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ABSTRACT

Solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy has proven to be a
powerful method to probe the local structure and dynamics of a system. In powdered
solids, the nuclear spins experience various anisotropic interactions which depend on
the molecular orientation. These anisotropic interactions make ssNMR very useful as
they give a specific appearance to the resonance lines of the spectra. The position and
line-shape of these resonance lines can be related to local structure and dynamics of
the system under study.
My research interest has focused around studying local structures and dynamics of
quadrupolar nuclei in materials using ssNMR spectroscopy. 7Li and 93Nb ssNMR
magic angle spinning (MAS) spectra, acquired at 17.6 and 7.06 T, have been used to
evaluate the structural and dynamical properties of cation-ordered microwave dielectric
materials. Microwave dielectric materials are essential in the application of wireless
telecommunication, biomedical engineering, and other scientific or industrial
implementations that use radio and microwave signals. The study of the local
environment in terms of average structure, by method such as X-ray diffraction (XRD),
is commonly used for exploring of the correlations between structure and properties of
these materials. Extending this type of investigation to specific local structures, on
distance scales of a few lattice spacings, can be achieved with the use of ssNMR
techniques. Even though XRD results show cationic ordering at the B-site (third
coordination sphere), NMR spectra show a presence of disorder in the materials. This
was indicated by the observation of a distribution in NMR parameters derived from
experimental 93Nb NMR spectra and is supported by theoretical calculations.
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CHAPTER 1

Introduction

1.1 Background and Motivation

Oxides perovskites, chemical formula ABO3, are probably the most widely studied

metal oxides. In part, this is because of their ability to accommodate extensive chemical

substitution on both the A and B sites. These complex oxides show a wide variety of in-

teresting and useful physical and chemical properties. Modern wireless communication

technology and microelectronics have benefited a lot from these types of materials [3].

Their importance can also be shown by the numerous researches and studies of their

properties that have been done all over the world [4–10].

In microwave microelectronic technology, dielectrics are used the most for struc-

tural and assembly as well as for circuit application such as filtering, modulation, and

detection. Solid dielectric materials are commonly used in the manufacture of many

passive microwave components (such as microstrip lines, electrical capacitors, dielec-

tric resonators, antennae, etc.) as well as active elements (such as phase shifters,

modulators, detectors, etc). Primary design goal of the complex dielectric properties in

2



microwave ceramics include high dielectric constant (ε = 20− 200), low loss of electro-

magnetic energy at microwave frequencies, and good temperature stability of proper-

ties [11]. The continued development and improvement of this technology will rely upon

our fundamental understanding to enhance performance and potential manipulation of

these systems.

The physical and chemical characteristics of metal oxide perovskites are closely

related to the identity and coordination environment of octahedral B-site cations. The

ability to control the B-site cation, stoichiometry, and ordering therefore plays an impor-

tant role in designing materials to have interesting electrical, magnetic, and mechanical

properties. When B-site cations include more than one chemical element, the material

is known as a complex perovskite, denoted by the chemical formula AB′xB′′1−xO3. The

B′ and B′′ cations can occupy B-sites in either random or ordered fashion. If an ordered

arrangement is adopted, the symmetry and the size of the unit cell are changed. Thus,

ordering of B-site cations has been identified by X-ray diffraction to adopt 1:1, 1:2, and

1:3 ordering along [111] direction [12, 13].

Previous works on cation-ordered microwave dielectrics have focused on under-

standing the relationship between the structure, stoichiometry, and chemistry in order

to optimize the dielectric response of microwave ceramics [14, 15]. For some of these

systems, the degree of chemical order on B-sites plays an essential role in contribut-

ing to the dielectric response and the highest performance was found to be associated

with a fully ordered B-site sub lattice arrangement. Many studies have been performed

on these and related materials using IR, Raman, and X-ray diffraction spectroscopy

[12, 13, 16]. Dielectric loss characterizes the transformation of electrical energy into

heat and is an important electrophysical parameter of the dielectric. However, the loss

is to a large extent dependent on the presence of various type of defects or impurities

within the system. Hence, it is interesting to study these materials with a complimen-
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tary method such as solid-state NMR, that is sensitive to local chemical structure and

dynamics, even in the absence of long range crystalline order.

Solid-state nuclear magnetic resonance (ssNMR) spectroscopy has proven to be a

powerful method to probe the local structure and dynamics of a system [17]. In principle,

it can detect all nuclei which possess nuclear spin through their interaction with an

external magnetic field (Zeeman interaction). A number of anisotropic interactions make

ssNMR very useful as they have a specific effects on the resonance lines of the spectra.

The position and shape of these spectra can be related to local structure and dynamics

of the system under study. The cloud of electrons surrounding the ions or molecules

will adjust in such a way as to produce an induced magnetic field which opposes the

external magnetic field [18]. As a consequence, this modifies the nuclear resonance

frequencies and makes different electronic sites distinguishable. This chemical shift

interaction is typically dominant in NMR spectra of nuclei with nuclear spin I = 1/2.

For I > 1/2 nuclei, another important interaction arises from the electric field gradient

(EFG) resulting from the local electric charge distribution interacting with the nuclear

quadrupole moment of the observed nucleus.

Although NMR is a promising technique that may form a bridge between diffrac-

tion studies and microscopic observations based on the study of transition metal nuclei,

there are a number of challenges that need to be addressed. Many nuclei encountered

in transition metals have a large quadrupolar moment e · Q. The strength of the inter-

action, expressed through the quadrupolar coupling constant Cq = e2qQ/h, can be very

large easily in the tens of MHz regime. Although this interaction can still be treated as

a perturbation to the Zeeman Hamiltonian, in general it has to be treated as a second-

order. Even at high external magnetic fields, the second-order interaction can result

in megahertz line-broadening for nuclei such as 93Nb. To excite such large bandwidth

efficiently, very large rf-field strengths are needed. In addition, if more than one distinct
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site is present in the system, spectral overlap is likely to occur, and this demands care-

ful analysis using spectral deconvolution. Finally, to interpret NMR spectra in terms of

structures, accurate quantum mechanical calculations, such as those available using

first principles density functional theory (DFT), are desirable.

1.2 Structure of the Thesis

Chapter 1 is reserved for discussing fundamental concepts and key features of the

solid-state NMR. In this chapter, the global Hamiltonian of an NMR system is defined

and discussed.

Chapter 2 will be devoted to the analysis of cation-ordered microwave dielectric

materials. This layered systems belong to the family of A′1−xA′′xB′1−xB′′xO3 or AB′1−xB′′xO3.

Structural analysis performed based on a combination of 7Li and 93Nb ssNMR tech-

niques are shown.

Chapter 3 the spin dynamics of this system are investigated by measuring 7Li

nuclear spin lattice relaxation rates as a function of temperature and magnetic field

strength.

Chapter 4 shows the quantum mechanical (density functional) calculation for some

of the samples in the system. The model structures used in the calculations will be

described to obtain NMR parameters.

Chapter 5 concludes the entire thesis with summary and prognosis for future work.

1.3 Basic Principles and Techniques of NMR spectroscopy

This section will focus on describing the basic principles of nuclear spin systems,

the interactions of such systems to external magnetic fields and other sources of local
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magnetic fields, the Hamiltonians that describe these interactions, and also introducing

all quantities necessary for the quantum mechanical description of the systems.

Spectroscopy is branch of science concerned with the investigation and measure-

ment of spectra produced when matter interacts with electromagnetic radiation. For the

radiation to be able to interact with matter, the difference in energy levels should match

the incoming/outgoing radiation energy and this condition is termed "resonance". This

idea forms the basis understanding for nuclear magnetic resonance (NMR). However,

for NMR, the matter is under the influence of an applied magnetic field.

NMR was first observed in 1938 by Isidor Rabi. By extending the Stern-Gerlach

experiment, he was able to measure the magnetic moment of a nucleus in molecular

beam [19]. He was awarded the Nobel Prize in Physics for this breakthrough in 1944.

Later in 1945, this phenomenon was observed by E. M. Purcell in solids [20] and by

F. Bloch in liquids [21–23] the following year. Both of them share the Noble Prize in

physics in 1952 for the development of methods in measuring precision NMR experi-

ments. Rabi, Purcell, and Bloch observed that nuclei such as 1H, 31P, and 19F when

placed in magnetic field responded differently, i.e. each nucleus having specific ab-

sorption frequency. This gave them confidence that the NMR phenomenon would later

turn out to become a very strong and powerful spectroscopic technique which can be

applied to various branches of science.

During the 20 years after Bloch & Purcell’s observations of NMR in bulk matter,

a growing NMR community saw the discovery of spin echoes, general theories for

spin-lattice and spin-spin relaxation, pure quadrupole resonance and multiple quan-

tum NMR. Until 19661, NMR was studied primarily by continuous wave (CW) irradi-

ation techniques, which suffered from inherent low of sensitivity. R. R. Ernst solved

this problem by averaging the signal in the time domain following repeated RF-pulses
1Purcell and others used pulsed NMR well before FT-NMR was discovered.
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with subsequent Fourier transformation to recover the spectrum [24]. Fourier transform

NMR (FT-NMR) turned out to be a revolutionary way to study matter in which physicists,

chemists, and biologists around the world now use to extract structural information and

dynamics of the system of interest, and R. R. Ernst was awarded Noble prize in physics

in 1991 for this discovery.

1.4 Quantum Mechanical Picture

1.4.1 Magnetic moment, nuclear spin, and spin states

Matter is composed of atoms, and atoms consist of nucleons and electrons. The

electron can be viewed as orbiting a nucleus and possesses orbital angular momentum,

denoted as L. In addition to this, electrons also possess an intrinsic angular momen-

tum called spin. Spin is quantum phenomenon and cannot be thought as geometrical

spinning of electron on its axis. The electron magnetic dipole moment µe, arises from

this spin. Similarly, protons and neutrons also possess intrinsic spin, denoted as I, and

hence nuclear magnetic moments µn. The overall spin of a nucleus is determined by

the spin quantum number of its constituents. If the number of both protons (Ip = 1/2)

and neutrons (In = 1/2) are even in a given nuclide, then I = 0. Just as electrons in

atomic orbitals, even numbers of protons or even numbers of neutrons pair up giving

zero overall spin. However, a proton and a neutron will have lower energy when their

spins are parallel, rather than anti-parallel.

The magnetic moment operator is related to the spin operator according to the

relation

µ̂ = γ~Î (1.1)
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where γ is known as nuclear gyromagnetic ratio, a constant for a given type of nucleus,

and is given to a first approximation by,

γ =
q

2m
(1.2)

q and m are nuclear charge and mass respectively. When the nucleus is put under

static and uniform magnetic field, the nuclear magnetic moment will interact with it. The

interaction of the nuclear spin in a static magnetic field is described by,

Ĥ = −µ̂ •B0 (1.3)

This hamiltonian is often referred to as the Zeeman hamiltonian where B0 is the static

magnetic field and usually taken along the positive z-axis in the laboratory frame. So,

combining (1.1) and (1.3), we have

Ĥ = −γ~B0Îz (1.4)

The eigenfunctions (or eigenstates) of Ĥ are the wavefunctions describing the possible

states of the spin system in the B0 field. Since Ĥ is proportional to operator Îz, this

means they commute and they share the same eigen-functions. For simplicity, we use

the eigen-functions of Îz as the shared eigenfunctions. Using Dirac bra-ket notation,

these functions can be denoted as |l,m〉 where l is the nuclear spin quantum number.

The quantum number m take values of I, I − 1, I − 2, · · · ,−I. The energies associ-

ated with different possible spin states are the eigenvalues of the operator Ĥ. These
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eigenvalues can be obtained by operating Ĥ to the spin wavefunctions,

Ĥ |l,m〉 = El,m |l,m〉 (1.5)

where El,m is the energy of the eigenstate |l,m〉. Substituting (1.3) to (1.5) yields,

Ĥ |l,m〉 = − (γ~B0) Îz |l,m〉 = − (γ~B0)m |l,m〉 (1.6)

since |l,m〉 is an eigenfunctions of Îz with eigenvalue of m. The energies of the eigen-

states are obtained by comparing (1.5) and (1.6), so

El,m = −γ~B0m (1.7)

As an example of a spin system with I = 1
2
, m takes value of ±1

2
. This suggests that

there are two possible eigenstates with energy E 1
2
,± 1

2
= ∓1

2
γ~B0. These states are

frequently referred to as the Zeeman states. The difference of energy between these

two states is ∆E = γ~B0 and is called the transition energy. The associated transition

frequency is ω = γB0 (or ν0 = 1
2π
γB0) and this is called Larmor frequency.

FIG. 1.1: The frequency ναβ of a spectral line matches the energy difference of the spin eigen-
states.
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1.5 Vector Model

For many spectroscopy techniques, it is sufficient to think about energy levels and

selection rules. However, this is not true for NMR. For example, using only energy levels

approach we cannot even describe how the most basic pulsed NMR experiments work,

let alone the more complicated two-dimensional experiments. Even though the vector

model can only be applied to a small number of situations, the ideas carry over into

more sophisticated treatments. It is therefore essential to have a good understanding

of the vector model and how to apply it.

1.5.1 Nuclei in a static, uniform magnetic field

The net nuclear magnetization M in a sample (i.e. equivalent to bulk nuclear mag-

netic moment) is the vector sum of all individual nuclear magnetic moments.

M =
∑
i

µi (1.8)

If the nuclei are placed in a uniform magnetic field B as in the NMR experiment, a torque

T is exerted on the magnetization vector

T =
1

γ

d

dt
M (1.9)

In this situation the torque is given by

T = M×B (1.10)
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Substituting (1.9) to (1.10), we get

dM

dt
= γM×B (1.11)

which describes the motion of the magnetization vector M in the magnetic field B. The

implication of Equation (1.11) is that suppose we, somehow, manage to tip the mag-

netization vector away from the z-axis such that it makes an angle θ from it, the mag-

netization vector will rotate around the direction of the magnetic field sweeping out a

cone with constant angle. The vector is said to precess about the magnetic field and

this particular motion is called Larmor precession. In NMR the magnetic field is taken

to be B = (0, 0, B0), and the frequency with which the magnetization precesses about

this field, defined as ω0, is known as the Larmor frequency [25].

ω0 = −γB0 (1.12)

FIG. 1.2: Precession of magnetization vector around the magnetic field.
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1.5.2 Detection

Larmor precession of the magnetization vector is what we actually induces and get

detectable signal in NMR experiments. If a small coil is placed with its axis in the xy -

plane, the magnetization vector will sweep through its cross-sectional area. According

to Faraday’s law, an induced current will be produced. This current, which is the NMR

signal, can be amplified and recorded. Due to relaxation processes, the signal will

decay hence it is called free induction decay, or FID.

FIG. 1.3: Precessing magnetization will induce a current in the coil. This coil is part of an LC
circuit and is tuned to the Larmor frequency.

FIG. 1.4: The free induction decay (FID) of NMR signal.
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1.5.3 The effect of RF pulses

The most important question now is how one turns the magnetization vector away

from its equilibrium position along the z-axis. Theoretically, this is easy to achieve.

We just need to replace (suddenly) the magnetic field along the z-axis with one in the

xy -plane (for example along x-axis). Unfortunately, this is not practical since the static

magnetic field is supplied by a powerful superconducting magnet and there is no way

this can be switched off quickly.

One possible approach is using resonance. The idea is to apply a very small

magnetic field along the x-axis which oscillates near or at the Larmor frequency. This

method provides a convenient way since we can use the same coil to generate the

oscillating magnetic field and to detect the precessing magnetization. All we need to

do is supply radio-frequency (RF) power to the coil and the resulting current creates an

oscillating magnetic field along the x-axis and this is called radio-frequency or RF field.

FIG. 1.5: The precession of magnetization vector around the RF field on the x-axis. As a result
the magnetization vector will rotate away from its equilibrium position.

When RF power with frequency of ±ωrf is applied to the coil along the x-axis,

the result is an oscillating magnetic field. The magnetic field moves back and forth

along the +x and −x passing through zero along the way. This view is easy to picture,

but it turns out, it’s a lot easier to work out if the linearly oscillating magnetic field is

replaced with two counter-rotating ones, as can be seen from Fig. 1.6. The frequency
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of these two components can be written as ±ωrf , where ωrf is the frequency of the

rf pulse. Furthermore, it can be shown that only the component, which rotates in the

same sense as the precession of the magnetization vector, has any significant effect

and we label this component B1(t).

FIG. 1.6: A linearly oscillating magnetic field (bottom row) is equivalent to the counter-rotating
components (top row) with half the amplitude.

The effect of this field can be easily seen by transforming the whole problem into a

frame that rotates at frequency ωrf around B0. In this frame, B1(t) appears to be static,

i.e. its time dependence has been removed. Also, if the pulse is on resonance, i.e.

the frequency of the rotating frame is the same as the Larmor frequency (ωrf = ω0), the

magnetization appears stationary. The apparent Larmor frequency in this frame is zero,

in another words, the static magnetic field has been removed. The only field remaining

in the rotating frame now is the effectively static B1 field. As a result, the magnetization

vector will now precess around the resultant field, which is now only B1, at frequency

ω1 = −γB1 and this frequency is called the nutation frequency.

If the rf-pulse is applied for a duration τp with a magnitude B1, the net magnetization

M will be rotated at an angle

θp = ω1τp = −γB1τp (1.13)
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when the duration is such that the angle is 90◦ (magnetization vector is then in the

xy -plane), we call that pulse a 90◦-pulse.

1.6 General Expression of Nuclear Interaction

In addition to the interaction due to static magnetic field and the rf-pulses, nuclei

also interact with other magnetic fields arising from their surroundings. These sources

of magnetic fields are internal to the sample, and for solids can cause and extensive

line broadening. Using quantum mechanics, it’s possible to consider all the interactions

of one nuclear spin with other magnetic field sources. The general Hamiltonian is thus

described as the sum of individual terms,

Ĥtot =
∑
i

Ĥloc,i (1.14)

Each term in the Hamiltonian can be represented as the interaction of the nuclear spin of

the m-th nucleus, Îm, with a local magnetic field Bloc,i. The source of the local magnetic

field determines the characteristic of the interaction

Ĥloc,i = −γÎm •Bloc

= −γ
(
ÎxB

loc
x + ÎyB

loc
y + ÎzB

loc
z

) (1.15)

When we consider specific nuclear spin interactions, we will find that we can always

express the local magnetic field Bloc as

Bloc = Aloc • S (1.16)
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where Aloc is a second-rank Cartesian tensor, often referred to as the coupling tensor.

This tensor describes the interaction’s strength and its orientation dependence. The

vector S is the source of the local magnetic field, Bloc, felt at the probed nucleus. For

example, it will be another nuclear spin in the case of dipolar coupling and B0 itself

in the case of chemical shielding. Hence, we can write a general contribution to the

nuclear spin Hamiltonian from an interaction A as,

ĤA = −γÎ •Bloc = Î •Aloc • S (1.17)

It’s possible to choose one axis frame so that the interaction tensor is diagonal.

This axis frame is called principal axis system and designated with capital letter as the

subscript. The three principle values are frequently expressed as the isotropic value,

Aiso, the anisotropy, ∆A, and the asymmetry, ηA, of the interaction. These quantities are

defined from the principle values as follows:

Aiso =
1

3
(AXX + AY Y + AZZ)

∆A = AZZ − Aiso

ηA =
AXX − AY Y

∆A

(1.18)

We can picture an interaction tensor as being represented by an ellipsoid fixed

within the molecule and centered on the nucleus being observed. The principal axis of

the ellipsoid will coincide with the principal axis system of the interaction tensor and the

length of each principal axis corresponds to the magnitude of the principal value of the

interaction tensor. If the orientation of the molecules change, so does the interaction

tensor. The interaction tensor also reflects the symmetry of the crystallographic site of

the nucleus.
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FIG. 1.7: Representation of an interaction tensor by an ellipsoid in the laboratory frame (LAB).
The principal axes of the ellipsoid coincide with the interaction tensor principal axis system
(PAS).
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1.6.1 Cartesian and spherical tensor formalism

The interaction tensor often needs to be expressed in different coordinate system,

thus rotation operations are needed. When tensors need to be expressed into a new co-

ordinate system related to the old one by rotation operation about Euler angles (α, β, γ),

it is more convenient to express the tensors with the use of spherical tensor formalism.

A second-rank tensor can be decomposed into three irreducible spherical tensors

in terms of Cartesian components, based on the following relationship [26]

A(0,0) = − 1√
3

(Axx + Ayy + Azz)

A(1,0) = − i√
2

(Axy − Ayx)

A(1,±1) = − 1√
2

[Azx − Axz ± i (Azy − Ayz)]

A(2,0) = − 1√
6

[3Azz − (Axx + Ayy + Azz)]

A(2,±1) = ∓ 1√
2

[Azx + Axz ± i (Azy + Ayz)]

A(2,±2) =
1√
2

[Axx − Ayy ± i (Axy + Ayx)]

(1.19)

When the Cartesian tensor is symmetric and has zero trace, only five rank-two irre-

ducible tensor components have non-zero values. This is the case, for example, for

dipolar and quadrupolar interaction, while chemical shift has non zero trace.

From (1.17), we can express Ii and Sj as a unique tensor Tij. Consider a dyadic

product of

Tij = IiSj (1.20)

Using this definition, it is possible to rewrite the spin interaction Hamiltonian in terms of
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irreducible spherical tensors

H =
2∑

k=0

+k∑
q=−k

(−1)qA(k,q)T (k,−q) (1.21)

1.7 The NMR Hamiltonian in Solids

The total interaction energy of a nucleus is the result of the sum of all individual

contributions experienced by the nucleus. The total NMR Hamiltonian is the sum of

internal and external interactions.

Ĥtotal = Ĥint + Ĥext (1.22)

Since NMR experiments involve putting the samples in static magnetic field and ma-

nipulating spin system using rf-pulse, the external Hamiltonian comprise of these two

interactions and all other interactions form the internal Hamiltonian. Hence,

Ĥext = ĤZeeman + Ĥrf (t) (1.23)

while,

Ĥint = ĤCS + ĤD + ĤJ + ĤQ + Ĥhyp (1.24)

The interactions in NMR solids are quite complicated due to the anisotropic terms, but

they are very useful in providing information about the local structure of the system un-

der study. The first term in (1.24) is the chemical shielding which defines the interaction

between the nucleus and the local changes in magnetic field due to any changes in

electron density. The dipolar interaction is direct and through-space interaction while
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J-coupling term defines through-bonds interaction between the nuclei and is usually ig-

nored since the CS and dipolar terms are usually large. The fourth term is called the

quadrupolar interaction and only exist for nuclei with spin greater than half (I > 1/2).

The last term is the hyperfine interaction (paramagnetic interaction) and this is due to

the interaction of unpaired electron with the nucleus.

In NMR spectroscopy, it is generally the case that

Ĥext � Ĥint (1.25)

as far as this condition is valid, and particularly the Zeeman interaction is the dominant

interaction, it’s possible to consider the z-axis of the field B0 as the quantization axis

for the energy level of the system, i.e. the internal interactions can be considered as

perturbation to the Zeeman interaction. Also, based on the magnitude of the interac-

tions, there are only four terms that really matter in NMR solids and those are chemical

shielding, dipolar interaction, quadrupolar interaction, and hyperfine interaction.

1.7.1 Shielding and chemical shift interaction, ĤCS

When a sample is put in a uniform static magnetic field, B0, the applied field will

induce motion of electrons inside the molecules. This motion of electrons, in turns, will

generate a local magnetic field Bint, known as nuclear shielding. This nuclear shield-

ing will create a unique environment for the nucleus and allow us to differentiate each

inequivalent nuclei in solids. The local field at a nucleus is therefore

Bloc = B0 + Bind (1.26)
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The magnetic shielding tensor is defined through the response of the system to an

external uniform magnetic field. It relates the induced magnetic field at the nucleus

position Bind(r) to the applied external magnetic field B0 according to

Bind(r) = −σ(r) •B0 (1.27)

According to Ramsey [27–29], the total nuclear shielding (NS), σ, has two contributions:

diamagnetic (σD) and paramagnetic (σP ) shielding

σ = σD + σP (1.28)

The diamagnetic shielding contribution will result in shielding the nucleus (i.e. the in-

duced field Bint will oppose B0, hence reducing the effective Larmor frequency) while

paramagnetic shielding will de-shield the nucleus (i.e. the induced field Bint will have

same direction as B0, hence increasing the effective Larmor frequency).

The chemical shielding Hamiltonian can be described as

ĤCS = −
∑
k

γkÎk • (1− σ) •B0 (1.29)

where Îk is the nuclear spin angular momentum operator of the k-th nucleus and σ is

3× 3 second rank tensor that describes the nuclear shielding as,

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 (1.30)

where x, y, z is some unspecified axis frame. The tensor can be further decomposed
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into symmetric and anti-symmetric components. In principal axis system, the tensor

can be expressed as

σPAS =


σ11 0 0

0 σ22 0

0 0 σ33

 (1.31)

The principal values are assigned such that σ33 ≥ σ22 ≥ σ11 (i.e. σ33 and σ11 are the

most and least shielded components, respectively. The isotropic nuclear shielding (NS)

is the average of the three principal values

σiso = (σ11 + σ22 + σ33)/3 (1.32)

NS values are described with respect to bare nucleus (i.e. with no electrons) which

is completely de-shielded (σbare = 0). However, it is not practical to measure NS of a

bare nucleus, though one can calculate theoretical values with respect to this reference

point. Experimentally, one measures chemical shifts, which are compared against a

reference standard. Hence, the chemical shift (CS) is the shielding of a nucleus of the

sample, σsample, with respect to reference standard, σref .

δsample
ii = −

(
σref
iso − σ

sample
ii

1− σref
iso

)
≈ −

(
σref
iso − σ

sample
ii

)
(1.33)

Hence, the isotropic chemical shift (the most important quantity in the context of high-

resolution NMR) can be determined as,

δsample
iso = −(σref

iso − σ
sample
iso ) (1.34)

There are a number of different conventions for describing the shielding anisotropy.
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In this thesis, to enable a clear comparison with the experimental data, the shielding

tensor are defined according to Haeberlen-Mehring-Spiess convention where the prin-

cipal components of are arranged such that

|δ33 − δiso| ≥ |δ11 − δiso| ≥ |δ22 − δiso| (1.35)

The isotropic chemical shift is given by

δiso = (δ11 + δ22 + δ33)/3 (1.36)

while the chemical shift anisotropy is characterized by

∆δ = δ33 − δiso (1.37)

and the anisotropy

ηδ = (δ22 − δ11)/(δ33 − δiso) (1.38)

In solutions, the molecules are moving and tumbling rapidly in random fashion. In

effect, this averages out the CSA and only sharp peak is observed on the spectrum.

This peak corresponds to the isotropic chemical shift, δiso. However, this is not the case

for solid-state NMR. In solids, broad powder patterns are often observed due to CSA

where all possible tensor orientations are present. The effect on the spectrum is shown

in Fig. 1.8.

1.7.2 Dipolar interaction, ĤD

Each nucleus with an associated nuclear spin I has a magnetic moment µ and

will generate a local magnetic field that is experienced by other nuclei. This interaction
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FIG. 1.8: (a) Rapid molecular tumbling in solutions serve to averages out the CSA to isotropic
value. (b) Simulated static spectrum
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occurs through space and is called the direct dipole-dipole coupling. In solutions, this

interaction averages out to zero due to rapid molecular tumbling, where as in solid

systems it is one of the major cause of line broadening. By extending the classical

picture for dipole-dipole interaction, we can write the dipolar interaction Hamiltonian

between spin I and S as

ĤD = −µ0

4π
γIγs~

{
Î • ŝ

r3
− 3

(Î • r)(Ŝ • r)

r5

}
(1.39)

Alternatively, we may express the dipolar interaction Hamiltonian in the Cartesian

tensorial form

ĤD = −2Î • D̂ • Ŝ (1.40)

where the spin S is the ultimate source of local magnetic field at nucleus I. The tensor

D is the dipole coupling tensor, with principal value of −d/2,−d/2,+d where d is known

as dipolar coupling constant (in unit of rad·s−1) and given by

d =
µ0

4π
γIγs~ (1.41)

1.7.3 Quadrupolar interaction, ĤQ

More than 70% of NMR active nuclei have a nuclear spin greater than 1/2 and

therefore they possess an electric quadrupole moment. This nuclear quadrupole mo-

ment comes from the non-spherical distribution of the positive charge at the nucleus

[30, 31] and it will interact with electric field gradients (EFG) at the site of the probed

nucleus. This EFG comes from the surrounding nuclei, electrons, and reflects the local

symmetry [32, 33]. The quadrupolar interaction has the effect of changing the nuclear

spin levels and energies. The magnitude of this interaction depends on the nuclear
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quadrupole moment and the EFG at the center of the nucleus. The quadrupolar inter-

action Hamiltonian can be described as

ĤQ =
eQ

2I(2I − 1)~
Î •V • Î (1.42)

where eQ is the nuclear quadrupole moment. The quadrupolar interaction tensor V can

be diagonalized to transform the EFG to its principal axis system

VPAS =


V11 0 0

0 V22 0

0 0 V33

 (1.43)

The magnitude of the quadrupolar interaction is typically described by the quadrupolar

coupling constant and defined by

CQ =
eQV33

~
=
e2qQ

~
(1.44)

Since V33 = eq the EFG tensor is connected to the local symmetry of the nucleus under

study, this reflects the electronic structure and bonding situation surrounding the nu-

cleus. The symmetry of the environment will be reflected by the asymmetry parameter,

ηQ, which is defined by

ηQ =
V11 − V22
V33

, (1.45)

where |V11| ≤ |V22| ≤ |V33| are the principal axis values of the EFG tensor and using

this we have 1 ≥ ηQ ≥ 0. This tells us, the higher the symmetry the less the magnitude

of CQ will be [34]. Alternatively, the quadrupolar interaction sometimes reported in the
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form of the quadrupolar frequency, which is defined as

ωQ =
3CQ

2I(2I − 1)
(1.46)

Under, the high-field approximation (ω0 � ωQ), the quadrupolar interaction may be

treated as a perturbation to Zeeman interaction. In most cases, quadrupolar interaction

is quite big and this can be seen from the value of CQ that can range from a few kHz

to several MHz. Hence, it’s necessary to treat the perturbed Hamiltonian through the

second order. Thus, the quadrupolar Hamiltonian can be written as

ĤQ = Ĥ
[1]
Q + Ĥ

[2]
Q (1.47)

By only taking secular terms in the quadrupolar Hamiltonian (ones that commute

with Îz), we have

Ĥ
[1]
Q =

eQ

4I(2I − 1)~

√
6

3
[3Î2z − I(I + 1)]V (2,0) (1.48)

and

Ĥ
[2]
Q = − 1

ω0

{
eQ

4I(2I − 1)~

}2

×
{

2V (2,−1)V (2,1)Îz[4I(I + 1)− 8Î2z − 1]

+ 2V (2,−2)V (2,2)Îz[2I(I + 1)− 2Î2z − 1]
}

(1.49)

Taking into account the first and second order quadrupole terms, Ĥ [1]
Q and Ĥ [2]

Q , the Zee-

man energy levels get shifted. Since Ĥ
[1]
Q is an even function of Îz, the energy-level

shifts having the same magnetic number |m| are shifted by the same amount, that is

〈m| Ĥ [1]
Q |m〉 = ±ωQ. For spin I = 3

2
, the transition

(
−1

2
↔ 1

2

)
is called the central transi-

tion and the other two transitions
(
−1

2
↔ −3

2

)
and

(
1
2
↔ 3

2

)
are called satellite transitions.

As can be seen from Fig. 1.9, the CT is not affected by Ĥ [1]
Q while the ST are shifted by
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±2ωQ.

FIG. 1.9: The energy level diagram for spin I = 3/2 nucleus showing the effect of Zeeman, first
order, and second order quadrupolar interaction.

The second order effect of Ĥ [2]
Q is to shift the energy levels further. An additional

shift called second-order quadrupole shift occurs for each transition line. As Ĥ [2]
Q is and

odd function of Îz, the energy-level shifts having the same magnetic number |m| are

shifted by the same quantity but in the opposite direction.

1.8 High-resolution in ssNMR Experiments

In solid-state NMR, we generally deal with powder samples, that is samples con-

taining many crystallites with random orientations. All nuclear spin interactions that have

been discussed in previous sections are quite similar in form. Particularly, the interac-

tions for the same tensor rank are dependent on crystallite orientation (they also behave

in exactly the same way). As a result, NMR spectra of polycrystalline powder samples

consists of broad lines, or powder patterns. When there is more than one inequivalent

nuclear site present in the system, the powder patterns from each site may overlap.

This will render NMR spectrum more difficult to analyse for structural determination.
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One technique that has been used primarily in ssNMR to increase spectral resolu-

tion and sensitivity is called magic angle spinning (MAS). This is achieved, suggested

by its name, by spinning the sample at an angle θm = 54.74◦ (magic angle) with respect

to static external magnetic field. With this technique, the dipole-dipole interaction aver-

ages to zero while CSA interaction averages to its non-zero value (the isotropic chemical

shift) at magic angle. However, for the quadrupolar interaction, only the first order terms

are fully averaged by MAS leaving residual second order-quadrupolar broadening.

In analysing powdered or disordered samples with moderately strong quadrupolar

couplings, all the allowed ∆Sz = ±1 transitions will be broadened, in most cases, be-

yond the NMR detection limit except the
(
±1

2
↔ ∓1

2

)
transition (central transition or CT).

It is consequently on these CTs that most ssNMR of half-integer quadrupolar nuclei are

focused on. A number averaging procedures have been proposed, capable of achieving

high-resolution NMR to quadrupolar nuclei [35–39]. These are double rotation (DOR),

dynamic-angle spinning (DAS), multiple-quantum magic angle spinning (MQMAS), and

satellite transition magic angle spinning (STMAS). But the most practical and widely

used techniques are MQMAS and STMAS. In this thesis we will focus on understand-

ing the local structure and dynamics of cation-ordered microwave dielectric materials

using ssNMR spectroscopy of quadrupolar nuclei. This investigation is crucial since ss-

NMR spectroscopy can give additional information to diffraction studies and may form a

bridge to microscopic observations in the study of transition metal of complex perovskite

structures.

1.8.1 Magic angle spinning (MAS)

Rapid isotropic molecular tumbling of molecules in solutions serves to average

anisotropic NMR interactions to their isotropic values, giving rise to high-resolution NMR
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spectra. In solids, we achieve a similar effect by introducing a coherent sample rotation

about a laboratory fixed axis at certain angle with respect to the magnetic field. To do

this, the powdered sample is put inside a container (i.e. rotor) and spun at a constant

rate, ωR. In a strong magnetic field, the secular part (T (2,0)) of all second rank tensor

interactions has the same angular dependence, (3 cos2 θ − 1), where θ is the angle

between the rotor axis and the magnetic field. This term is zero when θ = 54.74◦, hence

the name magic angle since this removes the anisotropic part of interaction tensor.

FIG. 1.10: The schematic for sample rotation at magic angle θ = 54.74◦.

Moreover, it can be shown that for sample rotation rates on the order of the interac-

tion strength or greater, the coherent time-dependence of the non-secular terms (T (2,±1)

and T (2,±2)) produce a manifold of spinning side-bands at multiple of the spin-rate. The

isotropic tensor component (T (2,0)) is invariant to rotation and yields a single narrow

peak at the isotropically averaged frequency.

In many software packages that calculate and simulate MAS spectra, the model

assumes infinite spin-rate and hence omits the side-bands. Slower spinning rate (i.e.

the rate is comparable to anisotropic magnitude or even less) will produce spinning

side-bands in addition to the isotropic chemical shift. The spinning side-bands are

sharp lines that trace-out the anisotropic part of the (T (2,0)) tensor. It is noteworthy that
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the isotropic value will not always be the most intense line. The illustration of MAS on

the chemical shift can be seen from Fig. 1.11 and isotropic chemical shift is highlighted

inside the red box.

FIG. 1.11: Simulated spectra illustrating the effect of MAS on a I = 1
2 nucleus.

1.8.2 Pulse sequences

Spin-echo or Hahn-echo

The NMR signal observed following an initial excitation pulse decays with time due

to spin relaxation, and also any inhomogeneous effects which cause different spins

in the sample to precess at different rates. The first of these, relaxation processes,

leads to irreversible loss of transverse magnetization. However, inhomogeneous de-

phasing can be reversed by applying a 180◦ inversion pulse that inverts the precessing

magnetization vectors [40]. Examples of inhomogeneous effects include a magnetic
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field gradient and a distribution of chemical shifts. If the inversion pulse is applied after

a period t of de-phasing, the inhomogeneous evolution will re-phase to form an echo at

time 2t. In simple cases, the intensity of the echo relative to the initial signal is given by

exp−2t/T2 where T2 is the time constant for spin-spin relaxation.

FIG. 1.12: The echo signal detection after appling 180◦ pulse.

1.8.3 Multiple quantum magic angle spinning (MQMAS)

The CT of quadrupolar nuclei under MAS is much narrower than the powder pattern

observed under static condition. However, the anisotropic effects of the second-order

quadrupolar interaction cannot be average out completely by conventional MAS exper-

iments. Therefore, difficulties can arise when extracting information from MAS spectra

with multiple resonances. Many different techniques have been developed in order to

average the second-order quadrupolar interaction and acquire high-resolution spectra

of quadrupolar nuclei, such as DOR and DAS which unfortunately require specialize

probes. Fortunately, one NMR technique was developed using a clever method to cor-

relate multiple- and single-quantum coherences that utilizes a conventional MAS probe.

This technique is widely known as multiple-quantum MAS or MQMAS [39] for short.

Multiple-quantum coherences are established with high power radio frequency pulse

and then the spin systems are allowed to evolve during a period t1 called the evolution

time. A "mixing" pulse (or pulse sequence) is applied to convert the multiple-quantum
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coherence to observable signal. In NMR, the observable signal has ∆m = ±1 coher-

ence and by convention focused on −1 pathway. After mixing, the resulting signal is

observed and recorded in the detection time t2. In order to get two-dimensional (2D)

spectra, the evolution time t1 is incremented and the signals are Fourier transformed

with respect to both t1 and t2.

FIG. 1.13: Pulse sequence and one possible coherence pathway diagram for 3QMAS.

Unfortunately, this method will produce a phase-twisted lineshape which cannot be

phased correctly. Therefore, modifications to the original experiment have been devel-

oped to ensure that the lineshape can be phased properly. This includes the phase- and

amplitude-modulated experiments with respect to the t1 increments. One dimensional

(1D) spectra which correspond to isotropic resonances can be obtained by taking or-

thogonal projection along the slope of lineshape ridges. The slope of these ridges

depends on the spin system and is called the MQMAS ratio, R. In practice, a mathe-

matical transformation, known as shearing, is applied to the spectra which adjust the

ridges so that they are parallel with respect to F2 dimension. Using this transformation,

the isotropic projections can be easily obtained and analysed.
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FIG. 1.14: Representation of shearing transformation on MQMAS spectrum.
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CHAPTER 2

Complex Perovskite: Microwave

Dielectrics

2.1 Introduction

Many electronic ceramics which have interesting physical properties, such as ferro-

electric, piezoelectric, high-temperature superconductor and colossal magneto-resistive

materials have perovskite or perovskite-related structures. Microwave ceramics are ox-

ide perovskites that have been widely studied in part because of its technological ap-

plication to wireless communications. The ability of perovskites and perovskite-related

structure to accommodate a wide range of atomic substitutions results in a wide range

of chemical and physical properties. These oxides provide a unique platform to study

correlations between structure and bulk properties. When the A- and/or B-sites con-

tain mixtures of two or more different atoms, the ability to control positional ordering of

the cations in a complex perovskites gives rise to unique electronic responses of the

materials.
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Many well known perovskite materials have complex compositions with mixtures

of cations on A- and/or B-site. These include technologically important ferroelectric

(e.g. PbZr(1−x)TixO3 or PZT) and microwave dielectrics (e.g. BaZn1/3Ta2/3O3 or BZT).

In these systems, additional changes in overall symmetry can arise from the ordering

of different cations occupying the same site. Octahedral tilting and chemical ordering

on the crystal chemistry of the perovskites has a huge impact on the physical charac-

teristics of the materials. Distortion of the octahedra through Jahn-Teller effects is not

expected to play a role in the d0 systems of interest here and is not discussed.

2.2 Overview of Perovskite Crystal Structure

Perovskites have a cubic crystal structure with general formula ABO3. In this struc-

ture (as can be seen from Fig. 2.1) An A-site cation is positioned at the corner of the

cube and is usually an alkaline earth or rare earth element. The B-site cations, posi-

tioned on the center of the cube, could be 3d, 4d, 5d transition metal elements, while

oxygen atoms are positioned at the face of the cube. In an ideal cubic perovskite, the

A- and B-sites cations find their equilibrium bond distance to oxygen without any dis-

tortion of the unit cell. This happens when A-site cations are in contact with twelve

oxygen atoms and B-site cations are in contact with six oxygen atoms, hence we have

dA−O =
√

2dB−O. However, in the majority of complex perovskites, the A-O and B-O

bond lengths are geometrically incompatible due to the different sizes of the atoms.

To predict whether a combination of A- and B-site cations are likely to produce

a perfect or distorted perovskite structure, a criterion was devised called Goldschmidt

tolerance factor [41]

36



FIG. 2.1: Ideal cubic of ABO3 perovskite structure. A-sites ion is marked green, B-sites ion is
light blue, and oxygen atoms are red

t =
rA + rO√
2(rB + rO)

(2.1)

where rA, rB, and rO are the radii of A-site, B-site, and oxygen atoms and using this

criterion we have t = 1 for ideal perovskite. A large number of metallic elements are

stable in the perovskite structure if the tolerance factor t is in the range of 0.75 - 1.06

[42]. The alternative view for perovskite structure with cubic symmetry can be described

as consisting of corner-sharing BO6 octahedra with the A-site cation sitting in the middle

of the cube of eight such octahedra surrounded by 12 oxygen anions.

When A-site cation is too small for its cage (i.e. t < 1, e.g. CaTiO3), the surrounding

BO6 octahedra can tilt to decrease the A-O bond length and lower the coordination

number for the A-site cation. When the B-site cation is too small for its cage (t > 1,

e.g. BaTiO3 or PbTiO3), it adopts an off-centred coordination and destroys the centre

of symmetry of the unit cell. In some cases, this change gives rise to a ferroelectric

response. Any distortion will lower the symmetry of the structure. Perovskites with

t < 1 may exhibit tetragonal, rhombohedral, orthorombic, and monoclinic distortion of
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FIG. 2.2: Alternative view for ABO3.

the initial cubic cell. Some of the ABO3 compounds with t > 1 adopt perovskite-like

structures which contain hexagonal stacking faults. The tolerance factor is a critical and

useful tool in evaluating cell distortion of perovskite structure.

2.2.1 Complex perovskites

When two cation species occupying the same site in a perovskite differ sufficiently

in the charge and/or ionic radius, an ordered arrangement may be observed. Cation

order-disorder transitions play a huge role in adjusting the crystal structure, phase sta-

bility, and properties of many complex oxide perovskites. Altering the degree of ordering

can make substantial changes in magnetic behaviour, dielectric/ferroelectric response,

and electronic/ionic conductivity [12]. An ordered arrangement is usually stabilized

when two cationic species occupying the same site differ sufficiently in their coordi-

nation preference, valence, and/or size. Even though many B-site ordered perovskites

have been characterized, the A-site ordering examples are quite rare and often involve

vacancies as the alternate cation species. The type of B-site ordering in perovskites are

categorized according the crystallographic site stoichiometry of the ordered cells. The
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most common examples are 1:1, 1:2, and 1:3 ordering of two different B-site cations.

Other stoichiometric ratios are not impossible, however, no examples have been re-

ported so far.

The 1:1 ordered arrangement of B-site cation systems, A(B′1/2B
′′
1/2)O3 or A2(B′B′′)O6,

are the most frequently encountered family of ordered complex perovksites. Of this so

called double perovskite, the different cations occupy an alternate B-site in a NaCl-type

arrangement. This ordering maximizing the separation of similar ions, where each B′

cation has six B′′ cations as nearest B-site neighbour (nBn) and vice versa. With this

arrangement the intermediate oxygen anions can satisfy the different bond length re-

quirements of the two cations by moving toward the smaller one. This structure often

viewed in terms of an ordered alternation of B′ and B′′ cation layers perpendicular to the

[111] direction.

Compared to the many example of double perovskites, very few example of 1:2

ordered system of A(B′1/3B
′′
2/3)O3 or A3(B′B′′2)O9 have been reported. The 1:2 layering

of B-site cations as · · ·B′B′′B′B′′ · · · along the [111] direction yield a hexagonal super-

structure with aorder = ac
√

2 and corder = ac
√

3 as can be seen in Fig 2.3. The reason

for limited occurrence of 1:2 ordering is related to the resultant bonding environment of

the oxygen anions. In this system, the different size and charge of the B′/B′′ cations are

accommodated via a coordinated long-range displacement of the intermediate layer of

anions toward the <111> layer containing the smaller and more highly charged B-site

ions (typically B′′) [43–45]. Because, the anions lying between two B′′ layer are over-

bonded, this arrangement can only form when B′′ cations undergo displacement away

from the center of their octahedra to lengthen the three B′′-O-B′′ bonds, and shorten

the other three B′′-O-B′ bonds and thus reduce the bond valence sum for O2−. This off-

center coordination is usually observed only for small highly charged transition metal

cations such as Nb5+ and Ta5+.
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FIG. 2.3: Schematic representation for a 1:2 order system projected along [111] directions. B′O6

octahedra are shown in blue while B′′O6 octahedra are in yellow; A2+ ions are in green while
oxygen ions are in red

After the discovery of 1:1 and 1:2 ordering in perovskites, many attempts were

made to stabilize order systems with stoichiometric ratios of 1:3. However, many of

these A(B′1/4B
′′
3/4)O3 or A4(B′B′′3)O12 systems were reported to be disordered and for

quite some time perovskite with hexagonal stacking sequences were believed to be the

only examples for which the ordering involved a more complex stoichiometry. However,

in recent years, 1:3 layer ordering was identified in metastable polymorph Ca4Nb2O9

and in this case the 1:3 layering yields a monoclinic base-center supercell with aorder =

ac
√

6, border = ac
√

2, corder = ac2
√

2, β = 125.3◦ as can be seen in Fig 2.4.

2.3 NMR Experimental Procedure

Using NMR spectroscopy, we can look for differences between average and local

arrangements of B-site cation in the system.
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FIG. 2.4: Schematic representation for a 1:3 order system projected along [111] directions. B′O6

octahedra are shown in blue while B′′O6 octahedra are in yellow; A2+ ions are in green while
oxygen ions are in red

2.3.1 The samples

NMR measurements were made on five cation-ordered complex perovskite powder

samples which can be grouped, as seen in Table 2.1, into two different categories;

single A-site and mixed A-site cation systems. The ordering in these systems adopts

repeating layers of BO6 octahedra in the <111> direction of simple cubic perovskite

cells. The cation (layered) ordering was characterised by Davies and co-workers [1, 2,

13], using X-ray diffraction and has been refined using Retvield refinement of neutron

diffraction. It was also confirmed that more that 99.9% of the desired phase had been

produced. Although the ordering on B-site cations was confirmed, no ordering was

observed for the A-site cations in group 1. The detail synthesis of these samples can

be found in the reference . Table 2.2 gives dielectric properties for these materials.
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Group Chemical Formula B-site ordering Space group Name in this work

1
(Sr2/3La1/3)(Li1/3Ta2/3)O3 1:2

Monoclinic P21/c
SLLT

(Sr2/3La1/3)(Li1/3Nb2/3)O3 1:2 SLLN
(Ca2/3La1/3)(Li1/3Nb2/3)O3 1:2 CLLN

2 Ca(Li1/4Ta3/4)O3 1:3 Triclinic P1 CLT
Ca(Li1/4Nb3/4)O3 1:2 Monoclinic P21/c CLN

TABLE 2.1: List of the microwave ceramics samples studied in this work

Group Samples εR Q.f (8.7 - 10.2 GHz) τf (ppm/◦C)

1
SLLT 25 25,200 -25.1
SLLN 29 6,300 -75.5
CLLN 30 26,500 -25.7

2 CLT 27 30,000
CLN 37 22,800

TABLE 2.2: Dielectric properties of microwave ceramics samples.
Q.f. stands for quality factor and τf is the temperature coefficient
of the resonant frequency
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2.3.2 7Li MAS NMR measurement

7Li magic angle spinning (MAS) NMR spectra were collected at ambient tempera-

ture at two different magnetic fields, 7.06 T (Larmor frequencies ν0 = 116.57 MHz) and

17.6 T (Larmor frequency ν0 = 291.46 MHz), using Bruker AVANCE 300 and Bruker

AVANCE 750 spectrometers. All samples were spun at 3, 5, and 10 kHz and the mea-

surements were performed using Bruker 2.5 mm H/X MAS probes. The 7Li data were

acquired with single pulse experiments (SPE) with radio frequency (rf) field strength

ν1 = 333.33 kHz, correspond to a π/2 pulse of 0.75 µs. The NMR spectra were exter-

nally referenced to 1M LiCl solution in H2O at 0 ppm. A total of 64-128 transients were

acquired with relaxation delay between transient in the range of 25 − 60 s, which was

found to ensure complete recovery between scans.

2.3.3 93Nb MAS and 3QMAS NMR measurement

93Nb MAS NMR experiments were acquired at ambient temperature at 17.6 T with

Larmor frequency ν0 = 183.47 MHz. The MAS spectra were acquired using Bruker 2.5

mm H/X MAS probe capable of spinning at νr = 30 kHz. 93Nb NMR data were acquired

using conventional single pulse experiments and non-selective pulse was calibrated on

each samples. π/2 pulse duration of τp = 0.9 µs (ν1 = 277.78 kHz) was obtained for

all samples. Between 16000 to 32000 transients were acquired and recycle delay of

300 − 500 ms were found sufficient for complete relaxation in all samples. 93Nb NMR

chemical shifts were referenced to a saturated solution of NbCl5 in acetonitrile at 0

ppm. However, for convenience, powdered LiNbO3 (LN) was also used as a secondary

reference for which the central peak was set at -988 ppm relative to NbCl5.

In addition to single-quantum measurements, two-dimensional 93Nb triple-quantum

(3Q) MAS NMR measurements were acquired to elucidate distinct environments sur-
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rounding the niobium nuclei [46]. 2D 3QMAS spectra were obtained by using an am-

plitude modulated z-filter experiment (p1 − t1(3Q evolution)−p2 − τ − p3 − t2(acquire)).

The optimised pulses lengths for triple quantum excitation (p1) and reconversion pulses

(p2) were p1 = 0.9 µs and p2 = 0.5 µs, respectively, selective read-out of π/2 (p3) pulse

was set to 20 µs. The 2D 3QMAS measurement required 64 to 128 rotor synchronised

t1 increments of 33.33 µs (corresponding to νr = 30 kHz) acquired with 8k transient per

t1 slice, the evolution τ period was set to one rotor period with the recycle delay of 0.3

- 0.5 s. All 2D 93Nb 3QMAS data were Fourier transformed, sheared and referenced in

the indirect (F1) dimension according to standard Bruker TOPSPIN algorithms.

2.3.4 MAS ssNMR data processing and simulation

Both 7Li and 93Nb are quadrupolar nuclei, with spin I = 3/2 and I = 9/2 respec-

tively. Thus, in addition to the Zeeman interaction and induced magnetic field interaction

(chemical shift), the nuclei also interact with the local electric field gradient (EFG). To

first-order, the spectral features of the satellite transitions are spread over a wide fre-

quency range of the order νQ = 3CQ/(2I(2I − 1)) while the shape of the observed

patterns reflect the asymmetry parameter ηQ of the interaction. The central transition

±1/2 ↔ ∓1/2 (CT) is not affected by quadrupolar interaction to first-order, while the

second-order features are dispersed over a frequency range of the order ν2Q/ν0. In

the presence of significant second order quadrupolar interactions, the center of gravity

(CG) peak position of CT in MAS NMR spectrum is given as the sum of the isotropic

chemical shift (δiso) and the isotropic second-order quadrupolar-induced shift or QIS

(δQIS
iso ) [47]. The CT peak position can then be expressed as

δCG = δiso + δQIS
iso (2.2)
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the isotropic second order QIS is given by

δQIS
iso = −AQ + AQF (θ, φ, η) (2.3)

where (θ, φ) defines the crystallite orientation with respect to external magnetic field.

The function F depends on the crystallographic orientation and is responsible for the

powder pattern line shape. This function averages to zero under MAS. The factor AQ is

defined (in ppm) as

AQ =
3

40

C2
Q

ν2L

[I(I + 1)− 3/4]

[I(2I − 1)]2

(
1 +

η2Q
3

)
× 106 (2.4)

CQ = e2V33Q/h is called quadrupolar coupling constant and is a measure of the strength

of interaction between the nuclear quadrupole moment (eQ) and EFG (eV33). The EFG

tensor is connected to the local symmetry of the nucleus under study and thus reflects

the electronic structure and bonding situation. The symmetry of the environment will be

reflected by the asymmetry parameter, ηQ, which is defined by

ηQ =
V11 − V22
V33

, (2.5)

where |V11| ≤ |V22| ≤ |V33| are the principal axis values of the EFG tensor and from this

we have 1 ≥ ηQ ≥ 0.

All MAS NMR spectra simulations were performed using DMFIT [48] line shape

simulation software designed to handle convoluted quadrupolar and/or chemical shift

anisotropy (CSA) dominated line shapes. Eight parameters are necessary to com-

pletely characterise the local atomic environment and to simulate the NMR spectral

line shapes: two for quadrupolar interaction (quadrupolar coupling constant (CQ) and

quadrupolar asymmetry parameter (ηQ)), three for chemical shift interaction (isotropic
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chemical shift (δiso), the CSA (δδ) and chemical shift asymmetry parameter (ηδ)) and the

three Euler angles (φ, χ, ψ) that describe the relative orientation of the EFG and CS

tensors. Uncertainties were determined statistically by performing several simulations

of each spectrum.

For the chemical shift interaction, the following convention was used,

δiso = (δ11 + δ22 + δ33)/3 (2.6)

while the chemical shift tensor is characterized by the asymmetry

δδ = δ33 − δiso (2.7)

and the anisotropy

ηδ = (δ22 − δ11)/(δ33 − δiso) (2.8)

|δ33 − δiso| ≥ |δ11 − δiso| ≥ |δ22 − δiso| (2.9)

with this definition, we have (1 ≥ ηδ ≥ 0).

2.4 Results and Discussion

All the samples studied have perovskite-like structure where lithium and niobium

(or tantalum) atom are octahedrally coordinated by six oxygen atoms in the first coordi-

nation sphere. The B-site ordering and presence of BO6 octahedral tilting in the system,

lower the symmetry and modify the parameters of the unit cell of the crystal structure.

The average structures, for all samples except CLT, can be described by monoclinic

crystal structure with space groups P21/c whereas CLT shows triclinic crystal structure
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with space group P1. The summary for the lattice parameters for the samples is given

in table 2.3.

In every crystal structure, there is only a single crystallographic site for lithium and

is located at the center of LiO6 octahedra. Each LiO6 octahedron is linked to six other

NbO6 (or TaO6) octahedra units by six bridging oxygen (BO) (refer to Fig. 2.2). The

octahedral network for both LiO6 and NbO6 (or TaO6) extend along the ab plane (refer

to Fig. 2.3 or 2.4). For group 1, Ca, La, and Sr are distributed over the same crystal-

lographic site and they are located at the interstitial site of these octahedral network.

The average structure derived from diffraction data suggests that A-site has mixed oc-

cupancy, i.e., the single site is occupied by the two different cations of either La3+ and

Sr2+ or La3+ and Ca2+ with 1:2 ratio of occupancy probability and an associated formal

charge of +2.33.

On the local scale, the arrangements of Sr/La or Ca/La may induce local distortion

and deviation from the ideal average structure and this will be reflected in the local

environment of the individual Li and Nb (or Ta) sites.

Compound Lattice Parameter
a(Å) b(Å) c(Å) α β γ

SLLT 9.811 5.648 17.120 - 125.22◦ -
SLLN 9.804 5.653 17.107 - 125.24◦ -
CLLN 9.588 5.648 16.630 - 124.90◦ -
CLT 9.599 5.472 11.259 89.95◦ 125.35◦ 90.55◦

CLN 9.680 5.500 17.001 - 125.11◦ -

TABLE 2.3: Lattice Parameter for the cation-ordered microwave dielectric samples
take from ref [1] and [2]

47



2.4.1 7Li MAS NMR spectra

7Li MAS NMR spectra of cation-ordered microwave dielectrics, for both group 1 and

group 2, recorded at 17.6 T is shown in Fig. 2.5 and 2.6 respectively. One strong and

sharp peak around −0.2 to −1.8 ppm is observed at the centerband and correspond

to central transition (CT). The spectra are also accompanied by a spinning sideband

manifold, due to the ±3/2 ↔ ±1/2 satellite transitions (ST). No anisotropic second

order quadrupolar broadening was observed for the centerband peak and since the

QIS correction is very small (∼ 0.004 ppm on 7.06 T), the position of the peak can be

taken as the isotropic chemical shift, δiso. This implies that we can model the spectra

with first order quadrupolar interaction only.

−30−20−100102030

SLLT

10 kHz

−30−20−100102030

5 kHz

−30−20−100102030

3 kHz

ν (kHz)

−30−20−100102030

SLLN

−30−20−100102030

−30−20−100102030
ν (kHz)

−30−20−100102030

CLLN

−30−20−100102030

−30−20−100102030
ν (kHz)

FIG. 2.5: 7Li MAS NMR spectra of group 1 microwave ceramics at 17.6 T rotating at 3, 5, and
10 kHz. All spectra show one strong and sharp central transition as well as spinning sideband
manifold resulting from the satellite transition.
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FIG. 2.6: 7Li MAS NMR spectra of group 2 microwave ceramics spun at 3, 5, and 10 kHz.
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The 7Li MAS NMR spectra at two field strengths, 7.06 and 17.6 T, confirmed the

phase purity of lithium cation ordering, showing only one single resonant component

without traces at the downfield regions. In a diamagnetic environment, δiso of the 7Li

were only observed over a narrow range [17] and is the case with our samples. The

pseudo-Voigt profile was used to fit the centerband peak and summarized in Table 2.4.

The narrow centerbands indicates the samples contain Lithium cations on the highly

symmetric and uniform sites. On the other hand, the broader peak of samples observed

indicate more distorted or irregularity in the lithium-centered octahedra.

The experimental spectra can be compared to fit models under various assump-

tions and for this purpose SLLT is taken as an example. The Fig. 2.7 shows (a) the ex-

perimental spectrum of SLLT, (b) spectrum of a pure quadrupolar interaction, (c) spec-

trum for both quadrupolar and chemical shift interaction with coincidence tensor, and

(d) the spectrum of both quadrupolar and chemical shift interactions with Euler angles.

A detail inspection of Fig 2.7(a) and (b) reveals that the intensities of the spinning side

bands in the calculated spectrum are underestimated and do not fit well with the exper-

imental one. Therefore, a perfect agreement with experimental spectrum by only taking

into account the quadrupolar interaction is not achieved. Surprisingly, the addition of

chemical shift interaction into the calculation didn’t improve the model, as can be seen

from Fig 2.7(c). This is evidence by the root-mean squared deviation of the simulated

spectra relative to the experimental spectrum R, which is defined by,

R =

√∑
n

[Ycalc(n)− Yexp(n))]2 (2.10)

were observed not to decrease at all when the shielding anisotropy and asymmetry pa-

rameter of the shielding tensor were introduced. To further improve the model, the three

Euler angles were introduced (these angles will orient the CSA tensor in the Quadrupo-
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lar tensor principal axes) and a significant decrease in R was observed. The corre-

sponding 7Li NMR interaction parameters for all the samples are given in Table 2.5.

−30−20−100102030

(a)

Frequency (kHz)
−30−20−100102030

(b) R = 0.315

Frequency (kHz)

−30−20−100102030

(c) R = 0.31762

Frequency (kHz)
−30−20−100102030

(d) R = 0.23572

Frequency (kHz)

FIG. 2.7: 7Li MAS NMR spectra of SLLT where (a) the experimental data, (b) simulation using
quadrupolar interaction only, (c) simulation using quadrupolar and chemical shift interaction with
coincident tensors, (d) simulation using the quadrupolar and chemical shift interaction and three
Euler angles.

In the case of CLLN, the spectrum shows one additional peak at CT (inset of Fig.

2.8). The second resonance is weaker and the integrated intensity ratio with respect

to the strong one is 1:9. It is also broadened by quadrupole interaction with CQ =

2.6 MHz. This indicates that a second distinct lithium atom environment is present for
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−1−0.500.5

FIG. 2.8: 7Li MAS spectrum of CLLN at 17.6 T rotating at 10 kHz. Inset figure shows two
resolvable resonances at the central transition. The simulated spectrum (red) and individual line
components (green) are shown below the experimental data.

Samples δiso Linewidtha(ppm) xb

SLLT -1.03 1.09 0.77
SLLN -1.85 1.07 0.98
CLLN -1.78 0.67 0.62
CLT -1.05 0.96 0.40
CLN -0.21 0.91 0.51

a Full width at half maximum
b Lorentzian component

TABLE 2.4: Psuedo-Voigt profile of the 7Li MAS
NMR centerband peak
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Sample δiso ± 0.05 (ppm) δCSA ± 2 (ppm) ηCSA ± 0.02 CQ ± 2 (kHz) ηQ ± 0.05 φ± 5◦ χ± 5◦ ψ ± 5◦

SLLT -1.05 -7.2 0.96 45.3 0.61 182 45◦ 282
SLLN -1.85 -10.5 0.95 40.7 0.55 234 58◦ 145
CLLN

peak 1 -1.80 13.9 0.81 46.0 0.49 -6 46◦ 17
peak 2 1.45 0 0 (2.6±0.1) MHz 0.40 0 0◦ 0

CLT -1.05 -10.2 0.91 45.4 0.45 183 48◦ 218
CLN -0.20 10.6 0.81 29.0 0.55 183 45◦ 312

TABLE 2.5: 7Li NMR parameters of the microwave ceramics samples

this particular sample. Since we know the 7Li quadrupole moment is very small (-0.04

e·barn), the contribution to this large value must come from a different EFG tensors

surrounding this specific lithium atom (lattice property).

2.4.2 93Nb MAS NMR spectra

Niobium (93Nb) is another nucleus found in the samples that can be probed with

solid-state NMR. Thanks to its natural abundance (100%) and its relatively high content

in the samples, 93Nb MAS NMR spectra with good signal to noise ration can be obtained

within a few hours. Unfortunately, 93Nb has a high nuclear spin (I = 9/2) and a large

quadrupole moment (-0.32 barn), which complicates the NMR techniques needed to

study this particular nucleus. There are only three samples which contain niobium

nuclei (SLLN, CLLN, and CLN) and their respective MAS NMR spectra can be seen

in Fig. 2.9. Each of these structures has been highly ordered, with niobium in a well-

defined environment, and consists of corner-shared LiO6 and NbO6 octahedra. The

crystal structure predicts one niobium site for 1:2 cation-ordering and two niobium sites

for 1:3 cation-ordering.

The whole MAS spectrum for each sample can be seen at Fig. 2.9 which shows

partially averaged second-order quadrupolar powder pattern for the CT and an array of
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FIG. 2.9: 93Nb MAS NMR spectra of SLLN, CLLN, and CLN spun at 30 kHz. The spectral
window is 1 MHz wide.
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spinning sidebands due to ST that extend beyond 1 MHz spectral window, indicating

very large CQ values. Measurements using selective irradiation of the central transition

were made and the results are shown at Fig 2.10. Interestingly, the 93Nb MAS NMR

spectra of SLLN and CLN show only one peak while CLLN show four distinct peaks.

−1100−1000−900−800

SLLN

Frequency (ppm)
−1200−1100−1000−900−800

CLLN

Frequency (ppm)
−1100−1000−900−800

CLN

Frequency (ppm)

FIG. 2.10: 93Nb MAS NMR selective excitation spectra of SLLN, CLLN, and CLN spun at 30
kHz. The spin-echo (Hahn-echo) experiments are shown in magenta, single pulse excitation
experiments are in blue, and simulated spectra are in red.

The spectra also show center band peaks with asymmetric line-shapes, skewed

to one side toward the low frequency region. They are also lacking the usual sharp

discontinuities typically observed in quadrupolar powder patterns. It has been docu-

mented previously [49] that when a MAS NMR central transition resonance shows a

tail toward low frequency region and lacks quadrupolar broadening, this indicates the

presence of a distribution of both chemical shifts, δiso, and quadrupole parameters, CQ

and ηQ. This distribution may come from structural disorder, such as a distribution of

bond angles and bond lengths. The distribution also makes the CQ and ηQ irresolvable

since these quantities are somewhat coupled. Therefore, a detailed study of the line-

shapes can be interpreted in terms of structural variations in these materials if one can

extract the probability density function for the quadrupolar parameters from the spectra
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and compute the EFG tensors for a given structure. Unfortunately, the extraction of the

probability density function from NMR spectra of randomly oriented powder samples

is not trivial as the distribution in quadrupolar NMR parameters is convoluted with the

powder averaging over all possible tensor orientations in the ensemble. Nevertheless,

using appropriate simulation tools, many details of this distribution can still be extracted.

A physically sound model for describing the distribution of EFG in disordered and

amorphous solids has been developed by Czjzek et al [50]. They proposed a joint

probability density function

P (CQ, ηQ) =
1√

2πσ5
C4
QηQ

(
1−

η2Q
9

)
exp

[
−
C2
Q(1 + η2Q/3)

2σ2

]
(2.11)

in which the average quadrupolar coupling constant depends on σ alone, the stan-

dard deviation of an isotropic chemical shift gaussian distribution. As was outlined by

d’Espinose de lacaillerie and co-workers [51], the Czjzek distribution can only be used if

the number of structural elements contributing to the EFG is sufficiently large, meaning

that for a given coordination shell the coordination number should be large. There-

fore the Czjzek distribution can, in principle, only be used if the first coordination sphere

hardly contributes to the EFG as is the case with our system of octahedrally coordinated

niobium sites.

To effectively simulate the spectra to extract quadrupolar information, we need to

analyze the contributions of chemical shielding and quadrupolar coupling to the spec-

trum. As can be seen in Fig. 2.11, the CLLN spectrum at high field show four well

resolved peaks with reduced linewidth for each peaks. At lower field, the first three

peaks cannot be distinguished very well and are clumped together. This suggests that

the spectra are dominated by second-order quadrupolar interactions, since quadrupo-

lar line broadening is proportional to ω0/ω
2
Q. Therefore, we simulated the spectra by
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FIG. 2.11: 93Nb MAS NMR selective excitation spectra of CLLN at both magnetic field strength.

neglecting the chemical shielding anisotropy of niobium. in Fig. 2.11, both spectra were

simulated considering the distribution of quadrupolar parameters using Czjzek model.

The resulting simulations are shown below each spectrum in Fig. 2.10 and 2.11. The

quadrupolar parameters using Czjzek model for all samples can be seen in Table 2.5

It is possible to establish relation between 93Nb chemical isotropic shift and the

distinct type of octahedral niobate (NbO6) species. From Fig. 2.10 and Table 2.6, it is

clear that the isotropic position for all peaks fall in the range of -900 to -1050 ppm. This

suggest that the niobates in all these samples are having non-cubic symmetry and in

the vicinity of M+n cations with n = +1,+2 and +3 [52, 53].

For CLLN, four distinct peaks were observed where the first three peaks can be as-

signed based on the number of cations occupying the six next B-site neighbour (nBn) of

niobate. Since 93Nb chemical shift of lithium niobate (LN) is at -988 ppm, this suggests

that the CLLN peak at -971 ppm has six Nb+5 cation in the nBn. It has been reported

from numerous study [54, 55] that there exist a systematic up-field of 93Nb chemical
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Sample 〈δiso〉 ± 5 (ppm)
√
〈C2

Qη〉 ± 3 (MHz) ∆δiso ± 5 (ppm)

SLLN -910 26 40
CLLN

peak 1 -922 18 48
peak 2 -950 7 14
peak 3 -971 23 15
peak 4 -1045 26 28

CLN -935 16 44
LN -988 22.25 N/A

where 〈δiso〉 is the istotropic average value,
√
〈C2

Qη〉 is the root mean square of quadrupolar
product in the Czjzek model.

TABLE 2.6: 93Nb NMR parameters using Czjzek model for the distribution of chemical shifts
and quadrupole couplings

shift in the form of NbO6−x(OB)x, where B is the nBn cation. Therefore, we can deduce

that the CLLN peak at -950 and -922 ppm are due to the five (and one Li+) and four

Nb+5 (and two Li+) cation in the nBn. Finally, the peak of SLLN and CLN also can be

assigned to four Nb+5 cation in the nBn.

2.4.3 93Nb 3QMAS NMR spectra

Fig. 2.12 shows a 3QMAS experiment on SLLN which reveals a single reso-

nance which is broadened along the ’CS’ and ’QIS’, axes which give the direction of

the isotropic chemical shifts and the quadrupole induced shifts, respectively [56]. This

broadening supports our finding in 1D 93Nb MAS NMR experiments which suggests that

the NMR parameters distribution is present in the system. This distribution can be in-

terpreted as many slight variations of A-site cations and nBn environment surrounding

the niobium cations.
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FIG. 2.12: 93Nb 3QMAS NMR spectrum of SLLN which shows one broadened peak along CS
and QIS axis.
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The 3QMAS experiment for CLLN is shown in Fig. 2.13. This spectrum consists

of two clusters site and they are also broadened along the CS and QIS axes. At the

lower cluster there are three peaks that are close together which is in agreement with

1D 93Nb MAS NMR spectra. The 3QMAS experiment of CLN (Fig. 2.13) also shows

this broadening.

FIG. 2.13: 93Nb 3QMAS NMR spectrum of CLLN which shows two broadened peak along CS
and QIS axis.

2.5 Conclusion

7Li and 93Nb MAS NMR experiments have been performed on cation-ordered mi-

crowave dielectrics materials at two different magnetic field strengths and varied spin-

ning rates (7Li MAS NMR). In all 7Li NMR measurement only one strong peak (with the

exception of CLLN) was observed which confirm that there is only one crystallographic
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FIG. 2.14: 93Nb 3QMAS NMR spectrum of CLN.

site for Li+ cations in the system. It’s also proved that in order to model the 7Li NMR

parameters accurately, spectral simulations with quadrupole and chemical shift interac-

tion along with Euler angles (that bring the CSA tensor into principle axis of quadrupolar

tensor) are necessary.

93Nb MAS NMR measurements of niobium-containing samples show spectra with

an asymmetric shape and low-frequency tail at the central transition resonance. They

also lack the second order quadrupolar pattern which is a trademark of quadrupolar

nuclei. This is a clear indication of the presence of NMR parameters (chemical shift

and quadrupolar coupling) distribution. Only one resonance peak was observed for all

niobium-containing samples, except CLLN which shows 4 peaks. The assignments of

these peaks can be explained according to the next B-site neighbours of niobate. It’s

also established that the first three peaks of CLLN can be assigned to nBn of four, five,
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and six NbO6.
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CHAPTER 3

Spin-Lattice Relaxation

Nuclear spin relaxation refers to the mechanism by which nuclear spins in a strong

magnetic field arrive at thermal equilibrium, with bulk magnetization parallel to the ap-

plied magnetic field. The time scale of this process can vary from micro-seconds to

hours, depending on the nature for the interactions between the nuclear spins and ran-

domly time-dependant local magnetic fields. The terms "spin-lattice" and "spin-spin"

relaxation, characterized by the relaxation times T1 and T2 respectively, are deeply in-

grained in NMR literature [18, 20, 57]. T1 generally refers to the rate at which spin

eigenstate populations return to Boltzmann equilibrium following perturbation, while T2

refers to the (usually much faster) process by which individually processing spin mag-

netic moments lose phase coherence. It is important to recognize that due to the small

nuclear moments, the frequency of resonant photons is far too low to produce signifi-

cant relaxation by spontaneous emission, which is dominant in other branches of spec-

troscopy. Instead, measurements of nuclear spin relaxation provide unique information

about rapidly fluctuating and random time-dependent local magnetic fields arising from

the very same interactions whose time average describe the NMR lineshape.
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The "lattice" (an energy reservoir) can be any system with a much larger heat ca-

pacity than that of the nuclear spin system. The large heat capacity of the "lattice"

ensures that the lattice temperature can be assumed to be constant during the relax-

ation process. Furthermore, it is assumed that dissipative processes within the lattice

destroy any coherences caused by contact with the spin system within a characteristic

time τc, the correlation time of the lattice. In insulating solids, the physical nature of

the "lattice" can be described by ordinary lattice vibrations (phonons), or by two level

systems (disorder modes) in amorphous solids at temperatures below 100 K. Adsorbed

atoms or molecules in crystals or porous materials can also represent the "lattice" if

they have a large heat capacity. In this chapter, definitions and concepts of relaxation

will be introduced and explained. We will also introduce the experiment to probe the

relaxation mechanism and how it depends on the molecules parameters and molecular

motions.

3.1 Introduction to Relaxation

3.1.1 Transition rate in the spin-system and lattice

The total Hamiltonian for the description of spin-lattice relaxation can be described

by

Ĥ = ĤZ + ĤQ(t) + ĤL (3.1)

where ĤZ and ĤL represent the time-independent Hamiltonians for the spin sys-

tem (Zeeman interaction) and the lattice (reservoir), respectively. ĤQ(t) denotes the

time-dependent coupling between the spin system and the lattice, in this case it is the

quadrupolar Hamiltonian. For the eigenfunctions of the combined system, Ĥ , the prod-

64



uct functions of |m, r〉 = |m〉 |r〉, are used, where

ĤZ |m〉 = Em |m〉 , ĤL |r〉 = Er |r〉 (3.2)

By separating the time-independent part, we can describe the coupling Hamiltonian

in the interaction picture as

ĤQ,i(t) = exp{− i
~

(ĤZ + ĤL)t} · ĤQ(t) · exp{ i
~

(ĤZ + ĤL)t} (3.3)

Using Dirac’s first-order time-dependent perturbation theory, we can obtain the

transition probability, P , between energy levels of |m, r〉 → |m′, r′〉 as

〈m′, r′|P |m, r〉 =
1

~2

∣∣∣∣∣
∫ t

0

〈m′, r′| ĤQ,i(t
′) |m, r〉 dt′

∣∣∣∣∣
2

(3.4)

Therefore, the rate at which photon is absorbed (emitted) by the lattice to cause a

spin-flip in the nuclear system can be obtained by,

〈m′, r′|W |m, r〉 ≡ Wmr,m′r′ =
∂ 〈m′, r′|P |m, r〉

∂t
(3.5)

If ĤQ is time-independent, and the lattice states are close enough, we have

〈m′|W |m〉 =
2π

~

∣∣∣〈m′| ĤQ |m〉
∣∣∣2 ρ(E) (3.6)

where ρ(E) represents the energy density of the considered processes in the lattice.

In general, for quadrupolar hamiltonian, the transition rate can be obtained from the
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following relationship

Wmr,m′r′ =
(2m± 1)2(I ∓m)(I ±m+ 1)

(2I)(2I − 1)2
W1(r, r

′)δm′,m±1

+
(I ∓m)(I ±m+ 1)(I ±m+ 2)

(2I)(2I − 1)2
W2(r, r

′)δm′,m±2 (3.7)

The Wn(r, r′) represents spectral density of the correlation function of the process in the

lattice. For more detail derivations, the readers are referred to Appendix A.

3.1.2 Master equation

In order to describe the time-dependence of the magnetization, we can start with

the master equation of the population numbers, Nm, at a particular state. The average

number of spins populating the Zeeman level m is given by,

dNm

dt
=

I∑
n=−I

Wnm(Nn −Nn0)− (Nm −Nm0)
I∑

n=−I

Wnm (3.8)

where Nn0 and Nm0 are thermal equilibrium population of level En and Em, respectively.

Wnm follows from Eq. 3.7 and denotes the transition rate of n → m in the spin system

for all possible transitions in the lattice. The general solution is of the form

Nm(t)−Nm0 =
I−1∑
k=−I

ck(t = 0) exp{−λkt} (3.9)

Since the total number of spins is a constant, the system has only 2I non-vanishing

eigenvalues, λk. The initial conditions are given by the excitation, (e.g. for 180◦ pulse

on resonance, we will have Nn(t = 0) = −N−n(t = 0)) and as a result, some of the

constant ck will vanish. This equation can lead to a equation describing the motion of
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z-magnetization as,

Mz(t)−M∞
Mz(0)−M∞

= e−t/T1 (3.10)

whereM∞ is the magnetization at equilibrium. In words, this says that the z-magnetization

from Mz(0) to M∞ follows and exponential law. Time-constant of exponential R1 =

−1/T1 is called the longitudinal or spin-lattice relaxation time.

3.2 Relaxation Mechanism

3.2.1 Spin-phonon Coupling in insulating crystals

Relaxation due to a fluctuating EFG caused by lattice vibrations (phonons) involves

processes by which the photons, which cause random nuclear spin-flips in the system,

are emitted/absorbed by the lattice. The effectiveness of such processes depends on

the spin-lattice coupling and the lattice properties. This description has to be expressed

in quantum mechanical terms and Van Kranendonk [58] presented the first theoretical

approach for these processes. In a later paper, he and Walker [59] introduced a new

mechanism, and reviewed the previous literature. In his paper, he described that the

EFG tensor can be approximated in symbolic sum as

V = V0 + Vkεk + εkVklεl + · · · (3.11)

The strains, εk, are derivatives of the displacements of the nuclei with respect to the

coordinates, which can be calculated from the quantized displacement operators given

by the lattice Hamiltonian. The components of the EFG in the basis of the strain tensor

components depend on the actual lattice structure. We can make crude estimation by
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assuming that these components are comparable to the magnitude of the static electric

field gradient. The lattice Hamiltonian, which depends on the actual structure as well, is

approximated by its harmonic and anharmonic parts. The static part of the quadrupole

interaction is neglected. Nevertheless, with the mentioned assumptions and Debye’s

model of the phonon density, it is possible to find the field and temperature dependence

for several terms, and to estimate their magnitudes using Eq. 3.6.

Since the energies for the two possible nuclear spin-flips, ~ω0 or 2~ω0, are very

small quantities compared with the lattice, the density of phonons can be approximated

as being constant over an energy range of 2~ω0. Therefore, we have W1 ≈ W2. The first

term of the expanded EFG is the constant (static) term. The second term is proportional

to εk, and thus involves only one phonon. In this direct process, the lattice absorbs

(emits) the photon necessary for the nuclear spin-flip. The relaxation rate of for this

process (with the approximation Wm,m+1 ≈ Wm,m+2 ≈ 1/T1) can be written in the form

1

T1
= C1ω

2
0T (3.12)

where C1 is a constant and T is absolute temperature. Although the probability for

multi-phonon processes in the lattice decreases rapidly with the number of involved

phonons, it was also shown [58] that the direct process can be neglected compared

with the two-phonon process (called Raman process), the third term in the expansion

for V , where the photon necessary for the nuclear spin-flip is absorbed (emitted) by a

two-phonon process in the lattice. The conservation of energy yields n~ω0 = ~ω1 + ~ω2.

The relaxation rate for this process can be written in the form

1

T1
≈ C2

T 2

ΘD

(3.13)
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where ΘD is Debye temperature of the lattice and C2 is a constant. At lower temper-

atures, the dependence is more complicated. The so called low-temperature Raman

process can be written as
1

T1
≈ C ′2

T 7

Θ6
D

(3.14)

3.3 Experiment detail

The nuclear spin-lattice relaxation (SLR) rate was obtained using saturation recov-

ery experiments. Saturation of the nuclear spins was achieved by radiating the samples

with a train of 90◦ pulse. Immediately after the train of pulses, a free induction decay

(whose amplitude is proportional to the z-magnetization just before the pulse) can be

observed by applying a read-out 90◦ pulse. We then wait a time τ so that some mag-

netization has been re-established, and then apply another 90◦ read-out pulse to the

recovering system. The read-out 90◦ pulse will rotate any z-magnetization into the xy -

plane, where it will produce FID signal proportional to the recovered magnitude it had

just before the read-out pulse. If this pulse is repeated for different values of τ , the

amplitude of the FID as a function of τ will give the value of T1 (Please see Fig. 3.1 and

Fig. 3.2)

The number of 900-pulse trains used in the saturation recovery experiment was 64,

with delay time of 25 µs between pulses. Nuclear magnetization growth along the z-

direction was measured immediately after saturation of the spin system and the central

peak height was fitted to Eq. 3.10. Nuclear SLR time measurements were repeated

over a temperature range of 220 − 370 K. The samples temperatures were maintained

constant by blowing cold nitrogen gas pass a heater coil into the sample chamber.
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FIG. 3.1: The magnetization growth of one sample at ambient temperature.

3.4 Results and Interpretation for 7Li SLR rate

3.4.1 Temperature dependence

The temperature dependence of 7Li SLR rate, T−11 , for the central transition is

shown in Fig. 3.3 (7.06 T) and in Fig. 3.4 (17.6 T). At both fields, the relaxation rates

were found to be proportional to temperature. This is evident from the data that are

well represented by the linear relation of R1 = αT + β. The linear least-squares fit

parameters are listed in table 3.1.
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FIG. 3.2: The plot of the central peak intensity with respect to recovery time.

The relaxation rate obtained for group 1 shows several features. First, SLLT and

SLLN show a very weak temperature dependence at low and high magnetic field, sug-

gesting there is no significant changes in the dynamics of the system over the tempera-

ture range of 220−370 K. Furthermore, it is found that the curves for those two samples

at both field are quite similar even though they have different cations at B′-site, namely

Ta5+ and Nb5+. This indicates that the relaxation mechanism for both samples is in-

dependent of the nBn cations. The reason for this may be that both B′-ions have very

similar ionic radius (78 pm for Ta5+ and 78 pm Nb5+ [60]). Second, CLLN showed a

more obvious change with respect to temperature, compared to other samples in group

1. This can be explained by taking into account that CLLN contains calcium cations

at A-site rather than strontium. Since calcium cations have smaller ionic radius than
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FIG. 3.3: SLR rate of Sample from group 1 (left) and from group 2 (right) at 7.06 T.

strontium (114 pm for Ca2+ and 132 pm Sr2+), this provides enough room for the sur-

rounding ions to get more displaced in the system, hence it will result more distorted

crystal structure. It is also evident that CLLN has a lower tolerance factor than SLLT

and SLLN [1]. This changes cause an increase in the distortion of the cell making it

more sensitive to temperature changes, as suggested by the relaxation rate measure-

ments. Furthermore, as can be seen in Fig. 3.3 and Fig. 3.4 ,the lithium cations relax

faster in CLLN than in SLLN (or SLLT) do, even though they only differ by the identity of

one cation at the A-sites, suggesting that calcium cations play an important role in the

relaxation of lithium cations in the samples.

As for group 2, we notice that the difference in relaxation rates between CLT and

CLN are quite obvious, as can be seen from Fig. 3.3 and 3.4. Given the compositions of

cations at nBn for these two samples are identical with SLLT and SLLN, the significant
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FIG. 3.4: SLR rate of Sample from group 1 (left) and from group 2 (right) at 17.6 T.

change in the relaxation of the system must be strongly influenced by the identity of the

ion at A-site, namely Ca2+ cations. This also corroborates our hypothesis from previous

paragraph that calcium cations strongly influence the relaxation, hence the dynamics,

of the system.

Since relaxation rates for all samples increase linearly with temperature, one may

be tempted to conclude that the dominant relaxation mechanism for these samples is

the single-phonon process (refer to Eq. 3.12). However, we are going to need to prove

the field dependence before drawing any such conclusion. Field dependent relaxation

measurements are covered in the next sub-section.

3.4.2 Magnetic field dependence

Measurements at both low and high field show that the relaxation rate for all sam-

ples decreases with increasing magnetic field (T−11 ∼ B−n0 , where n can take any values)
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Compound Linear Fit
LF HF

SLLT (1.343±0.101)×10−4 T + (0.070±0.003) (8.797±0.204)×10−5 T + (0.023±0.001)
SLLN (8.176±0.646)×10−5 T + (0.084±0.002) (3.815±0.263)×10−5 T + (0.046±0.001)
CLLN (1.778±0.050)×10−3 T - (0.088±0.015) (7.026± 0.171)×10−4 T - (0.013±0.005)
CLT (1.758±0.050)×10−3 T + (0.016±0.014) (7.638±0.111)×10−4 T + (0.033±0.003)
CLN (2.495±0.202)×10−4 T + (0.266±0.006) (2.721±0.147)×10−4 T + (0.121±0.004)

TABLE 3.1: Line of Best Fit

as can be seen in Fig. 3.5 and Fig. 3.6. This result is very different to what we expect

from the theory of relaxation by spin-phonon coupling in insulating materials. Theory

predicts that the relaxation rate is proportional to the square of magnetic field for a direct

one phonon process (Eq. 3.12) and field-independent for indirect two phonon (Raman)

process (Eq. 3.13). Thus the experiments rule out the dominant contributions from

spin-phonon coupling for the systems under study in this thesis. This is not unusual,

since relaxation due to spin-phonon coupling has often been found to be too weak

to account for experimentally measured relaxation rates, especially at moderate and

higher temperatures (as in our case). More effective relaxation mechanisms, such as

moving ions/defects, reorientation of polar groups or adsorbed species, and relaxation

due to paramagnetic impurities, often mask the relaxation induced by the spin-phonon

coupling.

One possible mechanism that fits the criteria for the relaxation rates be proportional

with respect to temperature, and also inversely proportional to magnetic field strength,

is relaxation due to paramagnetic impurities where the contact of the nuclear spin sys-

tem with the lattice occurs via localized electronic states, e.g. paramagnetic impurities

[57]. This relaxation mechanism is known to be mediated by nuclear spin diffusion that

occurs through mutual dipole-dipole induced spin flips between neighboring nuclear

spins, resulting in nuclear magnetization transfer from distant nuclear spins to the local-
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FIG. 3.5: SLR rate of samples for group 1 at both field. Red circles are data taken at 7.06 T
while blue crosses are data from 17.6 T.

ized electron spins [61–65]. Readers are encouraged to read Appendix B for a detailed

discussion of this mechanism.

To reduce the uncertainty of whether there are paramagnetic impurities or not,

electron paramagnetic resonance measurements (EPR) were performed on the sam-

ples and the result can be seen in Fig. 3.7. The spectra show main broad signal at g = 2

(centered around, 3, 500 Gauss) with different intensity from sample to sample. Obvi-

ously, the origin of the broad signal cannot be assigned without additional experiments.

Since the identity of paramagnetic species and the concentration of the paramagnetic

centers are unknown, the relaxation mechanism due to spin diffusion to paramagnetic

centers will be quite hard to be figured out qualitatively and quantitatively.

3.5 Conclusion

Nuclear spin-lattice relaxation rates of 7Li in cation-ordered microwave dielectric

samples were investigated using solid-state NMR spectroscopy. Measurements were
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FIG. 3.6: SLR rate of samples for group 2 at both field. Red circles are data taken at 7.06 T
while blue crosses are data from 17.6 T.

made at two different magnetic field strengths over the temperature range 220− 370 K.

Nuclear spin-lattice relaxation rates of the samples were measured using saturation re-

covery technique with magic angle spinning to increase resolution and sensitivity. The

relaxation rates for all samples were observed to increase linearly with increasing tem-

perature. Data obtained at two different magnetic field strength show that the relaxation

rates were inversely proportional with respect to magnetic field strength. From these

two facts, it’s found that the dominant relaxation mechanism in this system must be

due to spin-diffusion to paramagnetic impurities. However, more studies to character-

ize paramagnetic species are crucial to get a more complete understanding of the spin

relaxation mechanism.
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FIG. 3.7: Continuous wave (CW) EPR measurements of the microwave dielectric samples at
room temperature.
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CHAPTER 4

First Principle Calculation of NMR

Parameters

It is generally difficult to convincingly assign observed NMR transition frequencies

(and intensities) to specific chemical structures. Historically, these assignments mostly

rely on NMR investigations of relatively simple molecular systems whose chemical

structure has been determined by other techniques. However, this time-honored proce-

dure is difficult to apply to the perovskites of interest in this thesis because there are no

suitable model materials whose detailed molecular architecture is known with precision

over the distance scale of a few lattice spacings. Modern computational procedures

provide an increasingly powerful approach for addressing this assignment problem. It

is now possible to compute NMR quadrupole coupling constants and chemical shifts

for realistic model structures with accuracy approaching that of the experimental pa-

rameters themselves. Moreover, computations of perovskite phonon band structure, in

concert with existing theories of nuclear spin relaxation of quadrupolar nuclei via spin-

phonon coupling may offer unique insight into local librational dynamics of disordered

78



structures [66].

Theoretical calculations provide a useful and alternative approach in assigning

spectra. The use of ssNMR and first-principle calculations in a combined approach has

previously assisted the study of materials. The calculated values for isotropic chemical

shift and quadrupolar parameters can be compared with experimental NMR parameters

to help the assignment. This approach relies on testing of several structural models, in-

cluding models for disorder. This also enables us to study the relations between local

structure and NMR parameters.

In this chapter, I will explore the theory behind density functional theory (DFT) and

carry out calculations for NMR parameters (chemical shielding and EFG). The calcula-

tion uses software based on DFT and takes into account the periodicity of crystalline

structure through the implementation of periodic boundary conditions. Chemical shield-

ing tensors were calculated using the gauge including projector augmented wave (GI-

PAW) [67, 68] implemented in the Quantum Espresso (QE) computer code package

[69]. Unlike calculation of the shielding, the calculation of EFG tensors is relatively sim-

ple since they depend only on the ground state properties (i.e. ground state charge

density and wave function).

4.1 Introduction to Density Functional Theory

According to quantum mechanics, the energy and time-dependent behaviour of

collections of particle can be predicted by solving the Schrödinger equation for the sys-

tem

ĤΨi = EiΨi (4.1)
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where Ĥ is the total Hamiltonian operator of the system. Hamilton operator for a system

with M nuclei and N electrons (in the absence of magnetic and electric fields) can be

written as 1

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
A=1

1

MA

∇2
A −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
A=1

M∑
B>A

ZAZB
rAB

(4.2)

Here A and B run for M nuclei while i and j denote the N electrons in the system.

The first two terms describe the kinetic energy of the electrons and the nuclei. The

other three terms describe the electron-nuclear attraction, inter-electronic repulsion,

and inter-nuclear repulsion respectively.

The first procedure used to simplify the above complicated equation is the Born-

Oppenheimer approximation. This approximation is based on the fact that since nuclear

mass is far greater than the mass of electron, the nuclei move much more slowly than

the electrons. Hence for the first step, we can safely ignore the nuclear kinetic energy

or
(
T̂n = −1

2

∑M
A=1

1
MA
∇2
A = 0

)
and the nuclear potential becomes a constant. Also, We

can consider the nuclear potential as an external potential, Vext, that the electrons feel.

The remaining Hamiltonian becomes

Ĥe = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1

rij
= T̂e + Ĥne + V̂ee (4.3)

The solution for this electronic Hamiltonian is electronic wave function, Ψe, and elec-

tronic energy, Ee. The total energy, Etot the sum of Ee and the constant inter-nuclear

repulsion term

Etot = Ee + En (4.4)
1This expression is using the atomic units
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where

En =
M∑
A=1

M∑
B>A

ZAZB
rAB

= constant (4.5)

However, this approximation doesn’t remove the difficulties arising from the many-

body nature of the interacting electrons. For a system with N electrons and nuclear

potential Vext, variational principle states that the energy computed from a guessed Ψ

is an upper-bound to the true ground state, E0. Full minimization of the functional E[Ψ]

with respect to all allowed N-electrons wave functions will give the true ground state Ψ0

and energy E[Ψ0] = E0. In other words, the ground state energy is a functional of the

number of electrons N and the nuclear potential Vext.

Although the conceptual root of DFT may come from Thomas-Fermi model [70, 71],

the theorems of Hohenberg-Kohn (HK) [72] are the main factor that makes DFT as one

of the most widely used formalism in quantum mechanical calculation. The first HK

theorem demonstrates that ground state property of a many-electron system is uniquely

determined by an electron density that depend only on three spatial coordinates. Thus

the electron density determines N and Vext. Now, we can write the total energy as

E[ρ] = Te[ρ] + Eee[ρ] + Ene[ρ] = FHK [ρ] +

∫
ρ(~r)Vne(~r)d~r (4.6)

where

FHK [ρ] = Te[ρ] + Eee[ρ] (4.7)

The functional FHK [ρ] is the Holy grail of DFT and if it were known, we would have solved

Schrödinger equation exactly. The explicit form of this functional lies completely in the

dark and is the major challenge of DFT. Fortunately, we still can make progress in doing

the calculation by replacing the real system into an auxiliary one obeying the same

Hamiltonian of Eq. 4.6. The approach introduced by Kohn-Sham [73] (KS) replaces
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the many-body system into one electron system. The ansatz of KS assumes that the

ground state density of the original interacting system is equal to some chosen non-

interacting system. In other words, KS approach tries to replace Eq. 4.7 into

FKS[ρ] = Ts[ρ] + EHartree[ρ] + EXC [ρ] (4.8)

where EHartree is the classical electrostatic interaction energy of the electrons. This

approach can be considered exactly soluble (using computational method) with all the

difficulty of many-body terms incorporated into an exchange-correlation functional. This

term and the corresponding energy expression are the only unknowns in the KS ap-

proach to DFT. The KS Schrödinger-like equation can be described as

(ĤKS − εi)φi(r) = 0 (4.9)

where εi is the eigenvalue and ĤKS is the effective KS Hamiltonian defined as

ĤKS(~r) = −1

2
∇2 + VKS(~r) (4.10)

and

VKS(~r) = Vext(~r) +
δEHartree
δn(~r)

+
δEXC
δn(~r)

(4.11)

The electron density is obtained from the set of non-interacting one-electron orbitals

φi(r) and described as

ρ(r) =
∑
occ

‖φi(r)‖2 (4.12)
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4.1.1 Exchange-correlation functional

Local density approximation

One of the simplest exchange-correlation functional is local density approximation

(LDA) and it forms the basis of most approximate exchange-correlation functional. At

the heart of this model is the idea of a uniform electron gas. This is a system in which

electrons move on a positive background charge distribution such that the total ensem-

ble is neutral. The central idea of LDA is the assumption that we can write EXC in the

following form.

ELDA
XC [ρ] =

∫
ρ(~r)εXC(ρ(~r))d~r (4.13)

where εXC(ρ(~r)) is the exchange-correlation energy per particle of an uniform electron

gas of density ρ(~r) and the energy per particle is weighted with probability of ρ(~r). The

εXC(ρ(~r)) can be further split into exchange and correlation distributions,

εXC(ρ(~r)) = εX(ρ(~r)) + εC(ρ(~r)) (4.14)

The exchange part, εX , which represents the exchange energy of an electron in a uni-

form electron gas of a particular density, was originally developed by Bloch and Dirac in

the late 1920’s

εX = −3

4

(
3ρ(~r)

π

)1/3

(4.15)

Unfortunately, no explicit expression is known for the correlation part, EC . However,

highly accurate numerical quantum Monte-Carlo simulations of the homogeneous elec-

tron gas are available [74].
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Generalized gradient approximation

The first step beyond LDA is to use the gradient of the charge density, ∇ρ(~r), in ad-

dition to the electron density, ρ(~r), at a particular point. This is done primarily to account

for any non-homogeneity of the true electron density. Thus, the exchange-correlation

is termed generalized gradient appoximation. The exchange-correlation energy for this

approximation can be described as,

EGGA
XC [ρα, ρβ] =

∫
f(ρα, ρβ,∇ρα,∇ρβ)d~r (4.16)

A lot of important progress has been made in deriving succesful GGA approximation in

which researchers have been employed sum rules, general scaling properties, etc.

4.1.2 Plane-wave pseudopotential DFT formalism

For numerical implementation, it is necessary to expand the KS orbitals using a set

of basis functions. Blöch’s theorem provides a very nice solution for calculation in solids

employing the periodic boundary condition and crystal symmetries. In this theorem, the

electron orbitals can be expressed in term of plane wave basis set as,

φj(r) =
∑
k

exp(−ikr)uj,k(r) (4.17)

where the summation runs over the reciprocal vectors k, which often to be chosen

as equidistant mesh in the first Brillouin zone defined by the crystallographic unit cell.

uj,k(r) are periodic functions with respect to the real space lattice vectors. These func-
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tions can also be expanded in terms of plane waves as

uj,k(r) =
∑
G

cj,k(G) exp(−iGr) (4.18)

where G is the reciprocal lattice vector. The choice of this expansion has several ad-

vantages, such as simplicity, efficiency, and independence from atomic positions (in

contrast to localized orbitals basis sets). In term of numerical calculation, the approach

also has another advantage in which implementation of calculation of matrix-vectors

products through fast Fourier transform can be done easily using parallel computation.

The quality of this basis set is adjusted through a single parameter known as cut-off

(kinetic) energy, Ecut, limiting the summation in Eq. 4.18 to wavelengths fulfilling the

condition
|k +Gmax|2

2
< Ecut (4.19)

Even with this cut-off energy, such calculations are still computationally expen-

sive since the basis set wavefunctions are required to be orthogonal with respect to

each other. This means there will be a lot of nodes for valence electron wavefunctions

and calculation using plane-wave basis set will be very inefficient. The pseudopoten-

tial method aims at a drastic reduction of the number of electrons by keeping only the

valence electron while freezing (eliminating) the core electrons. The core-valence in-

teractions are replaced by an effective potential, namely the pseudopotential, so that

the Schrödinger equation contains a modified effective potential term instead of the

Coulomb potential term for all-electron or full potential. The valence electrons are

described by pseudo-wavefunctions with significantly fewer nodes (i.e. smooth) and

greatly reduces the number of plane waves in the expansion of Eq. 4.19. A pseu-

dopotential is generated in an atomic calculation and then used to compute properties
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of valence electrons in molecules and solids, since the core states remain almost un-

changed. This approach treats the valence electrons as moving in background of ionic

core. Furthermore, the fact that pseudopotentials are not unique allows the freedom to

choose forms that simplify the calculations and the interpretation of the resulting elec-

tronic structure.

The most popular form of pseudopotential follows the Martin-Troullier[75] recipe

in the Kleinman-Bylander[76] form and is known as norm-conserving pseudopoten-

tial (NCPP). However, a pseudopotential known as ultra-soft pseudopotential (USPP),

which use a generalised formalism is becoming more common. This form introduced by

Vanderbilt[77] and allows an increase of the core region radius without loss of accuracy.

Hence, the use of a reliable pseudopotential is crucial in DFT calculations.

4.2 Computation of NMR parameters

The calculation of EFG, in principle, is straightforward since it is a direct function

of the ground state. The EFG components, Vαβ(r), can be calculated from the charge

density as

Vαβ(r) =

∫
dr′

ρ(r′)

|r − r′|

{
δαβ − 3

(rα − r′α)(rβ − r′β)

|r − r′|2

}
(4.20)

Eq. 4.20 highlights the fact that the EFG tensor depends upon the charge density

close to the nucleus. As the pseudo-valence density has a non-phyiscal form in the

core region one has to reconstruct the true density, i.e. all-electron, in that region.

This is the purpose of the projector augmented wave (PAW) reconstruction method

[78–80]. It introduces a linear transformation that uses predefined functions (i.e. pro-

jectors) to reconstruct the true all-electron wavefunction in the core region using the

pseudo-wavefunction. Once the ground state charge density has been determined (i.e.
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converged) the EFG calculation is very short.

The magnetic shielding tensor is defined through the response of the system to an

external uniform magnetic field as in Eq. 1.27. From [67], the determination of Bind

proceeds through the calculation of the first-order induced current density J(1) which

can be found to be

J(1)(r) = −
occ∑
j

(φ
(0)
j (r)∇φ(1)

j (r) + φ
(1)
j (r)∇φ(0)

j (r))− 1

c
ρ0(r)A(r)

= J(1)
p (r) + J

(1)
d (r)

(4.21)

The summation runs over the occupied states and ρ0(r) is the unperturbed charge

density. φ(0)
j (r) are the unperturbed KS orbitals and φ(1)

j (r) are their first-order perturbed

orbitals due to external magnetic field. The latter make the determination of shielding

tensor much more demanding than EFG tensor. A(r) is the vector potential connected

to B0 through

A(r) =
1

2
B0 × (~r − ~r0) (4.22)

where r0 is the so-called gauge origin. Bind is finally obtained from the Biot-Savart law

described as,

Bind =
1

c

∫
dr′J(1)(r)× ~r − ~r0

|~r − ~r0|3
(4.23)

To solve the gauge origin problem, Mauri and Pickard [67], combining with PAW ap-

proach, devised a theoretical basis for computing all-electron responses to magnetic

field. They introduced projectors fulfilling the theoretical requirement of gauge invari-

ance. This led to the gauge invariant projector augmented wave (GIPAW)
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4.3 Computational Details

Electronic structure calculations of the NMR parameters were carried out using

Quantum Espresso (QE) computer code package [69], employing periodic DFT and the

GIPAW method [67] which allows the reconstruction of the all-electron wave function

in the presence of magnetic field. The generalized gradient approximation (GGA) and

PBE functional [81] were used, and core-valence interaction were described by ultrasoft

pseudopotentials [68]. A planewave energy cutoff of 50-70 Ry was employed, and in-

tegrals over the Brillouin zone were performed using Monkhorst-Pack k -point spacing.

The checking and testing calculations were converged as far as possible with respect

to both cut off kinetic energy and k -point spacing and the optimized values were used

for the samples calculation. The structural parameters (unit cell size and shape, and

all atomic positions) for all compounds were obtained from literature diffraction studies

and kept constant. Hence, no geometry optimization of the crystal structures was per-

formed. In order to calculate NMR parameters, all ions are relaxed from their average

positions. This work was performed [in part] using computing facilities at the College

of William and Mary which were provided by contributions from the National Science

Foundation, the Commonwealth of Virginia Equipment Trust Fund and the Office of

Naval Research.

4.4 Preliminary Test

Using the tensors as provided by the calculations, namely the EFG and shielding

tensors, we can determine NMR parameter values. Unfortunately, there are many dif-

ferent conventions and the choice is up to the end user. However, there are only two

important parameters that need to be supplied by end-user for converting the outputs
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into experimental values, i.e. shielding to chemical shift parameters and EFG tensor to

quarupolar parameters.

While it is straightforward calculation for calculating quadrupolar parameters, it is

not the case for the absolute isotropic shielding tensor which was define in Eq. 1.33.

This value can be approximated by Eq. 1.34 giving the isotropic chemical shift. Several

methods have been described to calculate σiso(ref). The first is by directly calculating

a single reference compound with known and trusted NMR shift values. The second

approch is by fitting the calculated values for a set of studied systems to the experimen-

tal values using Eq. 1.34. In this thesis, I will use the latter where it has become the

standard practice.

4.4.1 Niobium Test Calculation

In order to provide a solid ground to test the method as well as a way to fit chemical

isotropic values, five niobium-containing systems were calculated using QE package.

The studied compounds were LiNbO3, YNbO4, NbBO4, LaNbO4, and La2KNbO6. The

calculation will be compared against the reported values from literature. These results

can be seen in Table 4.1. A Quadrupolar coupling constant, CQ, of 93Nb where calcu-

lated by multiplying quadrupole moment (Q) of -0.32 mBarn to VZZ obtained from DFT

calculation. The IUPAC recommendation is to use external saturated solution of NbCl5

as a primary 93Nb chemical shift reference standard. However, σrefiso for this standard is

not known with sufficient accuracy. Hence, a slightly modified version of Eq. 1.34, was

used to related the calculated σ values with chemical shift δ as has been suggested by

Truflandier et. al. [82]

δ = a(σrefiso − σ) (4.24)

In Eq. 4.24 both a and σrefiso were evaluated from a linear regression between the
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computed σiso and experimental δiso. A value of σrefiso = −1147.8 was determined from the

linear regression analysis as shown in Fig. 4.1
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FIG. 4.1: Correlation between QE calculated isotropic values of 93Nb chemical shielding tensor,
σiso, and experimental 93Nb chemical shifts, δiso.

90



Sample δiso(ppm) ∆δ (ppm) ηδ CQ (MHz) ηQ

YNbO4 (Four-coordinated)
DFT pbe -839 -185 0.47 77.6 0.44
DFT pbesol -840 -190 0.50 80.9 0.39
Expt[83] -840 -179 0.430 82.33 0.38

LaNbO4 (Four-coordinated)
DFT pbe -880 -237 0.57 81.3 0.2
Expt[83] -853 -238 0.56 86.55 0.19

La2KNbO6 (Five-coordinated)
DFT pbe -813 -690 0.03 67.8 0.05
Expt[53] -803 -640 0.02 71.43 0.07

LiNbO3 (Six-coordinated)
DFT pbe -929 123 0.002 27.3 0.00038
DFT pbesol -939 113 0.002 22.5 0.00034
Expt[83] -988 115 0 22.25 0

NbBO4 (Eight-coordinated)
DFT pbe -1237 236 0.0011 7.3 0.0074
DFT pbesol -1230 232 0.0007 10.2 0.0013
DFT other[53] -1220 219 0 8.8 0

TABLE 4.1: 93Nb NMR parameters calculation for niobium containing systems.
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4.5 Results and Discussion

4.5.1 Group 1 vs Group 2

As discussed in Chapter 2, the mixed occupancy of A-site between Ca/La and

Sr/La become the source of disorder in the system for group 1. In this thesis, we

are going to focus our attention to group 2 (single A-site system) before trying any

attempts to describe the system of group 1 (mixed A-site system). The reason for this is

because group 2 presents a much simpler system than group 1 does in terms of atomic

configurations. Once we have the full understanding in describing this system, we can

use the knowledge to tackle more complex system such as group 1.

4.5.2 CLT Calculation

The DFT calculation of CLT with 1:3 layer ordering was performed on a super-

cell with 40 atoms. The system is comprised of 2 lithium atoms, 6 tantalum atoms, 8

calcium atoms, and 24 oxygen atoms as shown in Fig. 4.2. During the calculation, the

lattice parameters were kept constant while the atomic positions were fully relaxed. The

pseudo-potential files were obtained from THEOS website, while the generation files

for these pseudo-potentials were handled and distributed through the PSLibrary project

[84]. For calcium atoms, 3s, 4s and 3p valence orbitals were used; for oxygen atoms, 2s

and 2p orbitals were considered as valence states; for lithium atoms, 1s and 2s valence

states were used; and for tantalum atoms, valence states of 5s, 5p, 6s and 5d were

used. Several convergence tests for k -point spacing, cut-off energy, and cut-off density

were performed. The final calculations used k-point spacing of 4× 6× 3, kinetic energy

cut-off of 60 Ry, and density cut-off of 550 Ry.

Since no 181Ta NMR measurement was performed, the result of the calculation can
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FIG. 4.2: 40 atoms unit cell for CLT calculation. Li+ octahedra are shown in blue, Ta5+ octahedra
are in yellow; Ca2+ ions are in cyan while oxygen ions are in red.

only be compared to 7Li NMR measurements. In addition, the calculated value of σiso

for the lithium cannot be reported since no prior calibration of σrefiso was made for this

system. The calculation result can be seen in Table 4.2.

Sample δiso (ppm) ∆δ (ppm) ηδ CQ (kHz) ηQ

CLT
Li calc − 1.3 0 132 0.15
Li meas’d −1.05 −10.15 0.91 45.4 0.45

TABLE 4.2: Calculated NMR parameter values of CLT

As can be seen from the table, the predicted values for both NMR chemical shield-

ing and quadrupolar parameters does not match with the values obtained from exper-

iments. The table shows the value of CQ which is off by a factor of three. The reason

for this is due to the fact that the real value of CQ for 7Li is very small (around 50 kHz).

Furthermore, as can be seen from niobium test result, the predicted CQ values from the

the calculation gave a deviation as small as 2 MHz from the experimental ones. Taking

this into account, it was realized that achieving a calculation result within a reasonable

accuracy for lithium NMR parameters in this system is not possible. However, by tak-
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ing into account the noise of the calculation result, it can be argued that the lithium

quadropolar coupling predicted by the calculation is quite remarkable seeing how close

it is compared with the experimental values.

4.5.3 CLN Calculation

There is a little confusion for CLN structure where two layered ordering composi-

tions were found from two different experiments [13]. Initial studies suggested that the

CLN system exhibits (non-stoichiometric) 1:2 ordering [1] while subsequent investiga-

tion demonstrated a layered 1:3 ordering of Li and Nb [2]. For the sake of completenes,

in this thesis, investigations for both possibilities were performed.

1:3 Layer ordering

The CLN 1:3 layer ordering lattice parameters were found to be very similar with

the CLT [2]. Hence, only a few adjustment for the input file were necessary (for example,

replacing tantalum atoms with the niobium). The unit cell used for the calculation is the

same with Fig. 4.2. In addition, for the calculation, the values of k -point grid, energy

and density cut-off were kept the same. After relaxing the atoms, the NMR parameter

calculations were performed and the result can be seen in Table 4.3.

For lithium NMR parameters, the calculations give the same result as for CLT. That

is, the quadrupolar parameters were off by a factor of three. Again, this is likely due

to the value of CQ for lithium. As for niobium prediction, the calculations gave a very

close result with the experimental values. The measured CQ (using Czjzek model) gave

a value of 16.1 MHz while the calculation gave result of 17.7 and 26.7 MHz.
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Sample δiso (ppm) ∆δ (ppm) ηδ CQ (MHz) ηQ

CLN
Li calc’d − 1.6 0.34 88 kHz 0.07
Li meas’d −0.21 16 0.81 29 kHz 0.55
Nb1 calc’d −870 79 0.34 17.7 MHz 0.57
Nb2 calc’d −880 156 0.71 26.7 MHz 0.21
Nb meas’d −935 44 N/A 16.1 MHz N/A

TABLE 4.3: Calculated NMR parameter values of CLN

1:2 Layer ordering

The electronic structure calculation of CLN with 1:2 layer ordering of Li+/Nb5+

cations was also performed. Since this layer ordering is non-stoichiometric, a random-

site model layer configuration was devised. In this model the structure consist of one

mixed layer and two pure layers while maintaining the overall charge neutrality of the

system. The occupancies used in the model assumed that the B′′2/3 positions were ex-

clusively of Nb atoms (pure layer) and the B′1/3 position contained a random distribution

of lithium and niobium atoms (mixed layer). In the mixed layers, the ratio for Li+ to Nb5+

is 3:1 as in the form of (Li3/4Nb1/4). Using this assumption, the chemical formula can be

re-written as Ca((Li3/4Nb1/4)1/3Nb2/3)O3.

To accommodate all of these assumptions, one super-cell with 120 atoms was

constructed. This super-cell contains 6 lithium atoms, 18 niobium atoms, 24 calcium

atoms, and 72 oxygen atoms. In this super-cell, there are two mixed Li+/Nb5+ layers

where in each layer there are three Li+ cations and one Nb5+ cation. Using permutation

of Nb5+ position in each mixed layer, a total of 16 configurations of crystal structure was

obtained. One configuration, α1, can be seen in figure 4.3.

The naming of the crystal structure configurations will be based on the position

of Nb5+ cation in the first and second mixed layer. A greek letter was used to mark
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FIG. 4.3: Super-cell for 1:2 layer ordering of CLN with 120 atoms. There are two layers of mixed
Li+/Nb5+ cations. Li+ octahedra are shown in blue, Nb5+ octahedra are in yellow; Ca2+ ions
are in cyan while oxygen ions are in red.

the position of niobium in the first layer while using number for the second one. The

top-view schematic representations for each layer can be seen in figure 4.4 and 4.5.

Therefore, α1 configuration will have niobium positioned at point α in the first layer and

point ’1’ in the second layer. Based on these configurations and mirror symmetry, it’s

clear that there are only four unique configurations need to be considered, and they are

α1, α2, β2, and α4.

αβ β

γ

γ δ

δ

FIG. 4.4: 1st mixed layer of CLN

1

1

2 3

4 4

4 4

FIG. 4.5: 2nd mixed layer of CLN

Calculation and Result

The total ground state energy calculation for all crystal configurations can be seen

in Table 4.4. From the previous section, using mirror symmetry, it is argued that there
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are only four unique configurations present in the system. However, with the help of

ground state energy calculation, it seems there may only be three different possible

configurations for this system (since the energy different between α2 and β2 is only

0.2 meV). This assumption can be corroborated by analyzing the atoms in the nearest

neighbour. Both α2 and β2 configurations, show an identical nearest neighbour atoms

such as seen in Table. 4.5 and Table 4.6 (I chose Nb(7) as an example). Therefore, we

only need to relax the atomic positions of α1, α2, and α4 configurations for the purpose

of calculating the NMR parameters.

Configuration Etot (meV)

α1 387.6
α2 128.5
β2 128.7
α4 0

TABLE 4.4: The ground state
total energy for all CLN config-
urations. The energy at α4 was
taken as 0 meV

Once atomic position relaxation calculations are carried out, the NMR parameter

calculations can be performed. The results for all three unique configurations are tabu-

lated in the following Tables. In Table 4.9, the isotropic chemical shift of α4 configuration

falls in the range of 2− 400 ppm while the CQ is between 160 - 360 MHz. In (solid) nio-

bium oxide compounds, this set of values is un-physical [52, 53, 83]. Therefore, α4

configuration is ruled out as a possible solution for 1:2 layer ordering of CLN.

To give more detailed information on the distribution of the quadrupolar parameters

and to correlate with local structure features, the plot of isotropic chemical shift, δiso, with

respect the quadrupolar coupling, CQ, can be used and Fig. 4.6 shows the correlation
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Bond Lengths (Å)

Nb(7) - O(96) 2.00
Nb(7) - O(120) 2.00
Nb(7) - O(76) 2.00
Nb(7) - O(99) 2.00
Nb(7) - O(70) 2.00
Nb(7) - O(52) 2.00
Nb(7) - Ca(48) 3.46
Nb(7) - Ca(26) 3.46
Nb(7) - Ca(45) 3.47
Nb(7) - Ca(46) 3.47
Nb(7) - Ca(27) 3.47
Nb(7) - Ca(28) 3.47
Nb(7) - Ca(32) 3.48
Nb(7) - Ca(42) 3.48
Nb(7) - Nb(23) 4.00
Nb(7) - Nb(24) 4.00

TABLE 4.5: The Nearest neigh-
bour atoms of Nb(7) for CLN.

Bond angle

O(96) - Nb(7) - O(120) 90.00◦

O(96) - Nb(7) - O(76) 179.99◦

O(96) - Nb(7) - O(99) 90.00◦

O(120) - Nb(7) - O(76) 90.00◦

O(120) - Nb(7) - O(99) 179.99◦

O(76) - Nb(7) - O(99) 89.99◦

TABLE 4.6: Bond angles of Nb(7) for
CLN.
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Configuration δiso(ppm) ∆δ (ppm) ηδ CQ (MHz) ηQ

Li1 − -3.53 0.679 0.086 0.9361
Li2 − -3.53 0.679 0.086 0.9361
Li3 − -1.13 0 0.084 0.1733
Nb4 -987.2 142 0.923 50.5 0.0928
Nb5 -800.0 -284 0.372 15.0 0.9893
Nb6 -861.1 -185 0.060 141 0.0442
Nb7 -886.7 138 0.977 93.4 0.7762
Nb8 -886.7 138 0.977 93.4 0.7762
Nb9 -878.0 -235 0.464 31.9 0.9375
Nb10 -878.0 -235 0.464 31.9 0.9375
Nb11 -927.3 190 0.372 56.6 0.3200
Nb12 -877.9 -97.4 0.606 118 0.1562

TABLE 4.7: Calculated NMR parameters of α1

between these two parameters. Even though the figure shows a scattered-data, it can

be argued that there may be, at least, two niobium sites predicted by the calculations.

If this assumption is true, the site at lower chemical shifts is characterized by relatively

broad CQ distribution, while the site at higher chemical shifts is characterized by a nar-

rower CQ range. However, this assumption should be taken as an overstatement to a

complex problem. Therefore we cannot draw a direct comparison to the experimental

results. It is important to note that the number of atoms in the unit cell cannot really

capture the disorder of the nBn atom of niobium in the mixed layer. Since the unit cell

will always be repeated, ideally a huge number of atoms are necessary for complete

understanding of a disordered system.
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Atom δiso(ppm) ∆δ (ppm) ηδ CQ (MHz) ηQ

Li1 − 2.48 0.799 0.082 0.0319
Li2 − -3.98 0.011 0.075 0.7451
Li3 − 2.8 0.903 0.050 0.9124
Li4 − -3.99 0.011 0.075 0.7446
Li5 − 2.48 0.798 0.082 0.0318
Li6 − 2.8 0.903 0.050 0.9122
Nb7 -982.2 211 0.377 67.3 0.1600
Nb8 -982.0 211 0.377 67.3 0.1599
Nb9 -855.1 152 0.803 47.7 0.6541
Nb10 -857.1 -188 0.946 86.5 0.9478
Nb11 -890.8 -211 0.358 48.0 0.7784
Nb12 -886.5 -466 0.574 80.7 0.1424
Nb13 -856.9 -188 0.944 86.5 0.9476
Nb14 -854.9 152 0.803 47.4 0.6542
Nb15 -886.3 -466 0.574 81.0 0.1423
Nb16 -890.7 -211 0.358 48.0 0.7792
Nb17 -856.9 -188 0.944 86.5 0.9476
Nb18 -854.9 152 0.803 47.4 0.6542
Nb19 -886.3 -466 0.574 80.7 0.1423
Nb20 -890.7 -211 0.358 48.0 0.7792
Nb21 -855.1 152 0.803 47.4 0.6541
Nb22 -857.1 -188 0.946 86.5 0.9478
Nb23 -890.8 -211 0.358 48.0 0.7788
Nb24 -886.5 -466 0.574 80.7 0.1424

TABLE 4.8: Calculated NMR parameters of α2
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Atom δiso(ppm) ∆δ (ppm) ηδ CQ (MHz) ηQ

Li1 − 6.3 0.695 0.190 0.9857
Li2 − 6.3 0.689 0.191 0.9874
Li3 − 4.3 0.875 0.320 0.4266
Nb4 -12.0 729.8 0.015 167.5 0.5535
Nb5 -383.4 -500.9 0.129 359.8 0.4227
Nb6 -36.8 -620.1 0.823 111.9 0.9464
Nb7 -376.6 -880.5 0.816 162.3 0.4893
Nb8 -368.4 -870.6 0.780 160.9 0.5228
Nb9 -439.8 -328.0 0.768 263.5 0.7730
Nb10 -428.9 -331.8 0.740 258.1 0.7393
Nb11 1.8 -1281.6 0.395 194.6 0.4914
Nb12 -348.0 -434.4 0.124 373.8 0.4464

TABLE 4.9: Calculated NMR parameters of α4

FIG. 4.6: The combined NMR parameter distribution for both α1 (blue circle) and α2 (green
circle). The red ellipses are meant for a guide to the eyes only.
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4.6 Conclusion

In this chapter, I have addressed the problem of local vs average structure of cation-

ordered microwave dielectric materials. The use of DFT calculation helps for better

understanding of the system. Due to the presence of disorder in group 1, DFT cal-

culation was performed only for group 2. The preliminary test on niobium compounds

gave promising results for the calculation of the real samples. The DFT calculations of

lithium NMR parameters for both CLT and CLN show results which are very close to

the measured values. Unfortunately, a good result within a reasonable accuracy is not

possible to achieve with the current method. Two sets of calculation for CLN were per-

formed which corresponds to 1:3 and 1:2 layering ordering. The calculations of NMR

parameters for 1:3 layer ordering gave a very good results compare to the measured

values. However, the calculations of NMR parameters for 1:2 layer ordering show broad

distribution of chemical shifts and quadrupolar distributions. To get a more accurate

calculation result, using a bigger unit cell which contain more number of atoms will be

beneficial.
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CHAPTER 5

Conclusion and Prognosis

My thesis work has led to a structural characterization of two different group of

cation-ordered complex perovskite materials. The materials studied in this thesis, show

high dielectric constant in microwave region, hence a good candidate for microwave

telecommunication applications. All the crystal structure presented were characterized

by X-ray diffraction to show an average structure of layer ordering. To give insight into

the mechanism which give rise to high dielectric constant, also to find out differences

between the average and local structures, Solid-state NMR was used as the key method

to address these aspects.

The presence of many kinds of defects, which are the source of local disorder

and lattice distortions, made the spectra acquired using traditional NMR technique very

difficult to achieve. This hinder the local structure characterizations of the systems.

At the same time, these systems are absolutely not trivial from the point of view of

NMR spectroscopy, since they contain quadrupolar nuclei and/or paramagnetic cen-

ters. A satisfactory approach to this kind of materials was made possible only in the last

years, thanks to the development both of the NMR hardware technology and of sophis-
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ticated pulse sequences. Particularly relevant for the study of the systems presented in

this thesis are the availability of very high-field magnet, fast-spinning probes, advanced

electronic components of the spectrometers, and the use of adequate pulse sequences.

Using 7Li and 93Nb solid-state NMR spectroscopy, local structure characterizations

for these systems were achieved. Lithium NMR parameters could be accurately calcu-

lated using model that incorporate quadrupolar and chemical shift interaction along with

Euler angles which bring the chemical shift tensor to EFG principal axis. Niobium NMR

measurements were found to show a distribution over NMR parameters (quadrupolar

coupling and chemical shift isotropy). It is also possible to show this distribution with the

help of quantum mechanical calculation. However, the source of disorder in the system

was proven to be a challenge.



APPENDIX A

Transition Rate Equation; Spin-Lattice

Relaxation by a fluctuating EFG

More generally, Eq. 3.4 can be written as

Wmr,m′r′ =
1

~2
×
∫ t

0

[〈m′, r′| ĤQ,i(t) |m, r〉 〈m′, r′| ĤQ,i(t
′) |m, r〉+

〈m, r| ĤQ,i(t) |m′, r′〉 〈m′, r′| ĤQ,i(t
′) |m, r〉]dt′ (A.1)

It is usually assumed that the ensemble average 〈m′, r′| ĤQ,i(t) |m, r〉 〈m′, r′| ĤQ,i(t′) |m, r〉

vanishes for |t − t′| → ∞. This means that the involved transitions become phase-

incoherent after the time difference, τc = t−t′. In addition, the correlations are assumed

to be stationary, i.e., in the ensemble average the products of the matrix elements in

A.1 are a function of the time difference, t − t′, only. For ĤQ,i(t) we consider the time-

dependent quadrupole Hamiltonian, and especially the fact that in the ensemble aver-

age, the matrix elements of ĤQ,i vanish, 〈m′, r′| ĤQ,i(t) |m, r〉 = 0, or the mean value is
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considered to be part of the static quadrupole interaction. ĤQ,i(t) can be written as,

ĤQ,i(t) =
eQ

2I(2I − 1)

+2∑
q=−2

(−1)qT (2)
q V

(2)
−q,int exp (iωct) (A.2)

where V
(2)
−q,int is the operator for the components of the electric field gradient in the

interaction picture and defined as

V
(2)
−q,int(t) = exp{− i

~
(ĤL)t}V (2)

−q (t) exp{ i
~

(ĤL)t} (A.3)

Eq. A.2 and Eq. A.3 show that the spin-dependent part of the quadrupole Hamiltonian

restricts the transitions in the spin-system according to the matrix elements

〈m′|T (2)
0 |m〉 =

3m2 − I(I + 1)√
6

δm′,m (A.4)

〈m′|T (2)
±1 |m〉 = ∓(2m± 1)W±

mδm′,m±1 (A.5)

〈m′|T (2)
±2 |m〉 = 2W±

m±1W
±
mδm′,m±2 (A.6)

where m is the quantum magnetic number for Zeeman interaction and

W±
m =

1

2

√
(I ∓m)(I ±m+ 1) (A.7)

Since we are calculating the transition rates for m 6= m′, one is left with single- and

double-quantum transitions. Therefore, we have

W±
mr,m′r′ =

2

~2
[ eQ

2I(2I − 1)

]2
×[

(2m± 1)2(W±
m)2W̃1(r, r

′)δm′,m±1 + (2W±
m)2(W±

m±1)
2W̃2(r, r

′)δm′,m±2

]
(A.8)
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with

W̃n(r, r′)δm′,m±1 =

∫ +∞

−∞
exp{i[±nω0+(Er−E ′r)/~]τ}×Re

[
〈r′|V (2)

±2 (t) |r〉 〈r′|V (2)
∓2 (t−τ) |r〉

]
dτ

(A.9)

and given that

Wn(r, r′) =
e2Q2

4I~2
W̃n(r, r′) (A.10)

We arrive at the general transition rate equation,

Wmr,m′r′ =
(2m± 1)2(I ∓m)(I ±m+ 1)

(2I)(2I − 1)2
W1(r, r

′)δm′,m±1

+
(I ∓m)(I ±m+ 1)(I ±m+ 2)

(2I)(2I − 1)2
W2(r, r

′)δm′,m±2 (A.11)



APPENDIX B

Spin-Lattice Relaxation rate due to

paramagnetic centers

When paramagnetic centers are present in the system, the nuclear spins are in-

teracting with the time-varying local magnetic fields produced by these centers. This

interaction can cause transition for the nuclear states and the transition probability of

one nucleus due to a single paramagnetic center separated by distance r is given by

P = T−11 = 3(γnγp~)2S(S + 1)r−6 sin2 θ cos2 θ
τc

1 + τ 2c ω
2

(B.1)

where γn and γp is the gyromagnetic ratio of the nucleus and paramagnetic ion, re-

specitvely; θ is the angle between the line connecting nucleus and paramagnetic ion to

static magnetic field; S is the spin of paramagnetic ion; τc is the correlation time of the

z-component of paramagnetic ion spin.

By employing MAS to the system, the angular dependence of this interaction get

108



109

averaged over the angle θ so that equation (B.1) is replaced by,

T−11 =
2

5
(γnγp~)2S(S + 1)r−6

τc
1 + τ 2c ω

2
=
C

r6
(B.2)

with C = 2
5
(γnγp~)2S(S + 1) τc

1+τ2c ω
2 . Due to the inverse sixth power dependence on dis-

tance, only those nuclei close to the impurity are affected by this interaction, while the

relaxation at lattice sites far from the impurity occurs by nuclear spin-spin diffusion.

If a saturation state is achieved initially, the nuclear magnetization will be built up

most rapidly near the paramagnetic ion, as it is clear to see from equation (B.2). This

gives rise to a spin-temperature gradient which causes spatial transport of nuclear mag-

netization. Assuming fixed position for both nuclear spins and paramagnetic ions, the

nuclear spin magnetization per unit volume, M, is expressed as

(
∂M

∂t

)
total

=

(
∂M

∂t

)
p

+

(
∂M

∂t

)
d

= −(M −M0)

T1
+D∇2M (B.3)

where M0 is the equilibrium value of the magnetization per unit volume at the lattice

temperature; D is spin diffusion constant;
(
∂M
∂t

)
p

represents the rate of change due to

direct interaction of the nuclear spins with paramagnetic ion; while
(
∂M
∂t

)
d

represents the

rate of change due to spin-spin diffusion magnetization transport. Letting m = M −M0,

equation (B.3) can be expressed as

∂m

∂t
= D∇2m− C

r6
m (B.4)
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In general, this expression is very difficult to solve. Approximation is made by con-

sidering the concentration of paramagnetic impurity in the crystal is so small that each

nuclear spin only being affected by one single paramagnetic ion. In solving equation

(B.4), steady state solution is assumed. In addition, it also assumes that there is no

magnetization transfer into the inside of a "barrier" i.e.
(
∂m
∂r

)
r=b

= 0 where b is barrier

radius. There are three limiting cases need to be considered as they can give some

physical insight about the system.

• Diffusion-dominant1

This happens when the direct relaxation term is small and not able to establish a

large spin-temperature. In this case, the transfer of nuclear magnetization is faster

than the paramagnetic ion can equilibrate the nuclear spins surrounding it. The

relaxation rate is given by

T−11 =
4πNpC

3b3
∝ B−20 (B.5)

where Np is the paramagnetic ions density

• Diffusion-limited:

For this case, the direct relaxation rate is large enough yet spin-spin diffusion can

still happen. The relaxation rate is given by

T−11 =
8π

3
NpC

1/4D3/4 ∝ B
−1/2
0 (B.6)

• Diffusion-vanishing:

When the direct relaxation term is too big, then the basic assumption of single para-

magnetic center is not particularly valid anymore. In this case, it is important to think
1This is called rapid-diffusion in references
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that the nuclei are relaxed by many paramagnetic centers. The relaxation rate is then

given by

T−11 ≈ 50N3/4
p C1/2D1/2 ∝ B−10 (B.7)
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