrawal (Ezer et al. 2012; Sallenger et al. 2012). Coastal ecosystems are rapidly 

transgressing in response to sea level rise, characterized by erosion of salt marsh edges, mortality 

of low elevation forests, and migration of marshes into adjacent uplands (Brinson et al. 1995; 

Hussein 2009). 

  

Habitat mapping 

To determine how the size and location of marshes in the Chesapeake region have responded to 

historical sea level rise, we compared the spatial distribution of marshes from 19th century era 

maps to modern aerial photographs (Fig. 2). We located 66, 1:20,000 scale NOS topographic 

sheets (“T-sheets”) from the years 1846 to 1912 that included information on simple land types 

(e.g. marsh, farmland, forests) from the tidal portions of the Chesapeake Bay and its tributaries 

(NOAA Shoreline Website 2015). T-sheets from this time period were created by plane tables 

and focused on the coastline as well as its plane geometry (Shalowitz 1964). We discarded 26 

maps that did not clearly distinguish between marsh and forested areas due to poor map quality, 

inconsistent symbology, and ambiguous treatment of forested wetlands. To build consistency 

between different standards of individual surveyors, we did not include maps with no clear 
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delineation between upland and marsh. We georeferenced each historical T-sheet to modern 

aerial photographs in ArcGIS by locating approximately 10 control points (e.g. road 

intersections, creeks) that were visible in both sets of images, and fitting with 1st or 2nd order 

polynomial. We calculated the root mean square error (RMSE) associated with georeferencing 

by calculating the distance between the same control points on historic and modern image 

sources, and discarded maps with RMSE greater than 15 m. Average RMSE of the remaining 40 

maps was 6-7 m. This error is similar to that reported for T-sheets in previous work (Raabe and 

Stumpf 2016). The remaining historical maps represented all sections of the bay, though maps 

were most abundant in the southwestern portion of the bay (Fig. 1).  

We compared the T-sheets with six-inch resolution orthoimagery from Maryland 

collected in 2013 (Eastern Shore of Chesapeake Bay) and 2014 (Western Shore) (Maryland’s 

Mapping & GIS Data Portal) and orthoimagery from Virginia collected in spring 2013 (ArcGIS 

server gismaps.vita.virginia.gov). Tidal marshes were digitized by hand by tracing the boundary 

between marsh and open water and the boundary between marsh and upland. The marsh-forest 

boundary was identified as the line between the dense tree canopy and marsh, and the marsh-

water boundary was identified as the line between open water and adjacent land excluding 

beaches. Because the resolution of the modern photographs was significantly better than the T-

sheets, we delineated the modern marsh at the same scale as the historical T-sheets (1:20,000). 

This treatment eliminated interior ponds and many narrow (< 15 m) fringe marshes that were 

discernable along channels in modern imagery but not in the T-sheets. The minimum size of 

marshes and forest patches delineated on the T-sheets was about 350 m2, and we were careful to 

delineate patches of similar minimum size on the modern imagery. This approach allows marsh 

delineation over large spatial scales, builds consistency between high-resolution modern imagery 
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and low-resolution historical maps, and ensures that measured changes in marsh area are not an 

artifact of changes in map quality.  

 

Analytical methods 

To summarize changes in marsh area through time, we calculated historic and modern marsh 

area for each T-sheet individually, where rates refer to the change in area divided by the number 

of years between 2013 and the year of the T-sheet. We derived linear rates of change by dividing 

the area of marsh change by the modern shoreline length, defined as the length of the water-

marsh boundary for edge erosion rates, and the length of the marsh-forest boundary for migration 

rates. The shoreline length was calculated directly from previously established marsh polygons, 

and was therefore determined at the same scale (1:20,000) so that it included only large creeks (> 

30 m wide). Finally, we summarized changes in marsh area across watersheds of the major river 

systems in the Chesapeake region defined by USGS HUC 4 watershed boundaries (USGS 

Watershed Boundary Dataset: http://nhd.usgs.gov/wbd.html). For portions of the watershed with 

overlapping T-sheets, we generally used the T-sheet with the lowest georeferencing error. 

Changes in marsh area by watershed were aggregated to determine total, bay-wide changes. 

Our methods explicitly calculate areas of marsh gain and loss along the seaward and 

landward margins of the historic and modern marsh extent, and assume that positive changes in 

marsh area at the upland boundary are due to migration into retreating uplands, whereas negative 

changes in marsh area at the seaward boundary are due to marsh-edge erosion. Total net change 

in marsh size is calculated as the difference between the area of marsh migration and marsh 

shoreline erosion. Thus, our approach focuses on large-scale drivers of marsh gain and loss, 

rather than more subtle changes such as expansion of small, interior ponds. We tested these key 



10 

 

assumptions by re-mapping 4 randomly selected, but representative, map units in different 

portions of the Chesapeake region [T02957, T01534I, T00199, T00686 in Table 1]. For each 

map, we manually compared the causes of marsh loss and gain. On average, 96% of marsh gain 

resulted from marsh migration into adjacent uplands, whereas 4% resulted from progradation 

into open water. 98% of marsh loss resulted from marsh edge erosion, whereas 2% resulted from 

woody encroachment and conversion to anthropogenic land uses. Total marsh loss across the 4 

map units did not depend on the spatial resolution of mapping (61.4 km2 at 1:20,000; 62.8 km2 at 

1:1,000) because small interior ponding visible on the modern imagery was only responsible for 

about 2% of total marsh loss. Since the vast majority of marsh gain and loss was caused by 

migration and shoreline erosion, those terms are hereafter used interchangeably.  

 We characterized the slope and land cover of uplands within a 100 m buffer of delineated 

marshes in an effort to understand potential factors influencing rates of marsh migration. The 

slope of adjacent uplands was determined from digital elevation models derived from bare-earth 

LIDAR flown between 2010 and 2012 at a resolution of 2.5x2.5 ft (Virginia Lidar 2015) and 

between 2014 and 2015 at a resolution of 1x1 m (ESRGC 2015). For each pixel within the 

buffered upland region, we extracted elevation from the digital elevation model and used the 

Euclidean Distance tool in ArcGIS to determine distance from the modern marsh-upland 

boundary and then used linear regression to calculate an average upland slope. We used the 

NLCD 2011 Land Cover map (Multi-Resolution Land Characteristics Consortium 2016) to 

estimate potential anthropogenic barriers to marsh migration. Typical anthropogenic barriers to 

wetland migration in the Chesapeake region include roads, bulkheads, and small berms and 

revetments. These features are not consistently identifiable near the upland boundary, so we 

assume that the fraction of developed land is a proxy for anthropogenic barriers, where highly 
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developed land would have more extensive barriers to marsh migration. Landscape-scale models 

of marsh migration commonly assume that migration will only occur into forested uplands. 

Therefore, we defined developed uplands as land that was classified as urban or agricultural, and 

calculated the ratio of developed land to total land area within the buffered upland region. Rates 

of marsh migration were then compared to characteristics of the adjacent uplands (i.e. slope and 

degree of development) for each map, using linear and multiple regression.  

 

RESULTS 

The total extent of tidal marshes in the studied portion of the Chesapeake Bay region was nearly 

identical in 19th century historical maps and modern aerial photographs. The 19th century T-sheet 

maps included 311 km2 of tidal marshes, and the same mapping area included 318 km2 of 

marshes in 2013 (Table 1). Marsh area change at the marsh-water boundary was negative in each 

map unit (defined as the extent of individual T-sheets), indicating that erosion was greater than 

marsh progradation into open water, and is likely the dominant driver of marsh loss in our study 

(Table 1). Marsh area change at the marsh-upland boundary was positive in each map unit, 

indicating that marsh migration into uplands was greater than apparent woody encroachment into 

marshes that could potentially result from classification errors in the 19th century maps (Table 1). 

Marsh gain slightly exceeded loss in the James River and Eastern Shore watersheds, whereas 

loss slightly exceeded gain in the York River watershed (Fig. 3). Summed across the entire 

mapped area, new marsh created at the migrating upland edge (101 km2) compensated for marsh 

loss at the marsh-water boundary (94 km2), resulting in a total net marsh expansion of about 7 

km2 or 2% (Fig. 3). The total mapped area represents 24% of all marshes in the Chesapeake Bay 

and its tributaries (1,200 km2 (Stevenson et al. 1985; Chesapeake Bay Program 2015)). The slope 
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of the upland topography within a 100 m buffer of marshes in the mapped area (0.03 ± 0.02) is 

similar to the slope of adjacent uplands in the entire Chesapeake region (0.05 ± 0.08), suggesting 

that our upland submergence rates may be generally representative. Therefore, simple 

projections across the entire Chesapeake region imply that more than 400 km2 (100,000 acres) of 

uplands have converted to wetlands over the last century. 

Despite little net change in marsh area summed across the entire Chesapeake region, net 

change in marsh extent differed widely between individual map units (Table 1). For example, a 

maximum loss of ~90% of marshes was observed for the Cape Charles, VA T-sheet extent, and a 

maximum gain of ~400% was observed for the Potomac River, MD T-sheet extent. 16 of 40 

maps had marsh loss rates exceeding 10%, 15 maps had expansion rates exceeding 10%, and 

only 10 maps showed net change rates of less than 10%. The average rate of marsh migration for 

individual map units was 0.49 ± 0.36 m yr-1 (SD), with the highest migration rates occurring on 

the eastern shore of the Chesapeake Bay and the mouth of the York River (Fig. 4a). The lowest 

marsh migration rates appear along the Chesapeake tributaries and in the middle fractions of the 

bay. The average erosion rate was 0.53 ± 0.42 m yr-1 (SD), with the fastest rates peaking along 

the Rappahannock River as well as the Choptank River area and the lowest rates appearing along 

the eastern shore of Virginia and the Chickahominy River (Fig. 4b). In general, net marsh 

expansion occurred primarily in the southern part of the Chesapeake Bay, whereas marsh 

contraction occurred mostly in the mid and northern Bay and on islands with limited potential for 

marsh migration (Fig. 4c). These results are broadly consistent with previous work 

demonstrating marsh loss in the mid Bay (e.g. Stevenson et al. 1985; Kearney et al. 1988; 

Schepers et al. 2017), rapid erosion of Chesapeake Bay islands (Kearney and Stevenson 1991), 

and localized marsh expansion in the lower bay (Kirwan et al. 2016b). 
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Marsh migration rates were weakly correlated with characteristics of adjacent uplands. 

The average upland slope within 100 m of the modern marsh was 0.03 and varied between 0.004 

and 0.1 between map units (Table 1). Low upland slopes were located along the eastern shore of 

Virginia (e.g. Nandua Creek map = 0.003), and the highest slopes were generally located near 

the heads of rivers (e.g. Choptank River map = 0.1). Simple linear regression indicated a weak 

relationship between rate of marsh migration and upland slope (r2=0.16; p<0.05) (Fig. 5a).  

 The average land use within 100 m of the modern marsh was 41% forest, 26% urban, and 

22% agriculture. Developed land (urban plus agriculture) averaged over individual map units 

ranged from 3% developed to 79% developed within the buffer. Simple linear regression 

indicated a weak relationship between marsh migration rate and the fraction of uplands 

developed (r2= 0.09; p=0.05) (not shown), and that migration rate was weakly related to upland 

slope even in the most undeveloped uplands (development < 10%) (r2=0.19; p=0.07) (Fig. 5b).  

 

DISCUSSION 

Reliability of historical maps 

19th century T-sheet maps are commonly used to reconstruct changes in the position of 

shorelines, barrier islands, marshes, mangroves, and coastal forests, where they are considered to 

be an effective baseline dataset on which to measure subsequent change (e.g. Douglas and 

Crowell 2000; Moore 2000; Krauss et al. 2011; Raabe and Stumpf 2016). Delineation of the 

marsh-upland boundary on T-sheets is more uncertain than delineation of shorelines, as it 

depended on site accessibility and interpretations of individual surveyors (Shalowitz 1964; 

Moore 2000). Nevertheless, historical changes in the position of the marsh-upland boundary 

have been reconstructed on the basis of 19th century T-sheet maps, where previous work noted 

that maps were generally consistent with aerial imageries and soil samples (Collins and Sheikh 
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2005; Raabe and Stumpf 2016). The average RMSE of the 40 maps analyzed here (6-7 m) is 

similar to that reported in other T-sheet based studies of marsh extent (e.g. ~8 m (Wrayf et al 

1995), 6-20 m (Collins and Sheikh 2005) and 4.6 m (Raabe and Stumpf 2016)). The combined 

error in the x and y directions (7m x 7m = 4.9x10-5 km2) is several orders of magnitude less than 

observed changes in marsh area for an individual T-sheet (~1 km2) (Table 1), and changes in 

land type are generally parallel to shorelines or elevation contours, rather than the type of 

systematic offset that might be expected for a georeferencing error.  

 Several observations suggest 19th century T-Sheets are suitable for reconstructing 

historical marsh change, and the position of the marsh-upland boundary, in the Chesapeake 

region. Rates of erosion and marsh migration into uplands at Goodwin Island, VA (lower 

Chesapeake Bay) based on aerial photographs are similar to rates determined from T-sheets at 

the same location. Aerial photograph analysis indicates erosion and migration rates of 0.25 m yr-1 

and 0.5 m yr-1 from 1937 to 2011 (Kirwan et al. 2016b), and the T-sheet analysis indicates 

erosion and migration rates of 0.26 m yr-1 and 0.35 m yr-1 between 1853 and 2013 (this study). 

The slight difference in migration rate reflects increasing migration rates through time in 

response to accelerated sea level rise (Kirwan et al. 2016b).  The location of the forest-marsh 

boundary on T-sheets is also consistent with historical maps and sediment cores from a site in the 

upper Chesapeake Bay. Figure 6 shows the position of the historical forest-marsh boundary near 

Hell Hook marsh from multiple map sources, which is a site where forest retreat has been 

independently reconstructed through sediment coring (Hussein 2009). The resulting map shows 

the expected gradual inland migration of the marsh-forest boundary through time. The marsh-

forest boundary in the 1848 T-sheet is similar to an 1864 map, and slightly seaward of the 1898 

and 1905 maps. Dated sediment cores show the same gradual inland migration of the marsh-
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forest boundary (Hussein 2009). The sediment core with a dated 1848 forest-marsh transition is 

located approximately 58 m inland of the 1848 T-sheet boundary, but the two metrics are 

perhaps consistent given that sediment cores reflect the development of wetland soils that may 

occur under living trees, and therefore pre-date the retreat of mapped forests. In any case, 

migration rates over century timescales (1848-1905 to 2013) are similar whether derived from 

boundaries inferred from the 1848 sediment core (2.1 m yr-1), the 1848 T-sheet (2.4 m yr-1), or 

maps from 1864 (2.8 m yr-1), 1898 (2.8 m yr-1) or 1905 (2.1 m yr-1). Therefore, multiple lines of 

evidence in two disparate locations within the Chesapeake study region all suggest that T-sheets 

are reliable for mapping century-scale forest retreat.  

Finally, we note that inconsistent mapping of the marsh-upland boundary is not itself a 

critical issue for our goal of resolving total changes in marsh area across the entire Chesapeake 

region because errors in one direction on some maps would be balanced by errors in the other 

direction on other maps. A much more serious problem would be consistent, systematic error 

(i.e. the marsh-upland boundary consistently mapped too far inland or too far seaward) in every 

T-sheet. Our observation of no upland encroachment into marshes (Table 1) helps rule out 

systematic error associated with mapping the boundary too far inland, while our observation of 

gradual upland retreat through time (Fig. 6) helps rule out systematic error associated with 

mapping the boundary too far seaward. Though these observations suggest that historical T-

sheets are generally reliable, we caution that it may be difficult to distinguish between no net 

change and slight marsh expansion summed across the entire Chesapeake Bay. 
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Chesapeake Bay marsh erosion and migration 

Our finding that marshes have historically maintained or slightly increased their spatial extent in 

response to rapid sea level rise (Fig. 3) contrasts with previous work that identifies Chesapeake 

marshes as highly vulnerable to sea level rise. Expansive marshland along the Blackwater River, 

for example, is well recognized to be submerging and eroding (Stevenson et al. 1985; Kirwan 

and Guntenspergen 2012; Ganju et al. 2013; Schepers et al. 2017), with a total loss of about 20 

km2 since the 1930s within the Blackwater National Wildlife Refuge (Stevenson et al. 1985; 

Scott et al. 2009). Extensive marsh loss has also been reported along the Nanticoke River 

(Kearney et al. 1988). There are no T-sheets of suitable quality along the Blackwater River, 

which means our analysis likely underestimates historical marsh loss. However, 4 T-sheets 

located in similar areas on adjacent rivers, including the Nanticoke River, actually show net 

marsh expansion despite substantial erosion because upland drowning is rapid in this low relief 

region (Table 1; 17 km2 erosion; 23 km2 upland drowning; T00270, T00268-1, T00255, 

T00266). Aerial photograph analysis within the Blackwater National Wildlife Refuge indicates 

net marsh loss since 1938, but that marsh migration into drowned uplands (12 km2) compensated 

for more than half of the marsh area that was lost due to conversion to open water (20 km2) 

(Scott et al. 2009).  

Across the entire Chesapeake region, remote sensing suggests that approximately 70% of 

marshes are currently degraded (Kearney et al. 2002). Expert opinion assessments predict major 

loss of Chesapeake marshes even for slight increases in sea level rise rates (Reed et al. 2008), 

and SLAMM modeling predicts a 36% loss of marshes with a 0.69 m SLR by 2100 (Glick et al. 

2008). More generally, Chesapeake marshes are considered highly vulnerable to sea level rise 

because marshes in low tidal range estuaries have a narrow range of elevations that vegetation 
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can survive and low maximum rates of vertical accretion (Kirwan et al. 2010; D’Alpaos et al. 

2012; Balke et al. 2016).    

Important limitations of this study and previous studies likely explain why historical 

mapping reveals regional stability of Chesapeake marshes in a system well recognized to be 

vulnerable to sea level rise. Previous work along the Blackwater and Nanticoke rivers identifies 

rapid marsh loss that occurs primarily by the expansion of interior ponds (Stevenson et al. 1985; 

Kearney et al. 1998; Schepers et al. 2017). However, our T-sheet-based reconstructions measure 

the overall size of marshes between uplands and major water features such as a bay or channel, 

and cannot capture the loss of interior marshland due to ponding. Therefore, it is entirely 

possible that expanding marshes are simultaneously becoming more dissected with ponds and 

small tidal creeks, so that marsh size is not necessarily an indicator of vegetated area or marsh 

health. On the other hand, the large spatial domain of our study uniquely indicates that marsh 

loss in some parts of the Chesapeake region (e.g. Blackwater and Nanticoke rivers (Stevenson et 

al. 1985; Kearney et al. 1988; Beckett et al. 2016)) has been at least partially compensated by the 

creation of new marsh elsewhere (e.g. southwestern Bay) (Fig. 4). Site specific research focused 

on hotspots of marsh loss, and vulnerability assessments based on rates of vertical soil building, 

therefore underestimate the major contribution upland migration makes to marsh stability in the 

face of sea level rise.  

Our regional-scale estimates of Chesapeake Bay marsh erosion (0.53 m yr-1) and 

migration (0.49 m yr-1) rates are similar to reported rates. Reported rates of erosion from 

individual marshes typically vary from ~ 0.1 to > 3 m yr-1. At the regional scale, average 

shoreline erosion rates have been reported for the Virginia portion of the Chesapeake Bay (0.21 

m yr-1 (Byrne and Anderson 1978); 0.54 m yr-1 (Rosen 1980)), Albemarle-Pamlico Sounds (0.3 
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m yr-1 (Corbett et al. 2008), 0.91 m yr-1 (Soil Conservation Service 1975), 1 m yr-1 (Riggs, 

2001)), the Delaware Bay (3.21 m yr-1 (Phillips 1986)), and the Big Bend region of the Florida 

Gulf Coast (1.2 m yr-1 (Raabe and Stumpf 2016)). Although many differences between methods 

and study sites could be responsible for the disparity, our reported erosion rates are likely lower 

than the majority of previously estimated rates because we include many marshes adjacent to 

tidal channels with fetches that are too small to generate wave driven erosion, whereas most 

previous work focused on erosion along the estuary edge and major tributaries. Reported rates of 

marsh migration into uplands vary from about 0.5-6.8 m yr-1 (Hussein 2009; Smith 2013; Raabe 

and Stumpf 2016; Kirwan et al. 2016a). The highest rates (3.5-6.8 m yr-1 (Hussein 2009)) are 

calculated from individual transects in locations selected specifically to study rapid marsh 

migration, whereas our rates also include large parts of the landscape with no migration. At the 

regional scale, our reported migration rates are likely lower than those observed along the 

Florida Coast (2.3 m yr-1) because we measured the length of the marsh-upland boundary at the 

1:20,000 scale and therefore included crenulations, islands, and many other features that would 

have been excluded in a more generalized approach (Raabe and Stumpf 2016). Nevertheless, 

linear rates of marsh erosion and migration are highly sensitive to the complexity of the 

topography and the scale at which shoreline length is measured.  

 

Broader implications 

Marsh migration rates into adjacent uplands are widely considered to be proportional to 

topographic slope and the rate of sea level rise (Brinson et al. 1995; Hussein 2009; Doyle et al. 

2010; Raabe and Stumpf 2016; Kirwan et al. 2016b). We found that historical marsh migration 

rates were weakly correlated with slope, and were highly variable compared to the migration rate 
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that would be predicted on the basis of slope (m) and historical sea level rise rate (R) (i.e. 

migration = R / m) (Fig. 5a). Ecological lags and/or interactions with human development may 

explain the weak correlation. Adult trees are resilient to sea level impacts, so that retreat of 

coastal forests takes place only after punctuated disturbance events such as major hurricanes 

(Clark 1986; Williams et al. 1999; Kirwan et al. 2007; Poulter et al. 2008; Field et al. 2016). 

Even if marsh vegetation were colonizing under live trees, marsh migration could not be 

measured from aerial photographs until the death of canopy trees, which introduces a lag 

between sea level rise and observed marsh migration. Migration rates may also be weakly 

correlated with slope because anthropogenic barriers commonly prevent migration. Previous 

work focused on sections of the coast with very little urban and agricultural land (Hussein 2009; 

Smith 2013; Raabe and Stumpf 2016), whereas we mapped migration across the entire 

Chesapeake Bay region including areas that are highly urbanized. For example, the lowest marsh 

migration rates were observed for the Cape Charles map, where direct loss to coastal 

development negated any potential gains from migration. We found a weak relationship between 

migration rate and slope in uplands with minimal development (Fig. 5b). LiDAR-derived slope 

estimates may not be sufficiently accurate to identify correlations between slope and migration 

rate. In particular, our slope estimates are based on the slope of adjacent uplands, rather than the 

actual submerged upland over which the marshes have historically migrated. Nevertheless, 

regional-scale projections of marsh migration often rely on coarse elevation datasets, and the 

assumption that migration occurs as soon as topography is inundated (Feagin et al. 2010; Morris 

et al. 2012; Clough et al. 2016; Enwright et al. 2016; Kirwan et al. 2016b). Our findings 

therefore suggest that there are important limitations to simple topographic inundation models, 
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and that more process-based studies are needed to discern the role of coastal development and 

ecological lags in marsh migration. 

 Observations of historical marsh stability in the Chesapeake region contribute to the 

growing body of evidence that migration into uplands is a primary component of marsh response 

to sea level rise at regional scales. Previous studies, for example, found that historical migration 

into uplands exceeded edge erosion for a section of the Florida Gulf coast (Raabe and Stumpf 

2016). The area of land that could be inundated by 1 m of sea level rise is similar to the existing 

area of coastal wetlands in the coterminous U.S. (Morris et al. 2012), and modeling studies 

suggest that in the absence of anthropogenic barriers to migration, a moderate acceleration in sea 

level rise could actually lead to overall marsh expansion (Feagin et al. 2010; Cadol et al. 2016; 

Clough et al. 2016; Kirwan et al. 2016a). Our work is consistent with these studies, but uniquely 

suggests that when integrated over a region with both anthropogenic and topographic barriers, 

migration has allowed marshes to survive but not expand substantially.  

Simple extrapolation of our results from the study area to the entire Chesapeake region 

suggests that sea level rise has led to massive and widespread drowning of uplands, which has 

created more than 100,000 acres (400 km2) of new marsh over the last century. Marsh migration 

into these drowned uplands has created about one third of all the marsh in the mapped region 

(marsh migration = 101 km2; total 2013 marsh area = 318 km2). Moreover, about one third of all 

marshes mapped in the late 19th century (311 km2) were lost by 2013, presumably due to edge 

erosion (94 km2). These observations of rapid marsh change emphasize the disparity between 

marsh instability in the lateral dimension, and marsh stability in the vertical dimension where 

marshes have survived low rates of sea level rise for thousands of years (Fagherazzi et al. 2013; 

Kirwan and Megonigal 2013). Traditional approaches to predicting and mitigating marsh 
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vulnerability to sea level rise focus on the survival of existing marsh. However, our results 

indicate that sea level rise itself creates new marsh through upland drowning, and that marsh size 

can be maintained despite substantial loss of existing marsh. Averaged across the Chesapeake 

Bay region, widespread upland drowning has historically compensated for marsh edge erosion, 

and allowed Chesapeake Bay marshes to maintain their spatial extent despite relative sea level 

rise rates that are among the fastest in the world. There are real concerns over the ability of 

marshes to survive sea level rise in the Chesapeake and beyond (Kearney et al. 2002; Beckett et 

al. 2016; Crosby et al. 2016; Schepers et al. 2017; Watson et al. 2017), and our study focuses 

simply on the broad spatial extent of marshes rather than any indicator of their health. 

Nevertheless, our results emphasize that the location of coastal ecosystems changes rapidly on 

century timescales, and that sea level rise does not necessarily lead to overall habitat loss.  
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FIGURES 

 

Fig. 1 Study area map of the Chesapeake Bay region showing the major rivers, the extent of individual T-Sheets used in the 

analysis (grey rectangles), and area displayed in figure 2 (dashed rectangle) 
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Fig. 2 Example of land type delineation and change analysis. (A) T-sheet from the mouth of the York River from 1853 (T00496) 

showing water, marsh, forest, agriculture and developed upland land types. (B) Aerial photograph from 2013 was compared to 

historical maps to determine the amount of marsh area lost due to edge erosion and gained due to upland retreat. (C) Simplified 

map representing the historical change in marsh area 

 

 



34 

 

 

Fig. 3 Changes in marsh area resulting from marsh migration into drowned uplands (stripes), edge erosion (dots) and net 

change (migration minus erosion) (solid fill) summarized by watershed 
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Fig. 4 Marsh migration rates (m yr-1), erosion rates (m yr-1) and net change in area (%) along the Chesapeake Bay. Each circle 

represents an individual T-sheet, where reported values represent the change averaged over the entire T-sheet extent. Green 

colors denote rapid change and red colors denote slow change, except for in the “Net Change” panel where green indicates net 

marsh expansion (migration > erosion) and red indicates net marsh loss (erosion > loss). The gray dot represents Sharps Island, 

and does not have a migration or erosion rate because complete land loss occurred prior to 2013.  
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Fig. 5 Historical marsh migration rate versus characteristics of adjacent uplands, where each marker represents the average 

migration rate and topographic slope across an individual T-sheet extent. Characterization of adjacent uplands is restricted to a 

100 m buffer around the modern marsh-upland boundary. (A) Observed migration rates (blue markers) compared to expected 

migration rates for historical relative sea level rise rates of 3, 4, and 5 mm yr-1 (gray envelope). Observed migration rates are 

less than the expected migration rate, which is defined as the sea level rise rate divided by slope (i.e. y = R/m). Observed 

migration rates are weakly correlated with topographic slope (y = -6.0034x + 0.6673, r2 = 0.16, p<0.05) and are not 

significantly correlated with expected migration rates (y =0.2206x + 0.4195, r2 = 0.04, p>0.1). (B) Observed migration rates as 

a function of topographic slope and intensity of coastal development in adjacent uplands. Coastal development includes 

agricultural and urban land uses, and colors reflect a gradient in development from low (red) to high (green). There is a weak 

correlation between slope and migration rate in uplands with lowest development (< 10%) (y = -10.233x + 0.8828, p=0.07, r2 = 

0.19) 
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Fig. 6 Movement of the marsh forest boundary derived from historical maps and sediment cores (lines = maps, dots = sediment cores). 

The 1848 line represents the T-sheet boundary [T00255] used in the analysis. The 1898 and 1905 lines are from USGS topographic 

maps, and the 1864 line is from the US Coast Survey, Coast Chart Number 33. The dots represent the location of the marsh-forest 

boundary inferred from dated sediment cores (Hussein, 2009), and the white line indicates a transect over which forest retreat rates 

were measured 
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Table 1| Summary of changes in marsh area between historical maps and modern aerial imagery. Results are summarized by individual T-sheet and ordered numerically starting with T-sheets along 

the western shore of the Chesapeake Bay. Characteristics of uplands (e.g. slope and land use) are calculated for the area within 100 m of the modern marsh. “Simple average” refers to the arithmetic 

mean of each column, whereas “total” refers to the sum of each column after redundant portions of overlapping maps were eliminated. Geospatial data will be archived with Dr. Matthew Kirwan, 

and eventually archived with the VIMS Shoreline Studies Program. 

T-sheet 

# 

T-sheet Name 

and Year 

Marsh 

Area 

in T-

sheet 

(km2)  

Marsh 

Area in 

Modern 

(km2) 

Migration 

(km2)  

Migration 

(%) 

Erosion 

(km2)  

Erosion 

(%)  

Net 

Change 

(km2) 

Net 

Change 

(%)  

Slope Urban 

Area 

(%) 

Agriculture 

Area (%) 

Forested 

Area 

(%) 

Shoreline 

length 

(marsh-

water) 

(km) 

Shoreline 

length 

(marsh-

forest) 

(km) 

T00458-

2 

Mouth of the 

Potomac River 

(1849-1850) 

1.08 1.20 0.87 81.03 0.75 69.27 0.13 11.76 0.02 35.75 22.74 33.51 16.67 

 

12.87 

T00496 Mouth of the 

York River 

(1853-1854) 

8.00 9.02 4.64 58.02 3.63 45.35 1.01 12.67 0.01 58.99 10.50 18.42 73.56 45.53 

T00499 Black & 

Pocosin Rivers 

(1853-1854) 

20.17 21.58 6.11 30.30 4.70 23.32 1.41 6.98 0.01 75.32 2.36 15.26 97.84 48.48 

T00500 Little & Great 

Wicomico 

Rivers  
(1850-1856) 

1.79 0.29 0.22 12.13 1.71 95.75 -1.49 -83.62 0.02 19.69 25.64 42.68 6.6 8.77 

T00504 New Point 

Comfort to 

Wolf Trap 

(1853) 

8.78 10.31 5.36 61.01 3.82 43.52 1.54 17.49 0.01 24.72 18.33 23.11 92.96 44.76 

T00521 Mouth of the 

Rappahannock 

River  
(1851-1856) 

0.78 0.53 0.30 38.40 0.56 71.39 -0.26 -32.99 0.01 43.42 1.54 43.14 11.11 6.15 

T00661 Corrotoman 

River (1857) 

0.28 0.07 0.04 15.44 0.25 90.14 -0.21 -74.70 0.02 3.33 63.33 28.89 0.96 1.18 

T00686 York River 

from Clay 

Bank to Mount 

Folly (1857-

1858) 

9.03 8.24 2.09 23.18 2.88 31.94 -0.79 -8.77 0.04 15.36 6.79 69.72 40.16 51.18 

T00722 York River 

from Mount 

12.27 11.90 2.42 19.77 2.79 22.75 -0.37 -2.99 0.04 28.27 12.63 53.56 52.71 73.7 
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T-sheet 

# 

T-sheet Name 

and Year 

Marsh 

Area 

in T-

sheet 

(km2)  

Marsh 

Area in 

Modern 

(km2) 

Migration 

(km2)  

Migration 

(%) 

Erosion 

(km2)  

Erosion 

(%)  

Net 

Change 

(km2) 

Net 

Change 

(%)  

Slope Urban 

Area 

(%) 

Agriculture 

Area (%) 

Forested 

Area 

(%) 

Shoreline 

length 

(marsh-

water) 

(km) 

Shoreline 

length 

(marsh-

forest) 

(km) 

Folly to West 

Point (1858) 

T01100 Piankatank 

River (1869) 

0.46 0.40 0.30 66.03 0.36 78.57 -0.06 -12.54 0.04 9.55 11.61 68.91 6.27 9.35 

T01289 James River 

VA - Burwell's 

Bay to College 

Creek  
(1873) 

14.99 13.93 5.30 35.37 6.37 42.47 -1.06 -7.10 0.05 19.19 4.79 68.89 85.82 153.49 

T01337a Chickahominy 

River VA  
(1873-1874) 

24.81 22.07 4.22 17.01 6.97 28.09 -2.75 -11.08 0.06 4.68 6.83 81.30 100.14 136.49 

T01337b Chickahominy 

River VA  
(1874-1875) 

8.63 11.40 4.44 51.48 1.68 19.45 2.77 32.03 0.03 18.58 28.52 42.88 55.18 50.16 

T02693 Jamestown 

Island  

(1905) 

4.07 4.51 1.22 29.84 0.78 19.26 0.43 10.58 0.02 31.23 8.57 57.99 17.92 44.7 

T02715 Mobjack Bay 

to Milford 

Haven (1905-

1906) 

10.32 10.41 5.30 51.37 5.21 50.51 0.09 0.86 0.01 15.60 20.75 37.50 81.29 70.73 

T02716 Mobjack Bay 

(1905-1906)   

11.56 16.15 9.10 78.75 4.50 38.97 4.60 39.79 0.01 38.75 24.22 21.36 138.53 104.57 

T02747 Potomac River 

- Point lookout 

to Piney Point 

(1905) 

0.32 1.66 1.50 464.01 0.16 50.17 1.34 413.84 0.04 36.25 41.01 17.44 20.95 17.07 

T02749 Back River to 

Yorktown 

(1906) 

17.40 20.26 6.88 39.55 4.14 23.81 2.86 16.45 0.01 69.20 2.61 19.69 104.93 54.55 
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T-sheet 

# 

T-sheet Name 

and Year 

Marsh 

Area 

in T-

sheet 

(km2)  

Marsh 

Area in 

Modern 

(km2) 

Migration 

(km2)  

Migration 

(%) 

Erosion 

(km2)  

Erosion 

(%)  

Net 

Change 

(km2) 

Net 

Change 

(%)  

Slope Urban 

Area 

(%) 

Agriculture 

Area (%) 

Forested 

Area 

(%) 

Shoreline 

length 

(marsh-

water) 

(km) 

Shoreline 

length 

(marsh-

forest) 

(km) 

T02801 Hampton to 

Back River 

(1906-1907) 

8.43 10.26 5.24 62.23 3.41 40.45 1.84 21.78 0.01 76.73 2.85 11.40 62.47 58.34 

T02869 Whites Creek 

to Windmill 

Point  
(1907-1908) 

1.13 1.10 0.94 82.70 0.97 85.69 -0.03 -2.99 0.02 28.66 5.09 47.42 19.06 15.03 

T02957 Ingrams Bay to 

Little Bay 

(1908-1909) 

2.87 1.95 1.01 34.97 1.93 67.12 -0.92 -32.15 0.03 20.38 11.77 58.46 21.34 15.87 

T03243 York River 

(1911)  

10.92 10.48 2.23 20.45 2.67 24.47 -0.44 -4.03 0.04 31.91 11.32 51.20 48.85 54.15 

T03254 Mattaponi 

River - West 

Point to 

Scotland 

Landing 

(1912) 

18.01 17.18 1.70 9.43 2.52 14.00 -0.82 -4.57 0.04 7.04 18.04 62.45 61.36 80.15 

T03256 Mattaponi 

River - 

Scotland 

Landing to 

Dunkirk 

(1912) 

4.81 4.08 1.11 23.14 1.84 38.28 -0.73 -15.14 0.05 11.17 17.43 60.17 34.67 21.5 

T00199 Swan Creek to 

Eastern Neck 

Inlet (1854) 

1.85 1.42 0.67 36.48 1.10 59.60 -0.43 -23.12 0.06 24.10 68.10 247.10 17.5 22.52 

T00215 Wades Point to 

Lows Point 

(1846-1847) 

2.87 3.60 2.96 102.88 2.23 77.62 0.73 25.25 0.04 20.11 56.58 11.92 37.92 45.51 

T00225 Choptank 

River (1850) 

2.20 1.71 1.22 55.41 1.71 77.59 -0.49 -22.18 0.04 21.32 63.19 7.55 22.12 38.94 
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T-sheet 

# 

T-sheet Name 

and Year 

Marsh 

Area 

in T-

sheet 

(km2)  

Marsh 

Area in 

Modern 

(km2) 

Migration 

(km2)  

Migration 

(%) 

Erosion 

(km2)  

Erosion 

(%)  

Net 

Change 

(km2) 

Net 

Change 

(%)  

Slope Urban 

Area 

(%) 

Agriculture 

Area (%) 

Forested 

Area 

(%) 

Shoreline 

length 

(marsh-

water) 

(km) 

Shoreline 

length 

(marsh-

forest) 

(km) 

T00251 Sharps Island 

(1848) 

0.30 0.00 0.00 0.00 0.30 100.00 -0.30 -100.00 
    

0 0 

T00253 Choptank 

River (1848) 

4.37 3.32 1.47 33.68 2.52 57.77 -1.05 -24.10 0.09 15.58 63.66 15.88 28.69 58.25 

T00254 Choptank 

River (1848-

1849) 

15.71 12.41 1.67 10.66 4.97 31.64 -3.30 -20.98 0.10 8.15 64.01 26.75 68.93 75.15 

T00255 Tar Bay and 

Upper Part of 

Honga River 

(1848) 

23.17 31.15 13.14 56.70 5.17 22.30 7.97 34.40 0.01 65.53 16.11 5.79 98.28 146.15 

T00266 Nanticoke 

River (1849) 

25.46 25.25 4.24 16.64 4.45 17.47 -0.21 -0.83 0.01 3.19 45.34 46.46 126.39 64.04 

T00268-

1 

Head of 

Tangier Sound 

including the 

Wicomico 

River (1854) 

29.24 29.18 4.21 14.40 4.27 14.59 -0.06 -0.19 0.03 34.77 16.76 30.25 67.98 34.18 

T00270 Deils Island 

and Manokin 

River (1849) 

14.76 13.40 1.61 10.93 2.98 20.18 -1.36 -9.24 0.02 51.43 32.03 10.27 64.08 13.76 

T00307 Nandua Creek 

(1853)  

7.02 8.08 3.44 48.96 2.37 33.81 1.06 15.15 0.00 10.12 41.59 13.91 48.85 30.4 

T00308 Chesconessex 

and Onancock 

Creeks (1850) 

16.09 14.38 3.93 24.45 5.64 35.07 -1.71 -10.62 0.00 26.78 38.93 12.56 115.74 43.31 

T00451 Meekins Neck 

(1854) 

0.62 0.17 0.07 11.01 0.52 83.27 -0.45 -72.26 0.01 31.46 64.04 0.00 1.66 3.2 

T01203 E.Shore of 

Virginia  
(1869-1870) 

6.15 7.97 4.36 71.01 2.54 41.34 1.82 29.67 0.00 16.81 1.61 27.54 34.14 153.44 



42 

 

T-sheet 

# 

T-sheet Name 

and Year 

Marsh 

Area 

in T-

sheet 

(km2)  

Marsh 

Area in 

Modern 

(km2) 

Migration 

(km2)  

Migration 

(%) 

Erosion 

(km2)  

Erosion 

(%)  

Net 

Change 

(km2) 

Net 

Change 

(%)  

Slope Urban 

Area 

(%) 

Agriculture 

Area (%) 

Forested 

Area 

(%) 

Shoreline 

length 

(marsh-

water) 

(km) 

Shoreline 

length 

(marsh-

forest) 

(km) 

T01534i Terminus of 

the N.-Y.P. & 

N.R.R. (1886) 

0.21 0.05 0.04 17.25 0.19 94.32 -0.16 -77.08 0.01 31.17 43.51 0.00 1.19 1.13 

T02675 Cape Charles 

and Vicinity 

(1905) 

3.21 8.99 6.55 204.12 0.77 23.95 5.78 180.17 0.01 14.34 0.09 20.54 37.09 29.95 

T02695 Tangier and 

Watts Islands 

(1905) 

6.45 2.71 0.26 4.03 4.00 62.00 -3.74 -57.97 0.00 50.89 3.29 1.41 33.22 9.02 

Simple 

average  

 
8.79 9.09 2.99 51.81 2.69 47.98 0.30 3.84 0.03 28.74 24.95 37.83 48.93 

 

46.4 

 

std dev 

Total 

 
8.02 

311.95 

8.47 

318.63 

2.81 

100.9 

75.10 

32.34 

1.86 

94.39 

25.95 

30.25 

2.19 

6.84 

79.42 

2.19 

0.02 

0.023 

19.65 

25.90 

21.79 

22.17 

40.51 

40.74 

37.68 

2055.12 

41.24 

1948.72 
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Accelerating rates of forest retreat and marsh migration 
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ABSTRACT  

 
      

Accelerated sea level rise is leading to rapid coastal transgression, where coastal treelines are 

retreating and forests are being replaced by encroaching salt marshes. In coastal forests, frequent 

flooding and salt stress lead to seedling mortality and allow new marshland to form along gently 

sloped, undeveloped landscapes. We reconstructed the position of the marsh-forest boundary 

through time at 5 study sites along the U.S. mid-Atlantic coast to identify long- and short- term 

drivers of coastal forest retreat, and how they vary with topographic slope and the rate of relative 

sea level rise. Historical maps and aerial photographs were used to quantify rates of forest retreat 

on decadal timescales over the last century, and compared to stratigraphy based estimates of 

forest retreat over century to millennial timescales. 20th century migration rates are 2-14 times 

faster than pre-industrial rates (< 1875 CE), and have generally accelerated throughout the last 

century. Together, these observations suggest that marshes migrate into terrestrial forests as a 

response to sea level rise on broad spatial and temporal scales, and that the onset of recent 

accelerations in forest retreat rates (1695 – 1915 CE) is closely tied to the onset of rapid 

increases in relative sea level rise. 
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INTRODUCTION 

Global climate change assessments predict rates of relative sea level rise to increase, leading to 

enhanced inundation of low-lying coastal regions and a 20 – 50 % decline in salt marsh area by 

2100 (Craft et al. 2009; Barbier et al. 2011). Tidal salt marshes provide important ecosystem 

services with an estimated value of approximately 10,000 US$ per hectare (Barbier et al. 2011). 

As sea level continues to rise, these critical benefits are increasingly threatened (Torio and 

Chmura 2013). Sea level began accelerating in the late 19th to early 20th century due to enhanced 

thermal expansion and ice melting (Church and White 2011). Local changes in relative sea level 

rise are considerably higher than global estimates, where current relative sea level rise rates 

along the U.S. mid-Atlantic coast in particular are three to four times faster than the global 

average due to changes in ocean circulation and regional subsidence (Kemp et al. 2009; Ezer and 

Corlett 2012; Sallenger et al. 2012; Church et al. 2013; Kemp et al. 2013). Sea level will 

continue to rise even if greenhouse gas emissions are reduced or halted (Church and White 

2011). Previous work has mainly evaluated marsh resilience to relative sea level rise through 

rates of vertical accretion rather than changes in their lateral boundaries (Stevenson et al. 1986; 

Brinson et al 1995; Kirwan et al 2010; Kirwan et al. 2016a). The survival of coastal ecosystems 

however largely depends on their ability to migrate landward, allowing marshes to offset 

potential losses due to erosion at the seaward edge (Kirwan et al. 2016b).  

The morphology of tidal salt marshes is largely controlled by feedbacks between 

sediment supply, vegetative growth and relative sea level in order to reach a dynamic 

equilibrium (Reed 1995; Friedrichs and Perry 2001; Cahoon et al. 2006; Kirwan et al. 2010 

Kirwan and Megonigal 2013). Coastal marshes are predicted to drown under conditions of rapid 

sea level rise unless sufficient sediment supply and biological alterations of physical 

environments allow marshes to maintain equilibrium in the vertical dimension (Kirwan et al. 
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2010). Inadequate sediment supply leads to wetland deterioration, as salt marshes are particularly 

vulnerable to erosion processes, depending on the strength of wave power, marsh elevation 

relative to water elevation, and the presence of wave-mitigating vegetation (Fagherazzi et al. 

2013). Marsh-edge erosion is a primary driver of marsh loss, and typically ranges from ~0.1 to > 

3 m yr-1 (Day et al. 1998; Schwimmer 2001; Marani et al. 2011; Fagherazzi et al. 2013).   

Marsh migration is more sensitive to increases in relative sea level than marsh erosion, so 

that increasing rates of RSLR may ultimately lead to marsh expansion in low-lying coastal 

regions (Kirwan et al. 2016a). Histosols form along flat, low-energy shorelines as low-lying 

terrestrial soils become permanently inundated (Friedrichs and Perry 2001; Hussein 2009). 

Frequent flooding and salt stress lead to the failure of tree regeneration, and are often 

accompanied by mortality of mature trees that requires punctuated disturbance events (Clark 

1986; Williams et al. 1999; Kirwan et al. 2007). Subsequent marsh encroachment into terrestrial 

forests along gently sloped uplands leads to the migration of coastal forests to higher elevations, 

and is indicated by the creation of ghost forests and the remains of dead trees (Kirwan et al. 

2007). Forest retreat has been observed along many undeveloped coastal margins along the U.S. 

Atlantic coast (Clark 1986; Williams et al. 1999; Raabe and Stumpf 2016; Kirwan et al. 2016b), 

and is considered an important factor in evaluating the resilience of coastal and estuarine 

ecosystems to sea level rise. Previous work suggests that the location of coastal ecosystems 

changes rapidly on century timescales (Raabe and Stumpf 2016; Schieder et al. 2018), and that 

rates of marsh migration into retreating forests may increase with increasing rates of relative sea 

level rise (Kirwan et al. 2016a). Here, we test the hypothesis that marshes migrate rapidly into 

terrestrial forests in parallel with faster sea level rise rates on century timescales, and that 
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ecological interactions may not allow shifts in coastal vegetation on annual to decadal timescales 

until major events occur.   

METHODS 

This work focuses on long- and short- term drivers of forest retreat relative to late-Holocene sea 

level rise. We reconstructed the historical marsh-forest boundary through time at five study sites 

along the U.S. mid-Atlantic coast to identify stratigraphic and modern patterns of marsh 

migration into terrestrial uplands. We developed a time series of forest retreat at all sites with 

different slopes and rates of relative sea level rise (Fig. 1). We reconstructed forest retreat over 

the last 150 years from historical maps and aerial photographs. Millennial time-scale retreat has 

already been reconstructed for four sites (Young 1995; Hussein 2009), and we reconstructed 

forest movement from sediment cores at one site (Goodwin Island).  

  

Remote sensing 

To determine how forest retreat rates responded to increasing rates of relative sea level 

rise during the last 150 years, we located the position of the marsh-forest boundary on recent 

aerial photographs and historical maps at each study site. We established a geodatabase of 

approximately ten maps or images per study site from the years 1849 to 2014 to identify the 

spatial distribution of tidal salt marshes and coastal forests within each time step. Historical maps 

included 1:20,000 scale NOS topographic sheets (T-sheets), 1:80,000 scale coast charts from the 

Office of Coast Survey’s Historical Map and Chart Collection, and 1:24,000 to 1:125,000 scale 

USGS topographic maps (Table 1). USGS topographic maps were available as GeoPDF layers, 

and were converted to GeoTIFF, using the Geospatial Data Abstraction Library (GDAL) 

(www.gdal.org). We compared the aerial extent of marshland that was previously occupied by 



48 

 

terrestrial forest from 19th century maps to modern aerial photographs (U.S. Geological Survey 

Digital Orthophoto Quadrangles (DOQ), National Aerial Photography Program (NAPP), 

National Agriculture Imagery Program (NAIP), High Resolution Orthoimagery, Aerial Photo 

Single Frames, and 2013 ESRI World Imagery. 4-band NAIP images were viewed as false color 

infrared (CIR) images for simplified analyses of the marsh-forest boundary. On CIR films, dense 

forested areas appear red, whereas sparse vegetation and wetlands are shown as blue or gray, and 

dark gray or black areas, respectively (U.S. Geological Survey 2001; Walker et al. 2005). We 

georeferenced each map and aerial photograph to the 2013 ESRI World Imagery in ArcGIS by 

aligning at least five control points (e.g. road intersections) in all sets of images and visually 

fitting with 1st or 2nd order polynomials. The root mean square error (RMSE) of aerial 

photographs averaged 3 – 4 m and the RMSE of historical maps was 6 – 7 m, and is similar to 

previous mapping approaches (~4.6 m (Raabe and Stumpf 2016), 6 – 7 m (Schieder et al. 2018)).  

To determine the elevation and distance from the modern marsh-forest boundary and 

rates of forest retreat on annual to decadal timescales, we manually located the transition point 

from terrestrial forest to salt marsh in each map or photograph along a transect established by 

Hussein (2009) at the Hell Hook and Cedar Creek, MD sites, a transect established by Young 

(1995) at the Cedar Island and Long Shoal River, NC sites, and a transect at Goodwin Island, VA 

at a scale of 1:1,000. We defined the elevation of the buried marsh-forest boundary for each 

image source by extrapolating the underlying topography of nearby core locations. RTK-GPS 

generally measures surface elevation in NAVD 88, and we were careful to convert coastal 

elevations from different frameworks to a common vertical datum by subtracting a correction 

factor from the source datum (https://vdatum.noaa.gov/vdatumweb/). Simple comparisons of 

core- and aerial imagery-based measurements of elevation and distance from the modern marsh-
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forest boundary suggest that both approaches show similar changes in the coastal treeline, and 

are indeed comparable in order to reconstruct forest retreat through time (Fig. 2, Fig. 3). 

Actual measurements of the vertical position of the marsh-forest boundary by Young 

(1995) exceed modern estimates by more than 1 meter, and are higher than reported elevation 

estimates within the same region (Poulter 2005; Kemp et al. 2009). We therefore adjusted 

stratigraphic elevation measurements by Young (1995) to fit the vertical position of the modern 

marsh-forest boundary by subtracting a consistent elevation difference (1.3 m) between the 

oldest aerial photograph/map (1872 CE) and the most recent core (1805 ± 70 CE) at Cedar Island 

and Long Shoal River. There may be many reasons responsible for potential errors with this 

procedure, but our corrections are likely sensitive to the alignment of elevations derived from 

aerial photos and core data. We were uncertain about the exact transect locations chosen by 

Young (1995), and therefore assumed that the T-sheet boundary corresponded to a sediment core 

with a similar 14C age in an attempt to align modern and historic changes. However, we were 

unable to detect reported Mid-Wisconsin peat layers (10,000 – 20,000 years old) underlying the 

modern marsh peat, and we were also unable to find a similar peat thickness at the 1872 T-sheet 

boundary (52 cm) compared to the 1805 core (23 cm) (Young 1995). Reported non-calibrated 

14C dates involve further issues because the actual age of the marsh-forest boundary at the 

selected core location may potentially be much older or younger than the T-sheet boundary. 

Nevertheless, we merely used stratigraphic elevations by Young (1995) to identify the timing of 

acceleration at Cedar Island and Long Shoal River, which was independent of the correction 

factor.  

Linear forest retreat rates were derived by dividing the length of the movement by the 

differences between the year 2013 and the year of the image source. To determine additional, 
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spatially averaged rates of forest retreat, we digitized the areal extent of tidal marshes between 

the upland and seaward boundary. Depending on the resolution of the aerial photograph, we 

delineated the modern marshes at a scale of 1:1,000 to 1:2,500. We summarized changes in 

forest retreat area between two consecutive time periods by calculating non-overlapping sections 

of marsh area along the upland edge. Linear rates of retreat refer to the change in retreat area 

divided by the number of years between the two time intervals and the length of the marsh-forest 

boundary. The length of the marsh-forest boundary is directly calculated from the most recent 

marsh polygon between two time steps. We then compared both approaches of modern retreat 

rates derived from aerial photographs (i.e. along a single transect and spatially averaged) with 

stratigraphic retreat rates based on sediment coring and radiometric dating.  

 

Field work 

To determine the slope of the underlying topography, and to reconstruct retreat rates on 

centennial timescales, we collected sediment cores along a transect at Goodwin Island, VA 

(Appendix Fig. 1; Appendix Fig. 2). Sediment cores at our Cedar Creek and Hell Hook, MD 

study sites have already been collected by Hussein (2009), and cores at Cedar Island and Long 

Shoal River, NC were obtained by Young (1995). We collected a total of 20 cores (Appendix 

Fig. 3 – 17) with a distance of approximately 20 m between each core location along a northeast-

directed transect at Goodwin Island. The transect starts close to the modern marsh-forest 

boundary, and proceeds into marsh that increases in age. We collected cores using a 1-meter 

Russian peat corer with a 5 cm diameter half cylinder core chamber to reconstruct the buried 

marsh-forest boundary. Each core reached the base of the peat and penetrated at least 10 cm into 

terrestrial soil. We then segmented each core into 5 cm increments, except close to the visually 
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determined historic marsh-forest boundary, which we divided into 2 cm portions in the field and 

stored in Ziploc bags. The visual interpretation of the marsh-forest boundary was based on 

changes in color, density, and amount of organic material, where marsh soil was characterized by 

a dark brown, soft, and organic-rich layer, and terrestrial soil was defined as a gray, dense, and 

mineral-rich layer. We collected four additional cores (i.e. G4, G17, G13, and G20 with 

increasing distance from the modern marsh-forest boundary) to prepare for radiometric dating, 

using a large-diameter push corer, and packed them in PVC pipes with plastic wrap. We brought 

all cores to the lab for further analyses. Latitude, longitude and elevation of the modern marsh-

forest boundary, and each core location were recorded using a Topcon Hiper V RTK-GPS with a 

vertical and horizontal error of 4 cm (Appendix Table 1). 

 

Lab work 

We analyzed each core for bulk density and percent organic matter to determine the depth of the 

marsh-forest boundary. We dried each increment in a drying oven and then weighed them to 

measure bulk density. Bulk density was obtained, using the following equation 

 

𝐵𝑢𝑙𝑘 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑤𝑑

1

2
(𝑑2−𝑑1)∗ 𝜋∗𝑟2

  ,  

 

where wd is the dry weight (g), d1 is the upper depth of each increment (cm), d2 is the 

lower depth of each increment (cm), and r is the radius of the Russian peat corer (cm). To 

prepare the cores for loss on ignition (LOI), we ground every increment with a mortar and pestle 

and coffee grinder, combusted the homogenized soil samples for 8 hours in a muffle furnace at 

550°C, and weighed the ashed sediment. We then used measurements of percent organic matter 
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and bulk density to determine the depth of the marsh-forest boundary within each core, where we 

classified layers with percent organic matter > 10 % and bulk density < 0.5 g cm-3 as marsh soil. 

For each core location, we compared the established peat thickness and RTK-GPS elevation 

measurements to the distance from the modern marsh-forest boundary to create a vertical profile 

of the antecedent topography, and used linear regression to calculate an average buried slope.  

We used cores taken with a large diameter push corer to calculate marsh vertical 

accretion rates and the timing of upland to wetland conversion. During this process, we divided 

the core into 1 cm increments up to 20 cm, and into 2 cm from 20 cm to the bottom of the core 

(~50 cm). The individual samples were then weighed, dried and weighed again to determine 

percent water content and bulk density. We followed the same procedure that was used to 

analyze the Russian peat cores, grinding the samples and combusting them to obtain percent 

organic matter. We then filled petri dishes with homogenized samples, and sealed them with tape 

and paraffin wax. After thirty days, we used a Canberra gamma counter to obtain unsupported 

210Pb activity and 137Cs concentrations of twenty increments per core. We were careful to 

measure concentrations for seventeen increments that were evenly distributed within the marsh 

peat and three additional increments that covered top, middle and bottom sections of the 

terrestrial layers within each core. We then read off net peak area and associated count error 

percent for gamma photopeaks of 210Pb and 137Cs at 46.5 keV and 661 keV, respectively, gamma 

photopeaks of 214Pb and 214Bi to determine background activities, and corrected for attenuation in 

210Pb and affiliated isotopes.  

210Pb is a product of the uranium decay series, where 266Ra decays to 222Rn within Earth’s 

crust and a portion of 222Rn decays to 210Pb from atmospheric fallout (half-life = 22.3 years) 

(Donnelly and Bertness 2001; Allison et al. 2005). We derived excess 210Pb activity by 
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subtracting the background value (i.e. the in situ product of the continuous decay of parent 

nuclides (Clark 1986; Allison et al. 2005)) from the total 210Pb activity, which decreases 

exponentially with depth during the decay process (Donnelly and Bertness 2001; Allison et al. 

2005; Hussein 2009). We derived accretion rates by multiplying the slope of the excess 210Pb 

activity and core depth with the 210Pb radioactive decay constant, assuming constant 

accumulation through time (0.03114 yr-1) (Donnelly and Bertness 2001; Hussein 2009), and age 

of the buried marsh-forest boundary by multiplying accretion rates with the previously 

determined peat thickness.  

We compared accretion rates and age of the marsh-forest boundary derived from 210Pb 

activity with results from the 137Cs dating method. Nuclear weapon testing started in ~1954 and 

created a peak fallout deposition of 137Cs on Earth’s surface in 1963 (half-life = 30 years) 

(Pennington et al. 1976; Allison et al. 2005). We plotted 137Cs activity against depth, and 

determined onset and maximum 137Cs concentrations in each core. We used these markers to 

calculate sediment accretion rates by dividing the depth of the peak by the differences of the 

years 2017 to 1954 and 2017 to 1963, respectively. Accretion rates based on 210Pb were similar 

to rates derived from 137Cs peak analyses, and generally increased with increasing distance from 

the marsh-forest boundary (Table 2). 210Pb vertical accretion rates and the depth of the marsh-

forest boundary were used to determine the year of marsh to forest transition (Appendix Fig. 18 

– 21). We then related the age of the marsh-forest boundary to the lateral distance between 

individual cores to calculate forest retreat rates, which were highly variable along the transect.  
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RESULTS AND DISCUSSION 

Elevation of coastal treelines 

The elevation of coastal treelines based on core and imagery analyses gradually increased 

through time at all sites until ~1875 CE, and increased at more rapid rates afterwards (Fig. 4). 

Our findings suggest that coastal forests occupied elevations of about -2.3 m below modern 

mean sea level more than 2,000 years ago, whereas coastal trees now occupy elevations of 

approximately 0.6 m above mean sea level. Here, coastal treelines in the studied portions of the 

U.S. mid-Atlantic coast were generally higher than the vertical position of relative sea level at 

elevations that were approximately 0.3 m above the historic position of relative sea level. Field 

observations in North Carolina salt marshes suggest that relative sea level rose from -2.58 m to   

-0.01 m during the same time period (Kemp et al. 2011).  

Breakpoint analyses of coastal elevations along individual transects suggest that the onset 

of recent accelerations in forest retreat rates is closely tied to the onset of rapid increases in 

relative sea level rise. We defined the breakpoint for each site as the point at which the second 

derivative was at its maximum (i.e. the change in elevation change rate). Breakpoints were 1695 

CE (Long Shoal River), 1808 CE (Hell Hook), 1825 CE (Cedar Island), 1906 CE (Cedar Creek), 

and 1916 CE (Goodwin Island) (Table 3), and corresponded well to the timing of acceleration 

reported for sea level rise, both globally and along the U.S. mid-Atlantic coast. Abrupt changes 

in rates of relative sea level rise were observed for Nova Scotia (1900 - 1920 CE) (Gehrels et al. 

2005), Connecticut (1850 – 1900 CE) (Donnelly et al. 2004), North Carolina (1865 – 1915 CE) 

(Kemp et al. 2009; Kemp et al. 2011), New Jersey (1830 – 1873 CE) (Kemp et al. 2013), and 

globally (late 18th century – 1900 CE) (Church and White 2006; Jevrejeva et al. 2008; Church 

and White 2011). Although our reported timing of acceleration is generally consistent with the 

previously estimated timing of sea level rise acceleration, small discrepancies between both 
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approaches are likely due to our smaller sample size (n = 8 – 17) relative to previous work (n = 

184 (Kemp et al. 2009)) that does not allow for a more accurate estimation of recent forest retreat 

acceleration. The onset of acceleration at Long Shoal River therefore pre-dates previous 

estimates of the timing of sea level rise accelerations due to missing data points between 1695 

and 1982. Nevertheless, the majority of our breakpoints lie well within the range of sea level rise 

breakpoints, and simple comparisons between both breakpoints indicate that accelerations in 

forest retreat rates along the studied portions of the U.S. mid-Atlantic coast were initiated around 

1875 CE.  

Our findings showed that measured rates of forest elevation change were similar to 

historic relative sea level rise rates for the same time periods. Average rate of change in coastal 

treeline elevation at all sites was 0.8 mm yr-1 prior to ~1875 CE, and nearly tripled after the onset 

of acceleration (2.3 mm yr-1). Similar rates and trends in relative sea level rise have been 

observed along coastal landscapes of the U.S. Atlantic coast and globally (Donnelly et al. 2004; 

Gehrels et al. 2005; Church and White 2006; Jevrejeva et al. 2008; Kemp et al. 2009; Church and 

White 2011; Kemp et al. 2011; Kemp et al. 2013). Reported rates of relative sea level rise in 

North Carolina were approximately 1 mm yr-1 until 1865 – 1915 CE, and 2.1 – 3.3 mm yr-1 after 

the breakpoint, resulting in a threefold increase in the rate of relative sea level rise since the onset 

of acceleration (Kemp et al. 2009; Kemp et al. 2011). Consistency in the magnitude and timing 

of accelerated sea level rise and forest retreat suggests that coastal forest retreat closely follows 

climate induced sea level rise.  
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Accelerating rates of lateral forest retreat 

Comparisons between forest retreat rates pre and post ~1875 CE were based on linear 

regression between time and lateral distance from the modern forest edge along individual 

transects at each site, and showed that modern retreat rates (1875 to 2016 CE) were 2 to 14 times 

faster than historic rates (65 BC to 1875 CE) (Table 3). Forest retreat rates were positive in each 

time step pre- and post- 1875 CE and location, indicating that encroaching marshland steadily 

replaced retreating coastal upland. Though core analyses along transects provide excellent long-

term records of the transgression history, this approach is sensitive to changes in slope and site-

specific disturbance events that would be particularly problematic for finer time steps. Here, 

other ecological factors may create a lag between habitat change and sea level rise along coastal 

landscapes that may limit expected patterns of ecosystem transgression at the salt marsh ecotone 

(Clark 1986; Young 1995). Therefore, large-scale spatially averaged measurements of forest 

retreat may average out the effect of local disturbance and variations in slope, so that relative sea 

level rise impacts are isolated. Previous field work suggests that salt tolerant trees are generally 

resilient to sea level rise to the effect that a punctuated disturbance event (e.g. major storm, fire, 

etc.) is required for coastal forest retreat to occur (Clark 1986; Young 1995; Williams et al. 1999; 

Kirwan et al. 2007). This finding is in contrast with the general assumption of landscape models 

that forest retreat takes place instantly as soon as the land is inundated (Feagin et al. 2010; Cadol 

et al. 2016; Kirwan et al. 2016a). However, we found evidence for both approaches as forest 

retreat is largely influenced by the upland topography and localized disturbance events on annual 

to decadal timescales, but follows sea level rise when averaged over large spatial and temporal 

scales.  
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Spatially averaged rates indicate that modern forest retreat rates continuously increased 

throughout the 20th and 21st century, and are higher than pre-1875 CE rates (Fig. 5). Historic 

forest retreat rate at Goodwin Island is higher than modern forest retreat rates because 

uncertainties associated with 210Pb did not allow to accurately calculate the age of the buried 

marsh-forest boundary and therefore forest retreat rates. Our retreat rates generally increased in 

each time interval at all sites in parallel with recent accelerations in sea level rise, which is 

consistent with previous estimates for Goodwin Island, and support models that assume marsh 

migration into uplands follows relative sea level rise (Kirwan et al. 2016a). Our spatially 

averaged retreat rates (0.07 – 3.8 m yr-1) are similar to mapped rates along the U.S. Atlantic coast 

(Hussein 2009; Smith 2013; Raabe and Stumpf 2016; Kirwan et al. 2016a; Schieder et al. 2018). 

Forest retreat rates during the last century were measured in the Big Bend region of the Florida 

Gulf Coast (2.3 m yr-1) (Raabe and Stumpf 2016), the Delaware Bay (1.8 m yr-1) (Smith 2013), 

the Chesapeake Bay (0.49 m yr-1) (Schieder et al. 2018), and the eastern shore of Maryland (3.51 

– 6.78 m yr-1) (Hussein 2009). Discrepancies between our rates and previously estimated rates 

are likely due to differences in chosen methods because previous work generally compared 

changes in forest extent between two time steps (Smith 2013; Raabe and Stumpf 2016; Schieder 

et al. 2018) or along a single transect (Hussein 2009), whereas our work uniquely combines 

long-term records along individual transects and mapped retreat rates averaged over broad 

regions.  

Forest retreat is widely considered to be a function of topographic slope and rates of sea 

level rise (Brinson et al. 1995; Hussein 2009; Raabe and Stumpf 2016; Kirwan et al. 2016a). 

Previous work suggests that forest retreat lags behind sea level rise because mature trees are 

resistant to impacts of flooding and salinity, and therefore require a punctuated disturbance event 
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in order to migrate further landward (Young 1995; Kirwan et al. 2007). Woody plants with 

higher tolerance to flooding and salinity may temporarily survive sea level rise or develop 

morphological, anatomical, and physiological adaptations (e.g., hypertrophied lenticels, 

aerenchyma tissue, and adventitious roots) to cope with flooding stress (Kozlowski 1997; Poulter 

et al. 2008) to the effect that the coastal treeline retreats stepwise following disturbance-induced 

mortality (Kirwan et al. 2007). Short-term analyses of marsh response to sea level rise indicate 

coastal transgression events are strongly influenced by changes in the physical environment, and 

therefore do not strictly follow Redfield’s basic transgression model (Clark 1986). Redfield’s 

model suggests that a ~8 m rise in relative sea level during the last ~4,000 years has led to 

widespread upland drowning and the creation of new marshland (Redfield 1972). We therefore 

spanned our work over a large temporal (> 2,000 years) and spatial (~80 km2) scale to eliminate 

potential influences of changes in slope and disturbance events on a small area, and found that 

forest retreat is fundamentally tied to rates of relative sea level rise. Our approach of combining 

two fundamentally different methods (i.e. long-term coring and spatially averaged mapping 

analyses) uniquely emphasizes that forest retreat is not an artifact of disturbance events, and that 

sea level rise is the major driver of long-term habitat change along coastal landscapes.    

 

Implications 

Previous work has commonly focused on the movement of different portions of the landscape in 

response to climate change. Recent accelerations in sea level rise have created a history of 

transgression events of adjacent ecosystems (e.g. barrier islands, salt marshes, coastal forests) 

along many coastal margins. Barrier islands and their associated backbarrier environments 

migrate landwards, as sea level rise promotes complex ecogeomorphic feedbacks that allow 
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barrier islands to increase their elevation in order to maintain their position in the tidal frame 

(Walters et al. 2014; Deaton et al. 2017). Backbarrier marshes then migrate into shallow bays, 

and bays in turn inundate adjacent uplands (Walters et al. 2014). Our work is part of this coupled 

transgression where marsh migration into adjacent uplands may have compensated for potential 

marsh loss. Coastal forestland in the studied portions of the U.S. mid-Atlantic coast declined by 

~25 km2 over the last 150 years (~30 % of study area), allowing encroaching marshes to occupy 

higher elevations and maintain their position relative to sea level rise. Previous mapping efforts 

showed that approximately 100,000 acres (400 km2) of coastal forest were lost by upland 

drowning in the Chesapeake region alone, and that forest retreat can potentially lead to marsh 

stability in the face of sea level rise (Raabe and Stumpf 2016; Schieder et al. 2018).  

However, the stability of tidal wetlands is greatly threatened by anthropogenic activities 

and their impacts on coastal processes through alterations of climate, nutrient inputs, sediment 

delivery and subsidence rates (Kirwan and Megonigal 2013). Human activities (e.g. coastal 

barriers, destructions of wetlands, and/or reduced sediment supply due to dams) exacerbate 

impacts of relative sea level rise on coastal landscapes, and mitigate potential adaptations of 

coastal ecosystems to environmental changes (Nicholls and Cazenave 2010). Hardened 

structures such as dykes and seawalls built at the upper boundary of salt marshes in order to 

protect coastal properties reduce the ability of marsh migration to compensate for the effects of 

shoreline erosion on salt marsh extent (Van der Wal and Pye 2004; Kirwan and Megonigal 

2013). Our findings therefore highlight how sea level rise has led to widespread loss of coastal 

forests and the creation of large acreages of tidal salt marshes, and that their survival largely 

depends on management decisions to exploit the ability of marshes to quickly adapt to 

environmental changes. 
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There is ongoing scientific debate over how coastal ecosystems respond to changes in sea 

level rise. Simple transgression models assume that forest retreat is directly linked to changes in 

sea level rise (Kirwan et al. 2016a), whereas previous field observations suggest that ecological 

factors create a lag between sea level rise and forest retreat so that retreat of coastal treelines 

ultimately occurs through punctuated disturbance events (Young 1995). We unequivocally found 

that forest retreat responds directly to sea level rise, which is consistent at all five sites along the 

U.S. mid-Atlantic coast. The elevation of coastal treelines relative to sea level was similar 

throughout the last 2,000 years, and rates of treeline elevation change and rates of relative sea 

level rise were nearly identical for the same time periods before and after the onset of 

acceleration. Breakpoint analyses showed that the timing of forest retreat acceleration 

corresponds well to the onset of sea level rise acceleration. Together, these observations suggest 

that marshes migrate into terrestrial forests as a response to sea level rise on broad spatial and 

temporal scales, and that the onset of recent acceleration in forest retreat is closely tied to the 

onset of rapid acceleration in relative sea level rise.  
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FIGURES 

 
Fig. 1 | Map of study sites along the U.S. Mid-Atlantic coast. From north to south: (A)  Hell Hook, MD; (B) Cedar Creek, MD; 

(C) Goodwin Island, VA; (D) Long Shoal River, NC; (E) Cedar Island, NC. Drowning of terrestrial uplands leads to the creation 

of ghost forests along the marsh-forest transition zone. Ghost forests were present in all five study sites (shown: (B) Cedar Creek, 

MD, (C) Goodwin Island, and (D) Long Shoal River, NC).  
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Fig. 2 | Distance from the modern marsh-forest boundary through time. Sediment core (solid circles) and map/photo (open 

circles) derived positions of the marsh-forest boundary through time, where distance represents the distance along a transect 

from the modern marsh-forest boundary. Core data from Cedar Creek and Hell Hook were derived from re-analyses of Hussein 

(2009). Cedar Island and Long Shoal River sites were not included because the timing of core and map/photo data did not 

overlap. Distance from the modern marsh-forest boundary generally decreased through time, and was similar between both 

methods. 
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Fig. 3 | Elevation of the marsh-forest boundary through time. Core-derived treeline elevation (solid circles) was compared to 

elevation derived from aerial images (open circles). Core data from Cedar Creek and Hell Hook were derived from re-analyses 

of Hussein (2009). Data from Cedar Island and Long Shoal River were not included because the timing of core and map/photo 

data did not overlap. Elevation of the coastal treeline generally increased through time, and was similar between both methods. 

Elevation of Goodwin Island core G20 (1915 CE) differs substantially from the remaining treeline elevations due to uncertainties 

associated with 210Pb 
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Fig. 4 | Effects of relative sea level rise on coastal treeline elevation. Long-term relative sea level trend (gray line) is based on 

paleo-marsh analyses in North Carolina (Kemp et al. 2011). Core-derived elevation of the marsh-forest boundary at Cedar 

Island and Long Shoal River, as well as Hell Hook and Cedar Creek sites are based on re-analyses of Young (1995) and Hussein 

(2009), respectively. The remaining data were derived from aerial photographs, sediment cores and RTK-GPS. Core derived 

relative elevations at Cedar Island and Long Shoal River were adjusted to match absolute elevations measured in the field. 

Elevation of the marsh-forest transition zone slowly increased through time until ~1875 CE, and increased at faster rates 

afterwards.   
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Fig. 5 | Lateral forest retreat rates through time. 20th century forest retreat rates (light purple circles) were compared to pre 

1875 CE rates (dark purple square). Forest retreat rates before 1875 are based on linear regression analyses of time and 

distance to the modern marsh-forest boundary, derived from historical maps and sediment cores. Stratigraphic analyses at Hell 

Hook, Cedar Creek, Long Shoal River, and Cedar Island are based on re-analyses of Hussein (2009) and Young (1995). Modern 

rates of lateral forest retreat are based on spatially averaged aerial image analysis, where lateral retreat rate represents the 

area of forest loss divided by the length of the marsh-forest treeline. Modern forest retreat rates exceed historic rates, and 

generally increase through time. Historic forest retreat rate at Goodwin Island is higher than modern forest retreat rates because 

uncertainties associated with 210Pb did not allow to accurately calculate the age of the buried marsh-forest boundary and 

therefore forest retreat rates.  
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Table 1| Sources of aerial images for every location and time step. Aerial imageries were used for spatially averaged forest retreat analyses as well as transect-based treeline elevation and distance 

from the modern marsh-forest boundary. Images are organized by location and include further information on the year, type of image, resolution and weblink.  

Year (CE) Location Source Resolution Weblink 

1848 Hell Hook NOAA Shoreline Data Explorer 1:20,000 https://www.ngs.noaa.gov/NSDE/ 

1864 Hell Hook NOAA Historical Map & Chart Collection 1:80,000 https://historicalcharts.noaa.gov/ 

1898 Hell Hook United States Geological Survey 1:125,000 https://store.usgs.gov/map-locator 

1905 Hell Hook United States Geological Survey 1:62,500 https://store.usgs.gov/map-locator 

1938 Hell Hook U.S. Agricultural Stabilization and Conservation Service 1:20,000 http://jhir.library.jhu.edu/handle/17
74.2/36444 

1942 Hell Hook United States Geological Survey 1:24,000 https://store.usgs.gov/map-locator 

1952 Hell Hook U.S. Agricultural Stabilization and Conservation Service 1:20,000 http://jhir.library.jhu.edu/handle/17
74.2/36544 

1960 Hell Hook Aerial Photo Single Frames 1:60,000 https://earthexplorer.usgs.gov/ 

1977 Hell Hook Aerial Photo Single Frames 1:80,000 https://earthexplorer.usgs.gov/ 

1978 Hell Hook Aerial Photo Single Frames 1:10,000 https://earthexplorer.usgs.gov/ 

1982 Hell Hook National High Altitude Photography 1:58,000 https://earthexplorer.usgs.gov/ 

1994 Hell Hook Digital Orthophotoquadrangle 1:12,000 https://earthexplorer.usgs.gov/ 

2005 Hell Hook National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2009 Hell Hook National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2011 Hell Hook National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2013 Hell Hook ESRI World Imagery 1:280 N/A 

2015 Hell Hook National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

1849 Cedar Creek NOAA Shoreline Data Explorer 1:20,000 https://www.ngs.noaa.gov/NSDE/ 

1898 Cedar Creek United States Geological Survey 1:125,000 https://store.usgs.gov/map-locator 

1905 Cedar Creek United States Geological Survey 1:62,500 https://store.usgs.gov/map-locator 

1938 Cedar Creek U.S. Agricultural Stabilization and Conservation Service 1:20,000 http://jhir.library.jhu.edu/handle/17
74.2/36444 

1942 Cedar Creek United States Geological Survey 1:24,000 https://store.usgs.gov/map-locator 

1952 Cedar Creek U.S. Agricultural Stabilization and Conservation Service 1:20,000 http://jhir.library.jhu.edu/handle/17
74.2/36544 

1960 Cedar Creek Aerial Photo Single Frames 1:60,000 https://earthexplorer.usgs.gov/ 

1972 Cedar Creek Aerial Photo Single Frames 1:76,000 https://earthexplorer.usgs.gov/ 

http://jhir.library.jhu.edu/handle/1774.2/36444
http://jhir.library.jhu.edu/handle/1774.2/36444
http://jhir.library.jhu.edu/handle/1774.2/36544
http://jhir.library.jhu.edu/handle/1774.2/36544
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1981 Cedar Creek National High Altitude Photography 1:58,000 https://earthexplorer.usgs.gov/ 

1995 Cedar Creek Digital Orthophotoquadrangle 1:12,000 https://earthexplorer.usgs.gov/ 

2005 Cedar Creek National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2007 Cedar Creek High Resolution Orthoimagery N/A https://earthexplorer.usgs.gov/ 

2009 Cedar Creek National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2011 Cedar Creek National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

2013 Cedar Creek ESRI World Imagery 1:280 N/A 

1853 Goodwin Island NOAA Shoreline Data Explorer 1:20,000 https://www.ngs.noaa.gov/NSDE/ 
1937 Goodwin Island Virginia Institute of Marine Science Shoreline Studies 

Program 
N/A N/A 

1963 Goodwin Island Virginia Institute of Marine Science Shoreline Studies 
Program 

N/A N/A 

1978 Goodwin Island Virginia Institute of Marine Science Shoreline Studies 
Program 

N/A N/A 

1994 Goodwin Island Digital Orthophotoquadrangle 1:12,000 https://earthexplorer.usgs.gov/ 

2013 Goodwin Island ESRI World Imagery 1:280 N/A 

1872 Long Shoal River NOAA Shoreline Data Explorer 1:20,000 https://www.ngs.noaa.gov/NSDE/ 

1932 Long Shoal River Natural Resources Conservation Service, Plymouth, NC ~1:10,000  N/A 

1952 Long Shoal River United States Geological Survey 1:24,000 https://store.usgs.gov/map-locator 

1982 Long Shoal River National High Altitude Photography 1:58,000 https://earthexplorer.usgs.gov/ 

1998 Long Shoal River Digital Orthophotoquadrangle 1:12,000 https://earthexplorer.usgs.gov/ 

2013 Long Shoal River ESRI World Imagery 1:280 N/A 

2014 Long Shoal River National Agriculture Imagery Program GEOTIFF N/A https://earthexplorer.usgs.gov/ 

1872 Cedar Island NOAA Shoreline Data Explorer 1:20,000 https://www.ngs.noaa.gov/NSDE/ 

1949 Cedar Island United States Geological Survey 1:24,000 https://store.usgs.gov/map-locator 

1952 Cedar Island Doug Newcomp at Raleigh Ecological Services Office 1:20,000 N/A 

1982 Cedar Island National High Altitude Photography 1:58,000 https://earthexplorer.usgs.gov/ 

1998 Cedar Island Digital Orthophotoquadrangle 1:12,000 https://earthexplorer.usgs.gov/ 

2013 Cedar Island ESRI World Imagery 1:280 N/A 
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Table 2 | Accretion rates and forest retreat rates at Goodwin Island (VA). Accretion rates are based on 137Cs peak (1963) and 

onset (1954), and excess 210Pb. Depth of the marsh-forest boundary was determined using thresholds of organic matter and bulk 

density (10 % and 0.5 g cm-3). Year of marsh to forest transition was calculated based on the depth of the marsh-forest boundary 

and 210Pb accretion rates. Distance and retreat rates were calculated between core locations (e.g. distance of 220 m and retreat 

rate of 4.31 – 7.59 m yr-1 were calculated between cores G17 and G4). Retreat rate for G20 is missing due to conflicting year of 

marsh to forest transition (CE) (Appendix Fig. 1). 

   

 Accretion 
Rate (cm 
yr-1)             

Core 

137Cs 
peak 

137Cs 
onset 210Pb 

Depth of 
marsh-
forest 
boundary 
(cm) 

Age of 
marsh-
forest 
boundary 

Year of 
marsh to 
forest 
transition 
(CE) 

Distance 
(m) 

Retreat 
Rate (m 
yr-1) 

G4 
0.17-
0.19 0.3 0.09 16-17 178-189 1824-1838 80 0.42-0.45 

G17 
0.09-
0.17 0.5 0.14 31-32 221-229 1787-1795 220 4.31-7.59 

G13 
0.24-
0.28 0.37 0.11 48-54 244-274 1742-1772 70 1.32-4.67 

G20 
0.42-
0.53 0.66 0.52 45-59 87-113 1903-1929 40   
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Table 3 | Forest retreat rates pre and post breakpoint. Breakpoints were defined as the point where the second derivative was at 

its maximum (i.e. the change in elevation change rate). The onset of acceleration at Long Shoal River pre-dates previous 

estimates of the timing of sea level rise accelerations due to missing data points between 1695 and 1982. Retreat rates were 

based on linear regression analyses of time and distance from the modern marsh-forest boundary. Post 1875 retreat rates are 2-

14 times faster than rates before 1875.  

Site Breakpoint Year 
(CE) 

Retreat rate (m yr-1) < 
1875 

Retreat rate (m yr-1) > 1875 

Hell Hook 1808 0.27 2.18 

Cedar Creek 1906 0.68 1.87 

Goodwin 
Island 

1916 1.53 3.3 

Long Shoal 
River 

1695 0.34 4.61 

Cedar Island 1825 (1948/1949) 0.3 1.65 
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APPENDIX 

 

Appendix Fig. 1 | Goodwin Island core locations. Black dot represents location of Goodwin Island within the Chesapeake Bay. 

Map shows exact locations of all twenty cores at Goodwin Island. Cores were taken with a Russian peat corer, and analyzed for 

bulk density and organic matter (Appendix Fig. 3 – 17). Four additional cores (G4, G17, G13, and G20) were taken with a large-

diameter push corer to calculate the age of the historic marsh-forest boundary and vertical accretion rates (Appendix Fig. 18 – 

21).  
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Appendix Fig. 2 | Vertical profile of Goodwin Island. Profile shows vertical (exaggerated) and horizontal position of individual 
cores (triangles) and the antecedent surface (dashed line) along a transect (Appendix Fig. 1). Following core profiles (Appendix 
Fig. 3 – 17) and 210Pb and 137Cs profiles (Appendix Fig. 18 – 21) are ordered according to their position along the transect (i.e. 
increasing distance from the modern forest edge). The reconstructed antecedent surface was used to determine the elevation 
from aerial images. The underlying topography is gently sloped (0.0019), and the peat thickness (dark brown) generally 
increases with increasing distance from the modern forest edge.     
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Appendix Fig. 3 | G1 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G1 is 12 cm. 
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Appendix Fig. 4 | G3 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G3 is 26 cm. 
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Appendix Fig. 5 | G4 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G4 is 14 cm. 



82 

 

 
Appendix Fig. 6 | G5 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G5 is 24 cm. 
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Appendix Fig. 7 | G6 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G6 is 23 cm. 
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Appendix Fig. 8 | G7 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G7 is 17 cm. 
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Appendix Fig. 9 | G9 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used to 

determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G9 is 18 cm. 
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Appendix Fig. 10 | G15 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G15 is 21 cm. 
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Appendix Fig. 11 | G16 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G16 is 16 cm. 
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Appendix Fig. 12 | G12 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G21 is 27 cm. 
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Appendix Fig. 13 | G17 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G17 is 32 cm. 
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Appendix Fig. 14 | G18 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G18 is 43 cm. 
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Appendix Fig. 15 | G13 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G13 is 51 cm. 
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Appendix Fig. 16 | G19 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G19 is 38 cm. 
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Appendix Fig. 17 | G20 core profile (Goodwin Island). Organic matter (%) (green) and bulk density (g cm-3) (brown) were used 

to determine the depth of the historic marsh-forest boundary (gray envelope). Bulk density generally increased with depth, while 

organic matter decreased. We defined brown, high organic, mineral-poor soil as marsh (organic matter > 10%, bulk density < 

0.5 g cm-3), and gray, clay-rich, low organic soil as terrestrial (organic matter < 10%, bulk density > 0.5 g cm-3). The gray 

envelope represents the upper and lower extend of marsh-forest boundary determined by organic matter and bulk density. A 

larger envelope indicates larger discrepancies between both methods. The average depth of the historic marsh-forest boundary 

at G20 is 52 cm. 



94 

 

 

Appendix Fig. 18 | G4 210Pb and 137Cs profile (Goodwin Island). Excess 210Pb activity (red) and 137Cs activity (black) were 

measured for each core. Nuclear weapon testing started in ~1954 and created a peak fallout deposition of 137Cs on Earth’s 

surface in 1963 (Pennington et al. 1976; Allison et al. 2005). Peak 137Cs concentrations indicate the year 1963, and accretion 

rates are calculated by dividing the depth of the 137Cs peak (cm) by 53 years (i.e. the years that have passed since 1963 and core 

collection). 210Pb accretion rates were derived by multiplying the slope of the excess 210Pb activity and core depth with the 210Pb 

radioactive decay constant, assuming constant accumulation through time (0.03114 yr-1) (Donnelly and Bertness 2001; Hussein 

2009), and age of the buried marsh-forest boundary was derived by multiplying accretion rates with the previously determined 

peat thickness (Appendix Fig. 5). The gray envelope represents uncertainties associated with 137Cs, 210Pb measurements, and the 

depth of the marsh-forest boundary. 
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Appendix Fig. 19 | G17 210Pb and 137Cs profile (Goodwin Island). Excess 210Pb activity (red) and 137Cs activity (black) were 

measured for each core. Nuclear weapon testing started in ~1954 and created a peak fallout deposition of 137Cs on Earth’s 

surface in 1963 (Pennington et al. 1976; Allison et al. 2005). Peak 137Cs concentrations indicate the year 1963, and accretion 

rates are calculated by dividing the depth of the 137Cs peak (cm) by 53 years (i.e. the years that have passed since 1963 and core 

collection). 210Pb accretion rates were derived by multiplying the slope of the excess 210Pb activity and core depth with the 210Pb 

radioactive decay constant, assuming constant accumulation through time (0.03114 yr-1) (Donnelly and Bertness 2001; Hussein 

2009), and age of the buried marsh-forest boundary was derived by multiplying accretion rates with the previously determined 

peat thickness (Appendix Fig. 13). The gray envelope represents uncertainties associated with 137Cs, 210Pb measurements, and 

the depth of the marsh-forest boundary. 
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Appendix Fig. 20 | G13 210Pb and 137Cs profile (Goodwin Island). Excess 210Pb activity (red) and 137Cs activity (black) were 

measured for each core. Nuclear weapon testing started in ~1954 and created a peak fallout deposition of 137Cs on Earth’s 

surface in 1963 (Pennington et al. 1976; Allison et al. 2005). Peak 137Cs concentrations indicate the year 1963, and accretion 

rates are calculated by dividing the depth of the 137Cs peak (cm) by 53 years (i.e. the years that have passed since 1963 and core 

collection). 210Pb accretion rates were derived by multiplying the slope of the excess 210Pb activity and core depth with the 210Pb 

radioactive decay constant, assuming constant accumulation through time (0.03114 yr-1) (Donnelly and Bertness 2001; Hussein 

2009), and age of the buried marsh-forest boundary was derived by multiplying accretion rates with the previously determined 

peat thickness (Appendix Fig. 15). The gray envelope represents uncertainties associated with 137Cs, 210Pb measurements, and 

the depth of the marsh-forest boundary. 
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Appendix Fig. 21 | G20 210Pb and 137Cs profile (Goodwin Island). Excess 210Pb activity (red) and 137Cs activity (black) were 

measured for each core. Nuclear weapon testing started in ~1954 and created a peak fallout deposition of 137Cs on Earth’s 

surface in 1963 (Pennington et al. 1976; Allison et al. 2005). Peak 137Cs concentrations indicate the year 1963, and accretion 

rates are calculated by dividing the depth of the 137Cs peak (cm) by 53 years (i.e. the years that have passed since 1963 and core 

collection). 210Pb accretion rates were derived by multiplying the slope of the excess 210Pb activity and core depth with the 210Pb 

radioactive decay constant, assuming constant accumulation through time (0.03114 yr-1) (Donnelly and Bertness 2001; Hussein 

2009), and age of the buried marsh-forest boundary was derived by multiplying accretion rates with the previously determined 

peat thickness (Appendix Fig. 17). The gray envelope represents uncertainties associated with 137Cs, 210Pb measurements, and 

the depth of the marsh-forest boundary. 
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Appendix Fig. 22 | Transect locations at Cedar Island (NC). To determine the historic elevation of the buried marsh-forest 

boundary from aerial images and historical maps, cores and elevation measurements were taken along ‘modern’ transects and 

compared to the topography based on Young (1995). Transect 1 was the main transect and compared to transect 2 and 3 as a 

reference (100 m distance). Transects were chosen to best fit previous transects by Young (1995). The lines represent the marsh-

forest boundary based on T-sheets (1872), USGS maps (1949), and modern photographs (1982 and 1998). The marsh-forest 

boundary retreats gradually, with only little retreat since 1982.   
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Appendix Fig. 23 | Vertical profile of Cedar Island. Profile shows vertical (exaggerated) and horizontal position of individual 

cores (triangles) and the antecedent surface (dashed line) along a transect 1 (Appendix Fig. 22). The reconstructed antecedent 

surface was used to determine the elevation from aerial images. The underlying topography is gently sloped, and the peat 

thickness (dark brown) generally increases with increasing distance from the modern forest edge.     
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Appendix Fig. 24 | Transect locations at Long Shoal River (NC). To determine the historic elevation of the buried marsh-forest 

boundary from aerial images and historical maps, cores and elevation measurements were taken along ‘modern’ transects and 

compared to the topography based on Young (1995). Transect 1 was the main transect and compared to transect 2 and 3 as a 

reference (100 m distance). Transects were chosen to best fit previous transects by Young (1995). The lines represent the marsh-

forest boundary based on T-sheets (1875), and modern photographs (1932, 1982 and 1998). The marsh-forest boundary retreats 

gradually, with only little retreat since 1982.   
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Appendix Fig. 25 | Vertical profile of Long Shoal River. Profile shows vertical (exaggerated) and horizontal position of 

individual cores (triangles) and the antecedent surface (dashed line) along a transect 1 (Appendix Fig. 24). The reconstructed 

antecedent surface was used to determine the elevation from aerial images. The underlying topography is gently sloped, and the 

peat thickness (dark brown) generally increases with increasing distance from the modern forest edge.     
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Appendix Table 1 | Goodwin Island core locations. Longitude and latitude for each core at Goodwin Island are displayed. 

Cores are arranged according to location along the transect, with G1 being closest to the modern marsh-forest boundary and 

G20 being furthest away. Large-diameter push cores were taken for G4, G17, G13, and G20.  

Core Longitude Latitude 
Elevation 
(NAVD 88 

m) 

Peat depth 
(m) 

G1 -76.407367 37.21905 0.543 0.12 

G2 -76.407117 37.2191 0.468 
 

 

G3 -76.4069 37.21915 0.435 0.26 

G4 -76.406683 37.2192 0.521 0.17 

G5 -76.40645 37.21923 0.614 0.24 

G6 -76.40625 37.21937 0.576 0.23 

G7 -76.406 37.21937 0.538 0.17 

G8 -76.405783 37.21938 0.549 0.22 

G9 -76.405583 37.21947 0.532 0.18 

G10 -76.405367 37.21952 0.568 
 

 

G11 -76.405167 37.21957 0.459 
 

 

G15 -76.404949 37.21962 0.413 0.21 

G16 -76.404735 37.21968 0.468 0.16 

G12 -76.404483 37.21977 0.563 0.27 

G17 -76.404296 37.2198 0.237 0.32 

G18 -76.403755 37.21993 0.256 0.43 

G13 -76.403517 37.21998 0.332 0.51 

G19 -76.403334 37.22004 0.114 0.38 

G20 -76.403144 37.22014 0.085 0.52 
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Appendix Table 2 | Cedar Island core locations. Longitude and latitude for each core at a historic marsh-forest boundary at 

Cedar Island are displayed. Cores are arranged according to location along the transect. 

Boundary Longitude Latitude 
Elevation 
(NAVD 88 

m) 

Peat 
depth 

(m) 

1998 -76.3719 34.91746 0.2672 0.26 

1982 -76.3719 34.91752 0.2280 0.18 

1949 -76.3713 34.9183 0.1802 0.44 

1872 -76.3709 34.91873 0.1749 0.52 

 

Appendix Table 3 | Long Shoal River core locations. Longitude and latitude for each core at a historic marsh-forest boundary at 

Long Shoal River are displayed. Cores are arranged according to location along the transect. 

Boundary Longitude Latitude 
Elevation 
(NAVD 88 

m) 

Peat 
depth 

(m) 

1998 -75.8501 35.60108 0.1606 0.39 

1982 -75.8500 35.60099 0.2059 0.40 
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THESIS CONCLUSION 

 

Previous work predicts widespread marsh loss as a response to sea level rise, but 

underestimates the potential for marshes to migrate inland. Although anthropogenic barriers may 

locally prevent marsh migration into retreating coastal forests, my work finds that about 400 km2 

(100,000 acres) of uplands have converted to marshes in the Chesapeake region since the late 

1800s, and that this process was responsible for the formation of about 1/3 of all marsh area. 

Beyond the Chesapeake, my work finds that forest retreat is fundamentally tied to the rate of sea 

level rise, accelerating through time. Therefore, management efforts that allow marshes to 

migrate into adjacent uplands may help preserve marshes by exploiting their ability to quickly 

adapt to environmental change. 
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