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ABSTRACT

In this work, we present state-of-the-art numerical methods and their applications for

computing a particular class of observables using lattice quantum chromodynamics

(Lattice QCD), a discretized version of the fundamental theory of quarks and gluons.

These observables require calculating so called “disconnected diagrams” and are

important for understanding many aspects of hadron structure, such as the strange

content of the proton. We begin by introducing the reader to the key concepts of Lattice

QCD and rigorously define the meaning of disconnected diagrams through an example of

the Wick contractions of the nucleon. Subsequently, the calculation of observables

requiring disconnected diagrams is posed as the computationally challenging problem of

finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a

brief primer of numerical sparse matrix techniques that overviews broadly used methods

in Lattice QCD and builds the background for the novel algorithm presented in this

work. We then introduce singular value deflation as a method to improve convergence of

trace estimation and analyze its effects on matrices from a variety of fields, including

chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this

method to compute observables such as the strange axial charge of the proton and

strange sigma terms in light nuclei.

The work in this thesis is innovative for four reasons. First, we analyze the effects of

deflation with a model that makes qualitative predictions about its effectiveness, taking

only the singular value spectrum as input, and compare deflated variance with different

types of trace estimator noise. Second, the synergy between probing methods and

deflation is investigated both experimentally and theoretically. Third, we use the

synergistic combination of deflation and a graph coloring algorithm known as hierarchical

probing to conduct a lattice calculation of light disconnected matrix elements of the

nucleon at two different values of the lattice spacing. Finally, we employ these algorithms

to do a high-precision study of strange sigma terms in light nuclei; to our knowledge this

is the first calculation of its kind from Lattice QCD.
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DISCONNECTED DIAGRAMS IN LATTICE QCD



CHAPTER 1

Motivation: Hadron Structure

For nearly half a century, quantum chromodynamics (QCD) has been accepted as

the theory for describing strong interactions, yet many difficulties remain in fully under-

standing hadron structure. At high energies, perturbative QCD has enjoyed tremendous

success in agreeing with experimental results from PETRA in DESY, LEP in CERN, and

many others. At low energies however, an analytical solution of QCD is not possible,

resulting in an incomplete understanding of the precise mechanism in which quarks and

gluons combine together to form the nucleon and other hadrons. A clear picture of the

exact dynamics which gives rise to the mass, spin content, and charge distribution of the

nucleon has yet to be achieved.

Numerous experiments have been planned or are already ongoing with the purpose

of enhancing our view of hadron structure. To name a few, COMPASS at CERN is

investigating the origin of proton spin and exotics. The nucleon form factors at high

momentum transfer will be probed at CEBAF in Jefferson Lab under the 12 GeV upgrade.

Additionally, the GlueX project in Jefferson Lab is mapping the spectrum of potential

exotic mesons. MAMI in MAINZ is studying nucleon form factors and polarizabilities.
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To complement these experimental efforts, a rigorous treatment of QCD at low en-

ergies is required to make predictions or confirm experimental results. The only model

independent and systematically improvable way to theoretically study QCD at low ener-

gies is Lattice QCD. This entails numerically computing the Feynman path integral on a

lattice stochastically with Monte Carlo methods. In order to do this, the time dimension

is analytically continued to the imaginary axis of the complex plane, resulting in a theory

with Euclidean space-time. Euclidean correlators on the lattice may then be computed as

< O2(t)O1(0) >=
1

Z

∫
D[ψ, ψ̄]D[U ]e−SF [ψ,ψ̄,U ]−SG[U ]O2[ψ, ψ̄, U ](t)O1[ψ, ψ̄, U ](0), (1.1)

where Z is the partition function, described by

Z =

∫
D[ψ, ψ̄]D[U ]e−SF [ψ,ψ̄,U ]−SG[U ]. (1.2)

Details of the definitions of ψ, U , SG[U ], and SF [ψ, ψ̄, U ] are given in Chapter 2.

Lattice QCD simulations have limitations such as finite lattice spacing, finite volume, and

unphysical light quark masses, typically labeled by an unphysical pion mass. The lattice

spacing is used as a non-perturbative regulator, whereas an unphysical pion mass is be-

cause of computational restrictions. Due to improved algorithms and hardware however,

computations at the physical point have started to appear in recent years [1, 2, 3]. A full

Lattice calculation involves computing observables on different ensembles and extrapolat-

ing to zero lattice spacing, infinite volume, and if needed, physical pion mass.

The computational expense of Lattice calculations grows as the box volume increases

and as the quark mass decreases, this will be discussed further in Chapters 4 and 5.

As computers become more powerful, Lattice QCD calculations are able to access finer
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lattice spacings, larger volumes, and physical quark masses. Unfortunately, the error

from averaging over an ensemble of gauge field configurations scales as a typical Monte

Carlo process: 1√
N

, where N is the number of measurements. Therefore, a factor of 100

increase in computing capability is necessary to reduce the error by an order of magnitude.

In order for the field to truly prosper, more efficient computers must be combined with

smarter algorithms that reduce the variance/error of the computed observables.

Correlation functions in Lattice QCD are broadly defined into two categories: con-

nected and disconnected pieces. These classifications arise from the fermion Wick con-

tractions of hadrons and will be rigorously defined in Section 3.2. We define disconnected

contributions here loosely, as an operator insertion in a quark loop coupled to a hadron

via only gluons. Over the past decade, most studies of nucleon observables either neglect

disconnected diagrams or limit their study to cases in which these diagrams cancel, such as

the isovector channel. This is due to the notoriously high computational cost of computing

a quark loop on the lattice. In this thesis we study state-of-the-art methods to compute

disconnected diagrams and their applications.

The remainder of this chapter covers three interesting areas of physics in which eval-

uation of disconnected diagrams can give appreciable insight. Chapter 2 briefly reviews

continuum QCD and introduces the reader to Lattice QCD and the general lattice action

that is used in all computations in this work. Chapter 3 describes how nucleon matrix

elements are computed on the lattice. Chapter 4 is an introduction to Numerical Linear

Algebra and the basic methods that many collaborations employ to calculate disconnected

diagrams. Additionally, a succinct overview of hierarchical probing (HP) and its benefits

is given at the end of Chapter 4. The first half of Chapter 5 describes the details of SVD

deflation and provides a model that qualitatively predicts the effects of deflation on various

matrices from a plethora of fields, including chemical transport modeling, magnetohydro-

dynamics, and electrical engineering. The second segment of Chapter 5 focuses on the
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direct application of SVD deflation to disconnected diagrams in Lattice QCD and notes

the synergy between HP and deflation. Chapter 6 summarizes results and applications of

the previous chapters to nucleon and light nuclei matrix elements. The disconnected axial,

scalar, tensor, and vector charges are shown for the nucleon as well as sigma terms for the

proton, proton-proton system, deuteron, and 3 He.

1.1 Proton spin crisis

Spin is one of the fundamental properties of a particle, along with its mass and

charge. It governs a particle’s statistical properties and equations of motion. Spin is

relevant to almost all areas of physics, from quantum computing to condensed matter

theory. The drastic temperature difference in achieving 3 He superfluidity versus 4 He

superfluidity is just one of many phenomena deeply connected with the physics of spin.

Therefore, understanding the spin of the nucleon is of central importance.

The proton spin crisis is one of the modern-day challenges of nuclear physics. Although

the proton is a spin-1/2 particle, akin to all the quarks, the precise contributions to its spin

are still unknown. The story begins in 1987 due to an experiment by the European Muon-

Collaboration (EMC). Before this experiment it was widely believed that the entirety of

a proton’s spin came from its constituent quarks. This simple picture constrained two of

its quarks to carry spin in opposite directions, with the third quark’s spin aligned in the

same direction as the proton’s spin.

In the EMC experiment, a polarized muon beam was incident on a polarized proton

target, measuring the instantaneous spin of a quark. The experimental data indicated that

the sum of quark spins inside the proton was only a fraction of its total spin. These results

were confirmed in numerous subsequent experiments. The issue of where the missing spin

comes from became known as the proton spin crisis.
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It’s now believed that the missing spin is carried by a combination of gluon spin,

quark orbital angular momentum, and gluon orbital angular momentum.

1

2
=

1

2
Σq + Σg + Lq + Lg (1.3)

All contributions to the nucleon’s spin are written above, here h̄ has been set to 1.

There are subtleties in uniquely defining angular momentum for the quarks and gluons

which we do not cover here. We may define the proton’s spin through the zero-momentum

transfer matrix element of the axial-vector current (the axial charge).

Sµ =
1

2mP

< p, s|ūP (p, s)γµγ5uP (p, s)|p, s > (1.4)

Above, uP , ūP are the proton spinors and mP is the proton mass. Individual axial

charges for different quark flavors can then be interpreted as the quark contribution to the

total proton spin.

∆qSµ =
1

2mP

< p, s|q̄γµγ5q|p, s > (1.5)

These up, down, and strange axial charges can be written in combinations of the

isovector, octet, and flavor-singlet axial charges.

g
(3)
A = ∆u−∆d (1.6)

g
(8)
A = ∆u+ ∆d− 2∆s (1.7)

g
(0)
A = ∆u+ ∆d+ ∆s (1.8)

Equation 1.8 gives the full quark contribution to the proton spin. One may estimate
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the size of these charges with relativistic quark confined models, one such example is the

MIT bag model.

In the MIT bag model, three non-interacting quarks are confined to a spherical cavity,

or elastic “bag”. If one attempts to pull one of the quarks out, this bag stretches, giving

rise to a linear confining potential energy. The amount of energy required to overcome

this force and free a quark is far above the quark-antiquark pair production threshold,

resulting in a jet of mesons. Computing the flavor-singlet axial charge with this model

results in the quarks carrying roughly 60% of the spin of the proton.

From polarized deep inelastic scattering (pDIS) experiments however, the flavor-

singlet charge has been determined to only contribute approximately 30% to the proton

spin. Furthermore, the SU(3) octet axial charge may be extracted from hyperon beta-

decay [4], allowing the combination of both charges to isolate the strange spin content of

the proton. From fitting with modern models to experiential results [5], the strange axial

charge is currently quoted to be ∆s = −.03 ± 03 in the MS-bar scheme at a scale of 2

GeV.

An ab initio calculation of the nucleon axial charge is crucial in comparing with ex-

perimental results and furthering our understanding of how QCD dynamics plays a role in

forming hadrons. In Section 3.2 the different Wick contractions of nucleon matrix elements

will be discussed, resulting in two types of diagrams: connected and disconnected. Both

categories of diagrams are important in understanding the role quarks play in contributing

to the proton spin. As will be shown in Chapter 3, the strange spin content of the proton

is an effect solely due to disconnected diagrams.
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1.2 Dark matter cross sections

It is well known that the luminous mass density of spiral galaxies decreases as a

function of distance from the center. Therefore, if luminous mass was the only type

of matter present, rotation curves of spiral galaxies would be expected to decrease with

distance. However, in 1939 Horace W. Babcock observed a relatively flat rotation curve for

the Andromeda nebula [6]. Since then, the behavior of rotation curves from many other

galaxies have matched his results [7]. The simplest way to account for this is to assume the

existence of non-luminous (“dark”) matter, which forms halos around the galactic disks.

Other indications of dark matter include velocity dispersions of elliptical galaxies,

gravitational lensing, anisotropies in cosmic microwave background radiation, and many

more observations [8, 9]. In all cases, introducing dark matter can be used to explain the

difference between observed and expected phenomena. Utilizing these constraints allows

for a prediction of the precise mass-energy budget for the known universe. Ordinary and

visible baryonic matter only makes up about 5% of the total, with dark matter accounting

for ≈ 25%, and the remaining 70% attributed to dark energy, a form of energy postulated

to explain the expansion of the universe.

The most popular dark matter candidates are weakly interacting massive particles

(WIMPs). Based on the amount of dark matter required to explain the observations listed

above, the mass scale of WIMPs is around 100 GeV. This mass scale is within range of

LHC experiments that are currently underway. In order to write down the general spin-

independent interaction of a nucleus with a WIMP, the scalar matrix elements (sigma

terms) are needed.
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σl =
mu +md

2
< N |ūu+ d̄d|N > (1.9)

σs = ms < N |s̄s|N > (1.10)

Above, σl is the light sigma term and σs is the strange sigma term; the N state can

refer to either a single nucleon or a nucleus. These sigma terms are the main source of

uncertainty in calculating dark matter cross sections [10, 11, 12].

Sigma terms cannot be accessed directly, however there is a procedure to relate them

to pion-nucleon scattering. The light sigma term can be obtained through measuring the

isoscalar πN scattering amplitude with the pseudovector Born terms subtracted out (ΣπN).

In order for σl and ΣπN to match up to order O(m2
l ), the πN amplitude is analytically

continued to an unphysical kinematic region, the Cheng-Dashen point (defined by the

Mandelstam variables u = s = m2
N , t = m2

π).

The difference between the pion-nucleon scattering amplitude and the scalar form fac-

tor at the Cheng-Dashen point, ∆R, was computed using heavy baryon chiral perturbation

theory in [13]. ∆R was found to have an upper limit of about 2 MeV. The zero-momentum

transfer scalar matrix element could then be extracted and was found to be roughly 79(7)

MeV in [14]. A recent alternative analysis using a combination of Lorentz covariant baryon

chiral perturbation theory and Hellmann-Feynman theorem gives σl = 59(7) MeV [15].

The strange sigma term is more difficult to estimate due to the strange quark’s much

heavier mass, which changes the leading order matching of the scattering amplitude and

scalar form factor. Instead, the octet baryon mass splittings are used to estimate the

flavor-singlet sigma term.

σ0 =
mu +md

2
< N |ūu+ d̄d− 2s̄s|N > (1.11)
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An analysis utilizing this method in [16] yielded σ0 = 36(7) MeV. The strange sigma

term is then related with

σs =
ms

mu +md

(σl − σ0). (1.12)

Unfortunately, due to the large numerical factor in the front of (1.12), this estimation

leads to large uncertainties. Due to these difficulties, there is tremendous opportunity for

Lattice QCD to precisely determine this matrix element. Identical to the strange proton

spin content, the strange scalar matrix element arises solely due to the presence of discon-

nected diagrams in the Wick contractions of the scalar three-point correlation function.

Recent Lattice QCD studies have directly computed pion and nucleon sigma terms [17, 18],

however before this work we are not aware of any results on multi-hadronic states. This is

of utmost importance, as dark matter detection experiments use Germanium, liquid argon,

and liquid xenon for the detector media [19]. Furthermore, from the EMC effect [20], it

is well known that properties of nuclei differ from the sum of free nucleons. Therefore, a

calculation of sigma terms of light nuclei to an accuracy which resolves the difference from

naive linear scaling serves as invaluable input for dark matter detection experiments.

1.3 Proton radius puzzle

The charge radius of the proton, or any atomic nucleus, is a quantification of its size.

Of course neither the proton nor other nuclei have concrete boundaries, resulting in an

electron experiencing a range of “radii” in scattering experiments. The charge radius is

defined as the root mean square of these radii. To formally define it, we introduce the

nucleon vector current matrix element.
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< p′|q̄γµq|p >= ū(p′)

[
γµF

q
1 (Q2) +

i

2MP

σµνq
νF q

2 (Q2)

]
u(p) (1.13)

Above, σµν = i
2

= [γµ, γν ], q = p′ − p is the momentum-transfer, Q2 = −(p′ − p)2,

and F q
1 (Q2), F q

2 (Q2) are the flavor-dependent Pauli and Dirac form factors respectively.

This matrix element characterizes the electromagnetic interaction vertex of a photon being

absorbed by a proton. A linear combination of F1(Q2) and F2(Q2) can be taken to form

the electric and magnetic form factors.

GE(Q2) = F1(Q2)− Q2

4M2
P

F2(Q2) (1.14)

GM(Q2) = F1(Q2) + F2(Q2) (1.15)

In the nonrelativistic limit, GE(Q2) and GM(Q2) are simply Fourier transforms of the

nucleon charge and current densities. Moreover, the electric and magnetic form factors

carry information about the extended nature of a proton and describe its deviation from

a point-like object.

Now a formal definition of the electric and magnetic radii can be given.

r2
E = −6

dGE(Q2)

dQ2

∣∣∣∣
Q2=0

(1.16)

r2
M = −6

dGM(Q2)

dQ2

∣∣∣∣
Q2=0

(1.17)

There are two methods for obtaining the proton charge radius via electrons. The first

is through fitting the electric and magnetic form factors with elastic electron-proton scat-

tering cross sections [21]. The second is to measure the Lamb shift in ordinary electronic
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hydrogen [22]. There are subtleties in the second technique involving uncertainty with the

Rydberg constant that we do not cover here. Both experiments are compatible with a

value of rE = .88(01) fm.

Another method for computing the proton charge radius from experiment is to study

the Lamb shift of muonic Hydrogen, instead of ordinary Hydrogen. The muon is roughly

200 times heavier than the electron, so it “orbits” 200 times closer to the proton in the

bound system. This allows the radius to be determined with extreme accuracy. Recent

results from muonic hydrogen give rE = .84087(39) fm [23]. This is 4% smaller than the

electronic measurements, with an extremely small uncertainty. There is a 7σ difference

between the muonic hydrogen measurement and previous results. Even more recently, the

charge radius of the deuteron was measured with muonic deuterium [24]. The uncertainty

in the deuteron radius is appreciably smaller than any previous measurements, however

this measured radius gives a 7σ discrepancy from the expected value.

1.3.1 Strange radius

As an important aside, through parity-violating electron scattering the neutral weak

current form factors of the proton can be measured. There are two vector current form

factors F1,
Z , FZ

2 , and an axial-vector current form factor GZ
A that describe this interaction.

Combining the two vector form factors into electric/magnetic pieces (similar to the previous

discussion) and assuming ispospin symmetry gives a clean relationship between the photon

and weak vector form factors.

GZ,p
E = (1− 4 sin2 θW )Gp

E −G
n
E −Gs

E (1.18)

GZ,p
M = (1− 4 sin2 θW )Gp

M −G
n
M −Gs

M (1.19)
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Above, the form factors on the right hand side are the vector-current ones defined in

(1.14) and (1.15). This relation allows the strange vector current form factor to be isolated

and conversely the strange radius to be computed with (1.16). Experiments at Jefferson

Lab have found the strange vector current form factor of the proton to be consistent with

zero [25].

There is great scope for Lattice QCD calculations to aid in the effort of understanding

the charge radius puzzle. A high precision computation of the strange form factors and

radii from Lattice QCD was conducted in [26]. The study yielded an extremely precise

non-zero value for the strange radius, which agreed with results from Jefferson Lab due

to a larger uncertainty on the experimental side. In order to have systematics fully under

control however, this calculation must be repeated at multiple lattice spacings and an

extrapolation to the continuum must be taken. Additionally, the light quark disconnected

diagrams are also necessary [27].

We have only given a basic survey of the very extensive topics discussed here. For

further details, we refer the reader to [28] and [29] for information on the charge radius

puzzle and parity-violating electron scattering respectively.
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CHAPTER 2

Introduction to Lattice QCD

In this chapter an overview of quantum chromodynamics (QCD) on the lattice is pre-

sented. Basic knowledge of quantum field theory is assumed. Only the basic methodology

is described in this segment and we refer the interested reader to [30] and [31] for further

details.

QCD is the theory of quarks and gluons, the strongly interacting particles. We begin

by reviewing the continuum QCD action functional and its symmetries in the first section.

This section is ended with a brief discussion of asymptotic freedom and the need for non-

perturbative methods such as Lattice QCD at low energies. We follow with a discretization

of the gluonic part of the QCD action and describe the Wilson pure gauge lattice action. In

the subsequent section, a discretization of the fermionic part in the most straight forward

and naive way is discussed. This naturally leads to the problem of Fermion doubling,

which we briefly summarize, and we propose the Wilson Fermion action as one possible

solution to this doubling. This chapter is concluded with an examination of discretization

errors and the introduction of the Clover term.
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2.1 Continuum QCD

This review is started with a description of the quark and gluon fields for the con-

tinuum Euclidean action. Subsequently, we examine the fermionic and gluonic pieces of

the action independently. By studying the gauge invariance of the fermionic part, the

covariant gauge derivative is introduced in a natural context. We may then verify the

invariance of the gluonic piece under the same transformations.

2.1.1 Fields in the QCD action

There are two types of fundamental fields in the theory of QCD, whose excitations

produce quarks and gluons. Quarks are spin 1/2 fermions with 4-spinor Dirac structure,

similar to fermions in quantum electrodynamics (QED). Dirac spinors are irreducible rep-

resentations of the Poincaré group. A major difference between QCD and QED, however,

is that quarks also carry a color index.

ψ(f)(x)α,c (2.1)

Here, x is the space-time coordinate, α is the Dirac index, c is the color index, and f is

the flavor index. Since α = 1, 2, 3, 4 and c = 1, 2, 3, for each flavor, ψ(f) has 12 independent

components. The color index arises from SU(3) gauge symmetry, in contrast to the U(1)

symmetry from QED. There are six different flavors of quarks: up, down, strange, charm,

bottom, and top. We will often drop indices in lieu of matrix/vector notation. Apart from

being notationally convenient, this also makes direct application of large matrix techniques

from numerical linear algebra obvious. This will be discussed further in Chapters 4 and 5.

With a Minkowskian action, one may define ψ̄ = ψ†γ0, where γ0 is the time γ matrix.

For the Euclidean action, no such relation exists; ψ and ψ̄ are treated as separate integra-
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tion variables. The other type of field in QCD is the gluon field, corresponding to a spin

1 vector gauge boson.

Aµ(x)cd (2.2)

Once again, x is the space-time coordinate. Additionally, these gauge fields carry a

Lorentz index: µ, which corresponds to different space-time components. In the Euclidean

case, there is no need to discriminate between contravariant and covariant indices since

the metric tensor is the identity. The gluon fields have two color indices: c, d. Specifying

a space-time position (x), and direction (µ), yields a 3× 3 traceless, hermitian matrix for

Aµ(x). This comes from the fact that Aµ(x) may be written as a linear combination of

the generators of SU(3). In the following subsections we inspect the fermionic and gluonic

parts of the QCD action individually.

2.1.2 The fermionic QCD action

It should be noted that even the fermionic piece of the QCD action depends on

the gauge field. This is due to the coupling between quarks and gluons, which arises to

enforce gauge invariance (see Section 2.1.3). The fermionic part with a Euclidean metric,

SF [ψ, ψ̄, A] is given as

SF [ψ, ψ̄, A] =

Nf∑
f=1

∫
d4x ψ̄(f)(x)α,c

[
(γµ)αβ (δcd∂µ + iAµ(x)cd) +m(f)δαβδcd

]
ψ(f)(x)β,d.

(2.3)

Above, we use Greek letters and ordinary lower case letters to differentiate between

Dirac and color indices, respectively. Additionally, we leave the sum over flavors as run-

ning from 1 to Nf . Although Nf is 6 in the full theory, for calculations at low energies,
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only including the lightest flavors is adequate. At energy ranges of the proton mass, the

contribution from the heavier 3 flavors is expected to be small and their effect can be

tucked into the effective parameters of the theory. From (2.3), it can be inferred that

different quark flavors couple to the color gauge field identically, and the only dissimilarity

arises from their masses: m(f).

The quark fields, ψ and ψ̄, couple to the gauge field through the contraction of the

color indices c and d. Additionally, the gauge field contracts with various γ matrices. The

γ matrices in (2.3) are the Euclidean analogs of the Minkowski γ matrices that appear in

the Dirac equation. In Appendix A, an explicit description of these γ matrices is given.

Similar to the gauge field, the kinetic term of (2.3) also contracts with γµ, and also with

the quarks through the Dirac indices α and β. The kinetic term is trivial in the color space

and the mass term is trivial in both Dirac and color spaces.

Using the Euler-Lagrange equations, we can derive the classical equation of motion

for this action.

∂µ

(
∂L

∂(∂µψ̄)

)
− ∂L

∂ψ̄
= 0 (2.4)

Applying this to (2.3) produces

Nf∑
f=1

[
γµ (∂µ + iAµ(x)) +m(f)

]
ψ(f)(x) = 0. (2.5)

This is the Euclidean Dirac equation in an external gauge field, Aµ.

2.1.3 Verifying Gauge invariance

Now that the basic form of the fermionic QCD action has been presented we may

study its symmetries. It should be noted that apart from the color structure, (2.3) is
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identical to the fermionic QED action. Furthermore, generalizing the gauge invariance of

QED inherently leads to the QCD action.

The QED action is invariant under the multiplication of an arbitrary phase at each

space-time point, conjoined with a gauge field transformation of the photon field. In QCD,

this invariance must be under local rotations in the color space of the quark fields. At

each space-time point we introduce 3× 3 unitary matrices Ω(x), which are group elements

of SU(3). Note that these elements do not commute in general, therefore the group is

non-abelian.

We may impose gauge invariance of QCD with these SU(3) matrices. For the quark

fields, this takes the form

ψ′(x) = Ω(x)ψ(x) (2.6)

ψ̄′(x) = ψ̄(x)Ω(x)†,

where ψ′(x) and ψ̄′(x) are the fermion fields after this gauge transformation. The gauge

field Aµ(x) must also transform in some way to uphold this invariance. Applying this

transformation with (2.3), we arrive at

SF [ψ′, ψ̄′, A′] =

∫
d4x ψ̄(x)Ω(x)†

[
γµ

(
∂µ + iA

′

µ(x)
)

+m
]

Ω(x)ψ(x), (2.7)

where the flavor sum, Dirac, and color indices have been suppressed. Due to Ω(x)† =

Ω(x)−1, the mass term is trivially invariant under this transformation. The other terms

are not so obvious, comparing (2.3) and (2.7) yields
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∂µ + iAµ(x) = Ω(x)†
[
∂µ + iA

′

µ(x)
]

Ω(x) (2.8)

= ∂µ + Ω(x)† (∂µΩ(x)) + iΩ(x)†A
′

µ(x)Ω(x). (2.9)

Now we are able to write a transformation rule for the gauge field.

A
′

µ(x) = Ω(x)Aµ(x)Ω(x)† + i (∂µΩ(x)) Ω(x)† (2.10)

With the transformation from (2.10), we have all the pieces in place to investigate the

gluonic part of the action.

2.1.4 The gluonic QCD action

We begin this discussion by introducing the covariant gauge derivative.

Dµ(x) = ∂µ + iAµ(x) (2.11)

We define this new derivative by inspecting (2.8) and noting that

D
′

µ(x) = ∂µ + iA
′

µ(x) = Ω(x)Dµ(x)Ω(x)†, (2.12)

which guarantees that Dµ(x)ψ(x) and ψ(x) transform identically under a gauge rotation.

We may construct a gluonic action using these covariant gauge derivatives, which is

an extension of the expression from QED that depends on the field strength tensor, Fµν(x).

We define this tensor as the commutator of the covariant derivative, akin to QED.
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Fµν(x) = −i [Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i [Aµ(x), Aν(x)] (2.13)

In QED the commutator over the gauge fields vanishes, however in QCD Aµ(x) and

Aν(x) are matrices, and their commutator is in general non-zero. This leads to cubic and

quartic gluon interactions seen in Figure 2.1.

FIG. 2.1: Feynman diagrams representing the gluon self interaction terms found in the
QCD action. Unlike photons in QED, gluons carry color charge, which engenders the
non-linear nature of the strong force.

It may also easily be checked that the field strength tensor transforms as in (2.12).

F
′

µν(x) = Ω(x)Fµν(x)Ω(x)† (2.14)

We may extend the consonance with QED further, and write down the gluonic QCD

action as

SG[A] =
1

2g2

∫
d4x Tr [Fµν(x)Fµν(x)] . (2.15)

As a reminder, due to our Euclidean prescription, covariant and contravariant forms

do not need to be distinguished. The contraction in Lorentz indices, µ and ν, ensures

the action is a Lorentz scalar. The astute reader will note that unlike in QED, the QCD

action contains a trace. This trace acts as a reduction operator since the gluon fields are
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matrices. Additionally, from (2.14) it may be verified that this action is gauge-invariant

due to the cyclic property of the trace. Furthermore, this term is a dimension 4 operator.

Therefore, this expression meets the requirements of Lorentz invariance, gauge invariance,

and renormalizability.

2.1.5 Asymptotic freedom

Just as in QED, the coupling parameter of QCD “runs” with the renormalization scale.

The bare coupling is of course independent of the renormalization scale. The running of

this coupling parameter is described by the beta function β(g).

β(g) =
∂g

∂ log(µ)
(2.16)

The beta function of QCD, computed from one-loop perturbation theory is

β(αs) =
α2
s

π

(
Nf

3
− 33

6

)
, (2.17)

where αs = g2

4π
. This function is negative as long as Nf < 17, giving rise to the property

of decreasing coupling parameter at increasing energy, or renormalization scale. This may

be understood from the three and four-vertex gluon interactions causing an anti-screening

effect. This feature is known as asymptotic freedom and it has allowed tremendous suc-

cess of the parton model and collinear factorization to explore scattering processes [32].

Conversely, at low energies the coupling parameter becomes larger. At the mass scale of

hadrons such as the pion or proton, this coupling is large enough to cause perturbation

theory to break down. Therefore a non-perturbative treatment of QCD is required to study

the properties of hadrons from the fundamental theory. We achieve this by discretizing

QCD onto a lattice, giving the role of the lattice spacing as a non-perturbative regulator.
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2.2 The Wilson pure gauge action

In this section we convert the gluon fields to link variables as the fundamental objects

to use on the lattice. We perform a discretization and write down the Wilson gauge action.

Finally, we demonstrate that in the limit of lattice spacing going to zero the continuum

theory is recovered.

2.2.1 Gauge fields on the lattice as link variables

The first step in developing a discretization of a continuum theory is to introduce a

lattice. In our case this is a 4D lattice.

Λ = {(n1, n2, n3, n4)} (2.18)

One can interpret n as a vector on the lattice, n ∈ Λ, that can take on the value

of space-time points separated by the lattice spacing a. In Lattice QCD, typically space

and time directions have different total box lengths, so we differentiate between these two

maximum values as NL and NT .

Let us consider an object that lives on this lattice: Uµ(n). It contains both a direc-

tional index µ and a lattice coordinate, as such Uµ(n) may be understood as a type of

lattice vector field. Veritably, this object is matrix valued, causing its structure to be more

complex. Let us postulate that the gauge transformation of this object yields

U
′

µ(n) = Ω(n)Uµ(n)Ω(n+ µ̂)†. (2.19)

Above, Ω(n) represents an element of SU(3) for each lattice site, this is a discretized

version of the color rotation from the continuum theory. The µ̂ is the unit vector in the

µ direction; n+ µ̂ is therefore one hop in the µ direction. We leave the verification of the
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above gauge transformation to the next section.

Since there is a Uµ(n) corresponding to each direction µ, it is natural to view these

objects as “link variables”. For example, Uµ(n) is the link that hops from sites n to n+ µ̂.

A link that goes in the opposite direction may also be defined: U−µ(n), which hops from

n back to n− µ̂. These two link variables are related by the property

U−µ(n) = Uµ(n− µ̂)†. (2.20)

These links are elements of SU(3) and are the gluon fields on the lattice. We will

verify this, and give further interpretation of these links in the continuum in the next

subsection.

2.2.2 Link variables in the continuum

Let us now relate these link variables to the gauge fields from continuum QCD. In the

previous section we postulated Uµ(n) transforms as (2.19) under a gauge transformation.

In the continuum, an object that transforms this way is known as a gauge transporter.

Gauge transporters are path-ordered exponentials of the gauge field Aµ, integrated along

some curve from points x to y.

G(x, y) = Pei
∫
curve A·ds (2.21)

Under a local symmetry rotation, these objects transform as

G′(x, y) = Ω(x)G(x, y)Ω(y)†. (2.22)

From the matching transformation properties, we identify link variables as lattice
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counterparts to the continuum gauge transporters. On the lattice, Uµ(n) connects points

n and n+ µ̂, therefore

Uµ(n) = eiaAµ(n). (2.23)

2.2.3 Gauge-invariant objects on the lattice

Now that gauge links have been distinguished as the fundamental glunoic degrees of

freedom on the lattice, we may begin to formulate the gluon action. As a prerequisite,

it is important to ascertain what gauge invariant objects can be constructed from link

variables. The gluon action must be gauge-invariant, so the first step in writing down a

sensible gluon action will be to discover functions of the lattice gauge transporters that

are locally invariant under color rotations.

Let us begin by defining P [U ], an ordered product of N links from lattice sites n1 to

n2.

P [U ] = Uµ1(n1)Uµ2(n1 + µ̂1)...UµN(n2 − µ̂N) (2.24)

Note that P [U ] may have forward or backward links, depending on the path. From

(2.19), it is trivial to show that all intermediate rotations cancel and only the end point

color rotation matrices remain. Therefore P [U ] transforms analogously to a single link

variable.

P ′[U ] = Ω(n1)P [U ]Ω(n2)† (2.25)

Let us further define a specific class of paths L[U ] as closed paths P [U ] which begin

and end at the same lattice site. If the trace of such a quantity is taken, it follows from
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the cyclic property that the beginning and ending color rotation matrices will also cancel.

Tr(L′[U ]) = Tr
(
Ω(n1)L[U ]Ω(n1)†

)
= Tr(L[U ]) (2.26)

Now that we have established that the trace of closed loops of links are gauge-invariant

quantities on the lattice, we ready to write down the gluon action.

2.2.4 The Wilson gauge action

The smallest non-trivial gauge-invariant object is called the plaquette. It is defined

as a closed square with a length of one gauge link, or

Uµν(n) = Uµ(n)Uν(n+ µ̂)U−µ(n+ µ̂+ ν̂)U−ν(n+ ν̂). (2.27)

Using (2.20), this expression can be rewritten as

Uµν(n) = Uµ(n)Uν(n+ µ̂)Uµ(n+ µ̂)†Uν(n)†. (2.28)

Applying the result of the previous subsection, we find that the trace of the plaquette

is a gauge-invariant quantity. Therefore, the trace of the plaquette is the simplest candidate

for a gluonic lattice action. Indeed, the Wilson gauge action is a sum over the trace of

all plaquettes on the lattice, and we will show that in the limit of zero lattice spacing the

continuum QCD gluon action is recovered. This sum is over all lattice points n, and all

directions 1 ≤ µ < ν ≤ 4, where these limits are placed to prevent double counting.

SG[U ] =
2

g2

∑
n∈Λ

∑
µ<ν

ReTr [I − Uµν(n)] (2.29)

I is the 3× 3 identity matrix and the factor of 2
g2 ensures that the correct expression
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is reached in the continuum limit. To demonstrate the equivalence between the Wilson

gauge action in the limit of zero lattice spacing and the gluon QCD action, we begin by

expanding the plaquette with (2.23).

Uµν(n) ≈ exp

(
iaAµ(n) + iaAν(n+ µ̂)− iaAµ(n+ ν̂)− iaAν(n)− a2

2
[Aµ(n), Aν(n+ µ̂)]

− a2

2
[Aµ(n+ ν̂), Aν(n)] +

a2

2
[Aν(n+ µ̂), Aµ(n+ ν̂)] +

a2

2
[Aµ(n), Aν(n)]

+
a2

2
[Aµ(n), Aµ(n+ ν̂)] +

a2

2
[Aν(n+ µ̂), Aν(n)]

)
(2.30)

Above, we have used the Baker-Campbell-Hausdorff formula to combine exponentials

of non-commuting variables and ignored terms of order a3 and higher. We can further

reduce this expression by performing a Taylor series for the shifted fields and neglecting

terms beyond a single power of a.

Aµ(n+ ν̂) ≈ Aµ(n) + a∂νAµ(n) + ... (2.31)

Taylor expanding these shifted fields will cause many terms in (2.30) to cancel, ulti-

mately leaving

Uµν = exp
(
ia2∂µAν(n)− ia2∂νAµ(n)− a2 [Aµ(n), Aν(n)]

)
. (2.32)

Substituting (2.13), the continuum field strength tensor gives

Uµν = exp
(
ia2Fµν(n)

)
. (2.33)

Finally, plugging this into (2.29) yields
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SG[U ] =
a4

2g2

∑
n∈Λ

∑
µ,ν

Tr
[
Fµν(n)2 + ...

]
. (2.34)

In the limit of zero lattice spacing, the extra terms in (2.34) vanish and the double

sum becomes the usual space-time integral seen in the definition of the action from the

QCD Lagrangian density. This concludes our discussion of the Wilson guage action.

2.3 Fermions on the lattice

We will now discuss the addition of fermions to our lattice action. This examination

will begin with the introduction and gauge-invariance check of the naive fermion action.

The naive lattice Dirac operator will be presented and studied, naturally leading to the

doubling problem. Conclusively, the Wilson term will be introduced to cure the doublers.

2.3.1 Naive lattice fermions

We have already introduced gauge links as the gluonic degrees of freedom on the

lattice, now we turn our attention to fermions. We introduce lattice spinors on each of the

lattice sites with Dirac, color, and flavor indices.

ψf (n)α,c, ψ̄f (n)α,c (2.35)

Remember on the lattice, with the Euclidean metric, ψ and ψ̄ are not directly related

and must be treated as independent degrees of freedom. In following discussions we will

suppress the indices on ψ for notational convenience. From (2.7), under a local color

rotation, the lattice fermion fields must satisfy
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ψ′(n) = Ω(n)ψ(n) (2.36)

ψ̄′ = ψ̄(n)Ω(n)†.

Let us begin constructing a lattice fermion action by examining the free field fermion

action in continuum QCD.

SF,free[ψ, ψ̄] =

∫
d4xψ̄(x) (γµ∂µ +m)ψ(x), (2.37)

The Euclidean metric and Euclidean γ matrices have been used above. In order to

port this action to the lattice, the partial derivative is represented as a symmetric finite

difference of fields at neighboring lattice points.

∂µψ(x)→ 1

2a
[ψ(n+ µ̂)− ψ(n− µ̂)] (2.38)

This allows the lattice free field fermion action to be written.

SF,free[ψ, ψ̄] = a4
∑
n∈Λ

ψ̄(n)

[
4∑

µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+mψ(n)

]
(2.39)

Just as the continuum free field action, the mass term is gauge-invariant (seen trivially)

and the derivative term is not.

ψ̄′(n)ψ′(n+ µ̂) = ψ̄(n)Ω(n)†Ω(n+ µ̂)ψ(n+ µ̂) (2.40)

However, similar to the introduction of the gauge-covariant derivative in the contin-

uum, this term can be made gauge-invariant with a coupling to the gluon field.
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ψ̄′(n)U ′µ(n)ψ′(n+ µ̂) = ψ̄(n)Ω(n)†U ′µ(n)Ω(n+ µ̂)ψ(n+ µ̂) (2.41)

= ψ̄(n)Uµ(n)ψ(n+ µ̂)

Here, we see the reason for postulating the link variable transformations as (2.19).

Now we can write down a gauge-invariant fermion action, known as the naive fermion

action.

SF [ψ, ψ̄, U ] = a4
∑
n∈Λ

ψ̄(n)

[
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+mψ(n)

]
(2.42)

Note that this is no longer in free field theory due to external gauge field (U) depen-

dence.

2.3.2 The Dirac operator and the doubling problem

Let us focus now on a single quark flavor. Equation 2.42 may be rewritten in the form

SF [ψ, ψ̄, U ] = a4
∑
n,m∈Λ

∑
a,b,α,β

ψ̄(n, α, a)D(n, α, a|m,β, b)ψ(m,β, b) (2.43)

D(n, α, a|m,β, b) =
4∑

µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+mδαβδabδnm. (2.44)

D(n, α, a|m,β, b) is called the lattice Dirac operator, which may be viewed as a sparse

matrix of dimension 12 × N3
L × NT . The only non-zero elements of the Dirac matrix are

nearest neighbor connections on the lattice, this feature is called ultralocality. The fact
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that the lattice Dirac operator is ultralocal naturally leads to the usefulness of a variety

of sparse matrix techniques. Such numerical algorithms will be discussed in Chapter 4.

Now we analyze the Dirac matrix in free field theory (Uµ(n) = I) and study its inverse.

It is convenient to do this in momentum space so we apply a Fourier transformation to

the space-time indices n and m.

D̃(p|q) =
1

N3
LNT

∑
n,m∈Λ

e−iap·nD(n|m)eiaq·m (2.45)

Above we have suppressed Dirac indices in favor of matrix/vector notation, note that

since we are in free field, the color indices may be dropped. It is intuitive to write down

the Fourier transformation on the lattice from the continuum expression, converting an

integral to a sum, here we have simply employed it and leave details of its derivation to

the reader in [31]. The Dirac matrix is only non-zero for forward and backward nearest

neighbor connections, therefore (2.45) can be written as

D̃(p|q) =
1

N3
LNT

∑
n∈Λ

e−ia(p−q)·n

(
4∑

µ=1

γµ
eiaqµ − e−iaqµ

2a
+mI

)
(2.46)

= δ(p− q)D̃(p),

D̃(p) = mI +
i

a

4∑
µ=1

γµ sin(apµ). (2.47)

From the Delta function, the transformed Dirac operator is diagonal in momentum-

space, mI is the 4×4 identity, scaled by the quark mass. The inverse Dirac matrix can be

computed easily by inverting the Dirac structure for each momenta individually. In order

to do so, we note that
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(
AI + i

4∑
µ=1

γµBµ

)−1

=
AI − i

∑4
µ=1 γµBµ

A2 +
∑4

µ=1(Bµ)2
, (2.48)

where A is a scalar and Bµ is a Euclidean four-vector. This can be proved with a few lines

of algebra.

(
AI + i

4∑
µ=1

γµBµ

)−1(
AI + i

4∑
µ=1

γµBµ

)
=

AI − i
∑4

µ=1 γµBµ

A2 +
∑4

µ=1(Bµ)2

(
AI + i

4∑
µ=1

γµBµ

)

I =
A2I +

∑4
µ=1(Bµ)2I

A2 +
∑4

µ=1(Bµ)2

I = I

In the middle step we have used the Euclidean gamma anti-commutation relations

A.2. Equation 2.48 can be applied directly to compute the Dirac matrix inverse.

D̃(p)−1 =
mI − i

a

∑4
µ=1 γµ sin(apµ)

m2 + a−2
∑4

µ=1 sin(apµ)2
(2.49)

Akin to continuum quantum field theory, this is the momentum-space quark propa-

gator. We should check that in the right limits, this propagator resembles the continuum

fermion propagator
i(/p+m)

p2−m2+iε
. To simplify this analysis, we use the chiral mass (m = 0,

followed by the zero lattice-spacing limit.

D̃(p)−1|m=0,a→0

−i
∑4

µ=1 γµpµ

p2
(2.50)

This agrees perfectly with the continuum expression up to a sign, due to the difference

in metrics. It is clear that in these limits, the propagator has a pole at p = (0, 0, 0, 0),

matching once again the continuum behavior. Unfortunately, with massless fermions,

(2.49) also has poles at p = (0, 0, 0, π
a
), (0, 0, π

a
, 0), ...(0, π

a
, π
a
, π
a
), (π

a
, π
a
, π
a
, π
a
), resulting in 16
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total poles. The 15 excess poles, known as fermion doublers, do not correspond to physical

particles and pose a serious issue for lattice simulations.

2.3.3 Wilson fermions

One possible solution to remove the doublers and leave the physical pole at pµ = 0

intact, is to add an extra term to the Dirac matrix.

D̃(p) = mI +
i

a

4∑
µ=1

γµ sin(apµ) + a−1

4∑
µ=1

[1− cos(apµ)] I (2.51)

This additional term is known as the Wilson term. It does not affect the pole at

pµ = 0 in any way, however the cosine does add 2
a

contributions to all the other poles that

arise from the sine. The mass of the physical quark remains m, while all the doublers

acquire an additional mass:

m+
2l

a
, (2.52)

where l is an integer from 1 to 4 that totals up the contributions from pµ = π
a
. In the limit

of zero lattice-spacing, the doublers become infinitely heavy, decoupling from the theory.

Additionally, repeating the examination of the momentum-space propagator in free field

theory gives only one pole at pµ = 0. Converting back to position-space, we may read off

1− cos(apµ) by comparing to the Fourier transformation with the original sin(apµ) term.

4∑
µ=1

2δabδnm − Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m
2a

(2.53)

Combining the Wilson term with the naive Dirac operator, we may now write down

the full expression for Wilson fermions.
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D(n, α, a|m,β, b) =
4∑

µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+mδαβδabδnm

+
4∑

µ=1

2δabδnm − Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m
2a

=

(
m+

4

a

)
δαβδabδnm −

1

2a

±4∑
µ±1

(I − γµ)αβ Uµ(n)abδn+µ̂,m (2.54)

Above we have defined γ−µ = −γµ. With this we have achieved a fully working,

gauge-invariant lattice action for fermions. Additionally, we have demonstrated that in

the continuum limit, we recover the correct fermion propagator, free of doublers. There are

many other kinds of lattice fermions such as Staggered/HISQ [33], Domain Wall [34, 35, 36],

Twisted-mass [37], and Clover [38, 39]. We encourage the reader to read the standard

literature for a complete and rigorous treatment of fermions, as we will finish our discussion

by briefly examining only Clover fermions.

2.4 Symanzik improvement

When formulating the fermion lattice action in the previous section, one of the objects

we introduced was the symmetric discretized derivative, in (2.38). In doing so however,

we have introduced discretization effects, or errors from a finite-lattice spacing. The same

statement is also true in our treatment of proving that the summed trace of plaquettes

approaches the continuum QCD gluon action. Our fermion action has O(a) discretization

effects, while the gluon action contains O(a2) effects. Although these effects disappear in

the continuum limit, in practice a computer simulation must always work in finite a, fol-

lowed by an extrapolation across different numerical simulations to achieve the continuum

limit. Naturally, the higher order in which discretization errors are present, the quicker
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these “lattice artifacts”, or unwanted discretization terms tend to zero.

It should be noted that our choice of lattice action is not unique, and that other

actions with the same continuum behavior work just as well, some with lower discretization

errors. For example, an additional term can be added to the Wilson fermion action and

with precise matching of its coefficients, its discretization errors may come in with O(a2)

instead of O(a). A systematic application of this method is called Symanzik improvement.

In order to realize full O(a) improvement, the discretization errors of lattice correlators

(which will be introduced in the next chapter) must also be treated. Such treatise is

beyond the scope of this section.

2.4.1 Toy model

We will start by improving a simple discretized toy model to attain a basic prescription

of the improvement process. Many steps below will be identical to applying Symanzik

improvement to Lattice QCD and will not be redone in the following subsection. Let us

introduce a symmetric and discretized finite difference, approximating the derivative of a

single variable function in one dimension.

f(x+ a)− f(x− a)

2a
= f ′(x)+aC(1)(x)+a2C(2)(x)+a3C(3)(x)+a4C(4)(x)+O(a5) (2.55)

Assuming f is dimensionless, the coefficients C(1)(x), C(2)(x), C(3)(x), C(4)(x), ... have

units of length: [l]−2, [l]−3, [l]−4, [l]−5... . We may use a Taylor series to match the deriva-

tives of f with the coefficients on the right side of (2.55).

f(x± a) = f(x)± af ′(x) +
a2

2
f ′′(x)± a3

6
f ′′′(x) + ... (2.56)
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All even powers of a will cancel in the expansion of the numerator of (2.55). Con-

sequentially, only odd derivatives of f will come in on the right side, matched with the

coefficients of the even powers of a .

C(1)(x), C(3)(x), ... = 0 (2.57)

Accounting for the factor of 2a in the denominator, we find

C(3)(x) =
1

6
f ′′′(x). (2.58)

The key to the improvement process is to add to the left side of (2.55), a discretized

term that cancels the correction on the right side to a given order. Therefore, for O(a2)

improvement we add

f(x+ a)− f(x− a)

2a
+ a2DE(3)[f ](x) = f ′(x) +O(a4), (2.59)

where D is a constant that needs to be determined and E(3)[f ](x) ≈ f ′′′(x) +O(a2).

Using (2.56) again, one possible candidate function could be

D = −1

6
, E(3)[f ](x) =

f(x+ 2a) + 2f(x− a)− f(x− 2a)− 2f(x+ a)

2a3
. (2.60)

Note that this choice is not unique, however it is one possible discretized term that

yields O(a2) improvement. The same exact procedure is followed in Lattice QCD, with one

subtlety: determining the coefficient D. In our toy model, D was easily identified with a

few lines of algebra, however due to the gluon dressing of the quark propagators, discovering

the analgous coefficients in QCD is much more complicated. Typically these coefficients

are found either perturbatively or with a non-perturbative improvement procedure.
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2.4.2 Implementation to Lattice QCD

Now we will apply this set of ideas to Lattice QCD. Our full QCD action involves the

Wilson gauge action in (2.29) and the Wilson Dirac matrix in (2.54). As stated previously,

the fermion part contains O(a) discretization errors and the gluon part has O(a2) errors.

Repeating the steps in the preceding subsection, we write down correction terms to

our continuum action. These terms are ordered with respect to their dimension and should

satisfy all the symmetries of the starting QCD action. This is analogous to adding higher

order operators in effective field theory.

Seffective =

∫
d4x

(
L(0)(x) + aL(1)(x) + a2L(2)(x) + ...

)
(2.61)

Above, L(0) is the QCD Lagrangian defined by (2.3) and (2.15). The terms L(1) and

onward are the corrections, built out of quark and gluon fields so that their dimension

matches [L(k)] = [l]−(4+k). Imposing the symmetries of the QCD lattice action, it may be

shown that the dimension-5 correction, L(1), can be written as linear combinations of the

following:

L
(1)
1 = ψ̄(x)σµνFµνψ(x)

L
(1)
2 = ψ̄(x)

−→
D µ(x)

−→
D µ(x)ψ(x) + ψ̄(x)

←−
D µ(x)

←−
D µ(x)ψ(x)

L
(1)
3 = ψ̄(x)mTr [FµνFµν ]ψ(x) (2.62)

L
(1)
4 = mψ̄(x)γµ

−→
D µ(x)ψ(x)−mψ̄(x)γµ

←−
D µ(x)ψ(x)

L
(1)
5 = m2ψ̄(x)ψ(x).

Here σµν = 1
2i

[γµ, γν ], and we have also introduced non-symmetric left and right

derivatives. From the field equation of motion (γµDµ +m)ψ = 0, further constraints can
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be placed on linear combinations of these operators.

L
(1)
1 − L

(1)
2 + 2L

(5)
5 = 0 (2.63)

L
(1)
4 + 2L

(5)
5 = 0 (2.64)

This allows L
(1)
2 and L

(1)
4 to be eliminated [40], resulting in only L

(1)
1 , L

(1)
3 , and L

(1)
5 .

Notice that using the equations of motion to eliminate these terms only gives O(a) im-

provement for on-shell quantities. Furthermore, L
(1)
3 and L

(1)
5 already appear in the original

action, a simple redefinition of the bare parameters m and β can be done to represent the

addition of these terms. The only remaining term is L
(1)
1 , which we add to the lattice

action.

S = SWilson + cswa
5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνF̂µνψ(n) (2.65)

The coefficient csw is called the Sheikholeslami-Wohlert coefficient [39] and F̂µν is a

discretized version of the gluon field strength tensor. The Sheikholeslami-Wohlert coeffi-

cient may be determined through a perturbative matching procedure or non-perturbatively

with the partially conserved axial current relation (PCAC) on the Schrödinger functional

[41]. A particularly useful discretization of Fµν is

F̂µν = − i

8a2
[Qµν(n)−Qνµ(n)] (2.66)

Qµν(n) = Uµν(n) + Uν,−µ(n) + U−µ,−ν(n) + U−ν,µ(n). (2.67)

The shape of Qµν resembles a four-leaf clover, as such the discretized version of L
(1)
1
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is known as the clover term.

FIG. 2.2: A pictorial representation of Qµν in the µ− ν plane.

We have now achievedO(a) improvement for the Wilson lattice action. We remind the

reader that in order for calculations to be fully O(a) improved, the Euclidean correlators

we compute on the lattice must also be improved. We will not discuss this improvement,

however the next chapter will go in depth regarding the measurement of observables, such

as hadron matrix elements on the lattice.
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CHAPTER 3

Computing Matrix Elements in

Lattice QCD

As mentioned in Chapter 1, hadron structure observables are extracted from Eu-

clidean correlators on the lattice. We discuss how to construct two-point and three-point

correlators using the nucleon as an example, although these methods are useful in study-

ing a variety of different hadrons. We start by introducing the interpolating fields and

creation/annihilation operators for the nucleon. Other details of two-point function gener-

ation such as contractions and smearing follow. Subsequently, we introduce the reader to

three-point functions and categorize the possible Wick contractions into two classifications:

connected and disconnected diagrams. This chapter is then concluded with a discussion

of excited state contamination and techniques to isolate the ground state matrix element

based on correlated fits.
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3.1 Two-point functions

The basic ingredient for hadron spectroscopy calculations is the two-point correlator.

This correlation function gives access to the mass of the corresponding hadron. One of the

impressive successes of Lattice QCD over the past few decades has been in producing the

hadron mass spectrum that closely matches experimental results. In the following subsec-

tions we outline the basic steps involved in constructing Euclidean two-point correlators

on the lattice.

3.1.1 Nucleon interpolating field

The proton and neutron are J = 1
2
, P = +1, I = 1

2
particles, with Iz = +1

2
,−1

2

respectively. Their masses are nearly identical at approximately 940 MeV. The proton

has one fundamental unit of electric charge, while the neutron is electrically neutral, as

its namesake implies. The quark flavor content of the proton is uud, while the neu-

tron’s is ddu, consistent with their net charges. Due to approximate isospin symmetry

the proton/neutron masses are very close. There is a small isospin symmetry breaking

contribution since the up and down quarks do not have identically degenerate masses.

Additionally, electromagnetic interactions contribute differently to the proton’s and neu-

tron’s mass. However, these effects are subleading compared to the strong interactions, as

such we do not differentiate between the proton or neutron and merely categorize them

together as nucleons.

There are three linearly independent local interpolating fields that are consistent with

the quantum numbers of these nucleons. We give them the subscripts 1, 2, 3 and write

them as
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Op,1(n) = εabcu(n)a
[
u(n)Tb Cγ5d(n)c

]
(3.1)

Op,2(n) = εabcγ5u(n)a
[
u(n)Tb Cd(n)c

]
(3.2)

Op,3(n) = iεabcu(n)a
[
u(n)Tb γ4Cγ5d(n)c

]
(3.3)

On,1(n) = εabcd(n)a
[
d(n)Tb Cγ5u(n)c

]
(3.4)

On,2(n) = εabcγ5d(n)a
[
d(n)Tb Cu(n)c

]
(3.5)

On,3(n) = iεabcd(n)a
[
d(n)Tb γ4Cγ5u(n)c

]
, (3.6)

where a, b, c, are color indices and C is the charge conjugation matrix, represented as

C = iγ2γ4 in the Weyl (chiral) basis. The Dirac indices above have been suppressed

in favor of matrix/vector notation. The transposition, T , converts a column four-vector

Dirac spinor into a row one. We will now limit our discussion to the first interpolating

field from (3.1), although there is nothing unique about this field and the contractions

in the forthcoming subsection are applicable to any of the three interpolators (or linear

combinations of them). These interpolators are not quite the nucleon creation operators

since information about parity is missing. In the case of forward propagation, we may

project to definite parity P = +1 by using the proton creation operator

Ōp(n) = εabc
[
ū(n)aCγ5d̄(n)Tb

]
ū(n)c(I + γ4). (3.7)

The neutron creation operator is identical to the above with the up and down quark

spinors switched. The forward proton annihilation operator is similarly

Op(n) = εabc(I + γ4)u(n)a
[
u(n)Tb Cγ5d(n)c

]
. (3.8)
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It is important to note that these operators couple to all the particles with the same

quantum numbers as the nucleon. It is in general, a highly non-trivial task to determine

the best operators that yield the highest overlap with matrix elements of interest in a

calculation. There has been an ongoing evolution in the Lattice community for decades in

finding the most appropriate operators or techniques and we do not focus on those details in

this work. For now, we continue with our basic choice of the nucleon creation/annihilation

operators and use them to construct the proton two-point correlation function.

3.1.2 Contractions

Now the ingredients are in place to be able to compute the proton propagator. We per-

form the Wick contractions and write the proton two-point function in terms of the quark

propagators. We remind the reader that, as shown in Chapter 2, the quark propagator is

simply the inverse of the Dirac matrix.

1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]Op(n)αŌp(m)α

= − 1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]Ōp(m)αOp(n)α

= − 1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]εabcεa′b′c′

[
ū(n)aCγ5d̄(n)Tb

]
ū(n)c(I + γ4)u(n)c′

[
u(n)Ta′Cγ5d(n)b′

]
= εabcεa′b′c′(Cγ5)α′β′(Cγ5)αβ(I + γ4)γγ′D

−1
d (n, β′, b′|m,β, b)×[

D−1
u (n, α′, a′|m,α, a)D−1

u (n, γ′, c′|m, γ, c)−D−1
u (n, α′, a′|m, γ, c)D−1

u (n, γ′, c′|m,α, a)
]

(3.9)

Where

ZF [U ] =

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ], (3.10)
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also known as the fermion determinant. Details of the derivation of (3.10) can be found

in Appendix B. We have explicitly written the spinor indices for the creation/annihilation

operators in the first line of (3.9), where the repeated α is summed over, additionally in

the third line (I + γ4)2 = (I + γ4) was used. Notice the minus sign between the two terms,

arising from anticommuting the quark fields.

(a) First term of (3.9) vectors (b) Second term of (3.9)

FIG. 3.1: Here we schematically show the contractions of the nucleon two-point correlator.
The top fermion line is the down quark, the bottom two are up quarks.

3.1.3 Quark sources and smearing

Equation 3.9 is the recipe for creating a proton two-point function on the lattice,

however it involves inverting the Dirac operator. Typical volumes for Lattice simulations

are currently 323× 64, 483× 96, or larger, resulting in matrices of dimension 25, 000, 0002,

127, 000, 0002, or higher. Although the Dirac matrix is sparse, its inverse is in general not,

resulting in an incredibly large and dense matrix. It would take an unrealistic amount

of time to compute this matrix for even one gauge field configuration, of which many are

needed to obtain a full result. One possible solution to this issue is to use point-sources.

The point-source method involves only computing the quark propagator from a fixed

lattice site, Dirac index, and color.

D−1(n, β, b|mi, αi, ai) =
∑
m,α,a

D−1(n, β, b|m,α, a)Smi,αi,ai(m,α, a) (3.11)

Smi,αi,ai(m,α, a) = δ(m−mi)δααiδaai (3.12)
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Inverting 12 of these point-sources so that each spin/color combination for a specified

lattice site is included yields the point-to-all propagator. This step may be repeated for

various lattice sites to acquire reasonable statistics for the desired observable without the

need to compute the full inverse of an extremely large matrix. Put simply, this method

relies on only finding a few columns of D−1, rather than the full object. Nevertheless, even

with this method, inversions can often be the bottleneck in Lattice QCD calculations. This

fact has caused a wealth of algorithms to emerge, aimed at decreasing this solver time.

We will study such algorithms in detail in the following chapter.

As mentioned earlier, the proton interpolator will contain all physical states with

the allowed symmetries. It is expected that quarks are distributed smoothly over the

ground state proton, therefore a simple technique that helps optimize the interpolator is

quark smearing. This is achieved by applying a smearing kernel to a point-source vector

before inversion (source smearing), then inserting it again when the proton propagator is

constructed out of the quark fields (sink smearing). Smearing may be viewed as a way

of suppressing the interpolating field’s coupling with particles in motion with the same

qunatum numbers as the proton, thereby reducing resolution of momentum in exchange

for higher accuracy in position.

3.2 Three-point functions

In this section we introduce and work out the contractions for the proton three-point

function. This is the lattice quantity relevant for extracting matrix elements of a current

interaction with a proton. This current insertion Jµ is coupled to the proton through quark

bilinears, therefore there are separate contributions from up, down, and strange.
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ūJµu (3.13)

d̄Jµd (3.14)

s̄Jµs (3.15)

The insertion happens at a time between the creation (source) and annihilation (sink)

of the proton propagator. Thereafter writing the contractions, the resulting diagrams

are categorized into two types, connected and disconnected. We finish this section by

noting a key difference between connected and disconnected contributions, which causes

disconnected diagrams to be considerably more computationally expensive.

3.2.1 Up quark contractions

The up quark contractions for the three-point function are written below.

1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]Op(m)αūδ′d′Jµ(o, δ′, d′|o, δ, d)uδdŌp(n)α

= εabcεa′b′c′(Cγ5)α′β′(Cγ5)αβ(I + γ4)γγ′Jµ(o, δ′, d′|o, δ, d)D−1
d (n, β′, b′|m,β, b)×[

D−1
u (o, δ′, d′|m, γ, c)D−1

u (n, γ′, c′|o, δ, d)D−1
u (n, α′, a′|m,α, a)

− D−1
u (o, δ′, d′|m, γ, c)D−1

u (n, γ′, c′|m,α, a)D−1
u (n, α′, a′|o, δ, d)

− D−1
u (o, δ′, d′|m,α, a)D−1

u (n, γ′, c′|o, δ, d)D−1
u (n, α′, a′|m, γ, c)

+ D−1
u (o, δ′, d′|m,α, a)D−1

u (n, γ′, c′|m, γ, c)D−1
u (n, α′, a′|o, δ, d)

− D−1
u (o, δ′, d′|o, δ, d)D−1

u (n, γ′, c′|m, γ, c)D−1
u (n, α′, a′|m,α, a)

+ D−1
u (o, δ′, d′|o, δ, d)D−1

u (n, γ′, c′|m,α, a)D−1
u (n, α′, a′|m, γ, c)

]
(3.16)
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As can be seen from the last 2 lines of (3.16), one possible type of contraction allows

for the ū and u from the operator insertion to connect with each other, we refer to these

diagrams as “disconnected”. The propagator D−1
u (o, δ′, d′|o, δ, d) loops a u quark from one

space-time point back to the same space-time point. At the end of this section it will be

shown that this feature of the diagram makes it exceptionally difficult to calculate. We

note that these are not truly disconnected Feynman diagram; the quark loop is coupled

to the proton propagator through the QCD vacuum, in other words the loop is “dressed”

by all possible gluon lines that connect to the proton two-point function.

FIG. 3.2: There first four terms of the up quark contractions in (3.16) are represented
pictorially above. These diagrams only illustrate the Wick contractions, as all possible
gluons connect the fermion lines. The top fermion is the down quark and the bottom
two are up quarks in the proton. These diagrams are typically classified as the connected
pieces.
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FIG. 3.3: The last two terms of (3.16) are shown schematically. The loop is comprised of
an up quark propagating from around the same timeslice. These are categorized as the
disconnected contributions of the up quark.

3.2.2 Down quark contractions

Next, we redo the same calculation as (3.2) for the down quark bilinear.

1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]Op(m)αd̄δ′d′Jµ(o, δ′, d′|o, δ, d)dδdŌp(n)α

= εabcεa′b′c′(Cγ5)α′β′(Cγ5)αβ(I + γ4)γγ′Jµ(o, δ′, d′|o, δ, d)×[
D−1
d (n, β′, b|o, δ, d)D−1

d (o, δ′, d′|m,β, b)D−1
u (n, α′, a′|m,α, a)D−1

u (n, γ′, c′|m, γ, c)

− D−1
d (n, β′, b|o, δ, d)D−1

d (o, δ′, d′|m,β, b)D−1
u (n, α′, a′|m, γ, c)D−1

u (n, γ′, c′|m,α, a)

− D−1
d (n, β′, b′|m,β, b)D−1

d (o, δ′, d′|o, δ, d)D−1
u (n, α′, a′|m,α, a)D−1

u (n, γ′, c′|m, γ, c)

+ D−1
d (n, β′, b′|m,β, b)D−1

d (o, δ′, d′|o, δ, d)D−1
u (n, α′, a′|m, γ, c)D−1

u (n, γ′, c′|m,α, a)
]

(3.17)

Once again both connected and disconnected diagrams appear.
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FIG. 3.4: There first two terms in (3.17) are shown. Since the proton has only one down
quark, only two different contractions are present in the connected case.

FIG. 3.5: Here we show the last two terms of (3.17). The loop is made of a propagating
down quark. Due to isospin symmetry, usually only one computation is done for Figures
3.3 and 3.5.
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3.2.3 Strange quark contractions

Finally, we write down the strange quark contractions. Since there are no strange

quarks in the valence sector of the proton, only disconnected diagrams contribute to these

matrix elements.

1

ZF [U ]

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ]Op(m)αs̄δ′d′Jµ(o, δ′, d′|o, δ, d)sδdŌp(n)α

= εabcεa′b′c′(Cγ5)α′β′(Cγ5)αβ(I + γ4)γγ′Jµ(o, δ′, d′|o, δ, d)×[
D−1
s (o, δ′, d′|o, δ, d)D−1

d (n, β′, b′|m,β, b)D−1
u (n, α′, a′|m,α, a)D−1

u (n, γ′, c′|m, γ, c)

− D−1
s (o, δ′, d′|o, δ, d)D−1

d (n, β′, b′|m,β, b)D−1
u (n, α′, a′|m, γ, c)D−1

u (n, γ′, c′|m,α, a)
]

(3.18)

This makes disconnected diagrams central in addressing physics such as the strange

content of the nucleon.

FIG. 3.6: The only types of contributions from strange quark contractions are discon-
nected.
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3.2.4 Difference between connected and disconnected diagrams

It is clear by surveying the contraction plots of the previous subsection that the

operator insertion in the connected diagrams contracts with different quark lines. This

distinction is vital in understanding the disparity in computational cost between connected

and disconnected contributions. Inverting a source vector, as stated earlier, gives the

forward quark propagator or the point-to-all propagator. Additionally, γ5 hermiticity can

be used to attain the backward or all-to-point propagator. This allows for the “free”

ends of forward and backward quark propagators to be tied with the operator insertion

Jµ(o, δ′, d′|o, δ, d) [42]. This can also be viewed as cutting one of the quarks in the proton

two-point correlator to insert a current. After this step, a trace over the spin/color degrees

of freedom yields the three-point correlator.

By contrast, the disconnected diagrams encompass a quark loop propagating back to

the same space-time point. The operator insertion is contracted with both ends of the

same quark line. Because the momentum flow is unspecified through this loop, a sum over

all possible momenta is needed. Therefore, the previous trick of combining the current

with the open ends of the forward and backward propagators cannot be applied. Instead,

the trace of the full matrix-inverse is required, or the trace of the all-to-all propagator.

Computing the trace of the all-to-all propagator exactly, even for only a single times-

lice, would take an enormous amount of computing power. The typical approach to calcu-

lating a quark loop is to instead employ a stochastic Monte Carlo trace estimator. While

this reduces computational costs, convergence of this estimator can be an issue. Further

details of this will be elucidated in the ensuing chapter.
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3.3 Reducing excited state contamination

As mentioned in Section 3.1.1, the nucleon interpolating field we use contains contri-

butions from not just the ground state nucleon, but all possible excited states with the

same quantum numbers. If we denote the normalized state taken from applying our nu-

cleon operator on the vacuum as |N >, then the Euclidean three-point correlator may be

expressed as

< N(tsep)Jµ(τ)N(0) >=
∑
m,n

< N |m >< m|Jµ|n >< n|N > e−Em(tsep−τ)−Enτ , (3.19)

where two complete sets of state have been inserted with a normalization defined as <

m|m >= 1 and the source has been shifted to the origin. Since excited state energies are

higher than the ground state, the corresponding exponentials decay faster than the ground

state one. Therefore, in theory one may look at time separations large enough to filter

out unwanted contributions and isolate the desired matrix element. In practice however

this is difficult due to increasing gauge noise. A famous expression for the approximate

signal-to-noise ratio of a nucleon (or any baryon) is

ρ = e−(mN− 3
2
mπ)tsep . (3.20)

From (3.20), it is clear that the signal-to-noise ratio of the nucleon drops off very

quickly. Therefore, the lattice data must be fitted to remove the excited state contamina-

tion at time separations short enough in which there is a reasonable signal. The following

subsections describe various fitting methods to accomplish this. We alert the reader that

our examination of fitting models consider only zero-momentum transfer matrix elements.

All fitting forms introduced below other than the plateau method may be generalized to
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non-zero momentum transfer, however we do not give the general formulas here for sake

of simplicity and because only zero-momentum transfer matrix elements are analyzed in

this work.

3.3.1 Plateau method

We begin the survey of fitting methods with the most basic one, fitting to a constant.

This technique can only be applied to zero-momentum transfer matrix elements. This

comprises of inspecting the data as a function of time separation and only including points

in which the decaying tails from excited state have fallen off, resulting in a plateau. The

remaining data are fit to a constant. This technique has several issues. As mentioned

previously, for many Lattice calculations, the time separations for which a credible plateau

could be theoretically reached are too large and gauge noise prevents a clean signal from

being extracted in those regions. Furthermore, excited state contamination from hadron

three-point correlators depends on both the source-sink time separation and the current

insertion separation between source and sink. Thus it is possible to observe a plateau with

respect to one of these times but not the other, causing a possible unaccounted systematic.

Details of this dependence will be worked through in the next subsection.

One of the main advantages of the plateau method is its simplicity. Often, a con-

stant fit is not even needed and the matrix element may be extracted visually with this

technique. Hence the plateau method is frequently used as a quick first check to obtain

rough features of lattice data, even if it is not one of the final methods quoted in formal

results. Additionally, extremely noisy correlators may not encompass errors small enough

to resolve excited state contamination well, even at short time separations. For such data,

other fitting methods often fail to converge, leaving the plateau method as the only option

for low statistics studies. Such can be the case for preliminary studies of disconnected
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diagrams. We remark that results from this thesis are accurate enough for resolution of

excited states and this method is not quoted in the Selected Results chapter.

3.3.2 Two-state model

The most straight forward way of accounting for excited state contamination and

removing it is a fit based on the two-state model. Here, we assume that the main contri-

bution from excited states comes from only the first excited state. We use the notation of

c2pt(tsep) and c3pt(tsep, τ) for the two and three-point correlators respectively, where tsep is

the source-sink separation, defined as tsep = t− t0 and τ is the loop insertion time. Note

that c3pt and c2pt only have two and one arguments respectively because they have been

defined with t0, the source time, shifted to the origin. With these coordinates the three-

point function can be viewed as a lower triangular matrix with the end points removed,

or that 0 < τ < tsep.

The two-point correlator is given by

c2pt(tsep) = Z1e
−E1tsep + Z2e

−E2tsep + ..., (3.21)

where Z1, Z2, ... are the overlap factors of the interpolating field with the ground and

excited states. In our notation, a subscript 1 refers to the ground state and 2+ corresponds

to excited states. Using a similar notation, the three-point function is

c3pt(tsep, τ) = Z1 < 1|Jµ|1 > e−E1tsep +
√
Z1Z2 < 1|Jµ|2 > e−E1(tsep−τ)e−E2(τ−t0) (3.22)

+
√
Z2Z1 < 2|Jµ|1 > e−E2(tsep−τ)e−E1(τ−t0) + Z2 < 2|Jµ|2 > e−E2tsep + ...

Dividing the three-point correlation function by the two-point correlator and only
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looking at the real part of the ratio yields a compact fitting form with 4 parameters.

R(tsep, τ) =
c3pt(tsep, τ)

c2pt(tsep)
≈ A+Be−∆Eτ +Be−∆E(tsep−τ) + Ce−∆Etsep . (3.23)

This functional form captures the tsep and τ dependence of the data. This same

strategy may be applied to higher excited states to form a three-state or even four-state

model. However, this increases the number of fit parameters and the fits typically become

unstable with more than three exponentials due to gauge noise. Even the two-state model

may sometimes prove ineffective if the data are too noisy.

3.3.3 Exponential Fit

Another fitting method is to combine the plateau technique with the two-state model.

One of the weaknesses of the plateau method is due to introducing a potential systematic

from the data plateauing in the τ dependence, but not in tsep. A way around this is to

do a fit similar to the two-state model, however only taking the middle current insertion

time.

From (3.23), it is clear that at τ = tsep

2
, excited state contamination from the <

1|Jµ|2 > and < 2|Jµ|1 > contributions is at a minimum. Therefore, instead of utilizing

three exponentials, one may assume that at middle insertion times the data have plateaud

in τ dependence and only a single exponential fit is needed to capture the remaining tsep

dependence.

R(tsep) ≈ A+ Ce−∆Etsep , (3.24)

Only τ = tsep

2
points are inserted into (3.24). While this does not use all the data
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points, as in (3.23), the fitting form is more stable at small differences of tsep because

fewer fitting parameters are present and only a single exponential is fitted. In subsequent

chapters we refer to this method as the “exponential fit”.

3.3.4 Summation method

The summation method is another alternative that addresses the same issues as the

exponential fit. Just as in the previous subsection, this procedure only involves fitting to a

single exponent. Unlike the “exponential fit” however, the summation technique still uses

data points from all τ . If we define a modified ratio as

R̃(tsep) :=

tsep−1∑
τ=1

< c3pt(tsep, τ) >

c2pt(tsep)
, (3.25)

then the correlators may be expanded under this ratio which approximately gives

R̃(tsep) ≈ A+ tsep(< 1|Jµ|1 > +Be−∆Etsep). (3.26)

Therefore, if R̃(tsep) and R̃(tsep − 1) are subtracted, the difference is proportional to

the matrix element of interest plus a single exponential.

R̃(tsep)− R̃(tsep − 1) ≈ A+Be−∆Etsep (3.27)

This provides the same benefits as the exponential fit although it uses all of the

data. Systematics of the summation method may potentially vary more than with the

exponential fit however, since multiple τ points are included without explicitly tracking

their dependence. Nevertheless, the summation method is another fantastic alternative

to the two-state model. This concludes our discussion of different fitting forms to reduce

excited state contamination. These techniques will be employed to extract the ground
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state of disconnected matrix elements in Chapter 6.
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CHAPTER 4

Introduction to Numerical Linear

Algebra for Sparse Matrices

This chapter familiarizes the reader with the basics of numerical linear algebra, with

particular focus on linear solvers and trace estimators for sparse matrices. No knowledge

of quantum field theory or even advanced physics is required for this and the subsequent

chapter. This examination of numerics is completely self-contained, although references

and parallels to our physics application will be made throughout.

The first section of this chapter presents direct methods, iterative methods, and the

concept of numerical stability. Subsequently, we study iterative linear solvers and Krylov

subspace methods, such as conjugate gradient. Additionally, the notion of a preconditioner

is established with adaptive algebraic multigrid as an example. Lastly, we review the basic

stochastic trace estimator and possible improvements, ultimately leading to hierarchical

probing.
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4.1 Preamble

We start by defining quintessential concepts in numerical linear algebra. These include

direct vs iterative methods, the conditioning of a problem, and numerical stability. This

section contains many useful keywords, however it also builds the basic logic of numerical

techniques which will be expanded on in the forthcoming sections

4.1.1 Direct vs iterative methods

We broadly define two classes of numerical algorithms, direct and iterative. Direct

methods calculate the solution of a given problem in a finite number of steps. Such methods

compute an exact solution, modulo floating point error. Iterative techniques, on the other

hand, are in general not expected to obtain an exact answer in a finite number of steps.

Iterative methods typically take an initial guess as input and make a progressive set of

approximate solutions, where each solution depends only on the previous one. In general,

even with infinite precision arithmetic, an iterative solution becomes exact only in the

limit of infinite steps. Therefore a convergence criterion is used to terminate the algorithm

after sufficient accuracy is reached. A prototypical measure of convergence is the absolute

difference, or residual.

A simple example demonstrating the difference between direct and iterative algorithms

is shown below. Consider the equation

2x3 − 24 = 30. (4.1)

A direct technique to solve for x is as follows.

We apply Algorithm 1 to (4.1), of course these are the same algebraic steps one would

use to solve such an equation by hand.

58



Algorithm 1 Directly solve ax3 + b = c

1: d = c− b
2: d = d

a

3: x = 3
√
d

1. 2x3 = 54

2. x3 = 27

3. x = 3

In the last step we have only given purely real solutions for x. Notice that being able to

take the cube-root of a number is required for this method, if this operation is unavailable

this technique cannot be used. An alternative that does not require the cube-root is the

following iterative algorithm.

Algorithm 2 Iteratively solve ax3 + b = c

1: d = c− b
2: i = 0
3: x0 = initial guess
4: while ax3

i − d > tol do
5: i = i+ 1

6: xi = xi−1 − 1
3

(
xi−1 − d

ax2
i−1

)
7: end while

As discussed previously, this method takes a starting value and tolerance as input.

The starting value, x0 is passed as an initial guess and the tolerance, tol is used as the

stopping criterion. The iteration of xi only depends on xi−1, therefore only a single number

needs to be stored. We set x0 = 1 and show the first 7 iterations for (4.1).
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0. x0 = 1.0000

1. x1 = 9.6667

2. x2 = 6.5408

3. x3 = 4.5709

4. x4 = 3.4780

5. x5 = 3.0627

6. x6 = 3.0013

7. x7 = 3.0000

Algorithm 2 is a specific case of the Newton-Raphson method, which provides an

iterative approach to solving for the roots of any differentiable function.

xi = xi−1 −
f(xi−1)

f ′(xi−1)
(4.2)

Although powerful, Newton’s method has its own setbacks such as required knowledge

of the derivative and divergence near a stationary point. The advantages and disadvantages

of direct versus iterative methods in real-world applications are more complex than in our

toy example. In Lattice QCD, the massive dimension of the Dirac matrix constrains

computation of point-to-all propagators to be performed with iterative techniques. This

will be elaborated on in the following section.
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4.1.2 Condition number and numerical stability

Before exploring common iterative methods used in Lattice QCD we must understand

the role of conditioning. The conditioning of a problem relates a function and variation in

an input argument to the change of the output. This is useful in determining how the error

in an input parameter can affect the error in the final result of a calculation. A problem

is considered “well-conditioned” if its condition number is low, conversely the problem is

“ill-conditioned” if its condition number is high.

In Lattice QCD, a common task is inverting the Dirac operator on a source vector:

Ax = b. We caution the reader about switching to standard linear algebra notation, A

is any matrix (in our case the Dirac matrix), b is the input vector (source), and x is the

solution (quark propagator). The ensuing discussion is relevant for any matrix, although

our specific interest is in the Lattice Dirac operator. If the condition number of a matrix

A is large, any small inaccuracy in knowledge of b can cause large error in x. Conversely,

if the condition number of A is small, the error on x will be comparable to the error of b.

We arrange the singular values of A from smallest to largest and use the notation

σ1(A) ≤ σ2(A) ≤ ...σN(A). The condition number for a matrix A is consequentially

defined as

κ2(A) =
σN(A)

σ1(A)
, (4.3)

or the ratio of maximal and minimal singular values. The κ2 indicates that we have defined

the condition number through the 2-norm, while other definitions exist, (4.3) is one of the

most widely used. Matrices with large κ2 are considered ill-conditioned, while those with

a low κ2 are well-conditioned. Matrices that have zero as a singular value have infinite

condition number and are of course not invertible.

Another influence on the error of x is numerical stability. While condition number is
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the property of a matrix, or more generally of a particular problem, stability is a property

of the algorithm employed to solve that problem. There may be many possible algorithms

to solve a specific problem. The combination of the algorithm and problem determine the

behavior of the error on the solution.

A useful way to analyze the stability of an algorithm is through a technique called

backward error analysis. Let us revisit the problem of inverting a matrix on an input

vector: Ax = b. We call the exact solution: x, and the approximate solution given by a

particular algorithm: x′. The forward error is simply the absolute value of the difference

between the exact and approximate solutions: |x′ − x|. Conversely, backward error is the

smallest ∆b for Ax′ = b+∆b. Put differently, backward error is a measure of how different

of a problem the algorithm solved compared to the desired one, assuming infinite precision

arithmetic.

An algorithm is considered to be backward stable if |x
′−x|
|x| ≤ κ2(A) |∆b||b| . In contrast, an

algorithm is thought of as unstable if |x
′−x|
|x| > κ2(A) |∆b||b| . Backward stability ensures that if

the condition number of the problem is of order unity, small errors in the input will lead to

small errors in the output. A well conditioned problem and stable algorithm suggest that

inaccuracies in the solution are from errors in the input, not from propagation of floating

point error.

4.2 Linear solvers

Now we turn our attention to algorithms for solving a linear system with the Dirac

matrix for a particular vector Ax = b. In this section we will cover common iterative

algorithms that are used to solve linear systems, including conjugate gradient and Bi-

CGStab. Additionally, the notion of Krylov susbpace methods and preconditioners will be

introduced. We will conclude with the basic outline of adaptive algebraic multigrid, the
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state of the art preconditioner to a linear solver, which is employed ubiquitously in Lattice

QCD.

4.2.1 Conjugate Gradient

Just as in our toy model, both direct and iterative methods exist for inverting the

Dirac matrix on a source. A common direct algorithm to solve a linear system of equations

is Gauss-Jordan elimination. Through this technique, the solution is reached by manipu-

lating the rows of A in a systematic way. The allowed operations are multiplying one row

by any number and adding a multiple of one row to another.

Gauss-Jordan elimination is often extremely useful for solving small linear systems

by hand. Additionally, the algorithm is straightforward to implement computationally

and can handle the inversion of moderately sized matrices on a vector. For matrices of

dimension tens or hundreds of millions, such as in Lattice QCD, Gauss-Jordan elimination

becomes completely impracticable due to its O(N3) scaling. Just as in our root-finding toy

example, an alternative is to use an iterative method, which will require an initial guess

and tolerance. One example of the aforementioned algorithm is conjugate gradient [43].

Conjugate gradient is an algorithm for obtaining the solution of a linear system in

the case of a Hermitian and positive-definite matrix. Although the Dirac operator is not

Hermitian, this method may still be applied by working on the normal equation.

A†Ax = A†b (4.4)

We begin the examination of the conjugate gradient algorithm with the notion of

conjugate vectors. Two vectors u and v are considered to be conjugate with respect to A

if
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u†Av = 0. (4.5)

Since A is Hermitian, if u is conjugate to v, v is also conjugate to u.

u†Av = v†Au = 0 (4.6)

Consider N vectors p1, p2, ..., pN all conjugate to each other, where N is the dimen-

sion of A. We may express the solution of Ax = b using these vectors as a basis, with

corresponding coefficients αi.

x =
N∑
i

αipi (4.7)

Therefore,

Ax =
N∑
i

αiApi (4.8)

p†jAx =
N∑
i

αip
†
jApi (4.9)

p†jAx = αjp
†
jApj, (4.10)

where in the last step the sum collapses to one term due to all pi being mutually conjugate

to each other. Furthermore, since Ax = b, only knowledge of pj is required to solve for αj.

p†jb = αjp
†
jApj (4.11)

αj =
p†jb

p†jApj
(4.12)
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To summarize, in order to find the exact solution x, we must obtain N conjugate

vectors pj and compute the respective coefficients αj. For matrices of large dimension

however, this method is prohibitively expensive, similar to Gauss-Jordan elimination. In

fact, so far the algorithm we have presented is a direct method, not an iterative one.

It should be noted that some pj will be more important than others in determining an

approximate solution x′. Therefore, we may convert this algorithm into an iterative one

by starting with one pj and expanding the basis until x′ is close to x within an input

tolerance.

Akin to our toy example, this iterative algorithm will start with an initial guess x0.

Next, consider the function

φ(x) =
1

2
x†Ax− x†b. (4.13)

The gradient of φ(x) is Ax−b, therefore the solution to the linear system of equations

is simply the minimization of φ(x). This implies the first basis vector should be the

negative gradient of φ(x) at x0.

p0 = b− Ax0 (4.14)

Note that all following pj will be conjugate to this gradient, thus the name conjugate

gradient. We define the jth residual as

rj = b− Axj. (4.15)

The following pj should be conjugate to all the previous ones and be built out of the

current residual. This can be achieved with vector projections in an analogous manner to

orthogonalization techniques.
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pj+1 = rj −
j∑
i=0

βi,jpi (4.16)

βi,j =
p†iArj

p†iApi
(4.17)

Subsequently, the iteration is repeated with the successive approximate solution xj

αj =
p†jb

p†jApj
=
p†j(rj−1 + Axj−1)

p†jApj
=
p†jrj−1

p†jApj
(4.18)

xj = xj−1 + αjpj, (4.19)

where the final step of (4.18) is taken by recognizing that xj−1 is made up of a linear

combination of pi that are all conjugate to pj. Furthermore, in Appendix C we show that

all βi,j = 0 for i < j, therefore only the last term of the sum survives in (4.16). We relabel

βj,j as βj and present the full algorithm below.

Algorithm 3 Conjugate Gradient

1: x0 = initial guess
2: j = 0
3: r0 = b− Ax0

4: p1 = r0

5: while
||rj ||
||b|| > tol do

6: j = j + 1

7: αj =
r†j−1rj−1

p†jApj

8: xj = xj−1 + αjpj
9: rj = rj−1 − αjApj

10: βj =
r†jrj

r†j−1rj−1

11: pj+1 = rj + βjpj
12: end while

Instead of applying an additional matrix-vector multiplication, as in (4.15), the current

66



residual in Algorithm 3 is maintained iteratively. Additionally, the stopping criterion is

the ratio of
||rj ||
||b|| , or the relative residual. Details of the re-expression of α and β can be

found in Appendix C.

More generally, conjugate gradient is in a class of algorithms denoted as Krylov sub-

space methods. An order r Krylov subspace is a vector space spanned by the vectors

b, Ab,A2b, ...Ar−1b. The conjugate gradient method may be viewed as an algorithm that

quickly constructs the optimal polynomial to approximate x using this space.

4.2.2 Bi-conjugate gradient stabilized method

An extension of conjugate gradient that allows A to be non-symmetric is the bi-

conjugate gradient method. Under this algorithm, two sets of search directions and resid-

ual vectors are iterated over. Further modifications yield improvement in convergence

behavior, the so-called Bi-CGStab method [43, 44]. The recurrence relations in Bi-CG are

pj = rj−1 + βjpj−1 (4.20)

p̂j = r̂j−1 + βj p̂j−1 (4.21)

rj = rj−1 − αjApj (4.22)

r̂j = r̂j−1 − αjA†p̂j, (4.23)

where αj and βj are defined as
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αj =
ρj

p̂†jApj
(4.24)

βj =
ρj
ρj−1

(4.25)

ρj = r̂†j−1rj−1. (4.26)

These recurrences can be done implicitly however, we encourage the reader to look at

[43] for details and simply provide pseudocode of the algorithm.

Algorithm 4 Bi-CGStab

1: x0 = initial guess
2: j = 0
3: r0 = b− Ax0

4: r̂0 = r0 (not a unique choice)
5: ρ0 = α0 = ω0 = 1
6: v0 = p0 = 0
7: s = r0

8: while ||s||||b|| > tol do
9: j = j + 1

10: ρj = r̂†0rj−1

11: βj =
αjρj

ωj−1ρj−1

12: pj = rj + βj(pj − ωj−1vj−1)
13: vj = Apj
14: αj =

ρj

r̂†0vj
15: s = rj−1 − αjvj
16: t = As
17: ωj = t†s

t†t

18: x∗ = xj−1 + αjpj
19: xj = x∗ + ωjs
20: rj = s− ωjt
21: end while

In Algorithm 4, if the relative norm of s is small enough, x∗ is returned as the solution.

Bi-CGStab requires two-matrix vector (matvec) applications and four inner products per

iteration, unlike conjugate gradient which merely needs one matvec and one inner product
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per iteration. Conjugate gradient and Bi-CGStab are simply two examples of Krylov

subspace based linear solvers, many more exist, including MR, GMRES, and GCR to

name a few [45].

4.2.3 Preconditioners and multigrid

An approach to speedup the convergence of an iterative solver is to solve a precondi-

tioned system, or

M−1Ax = M−1b, (4.27)

where M is known as a preconditioner. If M is easy to invert and M−1A has a lower

conditioner number than A, the solution x may be computed with less computational cost

than the unpreconditioned system. In general, there must be a balance between the effec-

tiveness and ease of cost of the preconditioner. The most inexpensive preconditioner is the

identity M = I, since M−1 = I, however this is identical to the original, unpreconditioned

system. Alternatively, the most effective preconditioner is M = A, since this would give

a condition number of 1 for M−1A, however this requires computing A−1, which is even

more difficult than the original problem of inverting A on a single input vector.

A preconditioner that has received tremendous success in Lattice QCD is adaptive

algebraic multigrid [46], motivated by the Dirac operator’s property of local coherence.

This is the property that the low lying eigenmodes of the Dirac matrix tend to be approx-

imately localized. We do not give a full rigorous treatment of adaptive multigrid here and

simply outline the motivation and basic steps. The key idea is to reduce error from slow

to converge, low frequency modes by coarsening A and inverting with a smaller, coarse

operator Ac. The low frequencies from the fine matrix will act like higher frequency modes

on Ac. After inverting Ac, this coarse grid correction is transfered and added back to the

69



current fine solution. The beauty of multigrid is that this process is recursive, allowing

many levels of coarsening until the cost of inverting the coarsest matrix is near negligible

in principle.

The two main features of any multigrid algorithm are the coarse grid linear solver, or

“smoother”, and transfer operators that prolongate and restrict between fine and coarse

levels. The transfer operators may be thought of as projectors that either convert a fine

vector to a coarse one, or vice versa. In Lattice QCD, the near-null space components of

the Dirac operator slow down the convergence of Krylov solvers such as conjugate gradient

or Bi-CGStab. Therefore, the coarse Dirac matrix is constructed out of adaptively found

near-null space vectors, which are rich in low modes. These near-null vectors are chopped

up or “aggregated” into blocks. Since the Dirac matrix has the property of local coherence,

these blocks are able to represent the contribution from hundreds or even thousands of

low-lying eigenvectors.

We outline the setup phase of a two-level adaptive multigrid algorithm below, going

from determining the near-null vectors to constructing the coarse Dirac operator.

Algorithm 5 Adaptive MG Setup

1: nv =number of null vectors
2: for j = 1 : nv do
3: Solve Ax = 0 for a random starting guess vector with either a small, fixed number

of iterations or relaxed tolerance.
4: end for
5: Aggregate vj into blocks and orthonormalize them (typically done with a technique

called QR factorization).
6: Construct prolongator P (columns of blocked and orthonormal vj).
7: Build coarse operator Ac = P †AP .

Here we have used that the restricting transfer operator R = P †. This is a convenient

choice that maintains γ5 hermiticity on coarse grids. To expand multigrid to more than

two levels, the setup in Algorithm 5 is repeated for each coarse level. Following this setup,
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the solver typically follows a so-called V-cycle of inverting on the fine grid, then inverting

on coarser grids, and finally working back up and inverting on the finest grid again. It

is worth mentioning that the multigrid setup phase may be costly, however with enough

source vectors as discussed in Chapter 3, this cost is easily amortized. For computing

disconnected observables, the number of vectors that need to be solved far outweighs the

setup cost. For relevant lattice parameters, multigrid provides an order of magnitude

speedup compared to other methods [46, 47, 48].

4.3 Trace estimation techniques

At the end of Section 3.2, the difficulty of disconnected diagrams and need to stochas-

tically compute the all-to-all propagator was covered. Here, we explore the details of

relevant algorithms to estimate a quark loop, put simply, the trace of the inverse of a

large, sparse matrix. Although a few optimizations that are most useful in the case of the

matrix inverse are introduced, the basic techniques that are presented in this section are

applicable to the trace of any matrix function.

This discussion is premiered with the most widely used and standard method: Hutchin-

son’s trace estimator. This involves Monte Carlo averaging over matrix quadratures with

random noise vectors. Subsequently, we describe probing, a deterministic technique which

is designed to suppress error from nearest neighbors. This is followed with a brief intro-

duction to noise dilution, a method that splits the vector space of the trace estimator into

smaller sub-spaces. Finally, we present an advanced trace estimator that was developed at

William and Mary: hierarchical probing. To distinguish between different types of probing

in the following text, we refer to ordinary probing as “classical probing”.
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4.3.1 Hutchinson trace

The Hutchinson method capitalizes on the fact that Tr[f(A)] = E[z†f(A)z], put

differently, the trace is equal to the expectation value of quadratures of f(A) with random

noise vectors. The term f(A) can be any function of A, our application focuses on f(A) =

A−1. Therefore, the following Monte Carlo averaging with s random vectors yields an

unbiased estimator of the trace inverse.

Tr(A−1) =
1

s

s∑
j=1

z†jA
−1zj (4.28)

The vectors zj are made up of N random variables that satisfy E(zj(k)zj(k
′)) = δkk′ .

It is important to note that for each step of this estimator, A−1zj must be computed,

therefore all technology from the previous section is commissioned in each step of this

procedure. The error of this estimator is the usual
√

Var[Tr(A−1)]/s of a Monte Carlo

process. If the variance is large, the estimator suffers from poor convergence. Substantial

investigation has gone into finding random vectors that minimize this variance [49, 50, 51].

For Gaussian distributed noise, this variance is proportional to the sum of the absolute

square of all the matrix elements of A−1.

Var[TrGaussian(A−1)] = 2‖A−1‖2
F= 2

N∑∑
i,j

|A−1
i,j |2. (4.29)

We define Rademacher vectors or Z2 noise, as vectors with ±1 uniformly distributed

elements. Similarly, Z4 vectors have components uniformly distributed from ±1,±i. The

respective variances are given by
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Var[TrZ2(A−1)] = ‖A−1‖2
F−

N∑
i=1

|A−1
i,i |2+

N∑∑
i 6=j

A−1
i,j A

−1∗
j,i

=
N∑∑
i 6=j

(
|A−1

i,j |2+A−1
i,j A

−1∗
j,i

)
(4.30)

Var[TrZ4(A−1)] = ‖A−1‖2
F−

N∑
i=1

|A−1
i,i |2=

N∑∑
i 6=j

|A−1
i,j |2. (4.31)

Notice that in the case of Z2 noise, there is an extra term
∑∑N

i 6=j A
−1
i,j A

−1∗
j,i which is

not present for the variance of Z4 noise. This term could be positive or negative in general,

signifying that Z2 vectors may be more or less efficient than Z4 vectors, depending on the

specific properties of A−1. If the complex phases of A−1
i,j and A−1

j,i are uncorrelated, this

extra term averages to zero when the sum is taken, giving approximately equal variance

between Z2 and Z4. Such is the case for the quark propagator in Lattice QCD.

As a brief aside, if A is real and symmetric, this extra sum doubles with the first

term in (4.30) to give a variance equal to exactly twice of (4.31). In other words, for

the real and symmetric case, the variance of Rademacher vectors is twice the sum of the

square of the off diagonal matrix elements of A−1. While this may seem uneconomical in

comparison to Z4 noise at first glance, utilizing Z2 vectors avoids complex arithmetic all

together, resulting in half the number of floating point operations and yielding the same

net efficiency.

Focusing on the Z4 case for simplicity, we find the variance is smaller than Gaussian

distributed noise since it only involves the off diagonal elements of A−1. Although this

basic method is powerful, based on (4.31), large off diagonal elements in A−1 stagnate the

convergence of the estimator. In subsequent subsections we will reconnoiter algorithms

which attempt to suppress the error from the largest off diagonal elements.
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4.3.2 Probing

From (4.31), it is clear that the largest off diagonal elements contribute the most in

slowing down convergence of the Monte Carlo estimator. For a large class of matrices, the

elements of A−1 decay from the non-zero structure of A. In Lattice QCD, the elements

of the Dirac inverse decay as a function of geometric distance on the lattice. Although

the basic Hutchinson method is powerful, it is unable to take advantage of this decay. An

algorithm that benefits from these decay properties and discovers the structure of A−1 is

probing, or what we refer to as “classical probing” [52].

Classical probing (CP) works by deploying a specific set of mutually orthogonal vectors

into the trace estimator in (4.28), without the 1
s

normalization. These vectors are designed

to line up with the non-zero elements of the matrix of interest in a way that delivers the

trace. CP works well for sparse matrices, because the number of probing vectors needed

to reveal the exact diagonal is small. For example, if A−1 is a tridiagonal matrix, only two

vectors (shown below) are required to remove all error and return the trace exactly.
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For a dense matrix, there is no sparsity pattern to profit from and CP is not effective.

In Lattice QCD, A−1 is dense, but the aforementioned decay gives a structure to the relative

magnitude of matrix elements which CP may exploit. This is achieved through the power

series expansion of A−1 allowing the graph coloring of Ak to reveal the largest magnitude

matrix elements of A−1. The graph of A can be constructed with the nodes representing
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the rows/columns of A and the matrix elements Ai,j being the arcs that connects from

nodes i to j. We assign a different color to each vertex that is within k hops of the nodes

i and j and generate CP vectors that follow this coloring pattern. These vectors remove

the largest error components in (4.31).

A judicious choice for the value of k must be made in order for CP to be beneficial.

If the decay in A−1 is weak, many probing vectors are necessary to capture and remove

significant error from the estimator. On the other hand, if the decay is fast, only a few CP

vectors estimate the trace well and using more of them wastes computational resources.

Furthermore, quadratures from a specific k coloring cannot be reused for higher distance

coloring.

In Lattice QCD, one solution to the above issue is to generate a small number of

probing vectors based on known structure. This could be probing with red/black parti-

tions, spin/color components, timeslices, or any other known structure. Once this is done,

s random noise vectors are created that follow the structure of the probing vectors. This

is referred to as dilution [53, 54].

4.3.3 Hierarchical probing

Hierarchical probing (HP) is a method that has evolved from CP and dilution. HP

approximates CP by discovering the structure of A−1 through geometry in a hierarchical

way [55]. This is achieved by a nested coloring algorithm with the property that previous

quadratures are reusable for higher distance coloring. The nested coloring scheme fully

captures 2k+1 distances, however the coloring is suboptimal, causing more probing vectors

to be a used for a particular distance than in CP. These extraneous colors seep over and

further annihilate error components of the trace estimator from larger distances.

For lattices of purely even powers of two, the HP basis is described by permuted
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columns of the Hadamard matrix. For other dimensions, Fourier vectors may be used. We

restrict the rest of the discussion of HP to Hadamard vectors.

Hadamard vectors are columns of an N dimensional square matrix with entires either

+1 or −1. All columns vectors of the Hadamard matrix are mutually orthogonal, a prereq-

uisite for any probing basis. Furthermore, a recursion relation exists relating Hadamard

matrices of different dimensions. If we label the Hadamard matrix of dimension N as H,

the Hadamard matrix of order 2N is

H H

H −H

 .
To demonstrate the power of the hierarchical nature of HP, let us revisit the example of

a tridiagonally dominant matrix. The two vectors from the previous subsection eliminate

error from alternating diagonal bands, including the two bands closest to the principal

diagonal, thus greatly reducing the error of a tridiagonally dominant matrix. If the user

decides to probe to a higher distance post factum, the new probing basis does not share

any columns with the previous one.
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Alternatively, the same cancellation of the diagonal bands can be attained by feeding

two reordered Hadamard vectors into (4.28), with the 1
s

normalization intact. Furthermore,

to increase the probing distance, the original basis is extended by two additional vectors

and previous work is not wasted.
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We remark that our example is equivalent to one dimensional probing and a few

subtleties regarding the intelligence of the hierarchical coloring algorithm are not demon-

strated from it. Moreover, the number of colors between CP and HP match exactly for

a lattice of one dimension. We encourage the reader to follow [55], in which the recur-

sive coloring algorithm is shown for toroidal lattices of arbitrary dimension. Remarkably,

the appropriate permutations of the Hadamard matrix may be computed with simple

bit-arithmetic on local sites.

Just like CP, nested coloring is a deterministic algorithm. To avoid this, we per-

form an elementwise product of every HP vector with a random Z4 vector, z = z0 � zh.

This procedure preserves the relative sign between all components of the coloring basis

and therefore does not disturb the desired cancellation properties at 2k+1 distances. The

random noise does mix up residual contributions at higher distances that are not killed
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from probing, thus yielding an unbiased estimator and providing a small boost of variance

reduction to the original probing basis. This gives the interpretation of HP as a procedure

that generates a nested probing basis from any starting vector.

For strange quark masses, HP has provided an order of magnitude improvement com-

pared to the basic Hutchinson technique [55]. Furthermore, experiments up to 512 HP

vectors with these matrices have illustrated an error that falls of as 1
s
, instead of the noto-

rious 1√
s

of the basic Monte Carlo method. This algorithm has been applied successfully

in conjunction with spin/color and full time dilution to execute a high precision calcula-

tion of strange vector current and axial vector current form factors [26]. Nevertheless, it

will be shown in the following chapter that HP provides little benefit for computations

at light quark masses. This is due to the fact that A−1 becomes dominated by near null

components that do not decay at light masses. A solution to this issue is to solve for the

low lying subspace of A exactly and project these low modes out of A−1. This is known

as deflation.
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CHAPTER 5

SVD Deflation as a Method of

Variance Reduction For Estimating

the Trace of a Matrix Function

In the previous chapter, we introduced the standard Monte Carlo trace estimation

method, as well as improvements to the basic algorithm, such as dilution and hierarchical

probing (HP). In this chapter, we cover in detail another improvement to the Hutchinson

trace estimator and present novel contributions to both the fields of Numerical Analysis

and Lattice QCD in understanding the efficacy of this method. This technique involves

solving for part of the matrix exactly and projecting it out of the trace estimator, a scheme

known as deflation. We specifically study a new variant of deflation based on singular value

decomposition (SVD).

This chapter begins with an overview of SVD deflation and the difficulty in studying

its effect on the variance of random noise trace estimation. Next, we introduce a model

based on random matrix theory for qualitatively describing the effects of deflation on
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variance. Only the spectrum of singular values is needed as input for the model. Specifics

of this procedure are not given here, but can be found in [56]. Remarkably, the model

predicts higher variance reduction for non-Hermitian matrices compared to Hermitian

ones, a unique trait. We use the model to study various singular spectra in both the

Hermitian and non-Hermitian case. Additionally, we test the effectiveness of the model’s

predictions on real world problems from a plethora of fields. A comparison of variance

reduction between Z2 or Z4 vectors and Gaussian noise is also made. Finally, we outline

the strategy of deploying our SVD deflation algorithm in Lattice QCD and demonstrate

its synergy with HP on large gauge field configurations produced from production runs by

the Jefferson Lab Lattice group.

5.1 SVD deflation and its impact on variance

In the previous chapter, the basic trace estimation algorithm by Hutchinson was in-

troduced. A modification to this algorithm is to compute a partial singular value subspace

of the matrix and remove it from the range of the operator. If we are interested in esti-

mating Tr(A−1), the lowest singular values of A should be computed and projected out.

This yields an altered matrix, which behaves differently under the trace estimator. The

goal is for the estimator to converge to the trace of this new operator more quickly than

A−1. Although a different trace than the desired one is computed, we can correct back to

the original trace by adding the low subspace of A that was taken out of the stochastic

estimator. This modifies the form of (4.28).

Tr(A−1) =
1

s

s∑
j=1

(
z†jA

−1zj − z†jV1Σ−1
1 U †1zj

)
+ Tr(V1Σ−1

1 U †1) (5.1)

Above, the subscript 1 is used to describe the low singular triplets that have been
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computed exactly and projected out. Let us now study the effects this removal has on

the stochastic estimator. For simplicity, we consider the problem of calculating Tr(A).

Here, the largest singular triplets are the most important to remove. Our analysis will be

general however; we are always free to set A = D−1 post factum, where D is the Dirac

matrix from Lattice QCD. Obviously, the smallest singular values of D are the largest of

D−1, furthermore A may be set to any function of D and the following discussion will hold

without loss of generality.

Let U, V,Σ be the full singular triplets of A and U1, V1,Σ1 be the k largest singular

ones. If U = (U1, U2), V = (V1, V2), and Σ = diag(Σ1,Σ2), A can be decomposed as

A = U1Σ1V
†

1 + U2Σ2V
†

2 ≡ AD + AR, (5.2)

and Tr(A) = Tr(AD) + Tr(AR). Tr(AD) is the part that has been removed and Tr(AR)

is the “remaining matrix” that is passed to the Hutchinson estimator. Because AD is in

some sense, the best k-rank approximation of A, one would expect that the variance on

AR will always be smaller than that of A. While this statement is correct for Gaussian

distributed noise, non-intuitively, it is not always true for Z4 vectors. Let us analyze in

depth (4.31), noting that we have cast our problem as estimating Tr(A) not Tr(A−1).

Define the vectors D = diag(A), DD = diag(AD), and DR = diag(AR) and the traceless

matrices Ã = A − diag(D), ÃD = AD − diag(AD), and ÃR = AR − diag(DR). It is well

known from the properties of SVD that

‖A‖2
F=

N∑
i=1

σ2
i = ‖Ã‖2

F+‖D‖2
F , ‖AR‖2

F=
N∑

i=k+1

σ2
i = ‖ÃR‖2

F+‖DR‖2
F . (5.3)

Next we express the diagonals explicitly in terms of the elements of the unitary ma-
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trices in SVD.

D(i) =
N∑
m=1

σmuimv̄im, DR(i) =
N∑

m=k+1

σmuimv̄im. (5.4)

Above, v̄im is the conjugate of vim. We also define ∆ = (U � V̄ )†(U � V̄ ), where � is

the elementwise product of matrices, and V̄ is the elementwise conjugate of V . This gives,

∆ml =
N∑
i=1

ūimvimuilv̄il, m, l = 1, . . . , N. (5.5)

Following through, the expressions for the Frobenius norm of the diagonals in terms

of ∆ml are given below.

‖D‖2
F =

∑N
i=1(
∑N

m=1 σmūimvim)(
∑N

l=1 σluilv̄il) =
∑N

m=1

∑N
l=1 σmσl

∑N
i=1 ūimvimuilv̄il

=
∑N

m=1

∑N
l=1 σmσl∆ml.

(5.6)

‖DR‖2
F =

∑N
i=1(
∑N

m=k+1 σmūimvim)(
∑N

l=k+1 σluilv̄il) =
∑N

m=k+1

∑N
l=k+1 σmσl∆ml. (5.7)

Therefore, the formula for the undeflated and deflated variances under Z4 noise may

be represented as

Var[TrZ4(A)] =
N∑
m=1

σ2
m −

N∑
m=1

N∑
l=1

σmσl∆ml (5.8)

Var[TrZ4(AR)] =
N∑

m=k+1

σ2
m −

N∑
m=k+1

N∑
l=k+1

σmσl∆ml. (5.9)

Due to the presence of the ∆ml term from the diagonal, it is not guaranteed that

82



(5.9) will always be less than (5.8), in fact in the following sections we provide examples

for which deflation hurts convergence of the trace estimator! It should be noted that for

Gaussian vectors,

Var[TrGaussian(A)] =
N∑
m=1

σ2
m (5.10)

Var[TrGaussian(AR)] =
N∑

m=k+1

σ2
m, (5.11)

and the lack of the ∆ml term ensures the variance of AR will always be less than that of A.

Furthermore, in the Gaussian case, the k best possible projection vectors to reduce variance

are guaranteed to be the k largest singular triplets of A. The same is not necessarily true

of Z2 or Z4 noise-based estimators.

In order to study the effects of SVD deflation with Z4 noise, random matrix theory

with the Haar distribution was applied in [56] to give an expectation to ∆ml. This produced

concise formulas that only depend on the spectrum of the singular values of A. We split

the results into two cases, one for non-Hermitan matrices and one for Hermitian ones.

Both formulas are given below.

E (Var[TrZ4,non-Hermitian(AR)]) = (N − k)(1− 1

N
)(Vk + µ2

k) (5.12)

E (Var[TrZ4,Hermitian(AR)]) = (N − k)Vk(1−
1

N + 1
) + k

N − k
N + 1

µ2
k (5.13)

Above, µk = 1
N−k

∑N
m=k+1 σm, and Vk = 1

N−k
∑N

m=k+1(σm − µk)2, respectively. More-

over, the ratio of the deflated to undeflated variances may be computed for the two cases.

We do not derive the result here and simply take the solution from [56].
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E (Var[TrZ4,non-Hermitian(AR)])

E (Var[TrZ4,non-Hermitian(A)])
=

(N − k)(Vk + µ2
k)

N(V0 + µ2
0)

(5.14)

E (Var[TrZ4,Hermitian(AR)])

E (Var[TrZ4,Hermitian(A)])
=

∑N
i=k+1 σ

2
i −

(N−k)2

N
µ2
k∑N

i=1 σ
2
i −Nµ2

0

(5.15)

In both cases, the faster the singular values grow, the higher variance reduction is

expected to be achieved by deflation. It is clear that while the ratio in (5.14) is always less

than 1, (5.15) can be greater than 1. Put differently, while deflation will never increase

variance for non-Hermitian operators, it is possible for Hermitian ones. It is extraordinary

to find a property for which non-Hermitian matrices perform better than Hermitian ones.

The analysis in [56] however, shows that in general, non-Hermitian matrices are expected

to have more variance to begin with.

5.2 The effect of the singular spectrum

Having factored out the contribution of the singular vectors with our model, we now

study the effect of the singular value distribution using (5.12), (5.13), (5.14), and (5.15) to

predict actual experiments. The larger the gap between deflated and undeflated singular

values, the larger the expected reduction variance reduction. In the following experiments

we study the effect of deflation for six different model distributions of σi.

Given a diagonal matrix of singular values Σ, we generate a pair of random unitary

matrices U and V , and construct one Hermitian matrix UΣU † and one non-Hermitian

matrix UΣV †. For each model distribution we study matrices of several sizes. We report

the ratio of the variance of the deflated matrix, where we deflate various percentages of

its largest singular triplets, to the variance of the original undeflated matrix. This can be

computed explicitly from ‖A‖2
F , or through our model. As statistically expected, beyond
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small matrices of dimension less than 100, there is perfect agreement between our model’s

predictions and experimentally determined variances. Thus, we only present results from

our model.
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(b) square root

FIG. 5.1: On the left is a logarithmic spectrum: σN−i+1 = 1 + 2 · log(i). On the right is a
square root spectrum: σN−i+1 =

√
i. The dotted red line in both plots is a constant line

at y = 1. Points below this line signify an improvement in variance with deflation. Points
above the line denote a deflated operator with a higher Frobenious norm than the original
matrix, a case in which deflation is hurtful and variance increases.
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(b) quadratic
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(c) cubic

FIG. 5.2: Variance reduction ratios for matrices with spectra with linear, σN−i+1 = i,
quadratic, σN−i+1 = i2, and cubic, σN−i+1 = i3, growth rates.

In Figure 5.1a we consider a model where the singular values increase at a logarith-

mic rate with respect to their index. For Hermitian matrices the variance increases with

the number of deflated singular triplets, and the problem is more pronounced with larger
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matrix size. Although for non-Hermitian matrices the ratio is always below one, a substan-

tial part of the spectrum must be deflated to reduce the variance appreciably. In Figure

5.1b the spectrum increases as the square root of the index, and the effects of deflation,

although improved, still are not beneficial for Hermitian matrices.

In Figures 5.2a, 5.2b, and 5.2c the growth of the singular values is linear, quadratic,

and cubic, respectively. The ratio is now below one for both types of matrices. We can

see that with larger growth rates, the variance reduction is larger for a particular fraction

of singular values deflated. Additionally, for sufficiently large growth rates, the difference

between Hermitian and non-Hermitian matrices vanishes.
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(b) Laplacian

FIG. 5.3: On the left we have spectrum σi = 1/
√
i. The right plot shows the deflation

of the inverse of a 2D discrete Laplacian on a grid
√
N ×

√
N with Dirichlet boundary

conditions.

For spectra that decay as a rational polynomial, the picture is different. Figure 5.3a

shows an example where the spectrum is σi = 1/
√
i. There are a few large singular

values that matter, but the rest do not reduce variance appreciably. The effect of this is

that Hermitian matrices experience larger relative improvement with deflation over non-

Hermitian matrices. We have observed this effect also for other rational polynomials, 1/ip,

but the difference seems to peak at 1/
√
i. This observation is particularly relevant to
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Lattice QCD, in which the goal is to find the trace of the inverse of the Dirac matrix.

In Figure 5.3b we study the spectrum of the inverse of the discrete Laplacian, a common

problem that shares some features with the Dirac operator in the free field limit. We see

significant variance reduction, especially as the lattice size grows. The Hermitian matrices

continue to have an advantage over non-Hermitian matrices, but the practical difference

is negligible.

5.3 Experiments on general matrices

The previous section studied the effect of spectra on matrices with random unitary

singular vectors. In this section we investigate the extent to which our theory is applicable

to general matrices with singular vectors that are not random. We choose four matrices

from the University of Florida sparse matrix collection [57] with relatively small sizes

(675–2000) that are derived from real world problems in various fields, such as chemical

transport modeling and magnetohydrodynamics. In all the following results, deflation is

studied on the estimator of Tr(A−1). The discussion is split into two subsections, one

continuing the analysis of Z4 noise as before and another studying the effects of SVD

deflation on Gaussian distributed vectors.

5.3.1 Experiments with Z4 noise

Here, we continue the analysis of the previous section by applying our model of vari-

ance reduction under Z4 noise to four matrices from the University of Florida sparse matrix

collection [57]. Three of the matrices are non-Hermitian and one is Hermitian, more strictly

real and symmetric. We apply the appropriate formulas from the model for these cases.

For Figures 5.4a and 5.4b, the model and experimental results agree very closely. Both

demonstrate dramatic variance reduction even when deflating a small fraction of the SVD
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(a) BWM2000
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(b) MHD1280B

FIG. 5.4: Matrix BWM2000 has a size of N = 2000 and condition number of 2.37869e+5.
Matrix MHD1280B has N = 1280 and a condition number of 4.74959e+12. Both matrices
are real, non-symmetric.

space. Both matrices have a high condition number, implying that their smallest singular

values contribute most of the variance to the inverse trace estimator. Hence it pays to

remove them.

In contrast, deflation does not improve the variance for the matrix in Figure 5.5a,

unless almost the entire spectrum is deflated. For deflating less than 10% of the singular

triplets—the most realistic situation—model and experimental results agree. Beyond that

number, the experiment performs worse than predicted. However, the model still captures

the overall effect and recommends avoiding deflation altogether. In Figure 5.5b the effect

of deflation is beneficial but limited. The disagreement between model and experiment is

about 10%, once again the model can be used to predict the general outcome effectively.

In summary, the presence of non-random singular vectors could generate a few dis-

crepancies, but these and other extensive experiments show that our model is useful in

predicting the overall effect of SVD deflation. Specifically, even rough knowledge of the

particular singular value spectrum is enough for the model to determine whether deflation

would be valuable or hurtful. Finally, we emphasize the small sizes of the above matrices.
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(b) OLM1000

FIG. 5.5: Matrix NOS6 is symmetric, with N = 675 and a condition number of
7.65049e+06. Matrix OLM1000 is non-symmetric, with N = 1000 and a condition number
of 1.48722e+06.

In larger applications, the singular vectors are more likely to behave like random ones.

5.3.2 Experiments with Gaussian vectors

Here, we take a brief aside from the examination of Z4 noise and study the effects of

deflation under Gaussian distributed trace estimation. As stated previously in Section 5.1,

Var[TrGaussian(A)] only depends on the sum of the squares of the singular values. Therefore,

random matrix theory is not necessary to factorize out the effects of the singular vectors

and an exact prediction of variance reduction can be made with only knowledge of the

singular values.

To test this, the four matrices from the preceding subsection are deflated under the

Gaussian estimator. Equations 5.10 and 5.11 are used as the model.

Figures 5.6a, 5.6b, 5.7a, and 5.7b illustrate perfect agreement between our formulas

and the experimentally computed variance. Moreover, a comparison of Figures 5.5b and

5.7b conveys an example of the statement that deflation is never hurtful with Gaussian

noise.
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(a) BWM2000 Gaussian
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(b) MHD1280B Gaussian

FIG. 5.6: Here the variance reduction of matrix BWM2000 and matrix MHD1280B is
shown with Gaussian noise. We remind the reader that the sizes of these matrices are N =
2000 and N = 1280 respectively, with condition numbers of 2.37869e+5 and 4.74959e+12
correspondingly. Both matrices are real, non-symmetric.

Now all the tools are in place to investigate a comparison of the effects of SVD

deflation between Z4 and Gaussian noise. From (4.29) and (4.31), it is clear that without

deflation Z4 noise is optimal. Once deflation is turned on however, it is not obvious if

this remains true. With the NOS6 matrix, we have already demonstrated an example in

which deflation is hurtful with the Z4 estimator, while beneficial under the Gaussian one.

It is worth mentioning that deflation does not appear to be useful in either case though,

as a large number of low lying singular triplets must be projected out to obtain significant

variance reduction.

Figures 5.8a, 5.8b, and 5.9b give a comparison of variance reduction with SVD defla-

tion between Gaussian and Z4 noise. Since the model introduced in Section 5.1 does not

exactly predict the variance for the Z4 case, we use the experimentally determined vari-

ance for the comparison. Since NOS6 is real and symmetric, Gaussian noise is compared

to Z2 in Figure 5.9a rather than Z4 vectors. While this introduces an extra factor of 2 in

contrast to the Z4 case, it keeps all floating points to be only real-valued, akin to Gaussian
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(a) NOS6 Gaussian
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(b) OLM1000 Gaussian

FIG. 5.7: NOS6 is N = 675 symmetric matrix, with and a condition number of
7.65049e+06. OLM1000 is a N = 1000 non-symmetric matrix, with and a condition
number of 1.48722e+06. Both are deflated with Gaussian noise.

noise. Therefore, for real and symmetric matrices, evaluating Gaussian noise to Z2 is a

fairer comparison.

For matrices BWM2000 and MHD1280B, deflation works well and the general behav-

ior between the two cases can be seen to be similar in Figures 5.8a and 5.8b. We alert the

reader of the log scale in Figure 5.8b and note that the Z4 case is a factor of 2-5 smaller

than Gaussian noise throughout. In Figure 5.9a it is clear that although deflation always

has a positive effect in the Gaussian case, the extra variance from starting with this noise

is much too high to compete with the smaller variance from Z2 vectors. For either choice

of noise however, deflation does not appear practical for the NOS6 matrix. Figure 5.9b

behaves similarly to Figure 5.9a. In all cases studied here, deflation with Z4 vectors (or

Z2 vectors in the case of NOS6) performs better than Gaussian noise. The possibility that

Gaussian vectors behave better under deflation does not outweigh their naturally higher

starting variance compared to Z4 vectors.
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(a) BWM2000 Gaussian Comparison
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(b) MHD1280B Gaussian Comparison

FIG. 5.8: The variance reduction of matrices BWM2000 and MHD1280B is shown with
Gaussian and Z4 noise. Both matrices are real and non-symmetric.
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(a) NOS6 Gaussian Comparison
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(b) OLM1000 Gaussian Comparison

FIG. 5.9: A comparison of variance reduction for matrices NOS6 and OLM1000 is shown.
Since NOS6 is real and symmetric, its comparison is done with Z2 noise.
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5.4 Application to Lattice QCD

Now that the effects of SVD deflation have been studied in general, we focus on its

application to the calculation of disconnected diagrams in Lattice QCD. This discussion

is split into two parts. The first subsection describes the specific strategy we employed to

compute low singular triplets of the Dirac matrix. We take advantage of state-of the-art

software packages and algorithms to enable our eigensolver to compute one thousand low

eigenpairs, one of the largest eigenvalue calculations performed to date in Lattice QCD.

The second subsection outlines an advanced trace estimation algorithm based on SVD

deflation and HP.

5.4.1 How to obtain the deflation space

We are interested in the trace of the inverse of a matrix, so we need to compute

its smallest singular triplets. Then, we apply the Hutchinson method on the deflated

matrix by solving a series of linear systems of equations. It would have been desirable

to compute the deflation space from the search spaces built by the iterative methods for

solving these linear systems. This idea has been explored effectively for Lattice QCD in

the past [58, 59, 60]. However, such methods are not suitable for our current problem for

the following reasons.

First, methods such as GMRESDR or eigBICG produce approximations to the lowest

magnitude eigenvalues of the non Hermitian matrix A. Much experimentation has shown

that this eigenspace is not optimal in reducing the variance of the Hutchinson method. To

produce the smallest singular triplets we would have to work with eigCG on the normal

equations A†A [59]. Second, only the lowest few eigenpairs produced by eigCG are accu-

rate. The rest may have a positive effect on speeding up the linear solver, but they do not

seem adequate for variance reduction. Third, and most important, we are interested in

93



large scale problems for which unpreconditioned eigCG would not converge in a reasonable

amount of time. However, if a preconditioner M−1 is used, all the above methods find the

eigenpairs of M−1A or of M−1 †M−1A†A. These may help speed up the linear solver but

are not relevant for deflating A−1 for variance reduction.

The alternative is to compute the deflation space through an explicit eigensolver on

A†A. This is a challenging problem for our large problem sizes because the lower part of the

spectrum becomes increasingly dense and eigenvalue methods converge slowly. Although

Lanczos type methods are good for approximating large parts of the spectrum, they cannot

use preconditioning so they are unsuitable for our problems.

For our computations of disconnected diagrams, we have used the state-of-the-art

library PRIMME (PReconditioned Iterative MultiMethod Eigensolver) [61] which offers a

suite of near-optimal methods for Hermitian eigenvalue problems. Among several unique

features, PRIMME has recently added support for solving large scale SVD problems,

including preconditioning capability, something that is not directly supported by other

current software. We remind the reader from Section 4.2.3 of a multi-group, multi-year

effort that has resulted in a highly efficient preconditioner which is based on domain

decomposition and adaptive Algebraic Multigrid (AMG) [46]. AMG is a game changer,

but it has only been used to solve linear systems of equations. We employ AMG as a

preconditioner in PRIMME to find 1000 lowest singular triplets. For most methods in

PRIMME, AMG accelerates the number of iterations by orders of magnitude and results

in wallclock speedups of around 30.

To obtain the best performance for our specific problem in Lattice QCD, we experi-

mented with various PRIMME methods and parameters, and AMG configurations. Our

final setup of PRIMME called the LOPBCG Orthobasis Window method. Details of our

optimizations can be found in [56].

The AMG software provides a solver for a non-Hermitian linear system Ax = b,
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not just a preconditioner. There are three levels of multigrid with a GCR smoother

at each level [46]. Because PRIMME needs a preconditioner for the normal equations,

A†Aδ = r, each preconditioning application involves two calls to AMG to solve the two

systems approximately, A†y = r and Aδ = y. We found 4 GCR iterations at the fine

level and 5 GCR iterations at each of two coarse levels to be optimal. Preconditioning for

eigenvalue problems differs from linear systems in the sense that it should approximate

(A†A− σI)−1 to improve eigenvalues near σ. In our AMG preconditioner σ is zero, so we

expect the quality of the preconditioner to wane as the eigensolver locks on to eigenvalues

inside the spectrum. However, the lowest part of the spectrum is quite clustered and

such deterioration from the AMG preconditioner is small. We were able to use this setup

to compute one thousand low lying singular vectors of the Dirac matrix on two different

ensembles.

5.4.2 SVD deflation and HP trace algorithm

Given k eigenpairs (Λ, V ) of the normal equations, the left singular vectors can be

obtained as U = AV Σ−1, where Σ = Λ1/2. Following (5.2), we can decompose Tr(A−1) =

Tr(A−1
D ) + Tr(A−1

R ) = Tr(V Σ−1U †) + Tr(A−1− V Σ−1U †). Using the cyclic property of the

trace, we have Tr(V Σ−1U †) = Tr(Σ−1U †V ) = Tr(Λ−1V †A†V ). This means that the trace

of A−1
D can be computed explicitly through k matrix vector multiplications and k inner

products. Similarly, we see that Tr(A−1
R ) = Tr(A−1 − V Λ−1V †A†), so the quadratures

required in Hutchinson’s method can be computed as z†A−1z and z†V Λ−1V †(A†z). This

means that we can avoid the significant storage of U .

We now have all the components to run the deflated Hutchinson method. Moreover,

the same setup with deflation can be used with HP vectors. HP uses an implicit distance-d

coloring of the lattice to pick the probing vectors as certain permutations of Hadamard

95



vectors that remove all trace error that corresponds to A−1
ij elements with i, j having up

to d Manhattan distance in the lattice. The hope is that deflation removes error in a

complementary way from HP and the two techniques together lead to faster convergence.

Algorithm 6 summarizes our approach.

Algorithm 6 Trace = deflatedHP(A)

1: [Λ, V ] = PRIMME(A†A)
2: TD = Tr(Λ−1V †A†V ); TR = 0
3: z0 = randi([0, 3], N, 1); z0 = exp(z0πi/2)
4: for j = 1 : s do
5: zh = next vector from Hierarchical Probing or other scheme
6: z = z0 � zh
7: Solve Ay = z
8: TR = TR + z†y − z†V Λ−1V †(A†z)
9: Trace = TR/j + TD

10: end for

In Lattice QCD, we are often interested in computing Tr(ΓA−1) for several different

Γ matrices whose application to a vector are inexpensive to apply. In such cases, the SVD

decomposition (5.2) still applies, Tr(ΓA−1) = Tr(ΓV Λ−1V †A†) + Tr(ΓA−1−ΓV Λ−1V †A†).

The computations are similar to Algorithm 6, with a Γ matrix vector product inserted at

each step. Therefore, the computational cost of the SVD subspace can be amortized by

reusing the deflation space to compute traces with multiple Γ matrices.

5.5 Numerical experiments in Lattice QCD

In this section, we present numerical results from experiments with two representative

Dirac matrices. Both are from 323 × 64, β = 6.3 Clover improved Wilson ensembles. In

both cases, the pion mass was about 300 MeV. However, the first matrix comes from an

ensemble with 3 flavors of dynamical quarks, whose masses were turned to match the

physical strange quark mass. In this case we employed a lower quark mass (quark mass
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mq = −0.250 in lattice units) for our numerical experiments in order to achieve a more

singular matrix. In the second case, the ensemble from which we selected the Dirac matrix

is one with 2 light quark flavors and one strange quark. The strange quark is again, at its

physical value, and the light quarks have masses −0.239 that result in 300 MeV pions. The

interested reader can find further details about these ensembles in [62, 63]. Subsequently,

we will refer to the matrix with a quark mass of mq = −0.250 as the Dirac operator from

ensemble A, and the mq = −0.239 mass matrix as the Dirac matrix from ensemble B.

The above matrices have a size of N = 25,165,824 and condition numbers of 1747

and 1788 respectively. As discussed earlier, the subspaces were obtained using PRIMME

set to the LOBPCG Orthobasis Window method with a tolerance of 10−2 and a block size

of 30 [61]. This was supplemented with a three level AMG preconditioner with 44 and 24

blocking and a fine/coarse maximum iteration count of 4 and 5 respectively [46].

5.5.1 Synergy between deflation and hierarchical probing

Depending on the conditioning of the matrix, the HP method has enjoyed improve-

ments of as much as an order of magnitude compared to the basic Monte Carlo estimator

[55]. In Figures 5.10a and 5.10b we present results of Algorithm 6 with the ensemble A

and ensemble B matrices respectively, where HP is augmented by deflation. The error

bars on the variance were estimated with the Jackknife resampling procedure on 40 runs

of Algorithm 6 with different z0 noise vectors. Local minima appear on the y axis of both

plots at every power of two. This is a characteristic of the HP method, which relies on

cancellations of the nested coloring algorithm to probe higher distances [55]. At least one

order of magnitude improvement in variance is observed with deflation over HP alone.

Additionally, we compute the speedup of HP and deflated HP compared to the basic
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FIG. 5.10: Above is the variance of the hierarchical probing trace estimator with and
without deflation. The full 1000 vector subspace is used as the deflated operator in red.
Complete color closings are marked with green circles. For the ensemble A matrix, a factor
of 15 is achieved in variance reduction between deflated and undeflated probing. Deflation
yields over a factor of 20 reduction of variance for the ensemble B matrix.

MC estimator as

Rs =
Vstoc

Vhp(s)× s
.

Here, Vstoc is the variance from the pure noise MC estimator, and Vhp(s) is the HP variance

computed with Jackknife resampling over the 40 runs. The factor of s is the number of

probing vectors, and it is used to normalize the speedup ratio since the error from random

noise scales as (Vstoc
s

)1/2. The speedup for both ensembles are displayed in figures 5.11a

and 5.11b. HP alone yields speedups of 2-3 in contrast to the factor 10 in [55] on the same

matrix from Ensemble B. The difference is that in [55], the quark parameter was set to

the strange quark mass while here it is set to the light quark mass, which yields the much

more ill conditioned matrix in Figure 5.11b. Deflation and HP together, however, achieve

a factor of 60 speedup over the original Monte Carlo method. We elaborate on this further

below.
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FIG. 5.11: Speedup of the combined deflated HP estimator compared to pure Z4 noise is
shown. The speedup to basic MC is estimated for both HP alone and HP with deflation.
The errors are computed with Jackknife resampling.

It is apparent that deflation and HP synergize to produce an extremely effective trace

estimator. The idea of HP is based on the local decay of the Green’s function. By assuming

that the neighbors of a source node in matrix A will have weights in A−1 that decay

with their distance from the source, HP kills the error from progressively larger distance

neighborhoods. This works well for well conditioned matrices, but for ill conditioned ones

A−1 is dominated by contributions of its near null space. Such contributions are typically

non-local, which are not captured by HP. Deflation, however, captures these contributions

exactly and removes them, resulting in a much easier structure for HP to work on. In

Lattice QCD, this synergy completely resolves the scaling problem as the mass approaches

the critical mass, and significantly reduces the effects of lattice size.

We investigate this synergy experimentally on the matrix from ensemble A. We seek to

quantify the remaining variance on the original matrix (‖Ã−1‖2
F ), after applying deflation

(‖Ã−1
R ‖2

F ), after applying 32 HP probing vectors H (‖(HHH)�A−1‖2
F ), and after applying

both deflation and HP (‖(HHH)�A−1
R ‖2

F ). Let B denote any of these four matrices. Since
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FIG. 5.12: The sum of squared absolute values of matrix elements at specified Manhattan
distances from the corresponding diagonal elements for 10 randomly sampled rows. Base
case is the original Monte Carlo method. Deflation refers to the Monte Carlo with deflation.
HP and deflated HP refer to a space spanned by the 32 hierarchical probing vectors. A
combination of HP and deflation suppresses the sum of matrix elements by orders of
magnitude more than probing or deflation alone.

we cannot compute ‖B‖F explicitly, we randomly sample 10 of its rows, denoting this set

as S. Then for each corresponding lattice node i ∈ S, we find all its md neighbors j that

are d hops away in the lattice (i.e., its Manhattan distance-d neighborhood) and sum their

squared absolute values |Bij|2. Averaging these over all md neighbors and all nodes in S

gives us an estimate of how much variance remains from elements at distance d. These

Wd are plotted in Figure 5.12,

Wd = 1/|S|
∑
i∈S

∑
j∈Nd

|Bij|2/md, where Nd = {j : dist(i, j) = d} and md = |Nd|.

The figure shows how HP eliminates the variance from the first 3 distances and repeats

this pattern in multiples of 4 (1,2,3,5,6,7,. . .) [55]. While probing eliminates better short-

distance variance, deflation is better at long-distance. Combining them achieves a much

greater reduction in variance than either of the two alone.
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5.5.2 Varying the SVD deflation space

We also study the effect of the size of the deflation SVD subspace. By saving all inner

products performed in the trace estimator, we are able to play back the trace simulation

deflating with different numbers of singular triplets. We combine deflation and HP and

report results for 32 and 512 probing vectors, which represent the proper color closings for

HP on a 4D lattice [55]. As before, the error bars are obtained from 40 different runs of

Algorithm 6 with different z0.
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FIG. 5.13: Variance for the ensemble A matrix as a function of the deflated SVD subspace
dimension at two color closing points of HP. The left plot is with 32 probing vectors, the
right is with the full 512.

Figure 5.13a shows that deflation with 200 singular vectors reduces variance by a factor

of 3, and beyond 200 little improvement is gained. In Figure 5.13b, HP has removed the

error for larger distances and therefore it can use more singular vectors effectively, yielding

more than an order of magnitude improvement. Still there is potential for computational

savings since 500 singular vectors have the same effect as 1000. Figures 5.14a and 5.14b

display similar attributes for the ensemble B matrix.

These experiments illustrate that the optimal number of vectors to be used in each
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FIG. 5.14: Variance for the matrix from ensemble B, as a function of the deflated SVD
subspace dimension at two color closing points of HP. The left plot is with 32 probing
vectors, the right is with the full 512.

of the two techniques depends on each other. This is only an issue if one needs to figure

out how many singular vectors to compute a priori, because if these are already available,

their application in the method is not computationally expensive. Moreover, while using

a sufficiently large number of probing vectors is important, the performance of deflation

seems to be much less sensitive to the number of singular vectors. Once the near null space

has been removed, there are diminishing returns to deflate with bigger subspaces.

5.5.3 Wallclock timings and efficiency

Implementing HP with deflation requires an additional setup cost from finding the

SVD space. In Lattice QCD, this cost is of little importance since the subspace may be

stored and reused several times for computing various correlation functions.

Below, we show that deflation is valuable even as a “one shot method” for our Lattice

QCD matrices. We investigate the case in which Tr(A−1) only needs to be computed once,

and report the time to compute the SVD, first separately and then as the overhead of the
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preprocessing of Hutchinson’s method with HP. Our experiments were performed on the

Cray Edison using 32 12-core Intel Ivy Bridge nodes clocked at 2.4 GHz, each with only 8

cores enabled due to memory and node topology considerations.

Singular Vectors Locked
0 200 400 600 800 1000

W
a
ll
cl
o
ck

(s
ec
o
n
d
s)

0

1000

2000

3000

4000

5000

6000

(a) PRIMME cost

0 0.5 1 1.5 2 2.5
x 104

101

102

103

104

Wallclock (seconds)
Va

ria
nc

e
 

 

Hierarchical Probing
SVD 500
SVD 1000

(b) Variance vs simulation cost

FIG. 5.15: Eigenvectors computed by PRIMME from 100 to 1000 for the matrix from
ensemble A. A log plot of variance and cost. Each case displays 5 points, which represent
the variance and wallclock at probing vectors 32, 64, 128, 256, and 512.

Figure 5.15a shows the timings for PRIMME as a function of the number of eigen-

vectors found. As more eigenvectors converge, orthogonalization costs increase, resulting

in time increasing super linearly. The expected reduction in the efficiency of the AMG

preconditioner as the eigensolver moves to the interior of the spectrum is in fact negligible.

Obtaining 1000 eigenvectors takes 1.5 hours, while 500 vectors are computed in less than

half an hour. Indeed, with the aid of the AMG preconditioner, PRIMME was able to solve

for the eigenvalues of A†A at a fraction of the cost of the probing estimator.

We now add the time to compute the singular space, as well as the time to perform

the projections with that space, to the timings for the remaining steps of Algorithm 6.

We consider two simulations; one with a deflation space of 500 vectors and one with 1000.

From Figures 5.14a and 5.14bm we do not expect gain beyond 500 singular triplets. For

each closing point of HP (32, 64, 128, 256, and 512 probing vectors), Figure 5.15b plots
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the achieved variance as a function of total wallclock time. We observe that the variance

with 500 deflation vectors at probing vector 128 is comparable to the variance of the plain

HP method at 512 probing vectors. This translates to a 3-fold reduction in wallclock,

even with the SVD computations included. Furthermore, at 512 probing and 500 deflation

vectors, we see a 15-fold reduction in variance with the SVD time being less than 10% of

total wallclock. This suggests that SVD deflation can be used equally well as a one shot

method for variance reduction.

This concludes our investigation of the effects of SVD deflation. We have studied the

variance reduction from deflating the lowest singular triplets in the general case and applied

to disconnected quark loops in Lattice QCD. Our examination has focused primarily on

Z4 noise, which we have found to be optimal both with and without deflation, although

the Gaussian case was also studied. Our formulas and experiments show that the faster

the singular values rise, the higher variance reduction can be expected. Furthermore,

we uncovered the astonishing property that non-Hermitian matrices behave better under

deflation than Hermitian ones. Both theory and real world examples were introduced with

Z4 vectors that demonstrate deflation always has an affirmative effect for non-Hermitian

matrices, while it may sometimes be detrimental for Hermitian ones. Conversely, for

Gaussian vectors, deflation always yields a positive effect in reducing variance.

In the second half of this chapter, we concentrated on a strategy to compute discon-

nected correlation functions in Lattice QCD. This is equivalent to finding Tr(ΓA−1), where

A is the Dirac operator and Γ is one of sixteen possible matrices that represent observables

such as axial, scalar, pseudoscalar, tensor, or vector matrix elements. We outlined a two-

stage algorithm which first, took advantage of PRIMME and AMG to efficiently compute

numerous low singular triplets of the Dirac matrix and second, removed the space of these

singular values out of an HP trace estimator. We noted the synergy of HP and SVD defla-

tion and sampled columns of our Dirac matrix to understand the reason for this feature.
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We observed a factor of 15-20 improvement comparing deflated HP to HP alone, and over

a factor of 60 speedup when compared to the most basic form of the Hutchinson method.

Finally, the effect of varying the SVD space was studied and wallclock timings from Cray

Edison were reported. With an optimal choice of parameters, over an order of magnitude

of variance reduction was achieved with less than 10% additional wallclock time. Much

of the content in this chapter has been referenced from [56]. In the final chapter, these

methods will be applied to compute various zero-momentum transfer matrix elements in

Lattice QCD.
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CHAPTER 6

Selected Results

Now all the ingredients are in place to compute hadron structure observables. Armed

with algorithms and techniques from the previous chapters, we present calculations of var-

ious matrix elements of the nucleon and light nuclei. The discussion is started with a study

of the effects of varying the number of hierarchical probing (HP) vectors to compute zero-

momentum transfer matrix elements of isoscalar and strange correlators. Subsequently,

results to fitting away the excited state contamination with the methods depicted in Sec-

tion 3.3 are shown for flavor diagonal matrix elements of the nucleon on two ensembles

with different lattice spacings and roughly equivalent pion masses. Finally, high precision

data are given for the ratio of strange sigma terms in light nuclei.

Each section is introduced with a summary of the ensemble parameters relevant to

the calculation. All computations are done with clover-improved Wilson fermions for both

valence and sea sectors. The ensembles used for the nucleon matrix elements are with 2+1

dynamical flavors, with the strange quark tuned near its physical value. The light nuclei

calculations are performed with an ensemble at the SU(3) symmetric point.
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6.1 Varying HP vectors

In this section we study the effects of varying the number of HP vectors when comput-

ing the axial, scalar, tensor, and vector charges. Although variance reduction of the SVD

deflated HP trace estimator is examined extensively in Chapter 5, the error on the trace

from each configuration is not the only noise in a hadron three-point correlation function.

Even if an exact computation of the quark loop trace was possible, the Euclidean correla-

tors would still contain errors due to noise in the Monte Carlo over the ensemble of gauge

field configurations. Therefore, the goal of our trace estimation should be in computing

the trace accurately enough so that gauge noise dominates in the statistical error of the

hadron matrix element of interest.

Since various observables may fluctuate differently as a function of the gauge fields,

the optimal point will be dependent on which quark bilinear is of interest. We remind the

reader that Algorithm 6 allows all 16 γ insertions to be computed with the same HP and

SVD vectors. Thus the matrix element that is most sensitive to the accuracy of the trace

per configuration will dictate the total computational resources that should be put into a

quark loop calculation. In the successive subsections we present a study of the ensemble

average of axial, scalar, tensor, and vector charges as a function of HP vectors for the

isoscalar and strange channels.

6.1.1 Ensemble and correlator overview

Here, we introduce details of the ensemble and correlators used in the ensuing dis-

cussion. The gauge configurations were generated by the Jefferson Lab Lattice Group

with 2+1 flavor clover Wilson fermions. The Monte Carlo updates were achieved with the

rational hybrid Monte Carlo algorithm [64]. A single iteration of stout smearing with a

weight of ρ = .125 was employed for the staples in the fermion action. The lattice spacing
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was determined with the Wilson-flow scale, w0 [65]. The lattice spacing is a = .094 fm and

the pion mass is mπ = 280 MeV. The strange quark mass was tuned by fixing a ratio of

hadron masses that is insensitive to the light quarks at leading order to its physical value,

2m2
K+−m

2
π0

m2
Ω−

= 0.1678. The light quark masses were then dialed down while the strange

quark mass remained fixed. The tests in Chapter 5 labeled as “Ensemble B” come from a

randomly selected configuration from this ensemble. Further details of this ensemble can

be found in the next section from Table 6.1.

The nucleon two-point functions were computed by the Nucleon Matrix Elements

(NME) collaboration with the prescription described in Section 3.1.1. The quark propa-

gators were computed by inverting the clover Wilson Dirac matrix on Gaussian smeared

sources. The source and sink of the nucleon correlators were smeared by several appli-

cations of the three-dimensional Laplacian operator with a smearing width of σ = 9.

The all mode averaging (AMA) method was used to speed up the linear solves [66, 67].

Three time-sources separated by 24 lattice units were taken with 32 low precision-sources

per time-slice. One high-precision measurement per time-slice was utilized to correct the

bias from the low-precision measurements. Additional details of the nucleon two-point

generation may be found in [62, 63].

The three-point functions are built by multiplying the two-point correlators by the

disconnected quark loops on appropriate timeslices. The forward propagating three-point

correlators are defined as

c3pt
f (tsep, τ) = c2pt

f (tsep)L(τ + t0), (6.1)

where tsep is the source-sink separation, defined as tsep = t − t0, τ is the loop insertion

time, c2pt
f is the forward nucleon two-point function, and L is the quark loop. Similarly,

the backward propagating three-point correlator is
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c3pt
b (t′sep, τ) = c2pt

b (t′sep)L(t0 − τ), (6.2)

where t′sep = t0 − t and c2pt
b is the backward propagating nucleon two-point function. For

the scalar matrix element, the operator has a non-zero contribution from the vacuum which

must be subtracted out:

< c3pt
f (tsep, τ) >=< c2pt

f (tsep)L(τ + t0) > − < c2pt
f (tsep) >< L(τ + t0) >, (6.3)

and similarly for backward propagation, <> refers to the ensemble average. Roughly four

hundred configurations were analyzed, with 256 HP vectors and 500 SVD vectors for the

light quark loops and 512 HP vectors with 200 SVD vectors for the strange ones. In order

to extract the relevant matrix elements, the ratio of the three-to-two-point correlators is

taken, following the methodology summarized in Section 3.3. We caution to the reader

however that only raw data of this ratio is plotted in this section and no fits are used.

This is simply a study of how the accuracy of the quark loop affects the statistical errors

of hadron matrix elements. Fits are be performed in the final two sections of this chapter.

6.1.2 Axial charge

We plot the ratio of the three-point and two-point correlation functions for the axial

charge in the isoscalar (u+ d) channel.

In Figures 6.1a, 6.1b, 6.2a, and 6.2b the dependence on the statistical error of the

axial charge is shown. The y axis is kept fixed for all figures. The correlator ratio is

plotted as a function of τ − tsep/2, therefore the points closest to 0 on the x axis have the

least excited state contributions. We alert the reader that we have only plotted a narrow
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FIG. 6.1: A side by side comparison of the isoscalar disconnected axial charge at 32 and
64 HP vectors. There is a noticeable improvement scaling up to 64 HP vectors.

separation away from this zero-point and that further separations will begin to form a tail

as excited state contamination grows. Noticeable reduction is observed up to 128 deflated

HP vectors, however beyond this the statistical error seems to saturate, resulting in little

to no improvement in 256 HP vectors.

The NME collaboration computed disconnected quark loops on 100 configurations of

this ensemble using only slight advances from the basic Monte Carlo method. Their runs

used 512 Z2 noise vectors improved with the hopping parameter expansion [68, 69] and

the truncated solver method [66].

In Figure 6.3 a comparison between Z2 noise with slight modifications and the meth-

ods presented in this work is drawn. Even at 32 vectors, deflated HP produces smaller

statistical error than 512 Z2 vectors. We note that the point tsep = 10, τ = 5 was due to

smaller excited state contaminations, however shorter points in tsep and τ will have less

gauge noise, resulting in an even larger contrast between the two methods.

We also present data on the strange axial charge as a function of the number of
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(b) isoscalar gA 256 HP vectors

FIG. 6.2: A side by side comparison of the isoscalar disconnected axial charge at 128 and
256 HP vectors. Error in the matrix element continues to decrease with up to 128 HP
vectors. No significant improvement is observed with 256 HP vectors.

deflated HP vectors. These runs are carried up to the third color closing point, or 512 HP

vectors for four-dimensional probing. No comparison to Monte Carlo trace estimation is

made for strange data.

Figures 6.4a, 6.4b, 6.5a, 6.5b, and 6.5c display the strange axial charge with various

numbers of HP vectors. Consistent with the isoscalar case, after 128 HP vectors, error

reduction is not observed.
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FIG. 6.3: Above, the axial charge with deflated HP is compared to a pure noise trace
estimator in the isoscalar sector. The points shown are with tsep = 10, τ = 5. Both
methods are performed on the same 100 configurations.
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FIG. 6.4: A side by side comparison of the strange axial charge at 32 and 64 HP vectors.
There is a noticeable reduction of error through 64 HP vectors.
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(a) strange gA 128 HP vectors
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(b) strange gA 256 HP vectors
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FIG. 6.5: A side by side comparison of the strange axial charge at 128, 256, and 512 HP
vectors is shown. Error in the data appear lower with 128 HP vectors compared to 64. No
significant improvement is observed with 256 or 512 HP vectors however.
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6.1.3 Scalar charge

Akin to the previous subsection, we plot the ratio of the scalar nucleon three-point

function to the two-point function for the isoscalar combination. First, we show gS varying

with the number of HP vectors at a variety of different source-sink separations and loop

insertions. Second, we present a comparison between deflated HP and Z2 noise runs from

NME.
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(a) isoscalar gS 32 HP vectors
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FIG. 6.6: A side by side comparison of the isoscalar disconnected scalar charge at 32 and
64 HP vectors. No difference is observed.

Figures 6.6a, 6.6b, 6.7a, 6.7b, and 6.8 show no improvement with increasing number of

HP vectors or between the basic stochastic estimator and our variance reduced methods.

The scalar charge is well known for fluctuating heavily in the gauge noise [70]. Hence

an accurate trace on each configuration is not required. We reproduce and confirm this

feature. We also show the strange scalar charge with different numbers of HP vectors.

The error in the strange scalar charge behaves identically to the isoscalar channel. We

conclude that if only the zero-momentum transfer scalar matrix element is of interest, an

extremely low budget trace estimator should be used.
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(a) isoscalar gS 128 HP vectors
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FIG. 6.7: A side by side comparison of the isoscalar disconnected scalar charge at 128 and
256 HP vectors. No difference is observed.
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FIG. 6.8: The scalar charge with deflated HP is compared to a pure noise trace estimator
in the isoscalar sector. The points shown are with tsep = 10, τ = 5. Both methods are
performed on the same 100 configurations.
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(a) strange gS 32 HP vectors
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(b) strange gS 64 HP vectors

FIG. 6.9: A side by side comparison of the strange scalar charge at 32 and 64 HP vectors.
No difference is observed.
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(a) strange gS 128 HP vectors
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(b) strange gS 256 HP vectors
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(c) strange gS 512 HP

FIG. 6.10: A side by side comparison of the strange scalar charge at 128, 256, and 512 HP
vectors is plotted. Statistical errors are equivalent to even the most inaccurate computation
of the trace in Figure 6.9a.
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6.1.4 Tensor charge

Here we show the ratio of the tensor nucleon matrix element for the isoscalar combi-

nation. A comparison to NME Z2 noise runs for a single point and full tsep, τ dependence

as a function of Hadamard vectors is plotted.
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(a) isoscalar gT 32 HP vectors
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FIG. 6.11: A side by side comparison of the isoscalar disconnected tensor charge at 32 and
64 HP vectors. Error reduces from 32 to 64 HP vectors.

Figures 6.11a, 6.11b, 6.12a, 6.12b, and 6.13 display nice improvement throughout. The

reduction from 64 to 128 HP vectors is particularly noteworthy. Additionally, deflated HP

performs much better than Z2 noise, which gives an answer that could be consistent with

zero. The strange tensor charge as a function of HP vectors is also shown.

Beyond 128 deflated HP vectors the errors in the strange tensor charge do not improve.

It is possible that the strange contribution to the tensor matrix element fluctuates more

from configuration to configuration. Alternatively, 200 SVD deflation vectors may reduce

the variance of the strange tensor charge substantially more than 500 SVD vectors do for

the light quark loops, achieving the same saturation threshold earlier in the number of HP

vectors.
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(a) isoscalar gT 128 HP vectors
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FIG. 6.12: A side by side comparison of the isoscalar disconnected tensor charge at 128
and 256 HP vectors. There is significant error reduction from 64 to 128 HP vectors.
Additionally, the errors in the endpoints continue to decrease through 256 HP vectors.
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FIG. 6.13: The tensor charge with deflated HP is compared to a pure noise trace estimator
in the isoscalar sector. The points shown are with tsep = 10, τ = 5. Both methods are
performed on the same 100 configurations.
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(a) strange gT 32 HP vectors

−3 −2 −1 0 1 2 3
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

τ − tsep/2
g T

s,
di
sc

64 Hadamard 200 Deflation 406 cfgs

 

 

t
sep

=7 t
sep

=8 t
sep

=9 t
sep

=10
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FIG. 6.14: A side by side comparison of the strange tensor charge at 32 and 64 HP vectors.
Errors, especially of the endpoints, reduce at 64 HP vectors compared to 32.
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(a) strange gT 128 HP vectors

−3 −2 −1 0 1 2 3
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

τ − tsep/2

g T
s,
di
sc

256 Hadamard 200 Deflation 406 cfgs

 

 

t
sep

=7 t
sep

=8 t
sep

=9 t
sep

=10

(b) strange gT 256 HP vectors
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FIG. 6.15: A side by side comparison of the strange tensor charge at 128, 256, and 512
HP vectors is shown. We observe only a little improvement from 64 to 128 HP vectors for
the strange contribution. No clear gain is achieved beyond 128 HP vectors.

119



6.1.5 Vector charge

Finally, the nucleon vector charge for the isoscalar combination is shown. A compar-

ison to NME Z2 noise runs for a single point and full tsep, τ dependence as a function of

Hadamard vectors is plotted. Note that at zero-momentum transfer, the vector current

simply gives the electric charge of the proton. Since this contribution comes from the

connected diagrams, we expect the disconnected pieces to be zero. Nevertheless, verifying

this property is a nice consistency check of the loop computations. Furthermore, gain-

ing insight into the statistical errors of the vector charge is extremely useful for future

high-precision measurements of the electric and magnetic form factors at non-zero or even

high-momentum transfer [71].
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(a) isoscalar gV 32 HP vectors
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FIG. 6.16: A side by side comparison of the isoscalar disconnected vector charge at 32 and
64 HP vectors. The statistical error decreases significantly from 32 to 64 HP vectors.

Figures 6.16a, 6.16b, 6.17a, 6.17b, and 6.18 indicate a drastic drop of statistical errors

as the number of HP vectors is increased. Furthermore, the data move toward zero as

the trace per configuration becomes more accurate. SVD deflated HP outperforms 512 Z2

noise vectors at all points beyond 32. Nevertheless, we point out that going all the way
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(a) isoscalar gV 128 HP vectors
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FIG. 6.17: A side by side comparison of the isoscalar disconnected vector charge at 128
and 256 HP vectors. Errors continue to be reduced and the expected answer is approached.

up to 256 HP vectors is still extremely beneficial. Based on the trend from 32-256 HP

vectors, we suspect pushing to the third color closing point (512 HP vectors) would have

reduced the errors even further. This is checked for the strange data, in which the runs

were driven to 512 HP vectors.

We confirm with the strange data that running the trace estimator up to the 512 HP

vectors still pays. This is of central importance to future studies of the vector current

form factors. At 512 deflated HP vectors, the strange vector charge appears well pinned

down. We conclude that the vector current does not fluctuate much over different field

configurations, therefore a highly accurate trace is required to control the statistical errors.

In this section we have studied the axial, scalar, tensor, and vector charges as a

function of the number of HP vectors. We determined that the axial and tensor charges

require a reasonably accurate trace to saturate the statistical error. The scalar charge was

found to be particularly insensitive to the error made by the trace estimator. From Figure

6.8, it is clear that even 32 deflated HP vectors may be an overkill. In contrast, the vector
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FIG. 6.18: The vector charge with deflated HP is compared to a pure noise trace estimator
in the isoscalar sector. The points shown are with tsep = 10, τ = 5. Both methods are
performed on the same 100 configurations.

charge necessitates an exceedingly accurate trace computation on each gauge configuration.

Therefore, if loops are computed for the general purpose of hadron structure calculations,

a large-scale and highly precise trace estimation cannot be avoided. This concludes our

discussion of analyzing the dependence of final statistical errors on the noise of the trace

estimator. In the next section, we perform fits with data from this and another ensemble

to extract the ground state axial and scalar matrix elements.
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(b) strange gV 64 HP vectors

FIG. 6.19: A side by side comparison of the strange vector charge at 32 and 64 HP vectors.
Errors reduce from 32 to 64 HP vectors.
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(b) strange gV 256 HP vectors
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FIG. 6.20: A side by side comparison of the strange vector charge at 128, 256, and 512
HP vectors is given. We remark that the statistical error continues to go down, all the
way through 512 HP vectors.
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6.2 Disconnected nucleon matrix elements

Previously, we studied how the accuracy of the quark loop’s trace influences the statis-

tical errors of different nucleon matrix elements. Here we use our most accurate runs and

fit the ratio of three-point to two-point correlators to remove excited state contamination

and isolate the ground state. Renormalized axial and scalar charges are presented at two

different values of the lattice spacing.

We begin by introducing the relevant parameters from our runs on the two ensembles.

Subsequently, fits to the data at multiple source-sink separations are presented, following

the approach in Section 3.3. Results for zero-momentum transfer axial and scalar nucleon

matrix elements are reported. Finally, we multiply our bare charges by the renormalization

constants calculated from the NME collaboration [63].

6.2.1 Preliminaries

We compute quark loops on two ensembles, henceforth labeled as a127m285 and

a094m280, corresponding to their respective values of lattice spacing and pion mass. Data

in the varying HP investigation from the previous subsection were with loops computed on

the a094m280 ensemble. Those same loops are used as part of this analysis, with the high-

est number of HP vectors taken. For the a127m285 ensemble, light loops were estimated

with 512 HP and 500 SVD vectors. Strange loops on this ensemble were calculated with

512 HP vectors and no deflation vectors. Light loops were computed on 260 configurations

of the a127m285 ensemble, whereas strange loops were computed on 528 configurations.

We analyzed configurations separated by 10 updates on the a094m280 lattices. On the

a127m285 lattices, configurations separated by 12 were taken for the light loops and a

separation of 6 was used for the strange loops. Summaries of the two ensembles and loops

are displayed in Tables 6.1 and 6.2.

124



TABLE 6.1: Ensemble Parameters

Ensemble a in fm mπ in MeV β csw Volume mπL

a094m280 0.094 280 6.3 1.20536588 323 × 64 4.11
a127m285 0.127 285 6.1 1.24930971 323 × 96 5.85

TABLE 6.2: Quark Loop Parameters

Ensemble Flavor HP vectors SVD Space Number of cfgs

a094m280 light 256 500 406
a094m280 strange 512 200 406
a127m285 light 512 500 260
a127m285 strange 512 0 528

Just as for a094m280, we employ nucleon two-point correlation functions generated

from the NME collaborations for the a127m285 ensemble. The spatial gauge links are

hit with 20 iterations of stout smearing with a weight of ρ = 0.08 before the sources

are constructed. Four equidistant timeslices are selected on the a127m286 lattice and 32

low-precision sources are inverted for each timeslice. The bias is then corrected for with

one high-precision measurement. Smearing with a width of σ = 5 is used at the source

and sink. Details of the two-point functions are given in Table 6.3. Note that when

calculating the total number of measurements, a factor of 2 must be multiplied, resulting

from forward and backward propagation. For example, the a094m280 ensemble has a total

of 406× 96× 2 = 77952 measurements.

TABLE 6.3: Nucleon Correlator Parameters

Ensemble Smearing (Source, Sink) Number of cfgs Measurements per cfg

a094m280 (9,9) 406 96
a127m285 (5,5) 528 128
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6.2.2 Axial charge

We fit the disconnected light and strange axial charge on both ensembles. We attempt

fits to an exponential, the summation method, and the full two-state model, following the

conventions in Section 3.3. Only fits with a reasonable reduced chi squared and sensible

errors are shown. In the case of the exponential, only the middle insertion point is passed to

the fitter. Fully covariant fits are taken when possible, however for ranges in which these

fits are destablized, we treat the data as uncorrelated instead. The data are jackknife

resampled and the ratio of three to two-point correlators is fitted for each sample. For the

axial matrix element, we are able to use the NME nucleon correlators polarized in the x,

y, and z directions, giving a factor of 3 increase in statistics.
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FIG. 6.21: A correlated two-state model fit of the disconnected light axial a094m280 data
is taken. The fit is with a tsep range of 3-11. The χ2/d. o. f. is 1.34.

Figure 6.21 plots the ratio of the three-point to two-point correlator for the light axial

matrix element on the a094m280 ensemble and Figures 6.22a and 6.22b on the a127m285

one. If the fit is correlated, the label “Covariant” is put before the fit name. We plot
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Summation

FIG. 6.22: The disconnected light axial data from the a127m285 ensemble are fitted with
two different methods. The left plot is a fit to an exponential and the right is using the
summation method. The exponential method has a source-sink separation fitting range of
6-12, while the summation fit employs a range of 5-12. The χ2/d. o. f. are 1.37, and 1.43
respectively.

the fitting result of the ground state matrix element as a black line, corresponding to

tsep → ∞. The gray band represents the statistical error, while the blue band gives the

systematics. The systematical error is obtained by taking a variance of a particular fit

with fits of neighboring tsep ranges.

We are able to extract the disconnected light axial charge with small systematical

uncertainties and a statistical error of roughly 20% for the a094m280 data and 10% for

a127m285. The two fits performed on the a127m285 ensemble are in good agreement

with each other. The magnitude of the central value of the axial charge decreases with

coarser lattice spacing, however within the statistical uncertainty there is no difference.

The strange axial data are also plotted in a similar fashion.

Figures 6.23a, 6.23b, and 6.23c show fitting results for exponential, summation, and

two-state fits for the a094m280 strange axial data. There is nice agreement between the
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FIG. 6.23: The strange axial a094m280 data points are fitted with three different functional
forms. The left plot is an exponential fit, the middle is with the summation method, and
the right is to the two-state model. The exponential fit has a tsep range of 6-10, the
summation method and two-state model have ranges of 3-10. The χ2/d. o. f. are 1.42,
1.25, and 1.05 respectively.

summation and two-state methods. The exponential fit yields a lower value of the strange

axial charge and the errors are small enough to give a one σ discrepancy between the

other fitting forms. We trust the two-state model result the most, due to its smaller

reduced chi squared in spite of the fit utilizing the full covariance matrix. Furthermore,

the systematical uncertainty of the two-state fit is two orders of magnitude smaller than

its statistical error, which is why a light blue band is not visible in Figure 6.23c.

In Figure 6.24, a correlated two-state fit is taken for the strange axial charge with the

a127m285 ensemble. Other fitting forms did not return serviceable results for this data.

The axial charge is captured with approximately 20% error for this ensemble. The value

matches the a094m280 result within error, demonstrating small lattice spacing errors with

respect to the noise in our calculation.
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FIG. 6.24: The a127m285 strange axial data are fit to the two-state model from a tsep

range of 4-10. The fit is fully covariant. The χ2/d. o. f. is 1.40.

6.2.3 Scalar charge

Here, the scalar matrix element is fitted with the same strategy as the previous sub-

section. Just as before, we plot the three-point correlator divided by the two-point one

as a function of tsep − τ . This gives an “effective charge” that plateaus with large time

separations, signaling little contamination from excited states. The fitted result of the

scalar charge is plotted as an extrapolation of tsep →∞, with statistical and systematical

uncertainties denoted with gray and light blue bands correspondingly.

Figures 6.25a and 6.25b convey results of exponential and summation fits to the

a094m280 light scalar ratio. There is reasonable agreement between them and we take

the exponential result as our “golden value” due to lower statistical error and systematics.

In Figure 6.26, the a127m285 fitting outcome is shown. The only successful fit is to the

two-state model. The matrix element extracted from Figure 6.26 is much higher than in

Figures 6.25a and 6.25b. The range of source-sink separations of the a127m285 two-state
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FIG. 6.25: We plot the a094m280 disconnected light data with two fits, one to an expo-
nential and one employing the summation method. The left plot has a tsep range of 12-14,
right one a range of 9-14. The χ2/d. o. f. are 1.33 and 1.47 for the respective left and right
figures.

fit was varied to check for a potentially misleading fit for a single range, however low

systematics were found, as indicated in Figure 6.26. We also show data of the strange

scalar charge from both ensembles.

Figures 6.27 and 6.28 show a similar story for the strange scalar charge as the light

one. For each ensemble, only one fitting form proved effective; exponential for a094m280

and two-state for a127m285. Once again, the a127m285 matrix element is much above

the a094m280 one. Both a127m285 fits were performed with the two-state model, it is

possible that this model does not predict the ground state matrix element well for the

scalar current. We were not able to produce two-state fits with reasonable reduced chi

squares for the a094m280 ensemble, so a direct comparison between methods on the same

data is not possible.

We point the reader to the next subsection, in which final answers for the renormalized

charges are quoted. There, we will show that the ratio of light-to-strange scalar charge
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FIG. 6.26: The a127m285 light scalar points are fitted with the two-state model. The fit
is fully covariant. The source-sink separations included are 4-12. The χ2/d. o. f. = 1.38.

is preserved well between the results of the two ensembles. Furthermore, the ratios of

the a127m285 light to a094m280 light and a127m285 strange to a094m280 strange scalar

charge are roughly equivalent.
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FIG. 6.27: The a094m280 strange scalar ratio is fitted to an exponential. The source-sink
separations included are 4-7. The fit is uncorrelated and χ2/d. o. f. = 0.94.
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FIG. 6.28: The a127m285 light scalar points are fitted with the two-state model. The fit
is fully covariant. The source-sink separations included are 4-12. The χ2/d. o. f. = 1.38.
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6.2.4 Renormalized charges

Renormalization constants for both ensembles were computed by the NME collabora-

tion in [63] using the RI-sMOM scheme matched to MS-bar at 2 GeV. We do not cover the

RI-MOM scheme here and refer the interested reader to [72, 73]. It should be noted that

these renormalization constants do not account for the mixing between light and strange

axial currents, however a separate study of axial-vector form factors on the a127m285 en-

semble have found this effect to be smaller than our statistical errors [74]. We choose fits

with the least systematics for each charge and multiply by ZA, ZS to give the final results.

Disconnected contributions to the light axial and scalar charges are given below.

light gtwo-state
A,a094m280 = −0.0473(93) (6.4)

light gexp
A,a127m285 = −0.0357(30) (6.5)

light gexp
S,a094m280 = 2.27(20) (6.6)

light gtwo-state
S,a127m285 = 8.04(101) (6.7)

The ensembles, labeled by lattice spacing and pion mass, are shown as subscripts and

the fit selections are superscripts. The final error quoted is obtained through standard error

propagation techniques on the error of the renormalization constant and corresponding

charge. As mentioned in the previous text, the axial charges from the two ensembles

are equal within error. The scalar charge shows a large difference, however. The matrix

elements (6.5), (6.6), (6.7) have been computed with roughly 10% error; (6.4) shows 20%

error. The strange axial and scalar renormalized charges are also computed on both

ensembles.
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strange gtwo-state
A,a094m280 = −0.0295(54) (6.8)

strange gtwo-state
A,a127m285 = −0.0279(51) (6.9)

strange gexp
S,a094m280 = 1.34(8) (6.10)

strange gtwo-state
S,a127m285 = 4.74(41) (6.11)

Similar to the light case, the strange axial charges between the two ensembles agree.

Correspondingly, the strange scalar charge of the a127m285 ensemble is much larger than

the a094m280 one. The strange axial charge values, (6.8) and (6.9) have both been obtained

with a little under 20% error. The strange scalar charge, (6.11) has been obtained with

10% error and (6.10) with nearly 5% error.

If we compute the ratio of the light-to-strange scalar charge for the two different

ensembles we get 1.694 and 1.696 respectively. Additionally, the ratios of the light-to-light

and strange-to-strange scalar matrix elements under the two ensembles (with the a127m285

values as the numerator) are 3.541 and 3.537 respectively. These strange scalar fits were

performed with different functional forms, additionally the nucleon two-point functions

from the two ensembles involved different smearing. Although this is not a rigorous test,

it serves as a consistency check in suggesting that the fits have captured the ground state

matrix element well and some other effect is affecting light and strange flavors across the

two ensembles. It is possible that this difference is due to unaccounted mixing between

light, strange, and gluonic contributions. In [75, 76, 53] it was pointed out that the most

straight forward calculation of the strange scalar charge from Wilson fermions produces

larger results than with other lattice formulations due to explicit chiral symmetry breaking.

This gives mixing between the light and strange scalar matrix elements for any finite lattice
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spacing, even in the chiral limit. Our current method of renormalization does not account

for this mixing, although a future study which does is forthcoming.

6.3 High-precision calculation of strange sigma terms

in light nuclei

Now, we present fitting results to the strange sigma terms of the proton, proton-proton

system, deuteron, and 3 He nucleus. The methodology for the quark loops computation

matches the preceding calculations already discussed. We begin with a brief description

of the lattice parameters of the calculation. Subsequently, we show fits for the zero-

momentum transfer scalar current of the proton-proton, deuteron, and 3 He, normalized

by the scalar charge of the proton to avoid issues of renormalization. Finally, we orga-

nize results for the different fitting procedures, quoting both statistical and systematical

uncertainty.

6.3.1 Lattice parameters and setup

Our analysis was carried out on a 323×48, β = 6.1 Clover improved Wilson ensemble

with csw = 1.24930970916466. This ensemble is at the SU(3)-symmetric point, with a

pion mass of mπ ≈ 805 MeV. It should be noted that although we label the following

calculations as the ratios of strange sigma terms, for this ensemble the results also represent

the disconnected light sigma terms due to the degenerate masses of the up, down, and

strange quarks at the SU(3)-symmetric point. The lattice spacing of this ensemble is

a ≈ 0.12 fm and mπL ≈ 15.7. One iteration of stout smearing with a weight of ρ = .125

was used in the fermion action. The measured configurations were separated by increments

of 10 from the updates in gauge evolution. The hadron two-point functions were measured
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over 416 forward and backward sources per configuration, on 508 configurations, resulting

in a massive 508× 416× 2 = 422656 number of measurements.

The large number of sources allowed us to overcome difficulties of large gauge noise

in the mult-hadronic particles. Before generating the sources, the spatial links were hit

with 10 iterations of stout smearing with ρ = 0.08. The hadron two-point functions were

smeared at the source and sink with 80 iterations of Gassian smearing with a width of

σ = 4.35. The hadron three-point functions were computed using (6.3). Since the scalar

matrix element has overlapping quantum numbers with the vacuum, the bubble diagram

was subtracted. In the next subsections we show fits to the scalar charge of the proton,

proton-proton, deuteron, and 3 He nucleus, labeled as “prot”, “pp”, “deut”, and “he3”.

6.3.2 Proton-proton

In order to extract the proton-proton matrix element, we do a jackknife resampling

of the pp three and two-point correlators and fit each sample with the ratio method from

Section 3.3. The same procedure is also done for the proton. Afterward, the ratio of the

extracted pp and proton scalar matrix elements is computed for each sample. This final

ratio is jackknife averaged, which gives the result we quote. Dividing the scalar charge of

pp by the proton’s cancels the scalar renormalization constant. Moreover, calculating the

ratio through resampling allows us to take advantage of correlations between the proton-

proton and proton correlators, possibly canceling identical systematics appearing in both.

Since we are normalizing the multi-hadronic particle’s matrix element with the pro-

ton’s, a naive expectation value for the pp matrix element is 2. However, while the loop

does in fact couple to twice as many quarks in the two-point correlator for pp in com-

parison to the proton, gluons are exchanged between these 6 quarks in a way that is not

possible with two isolated protons. This creates a binding effect. Hence, we expect a value
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slightly smaller than 2 due to this binding. The binding in the connected axial matrix

elements of light nuclei has been studied in [77]. We use the same fitting methods that

have been well established throughout this thesis.

TABLE 6.4: Proton-Proton/Proton Exponential Fit Result

Proton tsep PP tsep 6 8 PP tsep 7 8

4 8 1.952(38) 1.938(44)
5 8 1.918(34) 1.905(40)
7 8 1.895(32) 1.882(33)

TABLE 6.5: Proton-Proton/Proton Exponential Fit χ2/d. o. f.

Particle tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.17 0.47 N/A 0.35
PP N/A N/A 0.28 0.41

TABLE 6.6: Proton-Proton/Proton Summation Fit Result

Proton tsep PP tsep 5 8 PP tsep 6 8

6 8 1.937(72) 1.923(60)

Fitting results for the pp/proton ratio are given for three different fitting procedures

and various source-sink separations in Tables 6.4, 6.6, and 6.8. Additionally, Tables 6.5,

6.7, and 6.9 display the reduced chi squared for each type of fit and tsep range. If the

fit is fully correlated, the “covariant” label prepends the fit name. We remark that only

the two-state model results were reasonable under a covariant fit. Since the ratios are

taken for each sample and then jackknife averaged, we allow the proton and pp fits to vary

independently over different ranges of source-sink separation. Consequentially, we give

the results as a matrix of ratios, where the rows vary the proton fitting range, while the

columns vary the pp range. This matrix is not square, as some tsep ranges may work for

the proton, but not pp, and vice versa. It is expected that gauge noise in the proton will

137



TABLE 6.7: Proton-Proton/Proton Summation Fit χ2/d. o. f.

Particle tsep 5 8 tsep 6 8

Proton N/A 1.18
PP 0.70 1.12

TABLE 6.8: Proton-Proton/Proton Two-State Covariant Fit Result

Proton tsep PP tsep 3 8 PP tsep 4 8 PP tsep 5 8 PP tsep 6 8

3 8 1.879(37) 1.898(39) 1.904(39) 1.877(52)
4 8 1.856(39) 1.875(36) 1.881(37) 1.854(49)
5 8 1.858(41) 1.877(39) 1.883(35) 1.856(47)
6 8 1.831(66) 1.849(64) 1.856(63) 1.829(56)
7 8 1.775(99) 1.793(98) 1.799(97) 1.773(92)

be significantly less than in pp. Fitting ranges that are successful on one particle but not

the other are labeled as N/A in Tables 6.5, 6.7, and 6.9 for the respective case in which

they fail.

Inspecting Tables 6.4, 6.6, and 6.8, we find good agreement with our hypothesis of a

value slightly lower than 2 due to binding. For each fitting type, we select the tsep ranges

in pp and the proton that give a matrix element closest to all the others for that particular

form. This number is taken as the “representative” value of that fit and a systematic is

assigned based on the variance of that value with all the other ranges. Since only source-

sink separation ranges that produced reasonable results in terms of the reduced chi squared

and statistical error are shown, we find this as the most honest way to allot a systematical

uncertainty to our results.

The tsep ranges chosen for the proton are 5-8, 6-8, and 6-8 for the exponential, sum-

mation, and two-state fits respectively. The separations for pp are 6-8, 6-8, and 4-8,

correspondingly. The final ratios, based on these separations, are quoted in Section 6.3.5,

with systematical and statistical uncertainties. The results are also plotted. Since there

is a matrix of ratios for each fitting form, we plot only the tsep dependence of pp, keeping
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TABLE 6.9: Proton-Proton/Proton Two-State Covariant Fit χ2/d. o. f.

Particle tsep 3 8 tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.22 1.22 1.01 0.84 0.85
PP 1.22 1.18 1.13 1.11 N/A

the proton tsep fixed to the values given above.
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FIG. 6.29: The ratio of gS for the proton-proton divided by the proton is plotted. The
proton tsep is fixed at 5-8 for the exponential data and 6-8 for the summation method and
two-state model results. The tsep ranges of pp follow from Tables 6.4, 6.6, and 6.8.

In Figure 6.29, within statistical uncertainties, we see roughly equivalent values of the

scalar charge ratio between the three methods. The different data points for each fitting

type follow from the columns of their corresponding tables. The two exponential points

(blue) are from ranges 6-8 and 7-8, the two summation points (magenta) are from 5-8 and

6-8, and the two-state model points (red) cover 3-8, 4-8, 5-8, and 6-8. The errors for all

points plotted are under 10%.
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6.3.3 Deuteron

We repeat the same procedure from the former subsection for the deuteron. The ratio

of the deuteron three-point to two-point correlators is fitted on each jackknife sample. The

proton scalar charge is also extracted similarly. The ratio of the two scalar charges is taken

for each sample and then averaged. Once again, the expectation for this ratio is a little

less than 2 for the deuteron.

TABLE 6.10: Deuteron/Proton Exponential Fit Result

Proton tsep Deut tsep 4 8 Deut tsep 6 8 Deut tsep 7 8

3 8 1.950(25) 2.013(45) 2.007(53)
4 8 1.881(22) 1.941(39) 1.935(47)
5 8 1.848(23) 1.907(34) 1.902(42)
7 8 1.826(32) 1.884(32) 1.879(35)

TABLE 6.11: Deuteron/Proton Exponential Fit χ2/d. o. f.

Particle tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.17 0.47 N/A 0.35
Deut 0.84 N/A 0.30 0.67

TABLE 6.12: Deuteron/Proton Summation Fit Result

Proton tsep Deut tsep 4 8 Deut tsep 5 8 Deut tsep 6 8

6 8 1.956(65) 1.929(60) 1.914(61)

Tables 6.10, 6.12, 6.14 summarize results of the fits to the deuteron. The respective

reduced chi squares are given in Tables 6.11, 6.13, 6.15. Only the two-state model fits take

into account off-diagonal elements of the covariance matrix. We observe relatively similar

values to that of the pp ratio. As expected, the matrix elements are slightly below 2.

There is a greater range of source-sink separations with converging fits for the deuteron

exponential fit compared to the pp one (see Tables 6.4 and 6.10). However, the deuteron
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TABLE 6.13: Deuteron/Proton Summation Fit χ2/d. o. f.

Particle tsep 4 8 tsep 5 8 tsep 6 8

Proton N/A N/A 1.18
Deut 0.70 0.92 1.51

TABLE 6.14: Deuteron/Proton Two-State Covariant Fit Result

Proton tsep Deut tsep 3 8 Deut tsep 4 8 Deut tsep 5 8

3 8 1.884(42) 1.913(49) 1.916(49)
4 8 1.861(44) 1.890(44) 1.892(44)
5 8 1.863(46) 1.892(47) 1.894(42)
6 8 1.836(66) 1.864(63) 1.866(59)
7 8 1.780(99) 1.807(97) 1.810(94)

exponential fits fluctuate more, giving larger systematics. On the other hand, there are

more acceptable two-state model fits for the proton-proton as opposed to the deuteron,

seen in Tables 6.8 and 6.14. The two-state covariant fit appears to have smaller systematics

than the statistical errors.

We choose a single representative point of the fits, as described in Section 6.3.2 and

arrive at tsep ranges of 5-8, 6-8, 6-8 for the proton, corresponding to exponential, summa-

tion, and two-state results respectively. The deuteron source-sink ranges are 6-8, 5-8, and

4-8 correspondingly. We remind the reader that full results, including the systematics, will

be shown in the last subsection. The ratio of deuteron to proton scalar charges using the

static proton tsep ranges from above is plotted.

Figure 6.30 displays agreement of the scalar charge ratio between the three methods

within errors. The exponential points (blue) are from ranges 4-8, 6-8 and 7-8, the two

summation points (magenta) are from 4-8, 5-8 and 6-8, and the two-state model points

(red) go from 3-8, 4-8, and 5-8. In both Figures 6.29 and 6.30, the summation form

produces somewhat higher central values than the exponential and two-state methods.

141



TABLE 6.15: Deuteron/Proton Two-State Covariant Fit χ2/d. o. f.

Particle tsep 3 8 tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.22 1.22 1.01 0.84 0.85
Deut 1.11 1.05 1.04 N/A N/A
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FIG. 6.30: The ratio of gS for the deuteron to proton ratio is given. The proton tsep is
fixed at 5-8 for the exponential data and 6-8 for the summation method and two-state
model results. The tsep ranges of the deuteron are the columns of Tables 6.10, 6.12, and
6.14.

6.3.4 3 He

Finally, the zero-momentum transfer 3 He scalar matrix element is analyzed. Similar

to the other particles, we divide by the proton scalar charge. Since a 3 He particle is made

up of 3 hadrons, the naive expectation for its ratio with the proton is 3. We hypothesize

a value a little less than 3 because of binding.

In Tables 6.16, 6.18, 6.20 the extracted scalar charge ratio is given and in Tables

6.17, 6.19, 6.21 the corresponding reduced chi squares are shown. Just as the other cases,

the two-state model data are the only results from correlated fits. The 3 He scalar charge

divided by proton charge is a bit less than 3, confirming our expectations.
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TABLE 6.16: 3 He/Proton Exponential Fit Result

Proton tsep He3 tsep 4 8 He3 tsep 6 8 He3 tsep 7 8

4 8 2.640(246) 2.727(115) 2.645(133)
5 8 2.594(242) 2.680(110) 2.600(128)
7 8 2.563(237) 2.648(108) 2.569(123)

TABLE 6.17: 3 He/Proton Exponential Fit χ2/d. o. f.

Particle tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.17 0.47 N/A 0.35
He3 0.59 N/A 0.65 0.67

The gauge noise of the 3 He matrix elements is higher than that of the other two par-

ticles. Additionally, the binding appears stronger than in the proton-proton or deuteron.

The greatest number of tsep ranges for the two-state covaraint fit are achieved with 3 He.

However, the numbers drift downward as the minimum proton tsep is increased. Unlike the

previous two particles, the two-state model suffers from larger systematical uncertainties

than the other two methods. This can easily be seen visually, by comparing Table 6.20 to

Tables 6.16 and 6.18; we will give concrete values for the systematics in the forthcoming

subsection.

Just as for pp and the deuteron, a representative point is selected for each functional

fitting form. The proton tsep ranges are 4-8, 6-8, 6-8, while the 3 He ranges are 4-8, 6-8,

3-8, corresponding to the exponential, summation, and two-state methods. We plot the

3 He scalar matrix element using these values for the proton tsep. The different points in

the same color represent the varying 3 He source-sink separations

In Figure 6.31, we find equivalent answers within errors for all three fitting procedures.

The central values of the exponential and summation methods are close, the two-state fit

yields a lower ratio. Furthermore, the 7-8 point of the two-state fit (the last red point)

drops compared to the others, leading to a higher systematical uncertainty. 3 He is the only

143



TABLE 6.18: 3 He/Proton Summation Fit Result

Proton tsep He3 tsep 5 8 He3 tsep 6 8

6 8 2.718(177) 2.714(224)

TABLE 6.19: 3 He/Proton Summation Fit χ2/d. o. f.

Particle tsep 5 8 tsep 6 8

Proton N/A 1.18
He3 0.99 1.46

particle for which a stable fit was found for the 7-8 range. It is possible that although the

reduced chi squared for this range is reasonable, there is not enough data to fully capture

all the fitting parameters well, leading to an underestimate of the matrix element. Since

the chi squared is sensible however, we leave this point in when computing a “systematical

variance”. Final results for all the charges with systematical and statistical uncertainties

are given in the next subsection.
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TABLE 6.20: 3 He/Proton Two-State Covariant Fit Result

Proton tsep He3 tsep 3 8 He3 tsep 4 8 He3 tsep 5 8 He3 tsep 6 8 He3 tsep 7 8

3 8 2.568(98) 2.609(100) 2.638(95) 2.604(137) 2.384(82)
4 8 2.536(99) 2.577(98) 2.606(93) 2.572(132) 2.355(85)
5 8 2.539(99) 2.580(99) 2.609(92) 2.575(130) 2.357(86)
6 8 2.502(121) 2.542(119) 2.571(115) 2.537(132) 2.323(116)
7 8 2.426(158) 2.465(158) 2.493(155) 2.460(166) 2.252(152)

TABLE 6.21: 3 He/Proton Two-State Covariant Fit χ2/d. o. f.

Particle tsep 3 8 tsep 4 8 tsep 5 8 tsep 6 8 tsep 7 8

Proton 1.22 1.22 1.01 0.84 0.85
He3 1.25 1.17 1.15 1.20 1.19
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FIG. 6.31: The scalar charge of 3 He divided by the scalar charge of the proton is plotted.
The proton tsep is 4-8 for the exponential data and 6-8 for the summation method and
two-state model. The tsep ranges of the 3 He charge are the columns of Tables 6.16, 6.18,
and 6.20.
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6.3.5 Final results

We quote final estimates and errors for the ratios of strange gS by selecting fit ranges

which are closest to all other values for a particular form. For the uncorrelated exponential

fits, we choose the tsep ranges of 6-8 for proton-proton, 6-8 for the deuteron, and 4-8 for

3 He. The corresponding ranges for the proton portion of the fits are 5-8, 5-8, and 4-8

respectively.

gexp
S,pp/g

exp
S,prot = 1.918(30)(38) (6.12)

gexp
S,deut/g

exp
S,prot = 1.907(61)(34) (6.13)

gexp
S,he3/g

exp
S,prot = 2.640(58)(246) (6.14)

Above, the first error is due to systematic uncertainty and was computed by taking a

variance of the selected results with all other values shown in Tables 6.4, 6.10, and 6.16.

The square root of this variance is the error shown. The second error is the statistical

uncertainty. The systematics of the exponential fit is small for the proton-proton and

3 He. As Figure 6.30 confirms, the systematics of the deuteron exponential fit were large.

Final estimates of error from the uncorrelated summation fits were also computed.

gsummation
S,pp /gsummation

S,prot = 1.923(14)(60) (6.15)

gsummation
S,deut /gsummation

S,prot = 1.929(31)(60) (6.16)

gsummation
S,he3 /gsummation

S,prot = 2.714(004)(224) (6.17)

For the summation fits, tsep ranges of 6-8, 5-8, and 6-8 were taken for proton-proton,
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deuteron, and 3 He respectively. The matching proton fit ranges were all 6-8. Although

the statistical errors are slightly higher than in the exponential case, systematics of the

summation fits were incredibly small for all three particles.

Finally, systematics and statistical errors for the correlated fits with the full two-state

model are given. The proton tsep range was 6-8 for all 3 cases. The fit ranges for the

multi-hadronic particles were 4-8 for the proton-proton, 4-8 for the deuteron, and 3-8 for

3 He. Since the two-state model was the only fitting method that take full advantage of the

correlations in our data, we expect that it gives the most honest assessment of the errors in

our calculation. Systematics for the proton-proton and deuteron were under the statistical

error. Furthermore, for the two-hadron particles, the errors are completely compatible

with the summation method results. The 3 He matrix element had a larger systematic,

as seen in Table 6.20. Nevertheless, its value is consistent with the other fitting methods

within error.

gtwo-state
S,pp /gtwo-state

S,prot = 1.849(40)(64) (6.18)

gtwo-state
S,deut /gtwo-state

S,prot = 1.864(42)(63) (6.19)

gtwo-state
S,he3 /gtwo-state

S,prot = 2.568(106)(98) (6.20)

Although systematics varied, all three fitting forms produced compatible results within

the statistical uncertainty and systematical error we have assigned. We are able to com-

pute the proton-proton and deuteron ratios between 3-4%. The 3 He scalar charge was

obtained with an uncertainty of under 10% in all the fits. We are not aware of any other

calculations of disconnected diagrams in light nuclei and believe this computation is the

first. Furthermore, due to our massive number of measurements and novel algorithms, this

calculation is extremely precise.
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CHAPTER 7

Summary

In this work, we have introduced improved methods to compute the trace of a matrix

function and applied them to disconnected diagrams in Lattice QCD. We have studied the

effects of singular value deflation on trace estimation theoretically and experimentally on a

variety of matrices, both from QCD and from other fields. The synergistic combination of

hierarchical probing and deflation was used to compute light quark disconnected nucleon

observables on ensembles with two different lattice spacings. Additionally, these algorithms

were applied to the first calculation of strange sigma terms in light nuclei.

In our analysis of the effects of deflation, we introduced a model from [56] that re-

quires only the spectrum of singular values as input to capture the qualitative features

of variance reduction under complex Rademacher noise. The same examination was per-

formed with Gaussian noise, although no model was required and an exact study could be

conducted. We have demonstrated the robustness of our model and the rare property of

non-Hermitian matrices performing better under deflation than Hermitian ones. Addition-

ally, a comparison with deflated Gassuian noise and Z4 noise has been investigated. For

the matrices tested, we have found deflated Z4 to always perform better, be it sometimes
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marginally or substantially.

Additionally, the synergistic role between hierarchical probing and deflation was ex-

plored on matrices from Lattice QCD production runs. Over a factor of 60 variance

reduction was demonstrated when comparing to the basic Monte Carlo trace method.

Varying the size of the singular value space revealed an “optimal” number of deflation

vectors to use for a given color closing point. By totaling wallclock of our eigensolver and

trace estimator, we show little overhead for generating the deflation subspace.

We have applied deflated heirarchical probing to compute nucleon/nuclear matrix

elements using clover-improved Wilson fermions at pion masses ranging from≈ 300 MeV to

800 MeV. The accuracy of the trace per configuration was studied for nucleon axial, scalar,

tensor, and vector current matrix elements. We have found an extremely accurate trace

is required to minimize noise for the vector and tensor charges. The axial matrix element

necessitates a moderate accuracy of the trace and the scalar matrix element saturates with

a very small number of probing vectors.

An analysis of controlling excited state contamination and isolating the ground state

of the disconnected nucleon axial and scalar matrix elements followed. We obtained results

of -.0295(54) and -.0279(51) for the strange axial charge on two ensembles of varying lattice

spacing, with the caveat that our renormalization procedure did not account for mixing,

although this effect is expected to be below our statistical errors. The current value of the

strange axial charge from polarized deep inelastic scattering data is -.03(03); our results

show agreement and higher precision.

Finally, we computed the ratio of strange sigma terms in light nuclei to that of the

proton’s. These ratios are 1.849(40)(64), 1.864(42)(63), and 2.568(106)(98) for the proton-

proton, deuteron, and 3 He nucleus respectively, where the first error is systematical and

the second is statistical. The results are quoted based on the two-state model, however

other fitting methods yielded compatible values within error. We note the uncertainty of
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our calculation is small enough to be able to observe a significant binding effect of the

strange sigma terms in light nuclei.



APPENDIX A

Euclidean Gamma matrices

The Minkowski gamma matrices obey the Clifford algebra

{γµ, γν} = 2gµν , (A.1)

where the metric tensor is

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


.

Therefore, a Euclidean version of the γ matrices may be defined with the following rotation:
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γE1 = −iγ1

γE2 = −iγ2

γE3 = −iγ3

γE4 = γ0.

This yields new anti-commutation relations, in which the metric is the identity.

{
γEµ , γ

E
ν

}
= 2δµν (A.2)

These Euclidean γEµ matrices also allow for a γE5 to be defined based on the product

γE5 = γE1 γ
E
2 γ

E
3 γ

E
4 . (A.3)

It can easily be checked that γE5 anti-commutes with all the other γEµ matrices, and

that (γE5 )2 = 1. In the chiral representation, γE5 is diagonal, and the γEµ matrices take the

form of
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γE1 =



0 0 0 −i

0 0 −i 0

0 i 0 0

i 0 0 0


, γE2 =



0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


, γE3 =



0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


,

γE4 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


, γE5 =



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


.

In this explicit form it can also be readily verified that

γEµ = (γEµ )† = (γEµ )−1. (A.4)

More details of γ matrices can be found in [78].



APPENDIX B

Grassmann numbers

It is well known from Fermi statistics that the product of two fermion fields must be

antisymmetric with respect to their interchange.

ψ(m)α,aψ(n)β,b = −ψ(n)β,bψ(m)α,a (B.1)

Equation B.1 is true for fermions of different flavors and also of ψ and ψ̄. Therefore,

the fermionic degrees of freedom of any quantum field theory must be described by anti-

commuting numbers, or Grassmann numbers. Two Grassmann numbers satisfy the general

property

θ1θ2 = −θ2θ1. (B.2)

This indicates that the square of any Grassmann number is zero, θ2
1 = θ2

2 = 0.

Consequently, the space of possible functions is not very rich. Only linear and zeroth order

polynomials with respect to any Grassmann variable are permitted. The most general

polynomial that may be written for two Grassmann numbers is
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P = a+ b1θ1 + b2θ2 + cθ1θ2, (B.3)

where a, b, c, d are complex coefficients. Additionally, we introduce a partial derivative

with respect to θ1,

∂

∂θ1

P = b1 + cθ2. (B.4)

However, since the last term in (B.3) can be rewritten as −cθ2θ1, we conclude that the

derivative must also act like a Grassmann number in order to produce consistent results.

∂

∂θ1

θ2 = −θ2
∂

∂θ1

(B.5)

∂

∂θ1

∂

∂θ2

= − ∂

∂θ2

∂

∂θ1

(B.6)

∂2P

∂θ2
1

=
∂2P

∂θ2
2

= 0 (B.7)

Next we consider integration under Grassmann variables. For simplicity, we focus

temporarily on a function of only one Grassmann number.

f(θ1) = a+ bθ1 (B.8)

If f(θ1) is integrated with respect to θ1 over all space, the integral must be invariant

under shifts by a constant, θ1 → θ1 + θ2.

∫
dθ1(a+ bθ1) =

∫
dθ1(a+ bθ2 + bθ1) (B.9)

Since θ2 is arbitrary, this gives
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∫
dθ1 = 0 (B.10)∫

dθ1θ1 = 1, (B.11)

where in the second line we have enforced a normalization to give an answer pro-

portional to b for
∫
f(θ1). Notice that differentiation and integration with respect to a

Grassmann number are identical. It is trivial to extend the definition of the integral to

several variables.

∫
dNθθ1θ2...θN = 1 (B.12)∫

dNθ =

∫
dθNdθN−1...dθ1 (B.13)

Using these definitions we study a specific, but useful two-dimensional integral, a

Gaussian. This is evaluated easily by expanding the exponential in a Taylor series and

recalling that only up to linear Grassmann polynomials are non-vanishing.

∫
dθ̄dθe−θ̄aθ =

∫
dθ̄dθ(1− θ̄aθ) = a (B.14)

Let us now consider a Gaussian integral with two pairs of θ and θ̄.

∫
dθ1dθ̄1dθ2dθ̄2e

−θ̄1a1θ1e−θ̄2a2θ2 = a1a2 = elog a1+log a2 (B.15)

The result a1a2 may be viewed as the exponential sum of logs, or the determinant of

a diagonal matrix whose non-zero elements are a1 and a2. This gives a generalization to

Gaussian integration over many Grassmannian degrees of freedom.
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∫ N∏
k

dθkdθ̄ke
−θ̄iAijθj = eTr logA = detA (B.16)

Finally, this result may be applied to (3.10).

ZF [U ] =

∫
D[ψ, ψ̄]e−SF [ψ, ¯ψ,U ] =

∫
D[ψ, ψ̄]e−ψ̄D[U ]ψ = detD[U ] (B.17)

Above, we have suppressed all indices in favor of matrix/vector notation. Hence ZF [U ]

is known as the fermion determinant.



APPENDIX C

A closer look at conjugate gradient

The jth search direction in the conjugate algorithm is determined by

pj+1 = rj −
j∑
i=0

βi,jpi (C.1)

βi,j =
p†iArj

p†iApi
. (C.2)

However, the final form in Algorithm 3 reduces this sum to only the last term. Fur-

thermore, the expression for βj looks different from above and βjpj is added instead of

subtracted from rj to compute pj+1. To resolve these discrepancies, we begin by noting

that the current residual rj is

rj = Ax− Axj =
N∑

i=j+1

αiApi. (C.3)

Multiplying both sides by the dual of an arbitrary search direction pk, gives
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p†krj =
N∑

i=j+1

αip
†
kApi. (C.4)

For k ≤ j, all terms in the right-hand sum will be zero. This implies that p†krj = 0 un-

der the same condition, put simply the current residual is orthogonal to all previous search

directions. Furthermore, since previous residuals are made up of a linear combination of

previous search directions, this also suggests that the current residual is orthogonal to all

previous ones. We may exploit this orthogonality to derive the expression for αj used in

Algorithm 3.

r†j+1rj = 0

(b− Axj+1)†rj = 0

[b− A(xj + αj+1pj+1)]† rj = 0

r†jrj − αj+1(Apj+1)†rj = 0

αj+1 =
r†jrj

p†j+1Arj
(C.5)

We may substitute (C.1) for rj and remind the reader that all pi in the sum are

conjugate to pj+1.

αj+1 =
r†jrj

p†j+1Apj+1

(C.6)

Now all the ingredient are in place to demonstrate why all βi,j vanish for i < j. We

start by relating the next residual to the previous one.



160

rj+1 = rj − αj+1Apj+1

r†i rj+1 = r†i rj − αj+1r
†
iApj+1

Subsequently, the definitions for β and α are plugged into the right-hand side.

r†i rj+1 = r†i rj − αj+1βj+1,ip
†
j+1Apj+1

r†i rj+1 = r†i rj − βj+1,ir
†
jrj

βj+1,i =
r†i rj − r

†
i rj+1

r†jrj

βi,j =
r†jri−1 − r†jri
r†i−1ri−1

(C.7)

In the last step we have relabeled indices to obtain a simple expression for βi,j. It is

clear now that for i < j, the numerator of (C.7) is always 0 due to the orthogonality of

the residuals. Moreover, if i = j, only the second term survives.

βj,j = −
r†jrj

r†j−1rj−1

(C.8)

This matches the definition in Algorithm 3 and also clarifies the minus sign discrep-

ancy in computing pj+1. With this we have tied all loose ends of the conjugate gradient

algorithm.
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