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ABSTRACT 
 

Oyster reef restoration may enhance the production of ecologically or 
economically important fish species, an ecosystem service, by providing refuge and 
foraging habitat. Predicting the effects of oyster habitat restoration on fisheries 
production in Chesapeake Bay requires a better understanding of fish habitat use, trophic 
dynamics, and the processes leading to production on a habitat-scale. The objective of 
this thesis was to evaluate the influence of restored subtidal oyster reefs on the abundance 
and foraging patterns of mobile estuarine fishes. Specifically, I compared the 1) 
abundance, 2) stomach fullness, 3) diet composition, and 4) daily consumption rate of 
fishes collected from restored oyster reef habitat and from unstructured (control) habitat 
in the Lynnhaven River System (LRS), Virginia, a tributary of Chesapeake Bay. I 
sampled fishes from April – October 2016 to assess seasonal abundance and diet trends 
using multi-panel gill nets, and conducted 24-hour sampling events in July and 
September 2016 to assess daily foraging patterns and estimate habitat-specific 
consumption rates. The most abundant non-filter feeding fishes collected all came from 
the Sciaenid (drum) family: spot (Leiostomus xanthurus), silver perch (Bairdiella 
chrysoura), and Atlantic croaker (Micropogonias undulatus). Overall catch in oyster reef 
habitat was reduced relative to unstructured bottom, but species-level responses to habitat 
type varied. Stomach fullness trends varied by species but were associated with habitat 
type. Benthic prey dominated the diet of all three species, and evidence of habitat-related 
shifts in diet composition were apparent. Reef-affiliated prey contributed most 
prominently to silver perch, comprising nearly 30 – 50 % by weight. The daily 
consumption rate and total daily caloric intake of silver perch foraging in oyster reef 
habitat were nearly double the estimates from control habitat. The results suggest restored 
oyster reefs influence habitat use and foraging behavior in species-specific manners, 
likely a result of differences in functional morphology and prey preference. Restored 
oyster reefs in the LRS likely act as valuable forage habitat for silver perch, an important 
trophic link in coastal and estuarine systems. Developing realistic estimates of fisheries 
production on a habitat-scale requires studying species-specific trophic dynamics. 
Empirical estimates of the processes contributing to production are necessary to better 
understand the functional role of restored oyster reefs in shallow estuarine and coastal 
systems, and the ecosystem services these reefs may provide. 
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INTRODUCTION 
 

Structurally complex reefs created by the ecosystem engineer Crassostrea 

virginica (eastern oyster) once dominated the Chesapeake Bay (Newell 1988, Hargis & 

Haven 1999). Beginning in the late 19th century, heavy fishing pressure, poor water 

quality, and disease drastically reduced both the oyster population and the extent of 

oyster reefs (Rothschild et al. 1994, Wilberg et al. 2011). Commercial landings of C. 

virginica in the Chesapeake Bay today are less than 1% of late 19th century levels, and 

the areal footprint of oyster reefs at the tributary-scale has shrunk between 50 and 100 % 

(zu Ermgassen et al. 2012, NOAA 2017). Recognition of this dramatic decline spurred 

considerable interest in oyster restoration over the past three decades (Kennedy et al. 

2011). Current restoration efforts in Chesapeake Bay center on the creation of large 

subtidal reefs protected from fishing (no-harvest sanctuaries) that mimic the high-relief 

structure and complex architecture of historic reefs (U.S. Army Corps 2012). The 

creation of such reefs is expensive, however, with costs ranging up to $260,000 per 

hectare (Grabowski et al. 2012). Likewise, the closure of formerly public oyster grounds 

has provoked controversy amongst the fishing community and general public (Wheeler 

2016).  

The goals of oyster reef restoration have also expanded beyond increasing oyster 

abundance. Ecosystem services (benefits provided by nature to humans) such as nutrient 

cycling, shoreline protection, and fish production are now explicitly included in the 

objectives of oyster restoration projects, but these services are difficult to quantify. 

(Baggett et al. 2015, Coen et al. 2007, Barbier et al. 2011). Given the costs and the 

controversy surrounding oyster restoration, an improved understanding of the links 
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between habitat restoration, ecological function, and ecosystem services is needed 

(Peterson & Lipcius 2003, Hobbs 2007). The relationship between oyster reefs, fish 

foraging, and fisheries production is one such linkage in need of further study.  

Oyster reefs are hypothesized to support fisheries productivity via the provision of 

structured habitat, much like salt marshes or seagrass beds, in estuaries otherwise 

dominated by unstructured soft-sediments (Beck et al. 2001, zu Ermgassen et al. 2016). 

Structured habitat alters predator-prey interactions and modifies demographic processes, 

contributing to enhanced survival of new recruits to a system (Grabowski 2004, Caddy 

2008). The survival of many coastal and estuarine fish species is positively associated 

with increased structural complexity and presence of predator refuge (Levin 1991, 

Tupper & Boutilier 1997, Stunz et al. 2001). The combination of hard substrate and 

interstitial space provided by oyster reefs also serves to promote the settlement, growth, 

and survival of benthic invertebrates and resident fishes at high densities (Wells 1961, 

Bahr & Lanier 1981, Rodney & Paynter 2006, Karp 2016). Improved foraging success 

stemming from the increased prey availability may enhance the growth of fishes already 

present within a system, resulting in a gain of nekton biomass (Powers et al. 2003, 

Nemerson & Able 2004).  

Many mobile or transient fishes are known to frequent oyster reefs, yet the degree 

to which restored oyster reefs promote productivity through enhanced growth or survival 

is unclear (Arve 1960, Zimmerman 1989, Breitburg 1999). Few studies have directly 

measured survival or growth in relation to oyster reef habitat, and those that have 

typically focus on newly settled fishes (Stunz et al. 2002, Shervette & Gelwick 2007). 

Instead, comparing the relative abundance or density of fishes between habitat types 
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represents a more common method of evaluating the role of restored oyster reefs in 

estuarine systems (e.g., Plunket & La Peyre 2005, Stunz et al. 2010). The net effects of 

improved survival or increased growth are assumed to result in a greater number of 

individuals occurring in ‘preferred’ or ‘higher-value’ habitats (Rozas & Minello 1997, 

Able 1999). In Chesapeake Bay, the Gulf of Mexico, and the Southeast Atlantic, restored 

oyster reefs are linked to increased catch rates and enhanced abundance of mobile fishes, 

particularly in comparison to unstructured bottoms (Lenihan et al. 2001, Scyphers et al. 

2011, Humphries & La Peyre 2015). Both juvenile and adult demersal fishes as well adult 

bluefish (Pomatomus saltatrix) and striped bass (Morone saxatilis) have been found in 

high abundance on restored reefs (Harding & Mann 2001a, 2003, Plunket & La Peyre 

2005).  

Habitat use of restored oyster reefs by mobile fishes is both dynamic and context-

dependent, depending not only on the presence of oyster reef habitat, but also 

environmental and site-level variables such as reef location, proximity to other habitats, 

and degree of fragmentation (Grabowksi et al. 2005, Geraldi et al. 2009, Harwell et al. 

2011). These variables lead to considerable variation in the abundance of fishes 

associated with oyster reefs (Gregalis et al. 2009, Pierson & Eggleston 2014, Nevins et al. 

2014). Additionally, previous studies in Chesapeake Bay specifically have focused on a 

few, relatively small, restored oyster reefs, and it is unclear whether the reported patterns 

in abundance apply to the large, sanctuary restored reefs constructed over the past decade 

(O’Beirn et al. 1999, Harding & Mann 2001b, Luckenbach et al. 2005).  

Habitat-based comparisons of abundance also do not shed light on the 

mechanistic role restored reefs may play within a system. Instead, the study of trophic 
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dynamics may be a better approach to understanding fish production on a habitat scale. 

Trophic linkages represent pathways of energy flow within a system, and trophic 

dynamics are regarded as primary drivers of fisheries production (Peterson & Lipcius 

2003, Wong et al. 2011, Gaichas et al. 2012). If oyster reefs serve to enhance fish growth 

or productivity, consumption of reef-associated benthic macrofauna and resident fishes 

ought to represent a strong trophic pathway connecting oyster reefs to higher trophic 

levels (Peterson et al. 2000). The absence of such link would imply that restored reefs 

alter survival rather than growth, are relatively limited in their ecological impacts, or 

affect fish in ways yet to be fully understood. A trophic-oriented approach is particularly 

relevant in light of ecosystem-based fisheries management (EBFM), which necessitates 

an improved understanding of trophic linkages and the forage base of key fishery species 

(Idhe et al. 2015). 

The diet and trophic ecology of fishes associated with oyster reefs is less well 

studied than fish abundance and density. For instance, in Chesapeake Bay, the most 

recent oyster reef trophic studies were conducted over a decade ago. This is, in part, due 

to logistical challenges of connecting mobile predators with discrete habitat types. 

Nektonic predators range widely and use a variety of habitats; generalist predators also 

dominate the Chesapeake Bay fish assemblage (Murdy et al. 1997, Buchheister & Latour 

2015). The typical home range size of many species is not known, complicating efforts to 

link diet to prey and habitat (Beck et al. 2001, Moulton et al. 2017). Additionally, many 

prey types are as ubiquitous, if not more so, than their potential predators (Gillett & 

Schaffner 2009). Despite these difficulties, functional links between oyster reefs and 

mobile fishes have been established. In Florida, over half of juvenile grey snapper 
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(Lutjanus griseus) diet by weight was comprised of reef-affiliated organisms, including 

benthic mud crabs and resident fishes (Yeager & Layman 2011). Striped bass and 

bluefish consumed more teleost prey around a restored oyster reef than an unstructured 

bottom in the Piankatank River, Virginia, suggesting that intertidal oyster reef habitat use 

facilitated improved foraging opportunities on energetically rich fish prey (Harding & 

Mann 2001a, 2003). Combining stomach-content analysis with a detailed understanding 

of the available prey field in the environment is a particularly useful approach for linking 

prey from discrete habitats with mobile fishes (Crowder & Cooper 1982, Quan et al. 

2010, Abeels et al. 2012).  

The magnitude of trophic transfer from oyster reef macrofauna to higher trophic 

levels is also not well understood at either the individual, community, or population scale. 

Connecting the diet of fishes using restored reefs as habitat together with estimates of 

reef-associated consumption rates represents the next step in understanding the 

relationship between oyster reef habitat and mobile fishes, and would pave the way for 

process-based model estimates of oyster-reef fish production. Bioenergetics models 

incorporating these parameters are beginning to be developed (McCoy et al. 2017), yet 

they still require empirical data collected in the field. Once refined, these models could 

aid oyster restoration cost-benefit analyses and guide decisions regarding the placement 

and construction of oyster reefs within the estuarine landscape. 

In sum, specific evidence regarding the ecological benefits of no-harvest subtidal 

sanctuary reefs for estuarine fishes in Chesapeake Bay is needed to justify continued 

large-scale oyster reef restoration, maintenance, and protection from harvest. Fish use of 

restored oyster reefs as habitat or foraging grounds has not been examined recently in 
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Chesapeake Bay, nor have sanctuary reefs closed to harvest been the focus of recent 

study. Specific linkages between oyster reef macrofauna and mobile fishes remain 

unclear, and the magnitude of reef-based consumption amongst is unknown. The overall 

objective of this thesis was to evaluate the influence of restored subtidal sanctuary oyster 

reefs in a sub-estuary of the Chesapeake Bay on the abundance and foraging patterns of 

mobile estuarine fishes, particularly those of ecological or economic importance. 

Specifically, I compared the 1) abundance, 2) stomach fullness, 3) diet composition, and 

4) daily consumption rate of mobile estuarine fishes collected from restored oyster reef 

habitat and from unstructured bottom habitat in the Lynnhaven River System, Virginia. 

Broadly, I hypothesized that fish abundance in oyster reef habitat would either equal or 

exceed that of reference habitat. I also anticipated observing equal or higher levels of 

stomach fullness in reef-associated fishes, as well as the frequent occurrence of reef-

associated macrofauna in oyster reef-caught fishes as compared to fishes caught on 

unstructured, soft-bottom habitat. 

METHODS 

 Study Location 

The Lynnhaven River System (LRS) is the southernmost sub-estuary of 

Chesapeake Bay and lies within a highly developed watershed near Virginia Beach, 

Virginia (Sisson et al. 2010, Lawless & Seitz 2014), with a mean river depth of 2.5 m. 

Despite the developed nature of the watershed, over 75% of the LRS shoreline is natural 

marsh (Spartina spp.; Lawless & Seitz 2014). In 2007 and 2008, the U.S. Army Corps of 

Engineers (ACoE) constructed 12 oyster reefs totaling 20.57 hectares in Broad Bay and 

Linkhorn Bay, segments of the Eastern Branch of the LRS. As of 2011, oyster densities 
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on these reefs surpassed the threshold metric (15 oysters m-2) and most surpassed the 

target metric (50 oysters m-2) established by the Chesapeake Bay Program’s Sustainable 

Fisheries Goal Implementation Team to evaluate constructed reef performance (Oyster 

Metrics Workgroup 2011; Lipcius et al. 2015).  

Site Selection 

This study compared two distinct habitat types: restored oyster reef and 

unstructured, soft-bottom habitat (hereafter, control). Three replicate oyster reefs and 

three replicate control sites within the LRS were selected for study (n = 6 sites total; 

Figure 1). All restored reefs are permanently subtidal, closed to oyster harvest, and range 

in depth 1.2 – 3.5 m (Table A1). Using benthic habitat data provided by the National 

Oceanographic and Atmospheric Administration’s (NOAA) Chesapeake Bay Office, I 

selected control sites located at least 750 m distant from restored reef sites with ESRI 

ArcGIS 10.5. Site suitability was verified in the field to ensure that control sites 

encompassed a similar depth range to oyster reef sites, and to eliminate sites with 

obstructions (pilings, buoys, etc.).  

Monthly Fish Survey  

Fish were sampled for abundance and diet composition 2 – 3 times per month 

from April to October 2016 using experimental monofilament gill nets. The gill nets were 

sinking-rigged and designed to fish the lower 50 – 100% of the water column. Each net 

measured 45.7 m long x 1.8 m deep, partitioned into three panels of mesh size 3.175 cm, 

7.62 cm, and 12.7 cm (stretch) to capture a range of fish size classes (Hamley 1975). Nets 

were fished perpendicular to tidal flow during daytime hours (9 am – 5 pm) on both flood 

and ebb tides. Tidal stage (slack, flood, ebb) was noted in the field at the start of each net 
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set. Temperature (°C), dissolved oxygen (mg L-1), and salinity (psu) were recorded at the 

start of each net set using a handheld water quality probe (YSI Professional Plus 

Multiparameter Water Quality Instrument). To decrease the likelihood of stomach 

content evacuation by captured fish, gill net sets were limited to approximately 1.5 hours 

(Sutton et al. 2004). All six sites were fished on each sampling date, each with one gill 

net. The order in which gill nets were deployed was randomized each sampling date.  

Upon net retrieval, all collected organisms were removed from the gill nets. Up to 

25 individuals from a given species and size class were euthanized in an ice slurry and 

kept on ice for laboratory processing. Size-class determinations were based on mesh size 

of capture. Additional fish were identified and counted before being released. Fish 

sampling in this study was conducted in accordance with the College of William & 

Mary’s Institutional Animal Care and Use Committee (Protocol #: IACUC-2014-09-17-

9772-rdseit).  

Additional fish sampling was conducted via otter trawl in April, May, and June 

2016 to target demersal fishes, small juvenile fishes, and blue crabs (trawl dimensions: 

4.8 m length, 3.81 cm body mesh, 0.96 cm cod-end mesh, mouth opening of 3 m). Tows 

were deployed from a small vessel for ~two minutes at a speed of ~3 km per hour directly 

adjacent to reef and reference sites. Tow start and tow end position were marked and 

recorded using a handheld GPS unit (Garmin GPSmap 78sc). Rapid depth changes, a 

multitude of obstructions (crab pots, buoys, other boaters), and oyster bottom itself 

(restored reef boundaries on maps did not exactly match boundaries in the field) limited 

the effectiveness of these tows. Species identifications and counts are included in the 

Appendix (Table A2). 
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Sample Processing & Diet Analysis  

In the lab, all collected individuals were identified, counted, measured (fork 

length and total length [mm]) and weighed (nearest 0.1 g, wet weight). For each net set, 

the stomachs of up to 5 individuals per species and size-class were removed and placed in 

isotonic fixative (NormalinTM) for preservation and eventual diet analysis. At a later date, 

these stomachs were then removed from isotonic fixative, rinsed, and individually 

weighed (nearest 0.001 g). Stomachs were emptied, all contents rinsed with ethanol 

(70%) into a clear plastic petri dish, and the empty stomachs weighed again. Prey items 

were sorted, identified to lowest taxonomic level, and weighed together by taxa (nearest 

0.001 g).  

24-Hour Fish Survey 

Two 24-hour sampling events were conducted (July 19 – July 20 & September 27 

– September 28 2016) to estimate total daily ration and characterize diel feeding patterns. 

These sampling events were broken into two 12-hour periods (‘day’ and ‘night’) on 

consecutive days. To reduce risks associated with nighttime vessel operation, one oyster 

reef site and one control site within Broad Bay were selected for sampling. The same two 

sites were visited in both July & September. During each sampling event, 2 – 3 gill nets 

were set at each site (reef and control) for approximately 2.5 hours at a time. Set times 

were lengthened relative to the monthly survey in an attempt to increase catch size. Upon 

net retrieval, all collected organisms were removed from the gill nets, and the nets were 

reset and fished again. Up to 10 individuals from a given species and size class were 

euthanized in an ice slurry and kept on ice for laboratory processing (described above). 

Tidal stage and water quality conditions were recorded at the start of each net set. Net 
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sets were partitioned into six four-hour time blocks for subsequent analysis (9 am – 1 pm, 

1 pm – 5 pm, 5 pm – 9 pm, 9 pm – 1 am, 1 am – 5 am, 5 am – 9 am).  

Statistical Analysis of Fish Abundance 

Fish abundance during the monthly survey was modeled using generalized linear 

(GLMs) and generalized linear mixed models (GLMMs; Venables & Dichmont 2004, 

Bolker et al. 2008). Two responses were examined: 1) Total fish catch; 2) Species-

specific catch for the most abundant non-filter feeding fishes. For each response, number 

of fish captured per net was chosen as the dependent variable. The negative binomial 

distribution was assumed for all models, and employed together with the log-link 

function. Fishing effort (gill net soak time) was incorporated via an offset term included 

in all models (Maunder & Punt 2004). April-May sampling events (2 days, 12 net sets) 

were excluded from the statistical analysis due to very low catch rates (4 individuals 

collected). The 24-hour survey was designed to collect fishes for diet and consumption 

analysis. Trends in abundance were not analyzed, but species identifications and counts 

are included in the Appendix (Table A3). 

Ten candidate models were constructed to evaluate the influence of habitat on fish 

catch (Table 1). In addition to Habitat Type (discrete variable; Reef or Control), models 

incorporated varying combinations of design and environmental variables that were 

hypothesized to influence fish catch. They included Month (discrete variable; June – 

October), Water Temperature (continuous variable), Salinity (continuous variable), and 

Tidal Stage (discrete variable; Flood, Slack, Ebb). Two GLMMs included sampling site 

as a random error term, to account for possible site effects on catch. Correlations between 

variables were examined prior to modeling to rule out the possibility of collinearity. 
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All 10 models (as well as an intercept-only null model) were run and compared 

using Akaike’s Information Criterion (AIC), which provides evidence regarding the 

likelihood of a certain model, given the input data, and rewards model parsimony by 

penalizing over-parameterized models (Burnham & Anderson 2002, Hobbs & Hilborn 

2006). Under an AIC-based model-selection framework, the model with the lowest AIC 

value is the ‘most likely’ model. Model fit to the data and adherence of data to model 

assumptions was evaluated using diagnostic plots (residual values vs. fitted values; 

quantile-quantile plots) and diagnostic statistics (including dispersion, influence, and 

leverage). Selection of a single ‘top model’ for evaluation was informed by AIC value 

and model fit to data, with a preference for parsimony. Model parameter estimates were 

deemed statistically significant at the 𝛼 =	0.1 level. All statistical analyses were 

conducted with the statistical program R and the packages lme4 and MASS (Venables & 

Ripley 2002, Bates 2010, RStudio Team 2015, R Core Team 2016). 

Fish Stomach Fullness 

For each individual fish, total prey weight was determined as the sum of all 

individual prey items (including unidentified material). Stomach fullness (Buckel et al. 

1999, Laegdsgaard & Johnson 2001, Facendola & Scharf 2008) was calculated for 

individual fish captured during the monthly survey as 

$%&'(	)*+,	-+./0&	(/)
3.40	-+&	-+./0&	(/)	5$%&'(	)*+,	-+./0&	(/)

  

GLMs were used to evaluate the effects of the discrete variables Habitat Type (Reef or 

Control) and Month (June – October) on stomach fullness for fish collected during 

monthly sampling (Table 2a). Because individuals collected in the same gear set are 

likely more similar to one another than to individuals collected elsewhere, stomach 
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fullness values of individual fish were averaged together by gill net set. Stomach fullness 

values were log-transformed prior to modeling, and model results were compared using 

AIC. Stomach fullness was also calculated for fishes collected during the 24-hour survey 

and modeled using GLMs incorporating the fixed effects of Habitat Type, Time of Day 

(Set Time), and Month (July or September; Table 2b). 

Indices of Diet Composition 

For each species, two diet indices were determined for each prey taxa identified 

from fish collected during the monthly survey: percent frequency occurrence (% F) and 

percent composition by weight (% W) (Buckel et al. 1999, Pope et al. 2001). All diet 

indices were determined using a cluster sampling estimator that treats each gill net set 

(“cluster”) as an independent replicate (Cochran 1977, Buckel et al. 1999). Due to limited 

sample size, fish were pooled by species across size classes and month of sampling, 

and % F and % W calculated by habitat type. If a species showed indication of diel 

feeding activity during the 24-hour survey (i.e., statistically significant difference in 

stomach fullness by Set Time), % F and % W were also estimated by habitat type from 

stomach content data taken during hours of increased feeding activity. Prey categories 

used to calculate diet indices are described in Table 3. For a given species, the % F of 

prey type k (percent of stomachs containing prey type k) was estimated as: 

%	𝐹8 = 	
𝑀.

:
.;< 𝑝.8

𝑀.
∗ 	100 

Where 

𝑝.8 = 	
𝑚.8

𝑚.
 

And where  
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- 𝑛 = Number of clusters that contain species x 

- 𝑀. = Number of individuals of species x collected in cluster i 

- 𝑚.= Number of individuals in a subsample of species x analyzed for diet from 

cluster i 

- 𝑚.8= Number of individuals in the subsample with food type k in cluster i. 

The %W of prey type k was estimated for a given species as 

%	𝑊8 = 	
𝑀.

:
.;< 𝑞.8

𝑀.
	∗ 100 

Where 

𝑞.8 = 	
𝑤.8
𝑤.

 

And where 

- 𝑤.= Total weight of all identifiable prey in a subsample of the fish from cluster I 

analyzed for diet 

- 𝑤.8 = Weight of prey type k in the subsample from cluster i 

I used Permutational Multivariate Analysis of Variance (PERMANVOVA) to test for 

differences in overall diet composition between the two habitat types. PERMANOVA is 

a non-parametric multivariate technique that allows for the significance testing of 

differences between groups using distance matrices (Anderson 2001, McArdle & 

Anderson 2001). Sources of variation in a distance matrix are partitioned into pre-

specified factor levels, and permutation tests used to generate a pseudo-F statistic and 

subsequent p-value. For each species, one-way PERMANOVA tests were conducted 

using Bray-Curtis dissimilarity matrices generated from % F and % W observations 

(calculated at the cluster level). Statistical significance was set at the 𝛼 = 0.1 level. If 
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significant differences between habitat were indicated by PERMANOVA, similarity 

percentage (SIMPER) was used to identify the prey types contributing most prominently 

to between-group dissimilarity (Clarke 1993, Clark & Warwick 2001). PERMANOVA 

and SIMPER calculations were conducted using R package vegan (Oksanen et al. 2017). 

Habitat Contributions to Overall Diet 

The potential contribution of reef-associated prey to overall fish diet was assessed 

by assigning each prey type a habitat category (Reef-enhanced, Control-enhanced, 

Unknown, Both), based on prey abundance in the environment (Table 3). Estimations of 

% W (monthly survey) for were then summed by habitat category and qualitatively 

compared between species and habitat of collection (Reef or Control). Habitat 

contributions were also calculated for any species showing signs of diel feeding activity.  

Data regarding prey available in oyster reef habitat were available from a field 

survey in the LRS, conducted with settlement trays (0.122 m2 x 15 cm deep, 1.0 mm 

mesh liner) embedded in the reef matrix by divers and retrieved after six weeks (Karp 

2016; Table 4). Trays were deployed during the summers of 2014 and 2015 (June – July) 

at four restored oyster reefs sites, including all three restored reefs sampled for fishes in 

this thesis. Mean total biomass did not differ significantly between years (Analysis of 

Similarity; R = 0.096, P = 0.053). Mean total abundance of prey types did differ 

significantly between years, and some change in species composition was observed 

(Analysis of Similarity; R = 0.391, P = 0.001).  

Potential prey in control habitats were sampled in August 2014 with a suction 

sampling apparatus at two sites within the Lynnhaven River, located between 300 – 1000 

m distant from control sites sampled for fishes (1-mm-mesh; suctions taken to 15 – 20cm 
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in depth in the sediment; Seitz & Karp unpublished data; Table 4). These samples were 

collected from shallower depths (~1.5 m) than the control sites where fish were collected. 

Only biomass data were available, and so I also used data available from previous studies 

of Lynnhaven River benthic fauna in unstructured habitats to inform habitat category 

designations (Lawless & Seitz 2014). For example, mean polychaete biomass recorded in 

restored oyster reef habitat was greater compared to mean polychaete in control habitat, 

but polychaetes are known to occur, occasionally in high densities, in unstructured soft 

sediments. Thus, they were listed as available in both habitats (Lawless & Seitz 2014).  

Because these mean biomass and abundance values were averages across sites 

(for both habitats) and years (for oyster reef habitat), they did not capture site-level or 

annual differences in prey field composition. Benthic prey can be patchily distributed and 

(as seen in the oyster reef prey data) can vary significantly year-to-year (Karp 2016); this 

heterogeneity was not captured this analysis. Ideally, the prey field in both habitat types 

would be sampled using similar methods; unfortunately, such data were not available. 

Prey Selectivity by Fishes in Oyster Reef Habitat  

Feeding selectivity was quantified by comparing the relative proportion of prey in 

stomach contents to the relative proportion of benthic prey in the environment 

(Lechowicz 1982). I examined selectivity for oyster reef-caught fishes only because I 

considered the oyster reef benthic prey data more rigorous (greater sample size, 

alignment with fish sampling sites, two years of sampling) and more reflective of the 

prey field in that habitat compared to the unstructured bottom benthic prey data. For each 

species, I evaluated selectivity for the 2 - 4 highest contributing prey types (by % W) for 

which environmental prey data were available. Two electivity indices were calculated to 
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assess selectivity for the selected prey types. Ivlev’s electivity (E) for a particular prey 

type i was determined as 𝐸. = 	 𝑟. − 𝑝. /	(𝑟. +	𝑝.), where the relative abundance of prey 

type i in fish stomachs is given by 𝑟., and the relative abundance of prey type i in the 

environment 𝑝.. Values for E range from -1.0 to 1.0, with positive values indicating 

preference for a given prey type and negative values avoidance (zero indicates random 

feeding). Ivlev’s foraging ratio (FR) for prey type i is determined as 𝐹𝑅. = 	 𝑟./𝑝. . FR 

values from 0 to 1 indicate negative selection, and values greater than 1 preference for a 

given prey type. For both metrics, % W estimated from the monthly survey stomach 

content data was used as 𝑟.. Both relative biomass and relative abundance of prey in the 

environment were used as 𝑝., and were calculated using mean biomass and mean density 

reported in Karp 2016. Relative biomass (and relative abundance) of prey type i was 

calculated as L.%M'44	N
$%&'(	L.%M'44

∗ 100. Prey types found in the environment were considered as 

potential prey if they occurred at least once in the stomachs of sampled fishes.  

Daily Consumption Rate Estimates 

Individual daily consumption (g prey consumed g predator-1  day-1) can be 

estimated over a specified period using a gastric evacuation model of the form 

𝐶P = 24 ∗	𝐸. ∗ 	𝑆.
, 

where 𝑆.
, is mean total stomach content weight of species i, and 24 the number of hours 

in a day.	𝑦 is a constant and typically set equal to 1 (Link et al. 2002). The gut evacuation 

rate 𝐸 (hour-1) is given by  

𝐸. = 𝛼 ∗ 𝑒V∗$W 

where 𝛼 and 𝛽 are constants and 𝑇Z is average daily temperature. This model assumes 

that fish feed continuously at a constant rate, but stomach samples collected over 
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sufficiently short time periods can yield reasonably unbiased consumption estimates in 

the event this assumption is not met (Durbin et al. 1983).  

Stomach fullness and environmental data collected during the 24-hour survey 

were used to estimate individual daily consumption by habitat for one of the sampled 

species, silver perch (Bairdiella chrysoura). Separate estimates were generated for July 

and September. 𝑆.
, was set equal to mean daily stomach fullness (g prey g predator-1  day-

1). Stomach fullness values from individual fish were first averaged by 4-hr sampling 

period, resulting in 6 separate estimates of stomach fullness per habitat-month 

combination. I then averaged all 6 estimates to obtain a daily average value of stomach 

fullness. I set  𝑇Z	to the mean water temperature recorded in situ during sampling (July 

𝑇Z	= 29.88 °C; September 𝑇Z	= 24.57 °C). Standard values of 𝛼 and 𝛽 in the literature are 

0.004 and 0.115, respectively (Link et al. 2002). Because the applicability of 𝛼 and 𝛽 to 

silver perch is not known, consumption estimates were generated by adding random 

variability to these constants. New values for 𝛼 and 𝛽 were drawn randomly at the start 

of each iteration from uniform distributions with a range of ½ to 1.5x the standard 

literature value. I input these values into the consumption equation (along with the other 

parameters described above) to generate a single estimate of daily consumption for both 

oyster reef and control habitats.  

This process was then repeated 1000 times to generate a distribution of 

consumption estimates for each habitat. Each iteration, I sampled the original set of 6 

stomach fullness estimates with replacement, calculated a new overall mean stomach 

fullness value, then input that value into the consumption equation with new randomly 

selected values for 𝛼 and 𝛽. The result of these repeated calculations was a set of 1000 
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mean consumption estimates for both oyster reef and control habitat in July and 

September. Standard error was determined as the standard deviation of the set of means.  

Mean daily consumption estimates from each habitat and month were then 

converted into consumption per individual (g prey fish-1  day-1) by multiplying the 

consumption estimate by the mean weight (wet weight, 0.01 g) of fish collected in each 

habitat type. Consumption per individual (total weight of prey consumed day-1) was then 

partitioned into specific prey groups using both the monthly and 24-hour survey % W 

estimations. To examine daily consumption on an energetic basis (i.e., as a measure of 

prey quality), the weight of prey item i consumed per day was multiplied by an estimate 

of the caloric density of prey item i, taken from the literature, to yield calories consumed 

per prey type per day (Table 5; Pope et al. 2001). Prey item caloric estimates were 

summed to yield an estimate of total calories consumed per day by habitat type.  

Finally, to assess if the energetic value of silver perch prey varied by habitat type 

(regardless of total amount prey consumed), I assumed oyster reef and control 

consumption rates were equal and repeated the above process. Specifically, I set total 

daily consumption to the level estimated for an oyster-reef-caught fish in July, then 

partitioned that total into specific prey categories the monthly and 24-hour survey % W 

estimates. Literature values of caloric density were used to determine calories consumed 

per prey type per day, then summed to yield an estimate of total calories consumed per 

day by habitat type. These results were qualitatively compared between habitats and with 

initial consumption estimates. 
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RESULTS 

Environmental Conditions 

Water temperatures increased steadily from April to August before declining in 

September and October (Figure 2a; Mean: 25.6 °C; Range: 17 – 31.7 °C). Polyhaline 

salinity conditions persisted throughout the majority of the study (Figure 2b; Mean: 22.77 

psu; Range: 15.5 - 26.23 psu), though reduced salinity was observed in October following 

heavy rainfall (Monthly Mean: 17.99 psu; Range: 15.5 – 21.2 psu). Dissolved oxygen 

remained normoxic throughout the study period (Figure 2c; Mean: 6.92 mg L-1; Range: 

4.08 to 9 mg L-1), suggesting any observed patterns in fish abundance and diet would not 

be the result of physiologically stressful low-oxygen conditions. 

Monthly Survey Fish Abundance  

In total, 1672 individuals from 16 different species were collected over the six-

month survey (Table 6). Leiostomus xanthurus (Spot), Brevoortia tyrannus (Atlantic 

menhaden), Bairdiella chrysoura (Silver perch), and Micropogonias undulatus (Atlantic 

croaker) were the four most abundant species captured and comprised over 90 % of the 

total catch. Relative abundance, or catch per unit effort (CPUE), increased from April to 

mid-summer in both habitat treatments, reaching a July peak in oyster reef habitat and an 

August peak in control habitat (Figure 3a). CPUE in both habitats declined in September 

and again in October. Water temperature was positively associated with overall catch in 

the most likely GLM, but overall catch was significantly lower in oyster reef habitat 

compared to control habitat (Table 7a; Table A4). 
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Monthly Survey Species-Specific Abundance 

I evaluated species-specific catch rates for the top three most-abundant non-filter-

feeding fishes: spot, silver perch, and Atlantic croaker, all members of the Sciaenid 

(drum) family. Spot CPUE followed a pattern similar to overall CPUE, increasing from 

April to August before declining in both September and October (Figure 3b). The most 

likely statistical model (with the lowest AIC value and highest weight) also indicated 

significant effects of both water temperature and habitat (Table 7b; Table A4). Water 

temperature exhibited a significant positive relationship with spot catch, while the 

relationship of oyster reef habitat with spot catch was negative (Table 7b).  

Silver perch were collected at low levels of abundance (mean CPUE < 2 fish hour-

1) over the study period (Figure 3c). I did not capture silver perch at control sites in 

September, and mean oyster reef CPUE exceeded control CPUE in July. This July-Reef 

interaction was statistically significant and positive in the most likely GLM, supporting 

the observed increase in CPUE (Table 7c). Examination of raw data from July indicated a 

gill net set with a value significantly different from the other values (CPUE: 13.82 fish 

hour-1; Grubbs Test; P < 0.01). When this outlier was removed and the data modeled 

again, no model performed better than the intercept-only model, suggesting no 

discernable between habitat type and silver perch abundance (Table A4).  

Overall CPUE for Atlantic croaker was lowest among the three sciaenids 

examined, and did not exceed 1 fish hour-1 for either habitat type (Figure 3d). Because 

abundance of Atlantic croaker was low throughout the sampling period, I instead chose to 

model the presence or absence of croaker from two size classes: < 190 mm (hereafter, 

‘small’) and >190 mm (hereafter, ‘large’; Figure 4). I assumed a binomial distribution 
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with the logit link, employed the same suite of predictor variables as before, and selected 

top models using AIC-based model selection (Table A5). The most likely GLM for large 

croaker indicated a significant influence of habitat on the probability of fish presence; 

specifically, large croaker were more significantly likely to occur in oyster reef habitat in 

July, August, and October (Table 8a). I selected a GLM including habitat type to describe 

small croaker presence, and results indicated small croaker were significantly more likely 

to occur in control habitat compared to oyster reef habitat in June, July, and August 

(Table 8b). Though this model had a higher AIC value compared to other candidate 

models (Table A5), the chosen model maximized parsimony (number of parameters = 2), 

allowed for a straightforward comparison with model selected for large croaker, and still 

represented a plausible hypothesis, given the data (models within 4 – 7 ∆AIC can be 

regarded as plausible; Burnham et al. 2011). 

Diet Analysis 

Stomach content analysis was conducted on 629 individuals from 14 species. The 

three most abundant non-filter feeders (silver perch, spot, and croaker) were selected for 

detailed analysis of mean stomach fullness and diet composition by species and habitat 

type. Croaker were the largest individuals collected in this study on average (by length), 

followed by silver perch, then spot (Table 9). Individual daily consumption rates were 

estimated for silver perch. Diet indices (% F & % W) were estimated for the remaining 

species, but no detailed analysis performed (Table A6-A7). 

Monthly Survey Stomach Fullness  

The effect of habitat type on mean stomach fullness varied by species. Silver 

perch exhibited higher levels of mean stomach fullness in oyster reef habitat compared to 
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control habitat across the study period (Figure 5a; Table 10a). Spot mean stomach 

fullness was greatest in June before declining in subsequent months (Figure 5b; Table 

10b). Mean stomach fullness of reef-caught spot tended to be less than control-caught 

spot, but this effect was not significant in the most likely GLM (Table 10b). For Atlantic 

croaker, mean reef stomach fullness appeared less than mean control stomach fullness 

(Figure 5c). The intercept-only model performed better than the model including habitat 

type, suggesting a significant difference between habitats was unlikely (Table A8).  

24-Hour Survey Stomach Fullness 

Analysis of mean stomach fullness during the 24-hour survey revealed the 

influence of both time of day and habitat on fish foraging patterns. Habitat type was a 

significant predictor of mean stomach fullness in silver perch, and oyster reef individuals 

exhibited significantly higher levels of gut fullness than control individuals (Table 11a). 

Mean gut fullness of fish from both habitat types significantly increased in the nighttime 

(1:00 AM – 5:00 AM gill net set) and early morning (5:00 AM – 9:00 AM gill net set; 

Figure 6a; Table 11a).  

Spot mean stomach fullness patterns differed from those observed in silver perch. 

Oyster reef individuals displayed significantly lower values of mean stomach fullness 

relative to control fish (Table 11b). Fish collected during the second 24-hour sampling 

event in September also tended to have lower mean stomach fullness values than fish 

collected in July (Table 11b). Time of day was not included as a parameter in the most 

likely GLM, and graphical examination of the data suggested relatively similar levels of 

mean stomach fullness across the 24-hour cycle (Figure 6b). 
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Croaker were not collected from the control site or during the September 

sampling event in sufficient numbers to statistically compare stomach fullness between 

habitats or months. Mean stomach fullness appeared to peak around dusk (5:00 PM – 

9:00 PM gill net set; Figure 6c), but a model fit to the data including the variable Set 

Time did not perform better than an intercept-only model (Table A9).  

Monthly Diet Composition  

Silver perch fed most frequently on polychaete worms and snapping shrimp 

(Alpheus heteorchaelis) in oyster reef habitat (> 10 % F; Figure 7 – upper panel). Other 

prey, including mysid shrimps (primarily the opossum shrimp, Neomysis americana), 

fishes (including the naked goby, Gobiosoma bosc), and crabs were encountered 

infrequently (< 10 % F). Polychaete worms and snapping shrimp dominated the bulk of 

oyster reef diet by weight, together comprising nearly two-thirds % W (Figure 7 – lower 

panel). Mysid shrimps constituted the most frequent prey item encountered in control 

fish, along with amphipods, isopods, and other unidentified crustaceans. Polychaetes 

were encountered fairly often in control fish (> 10 % F), but snapping shrimp were not 

found. Control fish % W was spread amongst three major prey groups: mysids, 

polychaetes, and amphipods-isopods. Some unidentified material was recovered during 

stomach content analysis of silver perch and the other sciaenids. This category included 

prey items too degraded or decomposed to adequately assign a lower level of 

classification. Overall silver perch diet composition as measured by % F differed 

significantly by habitat type (One-Way PERMANOVA; F = 1.96; P = 0.047). SIMPER 

results indicated unidentified crustaceans, mysids and snapping shrimp, polychaete 

worms, and amphipods/isopods contributed most prominently to observed dissimilarity 
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between the two habitat groups (Table 12a). None of the species, however, exhibited the 

high dissimilarity – standard deviation ratios (> 1.5) expected of a reliable discriminating 

species. Habitat type also explained a significant portion of the overall variance in the % 

W dissimilarity matrix (One-Way PERMANOVA; F = 1.94; P = 0.036), and SIMPER 

analysis suggested the same suite of prey contributed most to the observed dissimilarity 

(Table 12b). 

For spot, polychaete worms were the primary prey type consumed from both 

habitat types (Figure 8 – upper panel). Copepods (primarily benthic copepods of the order 

Harpacticoida) were also frequently encountered, though to a lesser degree in control 

habitat (% F = 22) than reef habitat (% F = 44). Small crustaceans (amphipods, isopods, 

mysid shrimps) were encountered infrequently, as well as a variety of non-polychaete 

worms (including nematodes, oligochaetes, and nemerteans). Tunicates were recovered 

from approximately 10 % of spot stomachs from oyster reefs, but not from any control 

fish stomachs. Polychaetes contributed principally to overall prey weight in both habitat 

types (over 75 % W; Figure 8 - lower panel). One-way PERMANOVA results for both % 

F and % W indicated significant overall differences between habitat (% F: F = 2.0725; P 

= 0.098; % W; F = 2.28; P = 0.072). SIMPER analysis suggested that these dissimilarities 

were primarily attributable to polychaetes, copepods, and unidentifiable material, but 

dissimilarity – standard deviation ratios did not indicate any of these groups to be a 

reliable discriminating species (Tables 12c & 12d). 

Croaker collected from both reef and control habitats foraged most frequently on 

polychaete worms and bivalve clams (Figure 9 - top panel). These two prey types also 

contributed the most to overall prey weight, with polychaetes comprising over 60 % W in 
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both habitat types (Figure 9 - lower panel). Reef fish diet included mussels, shrimps, and 

fishes, as well as unidentified material. Control fish diet appeared less varied, including 

only mysid shrimps and fishes beyond the principal contributors. Overall diet 

composition did not vary significantly between habitat types for either % F (One-way 

PERMANOVA; F = 0.4613; P = 0.764) or % W (One-Way PERMANOVA; F = 0.202; P 

= 0.972). 

Silver Perch Diet Composition, Peak Feeding Hours 

When silver perch diet composition was examined in the hours of enhanced 

feeding (1 am – 9 am), overall diet composition as measured by either % F or % W did 

not differ significantly between habitats (One-Way PERMANOVA % F; F = 0.936; P = 

0.533; % W; F = 0.715; P = 0.676). Silver perch in both habitats primarily consumed 

small crustaceans (shrimps, amphipods, isopods, mysids), as well as fish and polychaetes 

(Figure 10). Grass shrimp were solely identified from the stomachs of reef fish. 

Amphipods, isopods, and sand shrimps (Crangon sp.) were more frequently encountered 

in control fish than oyster reef fish. Polychaetes occurred more frequently in oyster reef 

fish than in control fish, but contributed more to % W of control fish. Polychaete % W in 

reef-caught fish was much lower in the 24-hour survey compared to the monthly survey. 

Though snapping shrimp were absent from control stomachs during the monthly survey, 

they occurred relatively frequently in control stomachs (nearly 15 % W) during the peak 

feeding hours, and constituted a similar % W for both control and reef fish. Naked gobies 

constituted a greater proportion of diet by weight in reef fish compared to control fish, 

but unidentified fishes (possibly including gobies) were a more important contributor to 

control fish diet by weight. 
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Habitat Contributions to Overall Diet 

The overall contribution of reef-enhanced prey to diet observed during the 

monthly survey varied by species. While reefs contributed conservatively ~30 % of silver 

perch diet by weight, reef-prey comprised < 5 % of croaker and spot diet (Figure 11). 

Prey found in both habitat types constituted the bulk of diet by weight for all three 

species, and control-enhanced prey types contributed substantially only to the diet of 

Atlantic croaker. For silver perch collected during peak feeding hours, both reef-prey and 

prey found in both habitat types contributed to diet by weight, and over half of reef-

caught silver perch diet was comprised of reef-enhanced prey types (Figure 12). 

Prey Selectivity by Fishes in Oyster Reef Habitat  

The % W of polychaetes and snapping shrimp in the stomachs of reef-caught 

silver perch exceeded both the relative abundance and relative biomass of those prey in 

the environment (Figure 13). Ivlev’s FR and Ivlev’s E indicated positive selection for 

both of these prey types (Table 13). Crab % W exceeded crab relative abundance on the 

reef, but was much less than crab relative biomass on the reef (Figure 13). Positive 

selection for crabs was thus indicated only when relative abundance, not biomass, was 

used as 𝑝. to calculate FR and E (Table 13). The % W of naked gobies in the stomachs of 

silver perch was less than both relative abundance and relative biomass of naked gobies 

in the field, and selectivity metrics did not indicate positive selection (Figure 13; Table 

13). Reef-caught spot strongly selected for polychaetes. Polychaete % W greatly 

exceeded both the relative abundance and relative biomass of polychaetes in the 

environment, and all four selectivity calculations indicated positive selection (Figure 14; 

Table 13). Croaker demonstrated positive selection for both polychaetes and clams 
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(Figure 15; Table 13). When relative abundance, not biomass, was used as 𝑝. to calculate 

FR and E, both metrics provided evidence of positive selection for mussels; when relative 

biomass used as 𝑝., both indices were close to values suggesting ‘random feeding’ (Table 

13). Reef-caught croaker did not show any evidence for selection of naked gobies (Table 

13). 

Silver Perch Daily Consumption Estimates 

The estimate of daily consumption for silver perch in July (0.020 g prey g 

predator-1  day-1) in oyster reef habitat exceeded and was nearly double the estimates for 

silver perch in control habitat (0.011 g prey g predator-1  day-1; One-Sided Two-Sample t-

test; t = 28.45; p < 0.001). Similarly, the September estimate of mean daily consumption 

in oyster reef habitat (0.017 g prey g predator-1  day-1) also exceeded and was four times 

the control habitat estimate (0.003 g prey g predator-1  day-1 ; One-Sided Two-Sample t-

test; t = 87.45; p < 0.001). Similarly, the total daily caloric intake of an individual silver 

perch in oyster reef habitat greatly exceeded that of a silver perch in control habitat using 

% W estimated from either the monthly or 24-hour survey data (Table 14a). When the 

consumption rate was assumed to be equivalent between habitats (set at the July oyster 

reef estimate, 0.0201 grams prey gram predator-1  day-1), total daily caloric estimates 

varied by habitat and % W estimation (monthly survey vs. 24-hour survey; Table 14b). 

Using monthly % W estimations, total daily caloric intake by a reef fish still exceeded 

that of a control fish, but the difference was less than previously estimated. Using the 24-

hour % W estimations, control fish daily intake caloric intake exceeded that of reef fish 

by approximately 30 calories day-1. 
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DISCUSSION 

Restored sanctuary oyster reefs influenced the foraging of mobile estuarine fishes 

in the Lynnhaven River System (LRS), Virginia, but did not enhance the relative 

abundance of fishes. Restored reefs appear to serve as valuable forage habitat for silver 

perch, but further research is necessary to determine if they function similarly for spot or 

Atlantic croaker. Differences in functional morphology, foraging behavior, and prey 

preference likely drive observed patterns. The study provides useful insight into the 

mechanistic role of large restored reefs in Chesapeake Bay tributaries, and it highlights 

the importance of incorporating species-specific responses and trophic dynamics into the 

study of oyster reef ecosystem services. 

Silver Perch Consumption  

This study suggests that the daily consumption rate of a mobile estuarine fish, 

silver perch, varies between restored oyster reef habitat and unstructured bottom in the 

LRS. A hypothetical silver perch foraging exclusively in oyster reef habitat is predicted 

to consume both a greater amount of prey and more total calories daily compared to a 

similar fish foraging in unstructured bottom. The diet composition of reef-captured silver 

perch, however, was not necessarily more energetically favorable than the diet 

composition of control-caught silver perch; when an identical consumption rate was 

applied, the total number of calories consumed was relatively similar between habitats. 

Instead, increased stomach fullness drove the between habitat difference in total daily 

caloric intake. This suggests that preferred prey types are more available in oyster reef 

habitat, compared to unstructured bottom, as they are perhaps concentrated into denser 

patches (Brandt et al. 1992, Rodney & Paynter 2006). 
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By aggregating preferred prey in high densities, restored reefs appear to enhance 

foraging success of silver perch, which in turn may positively affect the growth of these 

individuals. Increased prey availability and the amount of prey consumed can enhance 

growth rates of a number of species (Boisclair & Leggett 1989a, Sommer et al. 2001, 

Kennedy et al. 2008). Growth rates vary significantly both within and among 

populations, however, and are influenced by a range of factors besides consumption rate, 

including temperature, reproductive state, activity rate, prey energy density, and body 

size (Boisclair & Leggett 1989b, Hewett & Kraft 1993). Further research is needed to 

investigate whether increased consumption in oyster reef habitat translates into increased 

growth rates of individual silver perch.  

Field-based estimates of daily consumption by other sciaenid fishes have reported 

values similar to this study. Daily consumption of age 0 - 1 red drum (Sciaenops 

ocellatus) in North Carolina marsh creeks was estimated between 1 – 4 % total body 

weight, and whitemouth croaker (Micropogonias furnieri) consumed between 0.9 – 5.3 % 

body weight in a Brazilian estuary (de Figueiredo & Vieira 2005, Facendola & Scharf 

2008). Field-based consumption estimates tend to be biased low; in this study, small 

numbers of fish collected (particularly during the day) and a limited number of diel 

sampling events may have influenced my estimates. Given maintenance and growth 

needs, it is likely that silver perch individuals of the size range examined consume a 

greater amount of food daily than estimated in this study. These biases apply to both 

habitat types, and the significance difference in consumption rates between restored reef 

and unstructured bottom still warrants further investigation. 
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The estimates of silver perch daily consumption by habitat type (0.3 - 2 % body 

weight) from this study are low relative to laboratory- and model-based estimates. For 

instance, a calibrated bioenergetics model estimated consumption rates ranging from 6 to 

38% (Mean: 14.5 %) for young-of-year silver perch inhabiting Chesapeake Bay seagrass 

beds (Sobocinski & Latour 2015). Consumption rates tend to decline as fish grow larger 

(Facendola & Scharf 2008), and published silver perch length-at-age data suggest fish 

collected in this thesis likely represent large young of year or age 1+ fish (Tuckey & 

Fabrizio 2016). This may account for some of the difference observed between studies. 

Diet Composition & Habitat 

Benthic prey dominated the diet of silver perch, spot, and croaker, regardless of 

habitat, highlighting the importance of benthic productivity to the trophic ecology of 

these fishes in Chesapeake Bay. Studies of fish food habits in the Bay mainstem also 

attribute the majority of fish consumption to non-pelagic prey types (Idhe et al. 2015, 

Bucheister & Latour 2016). Researchers in other shallow-water Bay habitats (seagrasses, 

salt marshes, etc.) have identified the importance of benthic prey as well (Hines et al. 

1990, Cicchetti & Diaz 2007, Sobocinski 2014).  

The presence of reef-related prey in fish stomach contents provides direct 

evidence that restored sanctuary reefs in the LRS are linked to mobile fishes via predation 

of reef-derived prey. This study indicates epibenthic crustaceans, polychaetes, resident 

reef fishes, and tunicates serve as linkages between restored oyster reef habitat and the 

three sciaenids studied, though the relative importance (as indicated by selectivity 

metrics) of these prey types to overall diet varied significantly by species. 
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Species-level differences in diet composition and the amount of reef-prey 

consumed are likely attributable to differences in mean body size and functional 

morphology. Fish length (body size) is a strong determinant of diet, and changes in body 

and gape size influence the kinds of prey consumed (Buchheister & Latour 2016). 

Observationally, croaker and silver perch tended to contain larger prey items (length or 

carapace width) compared to spot. Differences in functional morphology (form and 

function of feeding apparatus and digestive systems) amongst the scieanids manifest 

early in development and allow these sympatric species to partition the estuarine 

environment (Chao & Musick 1977, Horodysky et al. 2008, Deary & Hilton 2015, Deary 

et al. 2016). For instance, silver perch display terminal mouths and an oblong body, 

enabling anterior feeding on prey in the water column (Chao & Musick 1977, Deary & 

Hilton 2015). Croaker and spot have inferior mouths, along with shorter and deeper body 

forms, better adapted to benthic-oriented feeding habitats. Spot and croaker differ in their 

feeding apparatus (e.g., number and kind of pharyngeal teeth and gill rakers) and 

associated behavior (spot tend to forage deeper into the sediments; Chao & Musick 

1977). Generally, these differences are reflected in diet results of this study, where silver 

perch consumed a broad diet including epibenthic and pelagic crustaceans and fish, 

croaker consumed a mix including polychaetes, bivalves, shrimps and fishes, and spot 

consumed primarily infaunal polychaetes and meiofauna. 

Some diet items of silver perch were exclusively reef-derived and serve to transfer 

production from the reef to higher trophic levels. Of particular importance to silver perch 

diet were big-clawed snapping shrimp (Alpheus heterochaelis), identified from both 

monthly survey and 24-hour survey. Silver perch also appeared to consumed snapping 



	

	 33 

shrimp preferentially, as evidence by positive selectivity metrics, perhaps due to snapping 

shrimp’s high energy density. Reported food sources for A. heterochaelis include small 

invertebrate fauna (worms, amphipods), detritus, benthic microalgae, and particulate 

organic matter (Abeels et al. 2014). Snapping shrimp likely serve as a conduit of reef-

associated primary production, basal secondary production, and detritus to silver perch in 

the LRS. Significant consumption of epibenthic crustaceans has also been observed in 

other oyster reef-trophic studies. For instance, snapping shrimp comprised between 9 – 

40 % of the diet of sheepshead (Ariopsis felis), common snook (Centropomus 

undecimalis), ladyfish (Elops saurus), grey snapper, and red rum in Florida (Wasno 

2014), and mud crabs nearly 50 % of the diet of juvenile grey snapper in Loxahachee 

Bay, Florida (Yeager & Layman 2011).  

The occurrence of snapping shrimp in the stomachs of control-caught silver perch 

during peak evening feeding hours suggests connectivity (movement) between reef and 

unstructured habitats by actively foraging individuals. While snapping shrimp occur at 

high densities in restored oyster reefs within the LRS, they are absent from benthic 

samples taken in unstructured bottom. This implies prior consumption of snapping 

shrimp elsewhere besides the control habitat in which the silver perch were caught. Many 

estuarine fishes display short-term movement related to feeding on the scale of 10s – 

1000s of meters (Dance & Rooker 2015, Fodrie et al. 2015, Moulton et al. 2017), and 

habitat connectivity is hypothesized to promote both biodiversity and productivity in 

aquatic systems (Sheaves 2009, Bostrom et al. 2011, Nagelkerken et al. 2015). Silver 

perch are likely integrating their prey resources over various habitats to compensate for 

differential prey availability, predation risk, or other factors (Dalghren & Eggleston 2000, 
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Able et al. 2007). Future studies combining diet analyses with estimates of home range 

and site fidelity (e.g., via tagging or acoustic telemetry) would help better understand the 

links between fish diet, consumption, and discrete habitat types. 

Several benthic prey associated with oyster reefs and found to be important in 

previous reef-trophic studies contributed less than expected to the diets of fish examined 

here. Crabs, and in particular, mud crabs (Xanthidae), comprise a substantial portion of 

macrofauna biomass on oyster reefs in the LRS, but evidence for selection by reef-caught 

fishes in this study was mixed and crabs contributed little to either % F or % W. Several 

studies have indicated substantial consumption of mud crabs by transient fish (Lenihan et 

al. 2001, Yeager & Layman 2011, Wasno 2014). For instance, mud crabs composed 

nearly 40 % of the diet of Atlantic croaker collected from a constructed oyster reef in 

Barataria Bay, Louisiana (Simonsen & Cowan 2013). Amphipods are present in high 

numbers on reefs in the LRS (Karp 2016), and silver perch and croaker in particular are 

known to forage on amphipods (Kleypas & Dean 1984, Nye et al. 2011). This 

underrepresentation of mud crabs and amphipods in reef caught fish diets may be driven 

by size of fish studied here, or by more complex predator-prey-habitat interactions, where 

prey selection is determined by both predator foraging behavior, structural complexity, 

availability of refuge, and prey behavior (Scharf et al. 2000, Scharf et al. 2006). 

Regardless, these results suggest restored reef macrofauna are not equally available to all 

predators. Rather, both prey identity and predator identity should be taken into account 

when considering trophic links between resident benthic prey and mobile fishes. 

Polychaete worms were particularly important in the diets of all three sciaenids in 

both habitat types, as suggested by the high frequency occurrence, significant percent 
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weight contributions, and positive selectivity metrics. Polychaetes were also the dominant 

prey type within the habitat category of prey available both on reef and in unstructured 

habitat. In soft-sediments, polychaetes constitute the majority of infaunal abundance, and 

they are routinely identified as a dominant prey group for demersal fishes (Gillett & 

Schaffner 2009, Nye et al. 2011, French et al. 2013, Buchheister & Latour 2015). Feeding 

along the edges of structure or in the soft sediments adjacent to structure is also a 

foraging tactic identified for reef-associated fishes (Posey & Ambrose 1994, Langlois et 

al. 2005). The presence of polychaetes in reef-caught fish stomachs could again suggest 

habitat connectivity; fishes caught on the oyster reefs may be foraging for polychaetes in 

adjacent or nearby soft-sediments. 

Alternatively, sciaenids may be foraging on polychaetes in abundance on oyster 

reefs (Karp 2016). Restored oyster reefs in the LRS are known to support polychaetes 

worms (particularly large-bodied, errant polychaetes, like the clamworm Alitta succinea) 

at densities equal to or greater than those in surrounding soft-sediments (Lawless & Seitz 

2014, Karp 2016, Seitz & Karp unpublished data). This study did not specifically identify 

polychaete prey to species level, due to the challenges associated with identification of 

partially digested, soft-bodied worms. Qualitative observations suggest the polychaetes 

found in the stomachs of some fish from reef habitat (especially silver perch and croaker) 

tended to be large-bodied worms. Future work could shed light on the accessibility of 

reef-associated polychaetes to mobile fishes, how that accessibility changes as a function 

of predator size, prey density, and structural complexity, and the relative profitability of 

feeding on polychaetes from oyster reefs compared to unstructured bottom. Combining 

traditional stomach content analysis with DNA-based approaches may also assist with 
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fine-scale resolution of soft-bodied prey (Carreon Martinez et al. 2011, Pompanon et al. 

2012). Given the frequency of polychaete consumption by reef-caught fishes and the 

abundance of polychaetes on oyster reefs, it is reasonable to conclude that some portion 

of the identified polychaetes in the stomachs of croaker and silver perch originated from 

oyster reef habitat. This would increase the percent contribution of reef-derived prey 

estimated here (the estimates treated polychaetes as prey available in both reef and 

unstructured habitats) and suggests reefs are more important than shown in this study.  

Spot in both habitat types frequently consumed benthic meiofauna (copepods, 

nematodes, nemerteans, etc.), though these prey types contributed little to overall diet by 

weight, mainly due to their small size and the impacts of digestion. Benthic meiofauna 

occur in high abundance in shallow, soft-sediment habitats and are known prey for spot, 

especially juveniles (Coull 1990, Feller et al. 1990, Akin & Winemiller 2012). There is 

little published research regarding the distribution patterns of benthic meiofauna on 

oyster reefs, and at present it is unclear whether the presence of copepods as prey in reef-

caught fish reflect habitat connectivity (movement between habitats), reef-edge foraging, 

or the presence of available benthic meiofauna on oyster reefs.  

Relative Abundance & Habitat Use Patterns 

Contrary to initial expectations, large restored reefs supporting high densities of 

oysters did not harbor an increased relative abundance of mobile fishes, but seasonal 

patterns were observed. Previous studies have shown similar patterns and suggested 

landscape position and habitat redundancy as mechanisms explaining equivalent or 

reduced fish catches in restored reef habitat (Grabowski et al. 2005; Gregalis et al. 2009; 

Geraldi et al. 2009; Gain et al. 2017). Other natural and anthropogenic habitats known to 
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harbor both juvenile and adult fishes (including fringing salt marsh, tidal creeks, and 

cage-aquaculture operations) occur throughout the LRS near the study sites; these 

habitats may provide alternative locations for shelter and foraging (Minello et al. 2003; 

Ruiz et al. 2003; Sheaves et al. 2005; Powers et al. 2007). Additionally, estimates of 

relative abundance in this study were based on a monthly survey that occurred only 

during daytime hours. Many fish are more active at dusk, night, and dawn than in the 

daytime, and thus may be less vulnerable to a daytime survey (Rountree & Able 1992, 

Clark et al. 2003). Gill nets are also highly size selective, and even with multi-panel nets, 

many fish may have remained untargeted (Hamley 1975).  

Beyond habitat type, water temperature emerged as an important and positive 

predictor of relative abundance. Temperature is a primary determinant of fish habitat 

quality and drives seasonality by playing play key roles in recruitment (timing and 

success) and movement (Houde 2008, Hayes et al. 2009). Fish abundance in Chesapeake 

Bay increases in spring and summer as temperatures warm, estuarine-dependent and 

coastal species move inshore and to shallow waters, and new recruits arrive in the estuary 

(Murdy et al. 1997, Jung & Houde 2003). Abundance declines again once water 

temperatures begin to cool and fish move to deeper or offshore waters. The summertime 

peak in relative abundance observed suggest the monthly survey captured the strong 

seasonality of the Chesapeake Bay fish assemblage.  

For spot, there were some habitat patterns detected, possibly the result of foraging 

behavior. Lower numbers of spot were found restored oyster reef compared to 

unstructured bottom, and reef-caught spot exhibited lower levels of stomach fullness. 

Field and lab studies have suggested food has a strong effect on spot distribution in 
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estuaries, even stronger than the effect of predators or predation risk (Miltner et al. 1995, 

Craig et al. 2007). Given the importance of infaunal organisms in spot diet and the 

availability of those prey in unstructured, soft-sediments, the combination of greater prey 

availability or increased foraging efficiency in control habitat may drive the observed 

pattern in the relative abundance of spot. These findings highlight the usefulness of 

combining abundance data with stomach fullness and diet composition data to better 

understand patterns of habitat use in the field. 

There were some differences in habitat use by fish size, as large croaker were 

caught more frequently in restored oyster habitat, while small croaker were caught more 

frequently in unstructured bottom. In the Piakatank River, a sub-estuary of the 

Chesapeake Bay, larger Atlantic croaker were also captured over oyster reef bottom, 

compared to unstructured bottom (Harding & Mann 2001b). Increased prey availability 

and the availability of larger-sized prey on restored oyster reefs may drive observed size-

dependent habitat use by croaker (Scharf et al. 2000, Costa 2009). Limited sample size 

prevented an in-depth examination of croaker diet by size and habitat type, and future 

studies comparing prey size structure on reefs and unstructured bottom with croaker diet 

and habitat use could help better understand the observed pattern. 

Conclusions 

Overall, this study indicates sanctuary restored oyster reefs constructed within the 

past decade in Chesapeake Bay are utilized by both juvenile and adult stages of estuarine-

dependent, mobile fishes, and restored reefs may influence relative abundance, 

distribution, and foraging patterns. Species that select for reef-associated prey types 

(epibenthic crustaceans, resident fishes, large-bodied polychaetes) and are capable of 
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foraging effectively in structured habitats may benefit from oyster reef restoration. 

Furthermore, diet analyses in this study and others indicate silver perch represent an 

important trophic link between primary consumers and pisciviores in estuarine food webs 

like Chesapeake Bay (Allen et al. 2001, Walter & Austin 2002, Latour et al. 2008, 

Sobocinski & Latour 2015). Model-based research suggests sustained increases in small 

forage fishes can enhance the biomass and productivity of commercial important fishery 

species (Buchheister et al. 2015). By positively influencing consumption rates and 

possibly increasing the growth of an ecologically important forage fish (e.g., silver 

perch), restored reef habitats may promote enhanced productivity of higher trophic levels 

in Chesapeake Bay. Finally, bioenergetics models linking restored habitats to fishes are 

necessary to develop quantitative predictions regarding the impacts of habitat restoration 

on fish productivity (NASEM 2017). Few studies have explicitly estimated required 

model parameters in the field, and none have done so for restored oyster reef habitat. By 

generating habitat-based estimates of consumption for silver perch, as well as estimating 

the percentage of oyster-reef-derived prey in the diet of three common sciaenid species, 

this study advances knowledge of foraging ecology and habitat importance and provides 

intriguing results for future work to enhance our understanding of the links between 

oyster reefs, fisheries production, and ecosystem services 
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Table 1: Candidate models for generalized linear and generalized linear mixed model analysis of 
fish relative abundance. k indicates model degrees of freedom, and Z indicates random effect term 
included in two models. Water Temp = Water Temperature; Habitat*Month = Interaction term 
between Habitat Type and Month.  

  Variables 
   x1 x2 x3 x4 x5 x6 𝑍 
Model k Intercept Habitat Month Tide Water 

Temp. 
Salinity Habitat*

Month 
Site 

g1 2 β0        

g2 3 β0 β1       

g3 7 β0 β1 β2      

g4 11 β0 β1 β2    β6  

g5 5 β0 β1  β3     

g6 4 β0 β1   β4    

g7 4 β0 β1    β5   

g8 9 β0 β1 β2 β3     

g9 5 β0 β1   β4 β5   

g10 8 β0 β1 β2     X 

g11 5 β0 β1   β4   X 
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Table 2: Candidate models for generalized linear model analysis of fish stomach fullness for the 
a) monthly survey and b) 24-hour survey. k indicates model degrees of freedom. 

 

B) 24-Hour Survey 

  Variables 
   x1 x2 x3 
Model k Intercept Habitat Month Set Time 

g1 2 β0    

g2 3 β0 β1   

g3 7 β0   β3 

g4 8 β0 β1  β3 

g5 5 β0 β1 β2  

g6 9 β0 β1 β2 β3 
 

	

 

 

 

 

 

 

 

 

A) Monthly Survey 

  Variables 
   x1 x2 

Model k Intercept Habitat Month 

g1 2 β0   

g2 3 β0 β1  

g3 8 β0 β1 β2 
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Table 3: Prey types used for calculation of diet indices (% F & % W) and assigned habitat 
categories. ‘Both’ indicates prey type found in both habitats, or quantitative prey data unavailable 
and assumed to co-occur; ‘Reef-enhanced’ indicates prey types found in higher abundance or 
biomass on restored oyster reefs compared to control bottom (unstructured soft sediments); 
‘Control-enhanced’ indicates prey type found in higher abundance or biomass in control bottom. 
‘Unknown’ used for unidentified material with uncertain habitat origin.   

Prey Type Details Habitat Category 

Fish  Unidentified teleost fish Both 

Anchovy Anchoa sp. (primarily Anchoa 
mitchilli) Both 

Goby Gobiosoma bosc Reef-enhanced 

Clam -- Control-enhanced 

Crangon Shrimp Crangon sp. (Sand shrimps) Both 

Snapping Shrimp Alpheus heterochaelis Reef-enhanced 

Grass Shrimp Palaemonetes sp. Reef-enhanced 

Shrimp Unidentified -- Both 

Mysid Shrimp Neomysis sp. Both 

Crabs Xanthid mud crabs and 
Callinectes sapidus (Blue crab) Reef-enhanced 

Amphipod or Isopod -- Reef-enhanced 

Crustacean Unidentified crustacean Reef-enhanced 

Polychaete -- Both 

Tunicate Molgula sp. Reef-enhanced 

Copepod primarily benthic copepods 
(Harpacticoida) Both 

Non-Polychaete Worms Nematodes, nemerteans, 
oligochaetes, etc. Both 

Unidentified Material 
Prey material too degraded to 
adequately classify or detritus-

like material 
Unknown 
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Table 4: Biomass and abundance of potential prey types in restored oyster reef and unstructured 
bottom (control) habitats. Reef prey sampled in 2014 – 2015 with settlement trays (n = 18), and 
control prey collected in 2014 using a suction sampling apparatus (n = 8). Abundance data 
available only for restored oyster reef habitats. AFDW = Ash free dry weight. Reef data from 
Karp 2016 and control data from Seitz & Karp unpublished data.  

Potential Prey Type 
Restored Reef Control 

Biomass 
(g AFDW m-2) 

Density 
(# ind. m-2) 

Biomass 
(g AFDW m-2) 

Amphipods & 
Isopods 0.06 538.25 0.00 

Barnacle 0.34 43.72 -- 

Grass Shrimp 
(Palaemonetes sp.) 1.43 123.41 -- 

Snapping Shrimp 
(Alpheus heterochaelis) 2.96 47.81 -- 

Crabs  
(Xanthid mud crabs & 

C. sapidus) 
 

22.28 112.93 0.15 

Clams 
 1.32 7.74 1.54 

Naked Goby 
(Gobiosoma bosc) 4.39 225.41 -- 

Gastropod 0.65 386.61 0.03 

Mussel 1.54 11.84 -- 

Polychaete 2.50 965.85 0.86 

Tunicate 
(Molgula sp.) 5.49 919.40 -- 

 

  



	

	 53 

Table 5: Energy (caloric) density of silver perch (Bairdiella chrysoura) prey types and source of 
values. Caloric density estimated in literature studies via bomb calorimetry. 

Prey Type Calories per g 
(wet weight) Source 

Fish Unidentified  1140.057 Steimle 1985 (Demersal fish) 

Anchovy (Anchoa sp.) 1073.70 MccCawley 2003 (Anchoa hepsetus) 

Naked Goby (Gobiosoma bosc) 1140.057 Steimle 1985 (Demersal fish) 

Clam 368.069 Steimle 1985 (Bivalves) 

Sand Shrimp (Crangon sp.) 1290.63 Steimle 1985 (Benthic malacostraca) 
Snapping Shrimp (Alpheus 
heterochaelis) 1290.63 Steimle 1985 (Benthic malacostraca) 

Shrimp Unidentified 1290.63 Steimle 1985 (Benthic malacostraca) 

Grass Shrimp (Palaemonetes sp.). 1290.63 Steimle 1985 (Benthic malacostraca) 

Mysid (Neomysis sp.) 714 Morris & Hopkins 1983 

Crabs  1290.63 Steimle 1985 (Benthic malacostraca) 

Amphipod or Isopod 684 Wissing et al. 1973 

Crustacean Unidentified 817 Cummins & Wuycheck 1971 

Polychaete 1094.646 Steimle 1985 

Tunicate 537.7629 Steimle 1985 

Copepod 663.9 Morris & Hopkins 1983 

Non-Polychaete Worms 600 Chosen from low range of lit. values 

Unidentified Material 600 Chosen from low range of lit. values 
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Table 6: Species collected in restored oyster reef and control habitats via gill net in the 
Lynnhaven River System during a monthly survey (April – October 2016). 

 Number of Individuals 
Scientific Name (Common Name) Oyster Reef Control 

Leiostomus xanthurus (Spot) 308 453 

Brevoortia tyrannus (Atlantic menhaden) 324 325 

Bairdiella chrysoura (Silver perch) 73 34 

Micropogonias undulatus (Atlantic croaker) 24 23 

Opisthonema oglinum (Atlantic thread herring) 17 17 

Mugil cephalus (Striped mullet) 8 15 

Dorosoma cepedianum (Gizzard shad) 6 15 

Pomatomus saltatrix (Bluefish) 6 5 

Prionotus carolinus (Northern sea robin) 4 2 

Cynoscion nebulosus (Speckled trout) 1 2 

Brama brama (Atlantic pomfret) 0 2 

Cynoscion regalis (Weakfish) 2 1 

Lagodon rhomboides (Pinfish) 1 1 

Eucinostomus argenteus (Spotfin mojarra) 0 1 

Pogonias cromis (Black drum) 0 1 

Menticirrhus saxatilis (Northern kingfish) 1 0 
   
Total Individuals 775 897 
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Table 7: Parameter estimates from the best fit generalized linear models for a) total fish, b) spot 
(Leiostomus xanthurus), and c) silver perch (Bairdiella chrysoura) catch. Bolded values indicate 
statistically significant estimates (𝛼 = 0.1	level). k = degrees of freedom. List of possible models 
given in Table 1, and AIC model rankings in Table A4. 

A) Total Catch 
Model: g6 
AIC = 599.66, k = 4 

Variable Estimate Std. Error Z-Statistic P 

(Intercept) -2.82 0.67 -4.23 <0.005 

Habitat: Reef -0.33 0.18 -1.83 0.07 

Water Temperature 0.16 0.02 6.27 <0.005 

     

B) Spot Catch 
Model g6 
AIC = 458.17, k = 4 

Variable Estimate Std. Error Z-Statistic P 

(Intercept) -7.32 1.11 -6.59 <0.005 

Habitat: Reef -0.49 0.26 -1.86 0.06 

Water Temperature  0.29 0.04 7.08 <0.005 

     

C) Silver Perch Catch  
Model: g4 
AIC = 205.11, k = 9 

Variable Estimate Std. Error Z-Statistic P 

(Intercept) -1.15 0.50 -2.29 0.02 

Habitat: Reef -0.48 0.71 -0.68 0.50 

Month: July -1.15 0.85 -1.35 0.18 

Month: August -1.60 0.86 -1.86 0.06 

Month: October -0.43 0.74 -0.58 0.56 

Habitat: Reef*Month: July 2.67 1.12 2.39 0.02 

Habitat: Reef*Month: August 0.97 1.17 0.83 0.41 

Habitat: Reef*Month: October -0.69 1.14 -0.61 0.54 
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Table 8: Parameter estimates from the best fit generalized linear models for a) large (> 190 mm) 
and b) small (< 190 mm) Atlantic croaker (Micropognias undulatus) presence or absence. Bolded 
values indicate statistically significant estimates (𝛼 = 0.1 level). List of possible models given in 
Table 1, and AIC model rankings in Table A5. 

A) Large Croaker  
Model: g2 
AIC = 75.02, k = 2 

Variable Estimate Std. Error Z-Statistic P 

(Intercept) -1.34 0.46 -2.93 <0.005 

Habitat: Reef 1.21 0.59 2.06 0.04 

 

B) Small Croaker  
Model: g2 
AIC = 50.91, k = 2 

Variable Estimate Std. Error Z-Statistic P 

(Intercept) -0.26 0.42 -0.62 0.53 
Habitat: Reef -1.68 0.75 -2.25 0.02 
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Table 9: Sample size (number of gill net sets and number of individuals) and size range of fish 
examined for stomach contents by species and habitat type in the a) monthly survey and b) 24-
hour survey. Lengths are total lengths. Total number of sets during monthly survey: Reef = 45, 
Control = 44. Total number of sets during 24-hour survey number: Reef = 13, Control = 12.  

 

	  

A) Monthly Survey  

Species Habitat Sets with 
Fish 

# of Fish 
Sampled 

Mean 
Length 
(mm) 

Range 
(mm) 

Silver perch 
(Bairdiella chrysoura) Control 14 28 124.9 109 - 152 

 
Reef 22 43 129.6 111 - 159 

      
Spot 
(Leiostomus xanthurus) Control 34 113 108.4 92 - 230 

 
Reef 33 114 109.0 93 - 234 

      
Atlantic croaker 
(Micropogonias undulatus) Control 15 22 188.6 106 - 330 

 
Reef 18 24 246.1 113 - 315 

 

B) 24-hour Survey 

 
Species Habitat Sets with 

Fish 
# of Fish 
Sampled 

Mean 
Length 
(mm) 

Range 
(mm) 

Silver perch  
(Bairdiella chrysoura) Control 11 28 128.3 110 - 157 

 Reef 12 42 126.4 106 - 148 
      
Spot  
(Leiostomus xanthurus) Control 11 66 113.9 96 - 234 

 Reef 13 57 134.7 95 - 270 

      
Atlantic croaker 
(Micropogonias undulatus) Control 4 8 186.4 160 - 277 

 Reef 8 27 255.3 189 - 288 
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Table 10: Parameter estimates from the best-fit generalized linear models for a) silver perch 
(Bairdiella chrysoura) and B) spot (Leiostomus xanthurus) stomach fullness during the monthly 
survey. Bolded values indicate statistically significant estimates (𝛼 = 0.1 level). List of possible 
models given in Table 2a, and AIC model rankings in Table A8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Silver Perch 
Model: g2 
AIC = 91.9, k = 3 

Variable Estimate Std. Error t-Statistic P 

(Intercept) -8.58 0.48 -17.93 <0.005 

Habitat: Reef 1.59 0.63 2.53 0.02 

 

B) Spot  
Model: g2 
AIC = 190.02, k = 7  

Variable Estimate Std. Error t-Statistic P 

(Intercept) -6.61 0.31 -21.15 <0.005 
Habitat: Reef -0.04 0.26 -0.14 0.89 
Month: July -1.33 0.42 -3.19 <0.005 
Month: August -1.47 0.37 -4.00 <0.005 
Month: September -1.18 0.43 -2.77 0.01 
Month: October -0.98 0.43 -2.30 0.03 
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Table 11: Parameter estimates from the best-fit generalized linear models for a) silver perch 
(Bairdiella chrysoura) and spot (Leiostomus xanthurus) stomach fullness during the 24-hour 
survey. Bolded values indicate statistically significant estimates (𝛼 = 0.1 level). List of possible 
models given in Table 2b, and AIC model rankings in Table A9. 

A) Silver Perch 
Model: g4 

AIC = 80.0, k  = 8 

Variable Estimate Std. Error t-Statistic P 

(Intercept) -8.07 0.75 -10.81 <0.005 
Habitat: Reef 1.07 0.54 1.96 0.07 
Set Time: 13:00 0.89 0.96 0.93 0.37 
Set Time: 17:00 0.27 0.96 0.28 0.78 
Set Time: 21:00 0.69 0.96 0.72 0.48 
Set Time: 01:00 2.99 1.04 2.87 0.01 
Set Time: 05:00 2.36 0.96 2.45 0.03 
     

B) Spot 
Model: g5 

AIC = 53.14, k  = 4 

Variable Estimate Std. Error t-Statistic P 

(Intercept) -6.72 0.25 -27.24 <0.005 
Habitat: Reef -0.61 0.29 -2.11 0.05 
Month: September -1.39 0.29 -4.81 <0.005 
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Table 12: Results of SIMPER Analysis between habitats for a) silver perch (Bairdiella 
chrysoura) % F, b) silver perch % W, c) spot (Leiostomus xanthurus) % F, and d) spot % W. Av. 
% F = Average % F; Av. % W = Average % W. Diss/SD = Ratio of average dissimilarity to 
standard deviation; % Contrib. = Percent contribution of prey type to overall dissimilarity; Cum. 
% Contrib. = Cumulative percent contribution of prey type to overall dissimilarity. 

A) Silver Perch % F. Average Dissimilarity: 90.72 

Prey Group Av. % F 
Control 

Av. % F 
Reef Diss/SD % Contrib. Cum. % 

Contrib. 

Crustacean Unidentified 36.19 1.92 0.82 17.94 17.94 

Mysid shrimp 33.33 8.97 1.08 15.47 33.41 

Snapping Shrimp 0.00 23.33 0.64 11.90 45.31 

Polychaete 24.29 6.15 1.15 10.87 56.18 

Amphipod/Isopod 14.76    0.00 0.69 8.97   65.15 

B) Silver Perch % W. Average Dissimilarity: 94.61 

Prey Group Av. % W 
Control 

Av. % W 
Reef Diss/SD % Contrib. Cum. % 

Contrib. 

Snapping Shrimp 0.00 33.62 0.72 17.77 17.77 

Mysid Shrimp 24.40 8.59 0.71 15.17 32.93 

Polychaete 15.43 15.98 0.88 13.88 46.82 

Amphipod/Isopod 18.96 0.00 0.64 10.02 56.84 
Fish Unidentified 0.00 16.67 0.44 8.81 65.64 

C) Spot % F. Average Dissimilarity: 57.87 

Prey Group Av. % F 
Control 

Av. % F 
Reef Diss/SD % Contrib. Cum. % 

Contrib. 

Polychaete 63.85 47.18 1.31 27.19 27.19 

Copepod 34.48 48.09 1.20 27.05 54.24 

Unidentified Material 16.81 24.33 0.90 17.75 71.99 

D) Spot % W. Average Dissimilarity: 47.02 

Prey Group Av. % W 
Control 

Av. % W 
Reef Diss/SD % Contrib. Cum. % 

Contrib. 

Polychaete 79.78 60.13 1.18 42.79 42.79 

Copepod 8.03 15.80 0.72 21.32 64.11 

Unidentified Material 8.42 11.20 0.56 18.35 82.46 
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Table 13: Ivlev’s Foraging Ratio (FR) and Electivity (E) indices for selected prey types of silver 
perch (Bairdiella chrysoura), spot (Leiostomus xanthurus), and Atlantic croaker (Micropogonias 
undulatus) collected from oyster reef habitat during the monthly survey. The symbol (+) suggests 
selection for a particular prey type, and (–) suggests avoidance. Biomass:Biomass indicates prey 
% W used as 𝑟. and relative prey biomass in the environment used as 𝑝. in index calculation. 
Biomass:Abundance indicates prey % W used as 𝑟. and relative prey abundance in environment 
used as 𝑝. in index calculation. 

Species Prey 
Groups 

Ivlev's FR Ivlev's E 

Biomass:
Biomass 

Biomass: 
Abundance 

Biomass:
Biomass 

Biomass: 
Abundance 

Silver perch  
 

Snapping 
Shrimp 3.25 (+) 15.6 (+) 0.53 (+) 0.88 (+) 

 
Polychaete 9.46 (+) 1.90 (+) 0.81 (+) 0.31 (+) 

 
Goby 0.28 (–) 0.42 (–) -0.56 (–) -0.40 (–) 

 
Crabs 0.11 (–) 1.64 (+) -0.81 (–) 0.24 (+) 

 
     

Spot  
 Polychaete 13.7 (+) 2.74 (+) 0.86 (+) 0.47 (+) 

 
Tunicate 0.60 (–) 0.28 (–) -0.25 (–) -0.56 (–) 

 
     

Atlantic croaker  Polychaete 11.8 (+) 2.36 (+) 0.84 (+) 0.40 (+) 

 
Clam 3.19 (+) 41.94 (+) 0.52 (+) 0.95 (+) 

 
Goby 0.03 (–) 0.05 (–) -0.93 (–) -0.90 (–) 

 
Mussel 0.87 (–) 8.75 (+) -0.07 (–) 0.79  (+) 
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Table 14: A) Estimates of silver perch (Bairdiella chrysoura) daily consumption (g prey 
consumed g predator-1 day-1), daily consumption per individual (g prey consumed fish-1 day-1), 
and total daily caloric intake (calories day-1) by habitat type and month. B) Total daily caloric 
intake by habitat type, estimated using % W estimations from the monthly and 24-hour surveys 
and identical daily consumption rates (set at the July-Reef estimate of 0.020 g prey consumed g 
predator-1 day-1). 

A) Varying Consumption Rates & Diet Composition 

Month Habitat Consumption 
(S.E.) 

Consumption 
per ind. 

Calories day-1 

(Monthly % W) 
Calories day-1 
(24-H % W) 

July Reef 0.020 (0.007) 0.514 585.4 590.6 

 Control 0.011 (0.006) 0.288 232.1 348.2 

Sept Reef 0.018 (0.005) 0.453 515.3 519.9 

 Control 0.003 (0.001) 0.074 60.1 90.1 

 

B) Identical Consumption Rates & Varying Diet Composition 

Month Habitat Consumption  Consumption 
per ind. 

Calories day-1 

(Monthly % W) 
Calories day-1 
(24-H % W) 

-- Reef 0.020 0.514 585.4 590.6 

 Control 0.020 0.514 414.9 622.2 
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Figure 1: Map of study location and sample sites in the Lynnhaven River System, Virginia, USA. 
Stars denote restored oyster reefs sites and circles denote unstructured bottom control sites.  
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Figure 2: Mean a) Temperature, b) Salinity, and c) Dissolved oxygen recorded at all sites during 
the study period (April – October 2016). Black points represent individual observations and red 
points represent the monthly mean. Loess smoothing function (dotted line) and estimated 95 % 
confidence interval (grey shading) added to visualize seasonal trends. Note the change in y-axis 
scales among plots. 
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Figure 3: Mean (± 1 s.e.) relative abundance (gill net catch per unit effort [CPUE]; number of 
fish caught hour-1) of fish by habitat type and month, April – October 2016. A) All fish collected; 
B) Spot (Leiostomus xanthurus); C) Silver perch (Bairdiella chrysoura); D) Atlantic croaker 
(Micropogonias undulatus). Note change in y-axis scales among plots. 
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Figure 4: Proportion of gill net sets with at least one a) large (> 190 mm) and b) small (< 190 
mm) Atlantic croaker (Micropogonias undulatus) by month and habitat type, April – October 
2016. 
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Figure 5: Mean (± 1 s.e.) stomach fullness (g prey g predator-1) of a) silver perch (Bairdiella 
chrysoura) b) spot (Leiostomus xanthurus) and c) Atlantic croaker (Micropogonias undulatus) by 
habitat type (silver perch & croaker) and month (spot). Small points indicate individual 
observations (mean fullness per gill net set). Note change in y-axis scales among plots.  
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Figure 6: Mean (± 1 s.e.) stomach fullness (g prey g predator-1) of a) silver perch (Bairdiella 
chrysoura), b) spot (Leiostomus xanthurus), and c) Atlantic croaker (Micropogonias undulatus) 
by habitat type and set time observed during the 24-hour survey in July and September 2016. 
Small points represent stomach fullness values of individual fish. Note change in y-axis scales 
among plots.  
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Figure 7: Mean (± 1 s.e.) frequency of occurrence (% F; upper panel) and percent by weight (% 
W; lower panel) of major prey types in the stomachs of silver perch (Bairdiella chrysoura) during 
the monthly survey, estimated by habitat type. Number of clusters (gill net sets) and number of 
fish sampled reported in upper panel. Prey types detailed in Table 3. Prey types plotted if they 
exceeded 3 % F.  

 

 Reef: 22 Sets, 43 Fish  
 Control: 14 Sets, 28 Fish

0

10

20

30

40

Fi
sh

A
nc

ho
vy

G
ob

y

C
ru

st
ac

ea
n

A
m

ph
ip

od
s/

Is
op

od
s

C
ra

b

M
ys

id
 S

hr
im

p

C
ra

ng
on

 S
hr

im
p

Sn
ap

pi
ng

 S
hr

im
p

Po
ly

ch
ae

te

U
ni

de
nt

ifi
ed

%
 F

re
qu

en
cy

 O
cc

ur
en

ce

Habitat
Control
Reef

0

20

40

Fi
sh

A
nc

ho
vy

G
ob

y

C
ru

st
ac

ea
n

A
m

ph
ip

od
s/

Is
op

od
s

C
ra

b

M
ys

id
 S

hr
im

p

C
ra

ng
on

 S
hr

im
p

Sn
ap

pi
ng

 S
hr

im
p

Po
ly

ch
ae

te

U
ni

de
nt

ifi
ed

Prey Type

%
 C

on
tr

ib
ut

io
n 

by
 W

ei
gh

t



	

	 70 

 

Figure 8: Mean (± 1 s.e.) % F (upper panel) and % W (lower panel) of major prey types in the 
stomachs of spot (Leiostomus xanthurus) during the monthly survey, estimated by habitat type. 
Number of clusters (gill net sets) and number of fish sampled reported in upper panel. Prey types 
detailed in Table 3. 
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Figure 9: Mean (± 1 s.e.) % F (upper panel) and % W (lower panel) of major prey types in the 
stomachs of Atlantic croaker (Micropogonias undulatus) during the monthly survey, estimated by 
habitat type. Number of clusters (gill net sets) and number of fish sampled reported in upper 
panel. Prey types detailed in Table 3. 
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Figure 10: Mean (± 1 s.e.) % F (upper panel) and % W (lower panel) of major prey types in the 
stomachs of silver perch (Bairdiella chrysoura) during peak feeding hours (1 am – 9 am) of the 
24-hour survey, estimated by habitat type. Number of clusters (gill net sets) and number of fish 
sampled reported in upper panel. Prey types detailed in Table 3. 
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Figure 11: Percent contribution by weight of prey-habitat categories to the diets of a) silver perch 
(Bairdiella chrysoura), b) spot (Leiostomus xanthurus), and c) Atlantic croaker (Micropogonias 
undulatus) collected from restored oyster reef and control habitats during the monthly survey. 
‘Both’ indicates prey types found in both habitats types; ‘Reef-enhanced’ indicates prey types 
found in higher abundance or biomass on oyster reefs compared to unstructured control bottom; 
‘Control-enhanced’ indicates prey types found in higher abundance or biomass in unstructured 
control bottom. ‘Unknown’ used for unidentified material with uncertain habitat origin. Habitat 
designations (Table 3) based on prey abundance and biomass data (Table 4). 
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Figure 12: Percent contribution by weight of prey-habitat categories to the diet of silver perch 
(Bairdiella chrysoura), estimated from stomach content data taken during peak feeding hours (1 
am – 9 am; 240-hour survey). ‘Both’ indicates prey types found in both habitats types; ‘Reef-
enhanced’ indicates prey types found in higher abundance or biomass on oyster reefs compared to 
unstructured control bottom; ‘Control-enhanced’ indicates prey types found in higher abundance 
or biomass in unstructured control bottom. ‘Unknown’ used for unidentified material with 
uncertain habitat origin. Habitat designations (Table 3) based on prey abundance and biomass 
data (Table 4). 
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Figure 13: Mean % F (Gut Frequency), % W (Gut Biomass), relative abundance (Reef 
Abundance), and relative biomass (Reef Biomass) of selected prey types in the stomachs of silver 
perch (Bairdiella chrysoura) and on restored oyster reefs. A) Crabs (Xanthid mud crabs & 
Callinectes sapidus), B) Naked gobies (Gobiosoma bosc), C) Polychaete worms, D) Snapping 
shrimp (Alpheus heterochaelis). 
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Figure 14: Mean % F (Gut Frequency), % W (Gut Biomass), relative abundance (Reef 
Abundance), and relative biomass (Reef Biomass) of polychaete worms in the stomachs of spot 
(Leiostomus xanthurus) and on restored oyster reefs. 
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Figure 15: Mean % F (Gut Frequency), % W (Gut Biomass), relative abundance (Reef 
Abundance), and relative biomass (Reef Biomass) of selected prey types in the stomachs of 
Atlantic croaker (Micropogonias undulatus) and on restored oyster reefs. A) Clams, B) Naked 
gobies (Gobiosoma bosc), C) Mussels, and D) Polychaete worms. 
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APPENDIX 

 
Table A1: Restored oyster reef site characteristics. Bold values exceed the target metrics 
established by Chesapeake Bay Program for oyster restoration. Data from Lipcius et al. 2015. 

Site Oyster Density 
(m-2) 

Oyster Biomass 
(g m-2) 

Total Reef 
Area (ha) 

Broad Bay Reef 3 55.4 31.1 4.86 

Linkhorn Bay Reef 1 49.3 42.0 3.24 

Linkhorn Bay Reef 2 74.8 117.5 5.67 
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Table A2: Species collected via otter trawl from restored oyster reef and unstructured (control) 
bottom in the Lynnhaven River System, April – July 2016. 

 Number of Individuals 
Scientific Name (Common Name) Oyster Reef Control 
Leiostomus xanthurus (Spot) 231 344 
Anchoa mitchilli (Bay anchovy) 182 293 
Micropogonias undulatus (Atlantic croaker) 23 19 
Bairdiella chrysoura (Silver perch) 15 2 
Anchoa hepsetus (Striped anchovy) 12 5 
Lagodon rhomboides (Pinfish) 6 2 
Opsanus tau (Oyster toadfish) 6 2 
Paralichthys dentatus (Summer flounder) 3 4 
Trinectes maculatus (Hogchoker) 2 4 
Brevoortia tyrannus (Atlantic menhaden) 1 0 
Hippocampus erectus (Lined seahorse) 1 0 
Orthopristis chrysoptera (Pigfish) 1 0 
Urophycis regia (Spotted hake) 1 0 
Chaetodipterus faber (Atlantic spadefish) 0 2 
Gobiosoma bosc (Naked goby) 0 1 
Menidia menidia (Atlantic silverside) 0 1 
Prionotus carolinus (Northern sea robin) 0 1 
Symphurus plagiusa (Black-cheek tonguefish) 0 1 
Callinectes sapidus (Blue crab) 61 52 
   
Total Individuals 545 733 
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Table A3: Species collected via gill net from one restored oyster reef and one unstructured 
(control) bottom in the Lynnhaven River System during two 24-hour sampling events in July and 
September 2016. 

 Number of Individuals 

Scientific Name (Common Name) Oyster Reef Control 
Leiostomus xanthurus (Spot) 77 231 

Bairdiella chrysoura (Silver perch) 52 28 

Micropogonias undulatus (Atlantic croaker) 27 8 

Pomatomus saltatrix (Bluefish) 5 2 

Cynoscion regalis (Weakfish) 3 0 

Trinectes maculatus (Hogchoker) 3 0 

Cynoscion nebulosus (Speckled trout) 2 0 

Lagodon rhomboides (Pinfish) 1 0 

Pogonias cromis (Black drum) 1 1 

Prionotus carolinus (Northern sea robin) 1 2 

Scomberomorus maculatus (Spanish mackerel) 1 0 

Lutjanus griseus (Gray snapper) 0 1 

Mentichirrus americanus (Southern kingfish) 0 3 

   

Total Individuals 173 276 
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Table A4: AIC results for generalized linear model analysis of fish abundance. A) Total fish, b) 
spot (Leiostomus xanthurus), c) silver perch (Bairdiella chrysoura) and d) silver perch (without 
outlier) catch. The five models with the lowest AIC values are listed for each response, and 
ranked in order of increasing AIC value. ∆AIC = difference in AIC from top model, k = model 
degrees of freedom, and wi = Akaike weights. Bold indicates best-fit model. See Table 1 for 
model descriptions. 

A) Total Catch  

Model k AIC ∆AIC wi 

g6 4 599.66 0.00 0.49 
g9 5 601.01 1.35 0.25 
g11 5 601.66 2.00 0.18 
g8 9 603.91 4.26 0.06 
g3 7 606.99 7.34 0.01 
     

B) Spot Catch  

Model k AIC ∆AIC wi 
g6 4 458.17 0.00 0.37 
g11 5 459.98 1.81 0.15 
g8 9 460.02 1.85 0.15 
g9 5 460.12 1.95 0.14 
g10 8 460.43 2.25 0.12 

     

C) Silver Perch Catch   
Model k AIC ∆AIC wi 

g4 9 205.11 0.00 0.41 
g3 6 206.80 1.68 0.18 
g1 2 207.21 2.10 0.14 
g2 3 208.33 3.22 0.08 
g6 4 209.21 4.10 0.05 
     

D) Silver Perch Catch (outlier removed)  

Model k AIC ∆AIC wi 
g1 2 187.17 0.00 0.48 
g2 3 189.16 1.99 0.18 
g3 6 190.98 3.81 0.07 
g7 4 191.16 3.98 0.07 
g6 4 191.16 3.99 0.07 
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Table A5: AIC results for generalized linear model analysis of Atlantic croaker (Micropogonias 
undulatus) presence or absence. A) Large (> 190 mm) and B) Small (< 190 mm) Atlantic croaker. 
The five models with the lowest AIC values are listed for each response, and ranked in order of 
increasing AIC value. ∆AIC = difference in AIC from top model, k = model degrees of freedom, 
and wi = Akaike weights. Bold indicates best-fit model. See Table 1 for model descriptions. 

A) Large Croaker  

Model k AIC ∆AIC wi 

g2 2 75.02 0.00 0.26 

g6 3 76.01 0.98 0.16 

g7 3 76.35 1.33 0.13 

g4 8 76.63 1.61 0.12 

g1 1 77.56 2.54 0.07 

B) Small Croaker  

Model k AIC ∆AIC wi 

g4 6 50.91 0.00 0.4 

g8 6 53.40 2.50 0.11 

g3 4 53.45 2.54 0.11 

g2 2 53.58 2.67 0.10 

g5 4 54.40 3.50 0.07 
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Table A6: % F, sample size (number of gill net sets, number of fish examined), and size range (total 
length, mm) of all individuals examined during monthly survey diet analysis. Prey types defined in Table 
3. 
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Table A7: % W of all individuals examined during monthly survey diet analysis. Sample size given in 
Table A6. Prey types defined in Table 3. 

Scientific Name Habitat A
nc

ho
vy
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id
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id
 S

hr
im

p 

Po
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ae
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Tu
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Cynoscion nebulosus Control -- -- -- -- 100.0 -- -- -- -- 

 

Reef -- -- -- -- 100.0 -- -- -- -- 

Cynoscion regalis Control 100.0 -- -- -- -- -- -- -- -- 

 

Reef -- -- -- -- -- -- -- 100.0 -- 

Eucinostomus argenteus Control -- -- -- -- -- -- -- 100.0 -- 

Lagodon rhomboides Control -- -- -- -- -- -- -- 64.8 35.2 

 

Reef -- 78.4 -- 21.6 -- -- -- -- -- 

Menticirrhus saxatilis Reef -- -- -- -- -- -- 100.0 -- -- 

Pogonias cromis Control -- 22.6 -- -- -- -- -- 77.4 -- 

Pomatomus saltatrix Control 25.0 -- -- 12.8 62.2 -- -- -- -- 

 

Reef 44.8 -- -- -- 55.2 -- -- -- -- 

Prionotus carolinus Control -- -- 77.3 -- -- -- -- 7.6 -- 

 

Reef -- -- -- -- -- 64.5 -- -- 35.5 
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Table A8: AIC results for generalized linear model analysis of a) silver perch (Bairdiella 
chrysoura), b) spot (Leiostomus xanthurus) and c) Atlantic croaker (Micropogonias undulatus) 
stomach fullness during the monthly survey. Models ranked in order of increasing AIC value. 
∆AIC = difference in AIC from top model, k = model degrees of freedom, and wi = Akaike 
weights. Bold indicates best-fit model. See Table 2a for model descriptions. 

A) Silver Perch  

Model k AIC ∆AIC wi 

g2 3 91.91 0.00 0.78 

g3 5 95.78 3.88 0.11 

g1 2 96.05 4.14 0.10 

B) Spot 

Model k AIC ∆AIC wi 

g3 7 190.02 0.00 0.97 

g1 2 197.55 7.53 0.02 

g2 3 199.53 9.52 0.01 

C) Atlantic Croaker 

Model k AIC ∆AIC wi 

g1 2 115.49 0.00 0.73 

g2 3 117.48 1.99 0.27 
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Table A9: AIC results for generalized linear model analysis of a) silver perch (Bairdiella 
chrysoura), b) spot (Leiostomus xanthurus) and c) Atlantic croaker (Micropogonias undulatus) 
stomach fullness during the 24-hour survey. Models ranked in order of increasing AIC value. 
∆AIC = difference in AIC from top model, k = model degrees of freedom, and wi = Akaike 
weights. Bold indicates best-fit model. See Table 2b for model descriptions.	

A) Silver Perch 

Model k AIC ∆AIC wi 

g4 8 80.00 0.00 0.58 

g6 9 81.99 1.99 0.22 
g3 7 83.03 3.03 0.12 

g2 3 85.27 5.26 0.04 

g5 4 87.24 7.24 0.02 

g1 2 87.43 7.43 0.01 

B) Spot 

Model k AIC ∆AIC wi 

g5 4 53.14 0.00 0.97 

g6 9 60.51 7.38 0.02 

g2 3 68.83 15.69 0.00 

g1 2 69.55 16.42 0.00 

g4 8 76.97 23.83 0.00 

g3 7 78.24 25.10 0.00 

C) Atlantic Croaker 

Model k AIC ∆AIC wi 

g1 2 35.37 0.00 0.73 

g2 7 37.62 2.25 0.27 
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