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ABSTRACT 
 

Genomic imprinting is the preferential expression of one allele over the other. 
It is an epigenetic phenomenon that occurs in the placentas of mammals and 
the endosperm of angiosperms. Endosperm, like placentas, is a nutrient rich 
tissue that supports the growing embryo within the seed. All grains are 
predominantly composed of this tissue. It is the product of a second 
fertilization event, resulting in both maternal and paternal alleles. Some alleles 
are regulated differentially, resulting in imprinted genes. There are both 
paternally expressed imprinted genes (PEGs) and maternally expressed 
imprinted genes (MEGs) in the endosperm. In general PEGs tend to have 
functions that induce the proliferation of endosperm (and the placenta in 
mammals) and MEGs tend to regulate or limit proliferation. There are many 
theories on the evolution of imprinting and parent-specific functions in such 
diverged taxa. Interploidy hybridization systems are often used to study these 
parent-specific effects. Such systems occur when a diploid is crossed with a 
polyploid, typically a tetraploid. By switching the parentage, parent specific 
genome dosage can be altered: if the tetraploid is the mother, then the 
offspring, or endosperm, has maternal genomic excess, and if the tetraploid is 
the father, then the endosperm has paternal excess. Maternal excess is 
typically characterized by endosperm underproliferation and paternal excess is 
characterized by endosperm overproliferation, as predicted by MEG and PEG 
functions.  While significant progress has been made in genomic imprinting, 
there is still much unknown. For example, in plants, maternal excess is 
predicted to be more stable for evolutionary and functional reasons, yet there 
are many cases where the opposite occurs. By using a system in Mimulus that 
is both interploidy and interspecies (M. guttatus is diploid and M. luteus is 
tetraploid) and where paternal excess is favored in offspring viability, we aim to 
uncover further clues behind the mechanisms and evolutionary drivers of 
genomic imprinting. Here we show that the paternal excess hybrid suffers from 
endosperm underproliferation, opposite of what is predicted, and the maternal 
excess hybrid suffers from complete endosperm and embryo failure. We show 
that smaller endosperm results in failed or delayed germination. Furthermore, 
using genomic techniques, we show that M. luteus is genomically dominant in 
the hybrids regardless of crossing direction, likely interfering with imprinting 
patterns. We identify new PEGs involved in cellular proliferation. We show an 
overall paternal bias in M. luteus, which is unexpected and uncommon – 
potentially suggesting other adaptive drivers in imprinting. We suggest that 
abnormalities in the hybrids may be due to this genomic dominance and 
potentially other genetic and developmental differences between the two 
species that interferes with MEG and PEG roles.  
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1 Introduction

Plant productivity provides the base of terrestrial ecosystems, introducing chemical en-

ergy through photosynthesis to all organisms within these systems [Ågren and Anders-

son, 2011]. Angiosperms (flowering plants) are the most specious of green plants [Crepet

and Niklas, 2009], following their widespread adaptive radiation during the Cretaceous

[Berendse and Scheffer, 2009], and thus have become critical drivers in terrestrial ecosys-

tems. Furthermore, almost all agricultural and horticultural crops are angiosperms [Forbes

and Watson, 1992]. While there are many reasons and theories attributed to the over-

whelming dominance of angiosperms [Crepet and Niklas, 2009], the evolution of the an-

giosperm seed has provided clear advantages. These include release from the maternal

plant at a relatively advanced stage in development with food stored from the parent and

the ability to retain dormancy to germinate when conditions are favorable [Harper et al.,

1970].

The angiosperm seed can be divided into three genetically distinct tissues. The seed

coat is diploid maternal tissue that fully encompasses the egg. The diploid embryo is the

product of fertilization between a sperm cell delivered by the pollen grain and the egg

within the seed coat. Finally, the triploid endosperm is the product of a second fertiliza-

tion event between an additional sperm cell and two polar nuclei within the seed coat that

are genetically identical to the egg. Nutrients from the maternal plant are allocated into

the endosperm, which is the nutritive tissue that supports the development of the embryo.

The development of the endosperm proceeds the majority of embryo development and is

of vital importance to the viability of a seed [Kozlowski, 1972]. Gymnosperm seeds also

contain a nutritive tissue, but instead of sexual endosperm, it is the maternal megagame-
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tophyte [Baroux et al., 2002]. The sexual endosperm is an angiosperm-specific tissue, a

major distinguisher from other seed plants [Haig and Westoby, 1989], and may provide cer-

tain advantages over the female gametophyte. These advantages may include control of

resource allocation from both maternal and paternal genomes and a measure against wast-

ing resources by allocating them only to fertilized seeds [Baroux et al., 2002]. An analogous

organ has been compared in therian mammals: the placenta [Harper et al., 1970]. While

angiosperms possess an organ named the placenta, which directs sustenance through

vascular bundles from the ovary to the ovule [Endress, 2011], the endosperm shares some

striking similarities with the mammalian placenta. Both shuttle nutrients from the maternal

progenitor to the growing embryo proper, both have vital hormone signaling and influence

on embryo size and development, both have paternal alleles, and both exhibit genomic

imprinting [Garnica and Chan, 1996,Monk, 2015,Gehring and Satyaki, 2017]

Genomic imprinting is an epigenetic phenomenon where alleles are regulated differen-

tially depending on their parent of origin. One manifestation of this regulation is parent-

specific patterns of gene expression. RNA and protein production from an imprinted gene

is contributed predominately by one of its alleles, the maternal or the paternal allele [Ki-

noshita, 2007]. Expression of the given gene can either be differential between the two alle-

les (one allele is expressedmore than the other) or fully monoallelic (expression is only from

one allele) [Gehring and Satyaki, 2017,Monk, 2015]. Genomic imprinting is perhaps most

easily understood through studies on its prevention of parthenogensis in mammals [Mc-

Grath and Solter, 1984]. In the mouse, parthenogenesis of the oocyte is prevented due

to repressive methylation in critical development genes. In a bi-maternal mouse oocyte,

development will eventually fail. However, if the unmethylated paternal allele from a sperm

cell is present, or if one of the bi-maternal alleles is experimentally demethylated, then

3



full development can occur [Kawahara et al., 2007]. While parthenogenesis is certainly

affected by genomic imprinting, at least in mammals, it is not often considered an evo-

lutionary driver of imprinting. There are many theories behind the evolution of genomic

imprinting in angiosperms and placental mammals, but the most common one, particularly

in angiosperms, is the kin conflict model [Spencer and Clark, 2014].

Under the kin conflict (or parental-conflict) theory, conflict arises between the mother

and offspring, and between siblings. Selection favorsmothers to distribute resources among

their offspring to maximize the number of viable offspring [Haig, 2013]. Offspring, however,

are less related to their siblings, particularly in a multiple mating system, and therefore

are selected to allocate more resources than their siblings. Therefore, it is predicted that

the paternal allele should pull for resources into the fertilized seed and the maternal allele

should regulate this [Haig and Westoby, 1989]. The peculiar two maternal to one paternal

genome in the endosperm has been argued to have evolved in response to this kin conflict

and genomic imprinting [Stewart-Cox et al., 2004], and that it may allow for greater maternal

control of resource distribution among seeds [Westoby and Rice, 1982]. Departures from

this 2m:1p parental genome dosage results in abnormal endosperm development likely due

to misregulation of genomic imprinting [Haig and Westoby, 1991].

A common method of studying parent-of-origin effects in the endosperm is by altering

the genome dosage of a specific parent through interploidy hybridization. Two parents

of different ploidy levels (often a diploid and a tetraploid) are crossed reciprocally so that

offspring either have a greater number of maternal alleles or a greater number of pater-

nal alleles in the endosperm. Such crosses are performed either by naturally occurring

diploid and tetraploid variants of a given species [Scott et al., 1998] or with experimentally

induced polyploids [Li and Dickinson, 2009]. By crossing a diploid maternal progenitor with
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a tetraploid paternal progenitor, the genome dosage in the endosperm becomes 2m:2p, a

scenario coined as paternal excess. The opposite cross provides a 4m:1p ratio and is con-

sidered maternal excess [Haig and Westoby, 1991]. Genomic imprinting is characterized

by specific maternal excess and paternal excess traits [Scott et al., 1998].

By altering parent specific genome dosage, certain maternal and paternal roles in en-

dosperm development have been observed. Increasing the dosage of maternal alleles re-

sults in earlier endosperm differentiation and decreased proliferation producing less tissue,

and a greater paternal dosage results in later differentiation and increased proliferation,

thus increasing the seed size [Scott et al., 1998]. In maize such misregulation in imprinting

is highly fatal to the misregulated seed [Pennington et al., 2008]. A paternally expressed

imprinted gene has been found in Arabidopsis that reduces seed fatality of paternal excess

crosses when deleted [Kradolfer et al., 2013]. Similar phenotypes have been observed in

the placenta when parental genome dosage is altered. Cases of abnormal fertilization that

result in complete (0m:2p) or incomplete (1m:2p) hydatiform moles (resulting respectively

from fertilization of an egg that lost DNA and from an egg fertilized by two sperm cells) and

in digynic triploids (unreduced egg cell is fertilized - 2m:1p) reveal similar abnormal growth

patterns. A lack of fetal development and excessive trophoblast (part of embryo where pla-

centa is derived from) growth is characterized by the hydatiform moles, and an abnormally

small placenta forms from digynic triploids. Such morphologies suggest a placental growth

promoting role of paternal alleles and a growth inhibiting role of maternal alleles [Hoffner

and Surti, 2012].

Further evidence for a division of roles between maternally and paternally expressed

alleles is found in functional genetic studies of imprinted genes. While the function or

relevance of many maternally expressed genes (MEGs) and paternally expressed genes
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(PEGs) is unknown or inconclusive, a number of genes have revealed specific roles. In

plants many MEGs and PEGs have been associated with epigenetic regulators. Some

PEGs have been associated with inducing repressive regulation of genes and some MEGs

maintain imprinted expression during endosperm development along with other epigenetic

regulation [Gehring and Satyaki, 2017]. Certain PEGs are responsible for auxin production

and thus growth of the endosperm. Others have also been associated with regulating cy-

tokinesis [Wang and Köhler, 2017]. The same epigenetic regulatory MEGs that maintain

imprinted expression thus prevent endosperm proliferation [Gehring and Satyaki, 2017]. In

mammals the MEG, Phlda2, regulates glycogen storage and placental growth. Decreased

dosage results in placental overgrowth [Frank et al., 2002], and increased dosage reduces

glycogen storage and size of the junctional zone (where maternal and embryonic portion

of the placenta meet) [Tunster et al., 2010]. Overall, MEGs are predicted to reduce or reg-

ulate endosperm proliferation, and PEGs are predicted to promote it [Gehring and Satyaki,

2017].

There are multiple mechanisms that produce the imprinted status of MEGs and PEGs.

These mechanisms can be both pre-zygotic and post-zygotic. Protein coding genes, non-

coding RNA, and transposable elements (TEs) can all be imprinted [Gehring and Satyaki,

2017]. The precursor to the endosperm within the female megagametophyte, the central

cell, undergoes cytosine demethylation by the plant DNA glycosylase, DME (and other

similar enzymes or DME orthologs) [Wang and Köhler, 2017]. This results in large re-

gions of maternal euchromatin in the endosperm. The sperm cell also has low levels of

CHH methylation and a large number of 21-22 nucleotide siRNAs, which may invoke RNA-

directed DNA methylation (RdDM) [Wang and Köhler, 2017]. Many imprinted genes are

associated with differentially methylated regions (DMRs). The hypomethylation of the ma-
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ternal allele in the endosperm can result in MEGs. Some MEGs are the product of RdDM

on or nearby the paternal allele. In contrast, many PEGs are methylated on the pater-

nal allele, thus protecting them from repressive H3K27me3 histone modification that will

silence the hypomethylated maternal allele (intriguingly the molecular machinery that pro-

duces this histone modification includes two MEGs) [Gehring and Satyaki, 2017]. PEGs in

some species are also associated with hypermethylation of the maternal allele [Klosinska

et al., 2016]. The large number of 21-22 nucleotide siRNAs in the sperm cell may repress

TEs postfertilization, though their exact role is still largely unknown [Martinez and Köhler,

2017]. Imprinted genes in the mammalian placenta are also largely driven by DMRs and

repressive histone modifications (which can be induced my non-coding RNA) [Monk, 2015].

Imprinted regions and the mechanisms that imprint them can vary quite drastically between

species in plants and mammals [Gehring and Satyaki, 2017,Monk, 2015]. A note of inter-

est is that, at least in plants, PEGs tend to be more conserved among species, and MEGs

tend to contain more endosperm-specific expressed genes [Klosinska et al., 2016,Waters

et al., 2013]. Perhaps this demonstrates a general role of cellular growth and prolifera-

tion from PEGs and a regulatory role of MEGs depending on species specific epigenetic

mechanisms in the endosperm.

Interspecies hybridization also results in endosperm abnormalities often associated with

misregulation of genomic imprinting. These abnormalities may be caused by rapidly de-

rived differences in epigenetic regulation and imprinting. Hybridization between recently

diverged outcrossing and self-fertilizing species produce similar phenotypes as observed

in interploidy crosses. Hybrids with the outcrosser as the maternal progenitor suffer from

under-proliferated endosperm, while those with the outcrosser as the paternal progenitor

suffer from a failure of cytokinesis or over-proliferated endosperm, presumably because
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outcrossers are more susceptible to parent-offspring conflict and have stronger imprinting

mechanisms [Rebernig et al., 2015, Josefsson et al., 2006]. In other cases, systematic

shifts in gene expression or incompatibilities of imprinted loci appear to enforce hybrid

seed failure, suggesting species specific divergence of imprinting and regulatory mech-

anisms [Florez-Rueda et al., 2016,Wolff et al., 2015,Garner et al., 2016]

The kin conflict theory is supported by failures in crosses between species with differ-

ent mating strategies (outcrossing and self-fertilizing) that exhibit interploidy endosperm

abnormalities. Certain imprinted genes also support this theory. p57kip2 is an MEG and

a negative regulator of cell proliferation in the placenta. Lack of expression in this MEG

can induce preeclampsia-like symptoms in the mother, a pregnancy complication in which

blood pressure is elevated and organ damage occurs [Kanayama et al., 2002]. Addition-

ally, some placenta specific paternally derived miRNAs are associated with the expansion

of the embryonic portion of the placenta into the maternal portion, and increased circu-

lation of them in the maternal blood system has been linked to preeclampsia [Xie et al.,

2014, Hromadnikova et al., 2013]. However other scenarios such as the seemingly ran-

dom epigenetic incompatibilities between species or paternally induced imprinting on its

own allele [Monk, 2015] may fit more closely to other theories on the evolution of imprinting

such as adaptive advantage of a sex-specific allele or co-adaptation of the offspring to the

mother to match her physiology [Patten et al., 2014].

Clearly there is a great deal unknown about genomic imprinting and are likely many

mechanisms and avenues for it to evolve. Areas of further research include understand-

ing functional roles and significance of imprinted genes and the selection pressures, if

any, driving them, the convergence and conservation of imprinted loci among species

and mechanisms differentiating them, the role of genome dosage in traits of the develop-
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ing endosperm, and distinguishing pre-zygotic and post-zygotic mechanisms of imprinting,

among others [Gehring and Satyaki, 2017,Wang and Köhler, 2017].

To approach some of these questions, we use a recent, natural interploidy hybridization

system between two diverged species in Mimulus that exhibits asymmetry in hybrid seed

viability depending on crossing direction [Vallejo-Marin et al., 2016]. M. guttatus is diploid

and is widespread throughout the North American west coast [Oneal et al., 2014]. M. luteus

is a tetraploid native to Andean Chile [Medel et al., 2003]. Each species was separately

introduced to the United Kingdom as ornamentals and subsequently naturalized in the re-

gion. Hybrids were first recognized as early as 1872. While sterile, the triploid hybrid, M.

robertsii, is highly clonal and widespread across the UK [Vallejo-Marin and Lye, 2013]. It

was recently determined that hybridization between the two species has occurred many

times and predominantly in the direction of M. guttatus as the maternal progenitor [Vallejo-

Marin et al., 2016]. A fertile and naturally reproducing hexaploid, M. perigrinus, derived

by multiple occasions of whole genome duplication in the triploid hybrid has also recently

been described [Vallejo-Marin, 2012]. It was originally postulated that asymmetry of seed

viability in interploidy crosses favors a maternal progenitor of higher ploidy [Ramsey and

Schemske, 1998], though a more recent survey of the literature finds comparable frequen-

cies of paternal progenitors with higher ploidy, as seen in this system [Vallejo-Marin et al.,

2016].

Here, we investigate the morphological and genetic drivers behind this observed asym-

metry as well as genomic imprinting patterns within M. luteus - the first imprinting study

on a Mimulus species. We use electron microscopy, histology, and image analysis soft-

ware to elucidate the development of the parent species and reciprocal hybrid crosses.

Through germination experiments, we link developmental abnormalities to seed viability.
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Using RNA-seq we investigate transcriptome and potential genomic imprinting patterns

and incompatibilities within the reciprocal hybrid crosses, as well as identify patterns in M.

luteus. We identify endosperm abnormalities that differ from other interploidy and interspe-

cific hybridization studies and unusual patterns of imprinting. To the best of our knowledge,

this is the first study on genomic imprinting in a hybrid system that is both interploidy and

interspecific.

2 Results

2.1 Seed morphology and germination rate by cross direction

In order to test for abnormalities in seed development of the reciprocal hybrids, four crosses

were set up using M. luteus and M. guttatus plants. Seeds were produced for each of the

parents and for the two interploid hybrid crosses. Crosses are always denoted as seed par-

ent x pollen donor. The two reciprocal hybrid crosses are M. guttatus x M. luteus (denoted

as 2n x 4n) and M. luteus x M. guttatus (denoted as 4n x 2n). Seeds were characterized

through area and aspect ratio of mature seeds, SEM imaging of mature seeds, histology

of developing seeds, and quantitative measurements of histology.

2.1.1 2n x 2n

M. guttatus seeds are relatively large, round, and plump (Fig. 3). They have a mean area

(Fig. 1) of 0.146 +/- 0.003 (n =314), and are the roundest of the four crosses (Fig. 2)

with a mean aspect ratio of 1.589 +/- 0.026 (1 is a perfect circle). While some seeds are

smaller, oblong, and more shriveled, the majority are smooth and spherical. Additionally,

they have a high probability of germination. Of the seeds we planted on filter paper, 98.7%

germinated. We considered germination as the full penetration of the radical through the
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seed coat. We classify normal, parent seeds with this round and plump morphology.

2.1.2 4n x 4n

Mature seeds of M. luteus have a very similar morphology to those of M. guttatus (Fig. 3).

They are indistinguishable in size (0.143 +/- 0.005; Fig. 1), though are not quite as round

(1.701 +/- 0.034; n = 187; Fig. 2). Additionally, they have a somewhat lower germination

rate (86.1%) and take longer to germinate, however, the lower germination rate may be

due to insufficient time in the experiment. Again, we consider these parent seeds to also

have the round and plump morphology.

2.1.3 2n x 4n

The viable hybrid seeds withM. guttatus as the maternal progenitor are smaller, less round,

and more shriveled. They are smaller than each of the parent seeds with an area of 0.123

+/- 0.004 (Fig. 1) and are the least round of all the crosses (Fig. 2) with an aspect ratio

of 1.859 +/- 0.029 (n = 253). Morphologically, they appear oblong, ridged, constricted, and

contorted (Fig. 3). While still fairly successful, these seeds have a lower germination rate

than the parents (70%). We classify these seeds with a shrivelled morphology.

2.1.4 4n x 2n

The inviable hybrid seeds with M. luteus as the maternal progenitor are the smallest of all

the crosses (Fig. 1). They have a mean area of 0.108 +/- 0.003. While rounder than the 2n

x 4n crosses and sharing a similar aspect ratio to M. luteus (1.674 +/- 0.026; Fig. 2), their

qualitative morphology reveals more insight into the character of these seeds. On closer

examination, the seeds appear thin and cup shaped, with the vast majority of seed tissue

belonging to the seed coat (Fig. 3). There is little to no endosperm or embryo tissue or even
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open space beneath the seed coat. We found no seeds that germinated (n = 316), though

other studies have seen a small percentage of germinates [Vallejo-Marin et al., 2016]. We

classify these seeds with a flattened morphology.
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Figure 1: Area of seeds. Area of seeds in each cross were measured. Letters represent

Tukey-Kramer results following an ANOVA. Groups with different letters are statistically

different in area.
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Figure 2: Aspect ratio of seeds. Aspect ratio of seeds in each cross were measured. 1 is

a perfect circle. Letters represent Tukey-Kramer results following an ANOVA. Groups with

different letters are statistically different in aspect ratio.
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2n x 2n 2n x 4n

4n x 4n 4n x 2n
0.24 mm 0.24 mm
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Figure 3: SEM images of seeds. Mature seeds were collected from each of the crosses

between 15 and 18 DAP (when fruit dehisces). Images were taken using a scanning elec-

tron microscope. Seeds of the parents, M. guttatus (2n x 2n) and M. luteus (4n x 4n), have

a round and plump morphology. The viable hybrid seeds (2n x 4n) are smaller with a shriv-

eled seed coat, and the inviable hybrid seeds (4n x 2n) are small and thin, forming a bowl

shape.

14



2.2 Endosperm and embryo development are abnormal in reciprocal hy-

brids

After observing the external morphologies of the seeds, we aimed to identify their inter-

nal morphologies to understand their underlying abnormalities. Using seed histology, we

produced images throughout the development of the parent and reciprocal hybrid crosses,

which are provided in Fig. 4. Images are color coded by tissue type and qualitative de-

scriptions are provided below. Quantitative measurements were made from histological

data, and four ANOVAs with post-hoc Tukey-Kramer tests were performed: embryo area

among the four crosses at 8 DAP, embryo area at 11 DAP, endosperm area at 8 DAP, and

endosperm area at 11 DAP (Fig. 5). A table of p-values for individual two sample t-tests

between the embryo or endosperm area of each cross at 8 DAP and its area at 11 DAP are

provided in Table 1 to demonstrate growth or lack of growth of the tissue types over time.

2.3 Description of seed histology

Refer to Fig 4: At 3 DAP, the central cell has gone through some devisions in all four

crosses. Embryos are not visible in these images. By 8 DAP, the embryos of M. guttatus

and 2n x 4n have entered the globular stage. The endosperm is well proliferated in M.

guttatus, but 2n x 4n is beginning to reveal signs of endosperm underproliferation (it poten-

tially is at 3 DAP as well). Embryos of M. luteus and 4n x 2n have not entered the globular

stage, and, while M. luteus has less proliferated endosperm than M. guttatus, 4n x 2n is

showing endosperm deficiencies as well. At 8 DAP, M. guttatus and 2n x 4n embryos are

well into the heart stage and entering the torpedo stage. Endosperm underproliferation is

still clear in 2n x 4n as compared to M. guttatus. M. luteus has well proliferated endosperm

and the embryo is in the globular stage. 4n x 2n is small, does not appear to have entered
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the globular stage, and has abnormal, less cellularized and compact endosperm. Finally,

by 11 DAP, the embryos of M. guttatus, 2n x 4n, and M. luteus are all in the torpedo stage.

The whole seed, endosperm, and embryo are clearly smaller in 2n x 4n than M. guttatus.

Endosperm and embryo tissues also appear to bemore crowded and compacted. M. luteus

still seems to be slower developing than M. guttatus, though this is not verified quantita-

tively. Endosperm can be seen entering the cotyledons in this image. 4n x 2n has negligible

endosperm development, and the embryo does not appear any further developed than it

was at 8 DAP. The majority of the seed is composed of maternal seed coat tissue. It should

be noted that only images with visible embryos for 4n x 2n are shown, and the phenotype

of abnormal and negligible endosperm is even more dramatic in many other images. His-

tology results of M. guttatus seed development closely correspond to confocal images and

analyses produced by [Oneal et al., 2016].
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Figure 4: Development of parent and reciprocal hybrid seeds. Sections were made

of each cross through a developmental progression of 3, 5, 8, and 11 DAP. Crosses (M.

guttatus - 2n x 2n; 2n x 4n; M. luteus - 4n x 4n; 4n x 2n) are displayed in columns and the

days of development are displayed in rows.

2.3.1 Endosperm failure and embryo arrest in inviable maternal excess (4n x 2n)

The embryo of the 4n x 2n hybrid is arrested by 8 DAP, showing no further growth at 11

DAP (Table 1). It is similar in growth and size to its maternal progenitor, M. luteus, at 8

DAP, and is smaller than M. guttatus and the 2n x 4n hybrid (Fig. 5a). By 11 DAP, the

embryos of all the other crosses have continued to grow and are significantly larger than

the 4n x 2n embryo (Fig. 5b). Its endosperm is similar in size to 2n x 4n and M. luteus at 8

DAP but is significantly smaller than M. guttatus (Fig. 5c). No further growth is detectable
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by 11 DAP (Table 1; Fig. 5d). Qualitatively, the 4n x 2n endosperm exhibits even more

abnormalities than its failed growth. Endosperm tissue is either uncellularized or in large,

non-condensed cells (Fig. 4). Issues with both endosperm proliferation and cellularization

may have occured, thus resulting in aborted embryos. This data alone, however, does not

rule out issues with the embryo as well.

2.3.2 Endosperm under-proliferation and immature embryo in viable paternal ex-

cess (2n x 4n)

In the 2n x 4n hybrid, the embryo follows the developmental timing of its maternal progenitor,

M. guttatus (Fig. 5a), but growth is slowed by 11 DAP (it is still significantly larger than it

was at 8 DAP, Table 1). The M. luteus embryo appears to develop at a slower rate than M.

gutatus (Fig. 5a) but catches up to 2n x 4n at 11 DAP. 2n x 4n’s embryo is still significantly

larger than that of the 4n x 2n embryo at this point (Fig. 5b). While its endosperm is

similar in size to the other crosses at 8 DAP (Fig. 5c), it does not continue to expand

(Table 1) and is as small as the 4n x 2n endosperm at 11 DAP (Fig. 5d). It likely is still

growing, but at a rate slower or similar to that of which it is absorbed by the cotyledons.

The slow growth of the endosperm may drive the stunted growth of the embryo seen at 11

DAP (Fig. 5b). At the torpedo stage, the embryo is no longer attached to the suspensor

and is now fully dependent on the endosperm for further growth. The embryo may not

receive enough nutrients from the endosperm to grow to the size of theM. guttatus embryo.

Furthermore, endosperm cells appear to be more densely packed and compartmentalized

than those of the parent’s endosperm at 11 DAP (Fig. 4). The decreased rate of growth and

compact cells match the phenotype of endosperm under-proliferation typically described in

thematernal excess direction [Scott et al., 1998]. Endosperm under-proliferation may result
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in the decreased germination rates observed in the 2n x 4n cross (described above).

2.3.3 Endosperm and embryo morphologies explain the three classes of seed mor-

phology

The three classes of external morphologies categorized among the parental and hybrid

crosses (Fig. 3) match the internal characters we have described (Fig. 4). M. guttatus

and M. luteus have round and plump seeds with large and full embryo and endosperm.

The viable hybrid, 2n x 4n, has shriveled seeds with constricted, condensed endosperm

and subsequent stunted embryonic growth. The inviable hybrid, 4n x 2n, has flat seeds

with very little (if any) abnormal endosperm and aborted pre-globular embryos. From these

observations, we can link characteristics observed based off of external morphology to the

phenotype of the endosperm and embryo.

Cross Embryo Endosperm

2n x 2n 0.0016 ns

2n x 4n 0.0231 ns

4n x 4n 0.0013 0.034

4n x 2n ns ns

Table 1: T-tests for embryo and endosperm growth. P-values are provided from t-tests

comparing embryo and endosperm size at 8 DAP to 11 DAP for each cross. A significant

p-value represents a significant shift in size from 8 to 11 DAP for the given tissue. Alpha is

set at 0.05.
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Figure 5: Quantitative patterns of seed development. The area of embryos (a and b) and

endosperm (c and d) were measured at 8 DAP and 11 DAP. ANOVAs were performed for

each of the plots. Letters associated with each group represent subsequent Tukey-Kramer

tests: shared letters display no significant difference in area, while different letters display

a difference with alpha of 0.05. (a) At 8 DAP, embryo size ofM. guttatus (2n x 2n) is greater

than that of M. luteus (4n x 4n). The reciprocal hybrid embryos are the same size as their

maternal progenitors. (b) By 11 DAP embryos from all crosses except 4n x 2n have grown.

However, 2n x 4n has grown to a lesser extent than its maternal progenitor, M. guttatus.

M. luteus embryo size is catching up with M. guttatus. (c) At 8 DAP the endosperm size of

M. guttatus is significantly larger than that of 4n x 2n. M. luteus and 2n x 4n endosperm do

not differ significantly from any cross. (d) At 11 DAP the endosperm area of neither of the

reciprocal hybrid crosses has increased, while the endosperm areas of M. guttatus and M.

luteus have and are larger than the hybrids.
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2.4 Abnormal endosperm and embryo growth results in delayed or failed

seed germination

2.4.1 Endosperm area is highly correlated with whole seed area

Since we cannot directly observe seed tissue phenotypes and measure germination simul-

taneously, we measured correlations between area of the seed tissues and the whole seed,

which is measurable in a germination experiment. Among the four crosses, endosperm size

is highly correlated with the area of the entire seed with an R2 of 0.69 (Fig. 6b). The em-

bryo has a lower correlation with an R2 of 0.40 (Fig. 6a). Considering individual crosses,

endosperm shows high correlation with seed size of each cross except for the 2n x 4n

hybrid, which is unsurprising since we found no increase in endosperm area from 8 to 11

DAP (Table 1). The embryo shows no correlation with whole seed area of any individual

cross except forM. guttatus, with which it is highly correlated. This may be due to the quick

growth of M. guttatus as compared to any of the other crosses and since the cotyledons

absorb the endosperm in mature eudicot seeds. The seed coat has fairly high correlation

with seed area (R2 = 0.48), but individual crosses do not have significant p-values in their

regressions. In general, the endosperm appears to be the most reliable predictor of seed

size. Since the size of seed tissues determine the size of the seed, we can predict that

trends in germination observed by seed size are driven by the phenotypes we observed

within the seeds, particularly that of the endosperm.
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Figure 6: Correlations between seed tissues and the whole seed. In order to compare

endosperm size to germination success, linear regressions were performed between seed

tissues and the whole seed. Data points represent individual replicates color coded by the

four crosses as seen in the legend. (a) Embryo size is fairly correlated with seed size (R2

= 0.40). (b) Endosperm size is more tightly correlated with seed size (R2 = 0.69).

2.4.2 Germinated seeds are larger

The area of seeds that germinated is significantly greater than that of seeds that failed to

germinate (P <0.0001, Fig. 7). Mean area of germinated seeds was 0.14 +- 0.002 (n = 648),

and mean area of ungerminated seeds was 0.12 +- 0.005 (n = 106). We did not include 4n

x 2n seeds for fear of skewing the data since none of them germinated, and they are the

smallest group, though the difference is still highly significant when included. Comparing

individual crosses, only M. luteus shows no significant difference in size between germi-

nated and ungerminated seeds. Furthermore, ungerminated M. guttatus seeds, ungermi-

nated 2n x 4n seeds, and 4n x 2n seeds are all similar in size, while germinated seeds

have differences among the crosses (except M. luteus). Given correlations within internal

phenotypes, these comparisons suggest that ungerminated seeds, including 4n x 2n, suffer
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form underdeveloped endosperm and embryos (although, for unknown reasons we do not

see the same trends with M. luteus).
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Figure 7: Germinated seeds are larger than ungerminated seeds. Area of seeds that

failed to germinate is compared to successfully germinated seeds among the crosses. M.

guttatus (2n x 2n) is depicted in red, 2n x 4n in orange, and M. luteus (4n x 4n) in blue. 4n

x 2n seeds are not included because there were no germinates, and they are the smallest

of the four crosses, so we did not want to bias the comparison. Germinating seeds are

significantly larger than inviable seeds (P <0.0001).

2.4.3 Early germinating seeds are larger

Of seeds that did germinate, the area of seeds that germinated at 2 DAP is greater than

those that germinated at subsequent dates (Fig. 8). Mean area of seeds germinating at 2

DAP was 0.148 +- 0.004 (n = 231), at 3 DAP was 0.138 +- 0.003 (n = 324), at 4 DAP was

0.130 +- .009 (n = 48), and at 5 DAP was 0.126 +- 0.011 (n = 29). However, given that M.

guttatus seeds germinate more quickly than the other crosses [Vallejo-Marin et al., 2016]
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and are larger than 2n x 4n, this comparison may be misleading. ANOVAs of individual

crosses reveal differences among the germination dates for M. guttatus and 2n x 4n, but

subsequent Tukey-Kramer pairwise tests are insignificant. Regressions reveal negative

correlations between seed size and germination date, but R2 values are very low. Seed,

and thus endosperm, area likely influences the timing of germination - delaying germination

of smaller seeds - but perhaps only weakly. Overall, these results suggest that the patterns

of endosperm and embryonic growth observed in the cross-sections determine the outcome

of hybrid seed viability.
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Figure 8: Earliest germinating seeds are largest. Of seeds that did germinate, those that

germinated earlier are somewhat larger. ANOVA groups represent seeds that germinated

at 2, 3, 4, and 5 days after the start of the experiment. M. guttatus (2n x 2n) is depicted in

red, 2n x 4n in orange, andM. luteus (4n x 4n) in blue. 4n x 2n is not included because they

had no germinates. Letters correspond to Tukey-Kramer tests. Shared letters indicate that

no significance in differences were found.
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2.5 Genomic imprinting and genomic expression dominance reveal unex-

pected patterns in Mimulus seeds

In order to investigate patterns of genomic imprinting in seed tissues, seeds were produced

for the two reciprocal hybrid crosses and for M. luteus. Seeds were collected from 10-11

DAP, and endosperm and embryos were dissected and pooled separately. RNA was ex-

tracted and libraries were constructed and sequenced. Allele specific gene expression from

endosperm for the two reciprocal crosses and for endosperm and embryo from M. luteus

are reported. Following polyploidy, duplicated genes may evolve independently from one

another resulting in separate ”sub”genomes [Cronn et al., 1999]. The tetraploid, M. luteus

is composed of two independently segregating subgenomes. Two sets of chromosomes

belong to subgenome A, and the other two sets belong to subgenome B [Edgar et al., 2016].

We refer to corresponding genes between the two subgenomes as homeologs. To test for

subgenome specific patterns of imprinting in the hybrid crosses, subgenome specific gene

expression was measured as well.

2.5.1 Bioinformatic method

Using two distinct inbred lines of M. luteus (M11 [Stanton et al., 2017] and C5 [Vallejo-

Marin et al., 2016]) allows the identification of line specific SNPs for use in allele specific

expression quantification. High-throughput RNA-seq was used to quantify allele specific

expression. Following sequencing, reads were mapped to a ’hybrid’ reference genome

that contained SNP corrected alleles. Thus, high-throughput sequencing reads could be

mapped to specific alleles. We used the number of allele specific mappings as a proxy for

the expression of that allele. These expression values were normalized by the length of

the allele and total number of reads mapped for that given library.
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After allele specific expression was determined, the next goal was to determine the ex-

pression ratio of each allele pair. Using methods previously established in the Puzey lab

[Smith et al., 2017], we calculated the expression ratio of two alleles as log2(allele1/allele2) =

AEB. AEB is the allele expression bias. Using a LRT we tested whether the alleles were

expressed at unequal levels.

Next, using an extended LRT we asked whether the expression ratio (AEB) changed

depending on crossing direction. This new term, AEBS (allele expression ratio shift) is

quantified asAEBS = log(1t/2t)−log(1s/2s), where t and s represent different conditions.

2.5.2 M. luteus endosperm is biased towards excessive paternal expression

A highly inbred line of (M. luteus), M11, was pollinated by a genetically distinguishable line,

C5 (M11 x C5). AEB was measured in the endosperm from gene pairs with at least one

read from each line. There were 2112 testable gene pairs in this cross of which 98 showed

significant bias in either direction given the AEB likelihood ratio test (Fig. 9). Bias in the

maternal direction is negative, and bias in the paternal direction is positive. After controlling

for differences in genome dosage between maternal and paternal genes in the endosperm,

the overall mean AEB was 0.50, indicating a general bias towards expression of paternal

alleles. Given this data, it appears that either maternal alleles are generally down-regulated

or paternal alleles are generally up-regulated in the endosperm of M. luteus. This may

suggest genomic imprinting with overall paternal expression bias.
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Figure 9: Allele expression is biased towards paternal genome, C5, in the endosperm

of M11 x C5. Allele expression bias (AEB) is compared between two genetically distin-

guishable lines of M. luteus, M11 and C5, in the endosperm at 10 DAP. Counts represent

testable gene pairs between M11 and C5 that had at least 1 read each. Differences in

genome dosage are standardized. An AEB of 0 represents an equal number of reads from

both parents. A negative AEB represents a bias in read number towards the maternal pro-

genitor (M11), and a positive AEB is towards the paternal progenitor (C5). Gene pairs that

passed the LRT test and had significant biases are highlighted (means shown by triangles).

The overall mean AEB is 0.50.

2.5.3 M. luteus embryo is slightly biased towards excessive maternal expression

AEB was measured in the same manner from embryos of the same cross (M11 x C5) as

described above. There were a total of 3690 testable gene pairs and 185 with significant

bias in either direction (Fig. 10) The overall mean AEB was -0.37 suggesting a general
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bias towards maternal expression in the M. luteus embryo. Again, this data suggests that

either maternal alleles are up-regulated or paternal alleles are down-regulated, potentially

revealing genomic imprinting in the embryo.

M11
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Figure 10: Allele expression is biased towards maternal genome, M11, in the embryo

of M11 x C5. Allele expression bias (AEB) is compared between two genetically distin-

guishable lines of M. luteus, M11 and C5, in the embryo at 10 DAP. Counts represent

testable gene pairs between M11 and C5 that had at least 1 read each. Differences in

genome dosage are standardized. An AEB of 0 represents an equal number of reads from

both parents. A negative AEB represents a bias in read number towards the maternal pro-

genitor (M11), and a positive AEB is towards the paternal progenitor (C5). Gene pairs that

passed the LRT test and had significant biases are highlighted (means shown by triangles).

The overall mean AEB is -0.37.
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2.5.4 2n x 4n shows excessive bias towards M. luteus, paternal tetraploid

A third generation inbred line of CG (M. guttatus) was crossed with M11 to produce the

viable hybrid seeds (2n x 4n). In the endosperm, there were 5850 testable pairs between

the homeologs of CG and M11 (Fig. 11). 3743 showed significant bias towards either

species. The overall mean AEB was 1.06, showing bias towards the paternal M. luteus.

CG
Biased towards

Nm= 606
M11

Biased towards

Nd= 3137

Overall
N = 5850

-10 -8 -6 -4 -2 0 2 4 6 8 10

Means :
-2.11 1.06 2.26

HEB (log2)AEB

Figure 11: Allele expression is biased towards paternal genome, M11, in the en-

dosperm of CG x M11. Allele expression bias (AEB) is compared between CG (M. guta-

tus) and M11 (M. luteus) in the endosperm at 11 DAP. Counts represent testable gene pairs

between CG and M11 that had at least 1 read each. Differences in genome dosage are

standardized. An AEB of 0 represents an equal number of reads from both parents. A

negative AEB represents a bias in read number towards the maternal progenitor (CG), and

a positive AEB is towards the paternal progenitor (M11). Gene pairs that passed the LRT

test and had significant biases are highlighted. The overall mean AEB is 1.06.
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2.5.5 4n x 2n shows excessive bias towards M. luteus, maternal tetraploid

The same lines as above were crossed reciprocally to produce the inviable hybrid seeds

(4n x 2n). In the endosperm, there were 5767 testable pairs between the homeologs of CG

and M11 (Fig. 12). 443 showed significant bias towards either species. The overall mean

AEB was -0.97, showing bias towards the maternal M. luteus.

M11
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Nm= 373
CG
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N = 5767
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Figure 12: Allele expression is biased towards maternal genome, M11, in the en-

dosperm of M11 x CG. Allele expression bias (AEB) is compared between M11 (M. luteus)

and CG (M. gutatus) in the endosperm at 11 DAP. Counts represent testable gene pairs

between M11 and CG that had at least 1 read each. Differences in genome dosage are

standardized. An AEB of 0 represents an equal number of reads from both parents. A neg-

ative AEB represents a bias in read number towards the maternal progenitor (M11), and a

positive AEB is towards the paternal progenitor (CG). Gene pairs that passed the LRT test

and had significant biases are highlighted. The overall mean AEB is -0.97.
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2.5.6 Overall expression is similar between each subgenome in the hybrids

In the viable hybrid (2n x 4n), when comparing CG to each M11 subgenome separately, the

number of testable pairs with subgenome A was 358, with 251 showing significant AEB,

and an overall mean of 1.28 (Fig. 13A). The number of testable pairs with subgenome

B was 340, with 226 showing significant AEB, and an overall mean of 1.22 (Fig. 13B).

There is strong bias towards M. luteus, the paternal progenitor, and the dominance ap-

pears to be driven equally by both subgenomes. Similarly in the inviable hybrid (4n x 2n),

when comparing CG to each M11 subgenome separately, the number of testable pairs with

subgenome A was 353, with 36 showing significant AEB, and an overall mean of -1.28 (Fig.

14A). The number of testable pairs with subgenome B was 328, with 27 showing signifi-

cant AEB, and an overall mean of -1.38 (Fig. 14B). Again, after controlling for differences in

genome dosage, there is strong bias towards M. luteus, which in this case, is the maternal

progenitor. As in 2n x 4n endosperm, expression dominance appears to be driven equally

by both subgenomes. Due to the almost equal bias towards M. luteus in either crossing

direction, M. luteus may be more transcriptionally active in hybrid endosperm, exhibiting

genomic expression dominance from each subgenome.
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Figure 13: Allele expression is equally biased towards each paternal subgenome

of M11 in the endosperm of CG x M11. Allele expression bias (AEB) is compared be-

tween CG (M. gutatus) and M11 (M. luteus) in the endosperm at 11 DAP. Counts represent

testable gene pairs between CG and M11 that had at least 1 read each. Differences in

genome dosage are standardized. An AEB of 0 represents an equal number of reads from

both parents. A negative AEB represents a bias in read number towards the maternal pro-

genitor (CG), and a positive AEB is towards the paternal progenitor (M11). Gene pairs that

passed the LRT test and had significant biases are highlighted (means shown by trian-

gles). Counts are separated by comparisons between CG and corresponding homeologs

in the M11 subgenome A (A), and between CG and corresponding homeologs in the M11

subgenome B (B). The overall mean AEB for (A) is 1.28 and for (B) is 1.22. There is no

apparent difference in the amount of bias towards either of the subgenomes.
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Figure 14: Allele expression is equally biased towards each maternal subgenome

of M11 in the endosperm of M11 x CG. Allele expression bias (AEB) is compared be-

tween M11 (M. luteus) and CG (M. gutatus) in the endosperm at 11 DAP. Counts represent

testable gene pairs between M11 and CG that had at least 1 read each. Differences in

genome dosage are standardized. An AEB of 0 represents an equal number of reads from

both parents. A negative AEB represents a bias in read number towards the maternal pro-

genitor (M11), and a positive AEB is towards the paternal progenitor (CG). Gene pairs that

passed the LRT test and had significant biases are highlighted (means shown by trian-

gles). Counts are separated by comparisons between CG and corresponding homeologs

in the M11 subgenome A (A), and between CG and corresponding homeologs in the M11

subgenome B (B). The overall mean AEB for (A) is -1.28 and for (B) is -1.38. There is no

apparent difference in the amount of bias towards either of the subgenomes.

2.5.7 Gene-specific regulation differs between subgenomes in the hybrids

While overall bias is similar between each subgenome in both of the hybrids, bias may differ

between subgenomes for individual genes. In order to test for this, we plotted AEB values

for all testable gene pairs between CG and Subgenome B against the AEB of all matching

gene pairs between CG and Subgenome A in the viable hybrid (2n x 4n) (Fig. 15). We
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would expect a very high relationship between homeologs for AEB if they were regulated

in the same way. However we find a fairly low R2 of 0.37, suggesting dissimilarities of AEB

values between homeologs on the subgenomes. This suggests that gene regulation or

imprinting can be specific to or differ between subgenomes for a given gene in M. luteus

and the hybrid.
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Figure 15: Relationship between AEB in SubgenomeA and SubgenomeB. AEB values

of SubgenomeBwere compared to corresponding homeologs in SubgenomeA in the viable

hybrid (2n x 4n). A regression was performed with an R2 value of 0.37.

2.5.8 Genomic dominance by M. luteus in the hybrids’ endosperm

In order to test for crossing effect and identify true imprinted genes, we tested for shifts in

AEB of gene pairs between the reciprocal hybrid crosses, 2n x 4n and 4n x 2n. This shift

in AEB between two different conditions (in this case crossing direction) is referred to as

AEBS (described above). We found that, regardless of the crossing direction, there is a

shift in distribution towards expression by M. luteus, suggesting genomic dominance in the
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hybrids byM. luteus. Furthermore, we identify 20 genes that always have significant biases

towards themother, which are true MEGs, and 28 genes that always have significant biases

towards the father, which are true PEGs (Fig. 16).
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Figure 16: AEBS for reciprocal hybrid crosses. The shift in AEB between CG x M11

(the 2n x 4n hybrid) and M11 x CG (the 4n x 2n hybrid) is plotted. AEB values for gene

pairs of CG x M11 are given by the x-axis, and AEB values for the same gene pairs of M11

x CG are given by the y-axis. Gene pairs that had a significant shift in AEB (AEBS) are

colored in yellow. Gene pairs that fall within the top left quadrant are always biased towards

the mother, and those in the bottom right are always biased towards the father. Significant

values within these quadrants are true MEGs and true PEGs respectively. Gene pairs in

the top right quadrant are always biased towardsM. luteus, and those in the bottom left are

always biased towards M. guttatus. Significant values here represent an even greater bias

towards M. luteus or M. guttatus in one cross over the other.

35



2.5.9 Function of MEGs and PEGs in Mimulus

We selected a few randomMEGs and PEGs to BLAST for gene identity and function. MEGs

are involved in protein modification, aging, and immune response. PEGs are involved

in processes of cell growth and division, which matches the endosperm proliferation of

PEGs as well as the cellular type of endosperm growth seen inMimulus and other Lamiales

[Geeta, 2003] (Table 2).

Gene Allelic Expression Function

Hpgt1 MEG protein modification

Aalp MEG aging, immune response

Atrbl1 PEG proteolysis

Casp5 PEG cell wall modification and junction assembly

Atgh 9b13 PEG carbohydrate metabolism, cell wall organization, cellulolysis

Bglu16 PEG carbohydrate metabolism, hormone response

Table 2: MEGs and PEGs. A selection of genes identified from AEBS were BLASTed to

assess gene functions found in MEGs and PEGs.

3 Discussion

The use of interploidy hybrid systems has long been associated with naturally altering

parental genome dosage to study parent of origin effects in developing seeds. While

such effects could be driven by other mechanisms, such as cytonuclear interactions, im-

printing has been a key target of focus [Gehring and Satyaki, 2017]. Such studies have

revealed a trend of endosperm underproliferation from maternal excess crosses and en-

dosperm overproliferation from paternal excess crosses in Arabadopsis [Scott et al., 1998]

36



and maize [Pennington et al., 2008]. These alterations in genome balance also affect the

differentiation of cell types in the complex grain endosperm of maize and affect the timing

of cellularization. Maternal excess expedites cellularization while paternal excess delays

or even prevents it. In species that undergo nuclear, or syncytial, endosperm development,

where multiple rounds of nuclear proliferation proceed cytokinesis [Olsen, 2004], the pro-

cess and timing of endosperm cellularization is critical in seed viability [Hehenberger et al.,

2012]. Some genes involved in endosperm cellularization have been identified as targets

of imprinting within the endosperm [Gehring and Satyaki, 2017]. While not all angiosperm

species undergo this method of endosperm development, it appears to have had strong

selective advantages in angiosperms, evolving independently in many clades, with basal

angiosperm and eudicot species exhibiting the ancestral cellular proliferation trait (normal

cellular division in the endosperm) [Geeta, 2003]. Endosperm proliferation and cellulariza-

tion have been the predominant parent of origin phenotypes described in interploidy hybrid

systems, as well as interspecies hybrid systems [Rebernig et al., 2015] in plants.

The interploidy hybrid system we have studied in Mimulus reveals striking differences

from those observed in maize and Arabidopsis [Pennington et al., 2008,Scott et al., 1998].

The paternal excess hybrid, 2n x 4n (M. guttatus x M. luteus) produces a phenotype op-

posite to what is expected. Paternal excess is predicted to induce increased proliferation

of endosperm cells (Lamiales, the order to which Mimulus belongs, undergoes cellular en-

dosperm development [Geeta, 2003]). However, this cross suffers from underproliferation

of the endosperm, which likely reduces growth of the dependent embryo as well. Further-

more, the maternal excess hybrid, 4n x 2n, which is predicted to have underproliferated

endosperm and reduced embryonic growth, suffers from near complete failure of both the

endosperm and the embryo. Such unexpected phenotypes as compared to other taxa may
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be due to differences in misregulation or due to differences in imprinting patterns of the

species.

There are varying patterns of overall parental bias in different species where imprint-

ing has been studied. Early imprinting studies in maize revealed an overall bias of MEGs

over PEGs, though more recent studies reveal a more even division [Waters et al., 2011]

or even a greater proportion of PEGs [Waters et al., 2013]. The latter study did however

show that a higher proportion of MEGs were endosperm specific and that imprinting for

many maize genes may be of limited functional consequence. Imprinting studies in an-

other monocot model, rice, revealed overall more MEGs than PEGs [Luo et al., 2011] as

well as in the monocot, sorghum [Zhang et al., 2015]. Genomic imprinting has been stud-

ied in three eudicot taxa: Arabidopsis (and closely related outcrossing species), Solanum

(tomatoes), and Ricinus (castor bean). A strong bias towards MEGs had previously been

described in Arabidopsis [Gehring et al., 2011], though a recent study on maternal seed

coat contamination in Arabidopsis embryo and endosperm transcriptome data suggested

that, after accounting for this contamination, no overall proportional bias towards MEGs or

PEGs could be detected [Schon and Nodine, 2017]. A large proportion of imprinted genes

in Solanum peruvianum are MEGs, while S. chilense, where far fewer imprinted genes were

found, does not share this pattern [Florez-Rueda et al., 2016]. Maternal bias is very strong

in the castor bean endosperm [Xu et al., 2014]. Broad imprinting patterns do not appear to

be widespread or quite generalizable across different taxa, though a preference for some

extent of maternal bias seems common.

M. luteus has an unusual pattern of imprinting. While distinguishable genetic differences

between the two lines of M. luteus were limited, there were still many testable gene pairs

between the two alleles with a number exhibiting significant bias in either direction. M.
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luteus appears to demonstrate an overall paternal bias within the endosperm, though the

reciprocal cross will still need to be analyzed to verify this. Compared to other taxa studied,

this pattern is unexpected. In some cases, this bias is quite strong, with one putative PEG

showing an almost 3000 fold bias over its homeolog. Furthermore,M. luteus has an overall

maternal bias in the embryo with several maternally and paternally biased genes, somewith

very strong bias. While we cannot yet verify true genomic imprinting, if so, this will be the

first documentation of significant imprinting within the embryo of any angiosperm. It is quite

interesting that the endosperm and embryo of M. luteus exhibit opposite biases.

Patterns of imprinting can differ between even recently diverged species. A. lyrata,

an outcrossing relative to Arabidopsis, shares 50% of its PEGs and 35% MEGs with Ara-

bidopsis. In addition, PEGs possessed greater CHG methylation on the maternal allele

than Arabidopsis, resulting in even more biased expression [Klosinska et al., 2016]. Ac-

cording to the conflict hypothesis, it is unsurprising that A. lyrata has greater regulatory

patterns and increased bias in its PEGs since Arabidopsis is predominately selfing, and

A. lyrata is an outcrossing species, which may, furthermore, allow it to better respond to

selection pressures [Lafon-Placette et al., 2017]. Such differences in mating strategies

and responsiveness to selection pressures could explain these rather striking differences

in imprinting patterns between related species. M. luteus is also a predominantly outcross-

ing species with highly conspicuous and variable flowers, perhaps explaining the observed

bias towards its paternal allele in the endosperm [Medel et al., 2003].

In addition to mating strategies, studied species also have varying strategies in seed

and endosperm development. Monocot seeds are albuminous, or endosperm persistent.

The endosperm is retained in mature seeds and during seed dormancy, and the embryo

metabolizes the large starch reserves during seed germination. Arabidopsis and Mimu-
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lus, like most eudicots, are exalbuminous seeds, where the majority of the endosperm is

absorbed into the cotyledons at seed maturity and stored there during dormancy until ger-

mination [Yan et al., 2014]. Patterns of imprinting may differ based off such strategies for

nutrient storage. A. lyrata and M. luteus both display some sort of bias towards PEGs or

paternal expression and have potentially fewer total imprinted genes than other species.

There may be relaxed conflict or drive for imprinting when the endosperm is so transient.

Alternatively, or in addition to this, quick proliferation of endosperm to quickly be absorbed

into the cotyledons may select for stronger paternal influence. The albuminous monocots,

rice and sorghum, have many maternally biased loci [Luo et al., 2011,Zhang et al., 2015].

Maize has many MEGs and PEGs, though it also has a very complicated endosperm and

is highly sensitive to changes in genome dosage [Leblanc et al., 2002]. Intriguingly, the

eudicot, castor bean, has highly persistent endosperm unlike Arabidopsis and Mimulus. At

seed maturity, the cotyledons are thin, and the majority of energy storage is within the en-

dosperm [Greenwood et al., 2005]. In contrast to Arabidopsis andMimulus, the castor bean

endosperm is highly maternally biased. Many of these MEGs are involved in metabolic

processes and may have strong influence over endosperm development [Xu et al., 2014].

Since seeds are so large, take a long time to develop, and are dominated by endosperm,

maternal control may be favored, which follows a couple of imprinting theories on maternal-

embryo coadaptation or coordination [Spencer and Clark, 2014]. Solanum, is also a eudicot

with a persistent endosperm, though not quite as dominant as in castor. At seed maturity,

the endosperm is hard and thick and is broken down upon germination [Yan et al., 2014].

The species studied ranged from no maternal bias (though total imprinted genes were low

here) to fairly large bias [Florez-Rueda et al., 2016]. To investigate the role of endosperm

persistence on genomic imprinting further, more species will need to be investigated includ-
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ing other albuminous eudicots, such as coffee where 99% of the mature seed is composed

of endosperm [Joët et al., 2009], exalbuminous eudicots, such as garden peas were the

entirety of endosperm is absorbed into the cotyledons at maturity [Yan et al., 2014], more

albuminous monocots, and exalbuminous monocots, such as Vallisneria, where starch is

stored in the one cotyledon and the large hypocotyl [Witmer, 1937]. Perhaps a further line

of interest and potentially evidence, albuminous seeds with an underdeveloped embryo

upon seed maturity and dormancy is likely the ancestral state in angiosperms [Forbis et al.,

2002], when imprinting was likely first evolving in the endosperm. Genomic imprinting stud-

ies on albuminous basal angiosperms may provide insight into early forces of imprinting,

and comparison to differing derived seed development systems may help elucidate other

drivers behind variable imprinting patterns. Overall, mating strategies, differences in seed

development, and a variety of other drivers likely influence roles and the effects of the pollen

parent and the seed parent and thus, subsequent patterns of imprinting.

In our Mimulus system, we have observed unusual patterns of parent-specific expres-

sion as well as unusual mechanisms of abnormal seed development based off of differ-

ences in genome dosage. Clear patterns of imprinting appear to be over-shadowed by

M. luteus expression in the reciprocal hybrid crosses, perhaps describing a lack of inter-

genomic post-zygotic regulation due to genetic divergence, or an imbalance of transcription

due to perturbation of or differences in regulatory machinery (similar to patterns observed

in Solanum hybrids [Florez-Rueda et al., 2016]). Genomic dominance from M. luteus is

unsurprising since it has been observed in vegetative tissue from the hybrid [Edgar et al.,

2016]. From PEGs we identified involved in cell growth and replication, observations we

have made on very minimal endosperm development in the flat 4n x 2n seeds, and the

strong bias towards M. luteus, the maternal progenitor, in this cross, we conclude that the
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inviable hybrid (M. luteus x M. guttatus) suffers from insufficient expression or a misregu-

lation of these PEGs necessary for endosperm proliferation.

The narrative of the viable hybrid, 2n x 4n (M. guttatus xM. luteus) is less evident. While

sufficient endosperm is often produced, the seeds appear to suffer from underproliferation,

a phenotype typically observed in maternal excess crosses [Scott et al., 1998]. Further-

more, M. luteus, again in this cross, is dominating in genomic expression. Since it is the

paternal progenitor, a maternal excess phenotype is surprising. The uniqueness and utility

of this system is that it not only represents an interploidy hybrid system, but also a fairly

diverged interspecies hybrid system. M. guttatus and M. luteus may represent a point of

divergence where epigenetic regulatory mechanisms are not well recognized or as func-

tional between the two species’ genomes, preventing the appropriate proliferation PEGs

from M. luteus from activating to the necessary extent. Alternatively, these proteins or reg-

ulatory mechanisms may not function as well within the M. guttatus nucleus/cell. Imprinted

genes and imprinting mechanisms can differ quite substantially and rapidly between differ-

ent, even closely related, species in plants and mammals [Gehring and Satyaki, 2017,Ki-

noshita, 2007,Monk, 2015]. Furthermore, we still don’t know what role the differences in

imprinting patterns for individual genes between subgenomes plays on the phenotype of

these hybrids.

Endosperm failure has been associated with other developmental differences between

species as well. There is a strong hybridization barrier between two closely related Mimu-

lus species, M. guttatus and M. nudatus, an annual species within the M. guttatus species

complex that occurs within close proximity toM. guttatus [Oneal et al., 2014]. Hybrid seeds

suffer from the same shriveled and flat morphologies as seen in our study [Oneal et al.,

2016]. Furthermore, like M. guttatus and M. luteus, M. guttatus and M. nudatus differ in
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development patterns and timing of endosperm and embryo development, and recipro-

cal hybrid seed development appears to follow the developmental timing of its maternal

progenitor, at least in earlier stages. One important difference between this study and

ours is that, while there is some asymmetry between reciprocal hybrid crosses, it is not as

pronounced as the asymmetry in seed morphology and viability as in M. guttatus and M.

luteus hybrids. Additionally, overall germination success of hybrids is very low and does

not exhibit the frequent hybridization between M. guttatus and M. luteus in the wild and

widespread M. robertsii [Vallejo-Marin et al., 2016]. Oneal et al. predict that early arrested

seed development in M. guttatus and M. nudatus hybrids results in the flat seed morphol-

ogy and the delayed development results in the shriveled morphology and that this is due

to differences in development patterns. We cannot rule out the possibility that differences

in developmental timing between M. guttatus and M. luteus is, at least in part, driving the

morphologies and asymmetry seen in the hybrids. The 4n x 2n hybrid seems to have clear

deficiencies in dosage expression, but it could very well be that the 2n x 4n hybrid suffers

from a delayed contribution of proliferating PEGs since, as we have shown, M. luteus has

slower developmental timing than M. guttatus.

4 Future Directions

Further work will be added to supplement and expand the findings from this project. As

reciprocal crosses were used in the hybrid to perform AEBS and verify MEGs and PEGs, a

reciprocal cross for M11 x C5 (C5 x M11) will be sequenced to also perform this analysis in

M. luteus. Furthermore, reciprocal crosses of genetically distinguishable lines ofM. guttatus

will be sequenced for the same analysis. By identifying MEGs and PEGs inM. guttatus and

M. luteus, we can understand how well conserved imprinted genes are between the two
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species and which genes maintain their imprinted status and function in the hybrid. Using

GO Categories, we can further identify functions of MEGs, PEGs, subgenome specific

imprinted genes in M. luteus, and imprinted genes that are and are not maintained in the

hybrids. This information will be useful for understanding the role of imprinted genes in

these Mimulus species, how imprinted genes are partitioned between subgenomes, and

their implications on the developmental patterns observed in the hybrids. To understand the

role of genetic divergence on genomic recognition and imprinting in the developing hybrids,

data on genetic relatedness between the subgenomes ofM. luteus, and betweenM. luteus

and M. guttatus will be used. Finally, Methyl-Seq will be performed to identify mechanisms

of imprinting and to compare overall methylation patterns in the different crosses. These

patterns will be used to better understand how parent genomes of these two species interact

within the developing hybrids.

5 Methods

5.1 Crossing design

Four different crosses were set up for all morphology experiments. M. luteus individuals,

line C5, and M. guttatus individuals, line CG, were used [Vallejo-Marin et al., 2016]. To

produce M. luteus seeds, C5 plants were outcrossed with each other, and CG seeds were

outcrossed with each other to produce M. guttatus seeds. Viable hybrid seeds, 2n x 4n,

were produced by fertilizing CG flowers with C5 pollen, and inviable hybrid seeds, 4n x 2n,

were produced by the opposite pollination.
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5.2 Seed morphology

5.2.1 External Morphology

Seeds from each of the four crosses were collected at 15-16 days after pollination (DAP).

Four ovaries with 100-200 seeds each were collected for each of the four crosses. Images

were taken of all seeds from each cross under a dissecting microscope. Images were then

run through a program in ImageJ that produced different measurements from the outline

of the seeds. Average area and aspect ratio was measured from all seeds pooled for

each cross. ANOVAs were performed using JMP® among the four crosses to measure

differences in area and aspect ratio.

5.2.2 SEM images

Ten seeds from each of the four crosses were fixed in 2% glutaraldehyde with Phosphate

Buffered Saline (PBS) for two hours. After fixation, seeds were washed with PBS and

put through a dehydration series at concentrations of 50%, 70%, 85%, 95%, and 100%

ethanol:PBS for one hour at each step. Seeds were left in 100% ethanol overnight. One

hour before critical point drying, 100% ethanol was renewed. After critical point drying

with a Samdri®-PVT-3B Critical Point Drier (Tousimis® Research Corporation), seeds were

sputter-coated with gold-paladium using a Hummer® sputtering system from Anatech Ltd.

and mounted on pin stubs for Scanning Electron Microscopy (SEM). All images were ac-

quired using Phenom Tabletop Scanning Electron Microscope.

5.2.3 Seed histology

Three replicates of the above crosses were collected for each of the following DAP: 3, 5,

8, and 11 DAP. Ovaries were immediately placed into 4% paraformaldehyde and vacuum
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infiltrated for 15-20 minutes and kept at 4◦C for 48 hours. They were then washed with

PBS for 30 minutes three times. They were left in fresh PBS at 4◦C overnight. Ovaries

were then dehydrated using the following dehydration series: 10% ethanol for 15 minutes,

30% for 15 minutes, 50% for 15 minutes, 70% for 15 minutes, 95% for 20 minutes, and

two times of 100% for 30 minutes, all on a shaker. Ovaries were next infiltrated through

the following infiltration series: 100% propylene oxide three times for 20 minutes each, 2:1

propylene oxide to Spurr’s resin mixture for one hour, and 1:1 propylene oxide to Spurr’s

for one hour, all on a shaker. They were embedded into full resin, changed after two hours,

and left overnight in fresh resin at room temperature on a shaker. The next day, resin

was changed twice every two hours. Ovaries were then placed into individual molds and

left in an oven at 60◦C for 48 hours. Using an ultramicrotome, 0.5 micrometer sections

were produced from the resin molds. Sections were adhered to slides in water at 50◦C

on a heat block. Slides were next stained with Azure II for 5 minutes at 50◦C on a heat

block. Coverslips were mounted onto slides using acrylamide. Images were next taken on

a compound microscope using SPOT™.

5.2.4 Quantitative internal morphology

Seed histology images from three replicates of each of the four crosses at 8 and 11 DAP

were analyzed in ImageJ. Endosperm, embryo, seed coat, and the whole seed were traced

and measured for area. ANOVAs were performed comparing the four crosses at 8 DAP

and 11 DAP using JMP®. T-tests were performed to demonstrate endosperm and embryo

growth from 8 to 11 DAP.
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5.3 Seed germination

In order to link the observed seed morphologies to germination rates, a germination exper-

iment was performed in which morphology was measured. Seeds from each cross were

pollinated at the same time and collected at 15 - 17 DAP (when mature and dihescing).

Seeds were soaked in 3% calcium hypochlorite for 10 minutes on a shaker. They were

then rinsed in PBS three times for 5 minutes on a shaker. Seeds were placed onto 60

mm petri dishes with gridded filter paper on top of additional filter paper to retain moisture.

The petri dishes and filter paper had been sterilized with UV for 30 minutes first. Images

of seeds on the plates were taken, and seed germination was tracked specifically for each

seed based off its position on the grid. 5 plates were used per cross with 16-32 seeds per

plate. Seed images were then analyzed in ImageJ. Area of seeds were then matched to

the germination of each given seed. Statistical comparisons of area and germination rate,

and area and germination date were performed in JMP®.

5.4 RNA-Seq

5.4.1 Plant material

Two genetically distinguishable lines ofM. luteuswere crossed to identify parental genomes

in the progeny. The highly inbredM11 [Stanton et al., 2017] was pollinated by a different line

ofM. luteus, C5 [Vallejo-Marin et al., 2016]. Seeds were collected at 10 DAP. To reproduce

the hybrids, M11 was crossed with a third generation inbred line ofM. guttatus, CG [Vallejo-

Marin et al., 2016]. Seeds of each reciprocal hybrid (CG x M11 and M11 x CG) were

collected at 11 DAP.
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5.4.2 Endosperm isolation and RNA extraction

In order to separate endosperm tissue from the rest of the seeds, a modified protocol was

used from [Gehring et al., 2009]. After collection, ovaries were stored in RNAlater® (Am-

bion™) at 4◦C. Endosperm was dissected from seeds in a 0.3 M sorbitol/5mM MES (2-

[N-morpholino] ethanesulfonic acid) solution [Gehring et al., 2009] on a glass slide un-

der a dissecting microscope using 30-gauge hypodermic needles. Endosperm from 20-30

seeds were pooled per replicate (an ovary from one pollination event) and rinsed with the

same solution 5-10 times. Pooled endosperm was then placed into the Lysis solution of

RNAqueous®-Micro Total RNA Isolation Kit (Ambion™) and disrupted with a pestle (rotating

50-60 times). The remainder of the RNA extraction protocol from the kit was performed.

5.4.3 Library preparation and sequencing

RNAwas converted into cDNA and libraries were constructed using KAPAStrandedmRNA-

Seq Kit. During library construction, sequence specific Illumina TruSeq® adapters were

added to distinguish each library. Using an Agilent 2100 Bioanalyzer, average fragment

lengths were determined to be between 250 and 300 bp. Libraries were then pooled and

sequenced by the Duke Center for Genomic and Computational Biology on an Illumina®

HiSeq 2500 instrument.

5.4.4 Genome assembly and AEB/AEBS

Parental genomes were SNP corrected by first mapping paired endWGS data to previously

assembled reference genomes [Edgar et al., 2016,Hellsten et al., 2013] using bowtie2 in

–very-sensitive-local mode [Langmead and Salzberg, 2012]. Picardtools were used to pre-

pare the files for the GATK toolbox by invoking FixMateInformation to verify and fix mate
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information for paired reads, MarkDuplicates to remove PCR duplicates, and AddOrRe-

placeReadGroups to add read groups. The GATK UnifiedGenotyper was used to create

VCF files with the following options:

java -Xmx5g -jar GenomeAnalysisTK.jar -R genome -T UnifiedGenotyper -rf MaxInsert-

Size –maxInsertSize 10000 -rf DuplicateRead -rf BadMate -rf BadCigar –minbasequalityscore

25 -rf MappingQuality –minmappingqualityscore 25 -ploidy 2 –genotypelikelihoodsmodel

BOTH –outputmode EMITALLSITES –maxalternatealleles 2 str -o out

and theGATKFastaAlternateReferenceMaker (http://www.broadinstitute.org/gatk/) was

used to generate the new SNP corrected fasta files.

For each cross, the SNP corrected coding regions of the parental genomes were com-

bined into a single fasta file, and the fastq reads were aligned to these references using

bowtie2 in –very-fast-local mode. Counts were generated using HTSeq-count with the de-

fault options.

The statistical tests for AEB [Smith et al., 2017] used a 5% significance level, and the

Benajmini-Hochberg correction [Benjamini and Yekutieli, 2001] was made to correct for

multiple testing error.
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