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RESEARCH ARTICLE

The Kinome of Pacific Oyster Crassostrea
gigas, Its Expression during Development and
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Yanouk Epelboin1, Laure Quintric2, Eric Guévélou1¤, Pierre Boudry1, Vianney Pichereau3,
Charlotte Corporeau1*

1 Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, Laboratoire des sciences de l’Environnement Marin,
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France

¤ Current address: Aquaculture Genetics and Breeding Technology Center, Virginia Institute of Marine
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Abstract
Oysters play an important role in estuarine and coastal marine habitats, where the majority

of humans live. In these ecosystems, environmental degradation is substantial, and oysters

must cope with highly dynamic and stressful environmental constraints during their lives in

the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassos-
trea gigas represents a unique opportunity for a comprehensive assessment of the signal

transduction pathways that the species has developed to deal with this unique habitat. We

performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas,
according to their kinase domain taxonomy classification, and compared with kinome

already described in other animal species. The C. gigas kinome consists of 371 protein

kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases.

The absence of gene redundancy in some groups of the C. gigas kinome may simplify func-

tional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we
identified part of the kinome which may be central during development and may play a role

in response to various environmental factors. Overall, this work contributes to a better

understanding of key sensing pathways that may be central for adaptation to a highly

dynamic marine environment.

Introduction
The Pacific oyster Crassostrea gigas is a sessile marine invertebrate living in estuarine and inter-
tidal zones and is therefore exposed to dramatic environmental fluctuations. C. gigas is one of
the model species for aquaculture worldwide, but is also classified as invasive in many coun-
tries, reflecting its ability to establish populations in a broad range of environmental conditions.
Oysters must deploy multiple systems to cope with environmental changes, by adapting their

PLOSONE | DOI:10.1371/journal.pone.0155435 May 27, 2016 1 / 24

a11111

OPEN ACCESS

Citation: Epelboin Y, Quintric L, Guévélou E, Boudry
P, Pichereau V, Corporeau C (2016) The Kinome of
Pacific Oyster Crassostrea gigas, Its Expression
during Development and in Response to
Environmental Factors. PLoS ONE 11(5): e0155435.
doi:10.1371/journal.pone.0155435

Editor: Sebastian D. Fugmann, Chang Gung
University, TAIWAN

Received: January 4, 2016

Accepted: April 28, 2016

Published: May 27, 2016

Copyright: © 2016 Epelboin et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0155435&domain=pdf
http://creativecommons.org/licenses/by/4.0/


metabolic activities and transmitting danger signals to their defense systems [1] [2] [3].
Research dedicated to this species has grown significantly in recent decades [4] and C. gigas is
the first marine sessile bivalve for which the genome has been completely sequenced [5]. Nev-
ertheless, a universal understanding of its regulatory functions and interactions is still lacking.

Eukaryotes cope with their environments using a variety of mechanisms at different levels,
including physiological, biochemical and molecular processes. Among these processes, post-
translational modifications (PTM) have been described as one of the most important mecha-
nisms for activating, modifying or suppressing protein functions and for increasing the prote-
ome functional diversity [6]. PTMs change protein properties either by proteolytic cleavage or
by addition of a modifying group to one or several amino acids [7]. Protein modifications
include processes such as acetylation [8], methylation [9], or phosphorylation [10]. Protein
phosphorylation is known to play a central role in regulating the basic functions of all eukary-
otes, including DNA replication, cell cycle control, cytoskeletal rearrangement, cell movement,
gene transcription, protein translation, apoptosis, differentiation and energy metabolism [11].
This process is also required to mediate defense responses and complex interactions with the
external environment. The key enzymes that regulate protein phosphorylation and control cell
signal transduction are protein kinases. In humans, deregulation of protein kinases is often
associated with pathological states, and mutations in kinase genes are known to be involved in
apoptosis, inflammation, diabetes and cancer [12]. Based on genomic data from some model
species, protein kinases were identified as the largest superfamily of enzymes, representing
about 2% of the whole proteome [13]. They act by phosphorylating serine, threonine or tyro-
sine residues, to induce structural and functional modifications of the target proteins [14], and
modifying downstream target enzymatic activities, cellular localization and/or association with
regulatory proteins and factors.

The characterization of the kinome involves the identification and classification of protein
kinases, and has been performed previously in some species ranging from yeast to human
(results available at www.kinase.com) [15] [16] [17] [18]. A strong positive linear correlation
between kinome and proteome sizes has been described in model species, including human
Homo sapiens, the nematode Caenorhabditis elegans, the fly Drosophila melanogaster, the
amoeba Dictyostelium discoideum, and the yeast Saccharomyces cerevisiae [19]. Protein kinases
can be divided into two superfamilies based on the 250–300 amino acid sequences of their cata-
lytic domains and their kinase activity: (i) eukaryotic protein kinases (ePK) with a conserved
catalytic domain, and (ii) atypical protein kinases (aPKs) which have no structural similarity
with ePKs, but have been shown experimentally to display kinase activity [15].

The ePKs can be split into nine groups: AGC (cAMP-dependent protein kinase/protein
kinase G/protein kinase C extended), CAMK (Calcium/Calmodulin regulated Kinase), CMGC
(Cyclin-dependent Kinase and other close relatives), CK1 (Cell or Casein Kinase I), RGC
(Receptor Guanylate Cyclase), TK (Protein Tyrosine Kinase), TKL (Tyrosine Kinase Like), STE
(involved in mitogen-activated protein kinase cascade), and "others" characterized by lower
sequence similarities [20]. The AGC group contains protein kinases that are activated by sec-
ond messengers, such as the PKA (cAMP-dependent Protein Kinase), PKG (cGMP-dependent
Protein Kinase) or PKC (Protein Kinase C) families [21]. The CAMK group phosphorylates
serine and threonine residues preferentially near basic amino acids [22]. The CMGC group
mainly contains CDK (Cyclin-Dependent Kinase) families involved in cell cycle control and
MAPK (Mitogen-Activated Protein Kinase) families involved in signal transduction [23]. CK1
is a small group known to preferentially phosphorylate acidic regions [23]. The RGC group
includes receptors with an active guanylate cyclase domain that generates cyclic GMP (Guano-
sine Monophosphate) [24]. Kinases in the TK group phosphorylate specifically tyrosine resi-
dues, and play a role in signal transduction [25]. TKL are highly similar to TK and
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phosphorylate serine and threonine residues [13]. Receptor protein kinases in the TK and TKL
groups sense environmental stimuli and transfer signals from the cell membrane to the
nucleus, through the regulation of kinases that belong to the STE group. The STE group con-
tains protein kinases involved in signal transduction upstream of the MAPK family [26] [27].

Atypical protein kinases (aPKs) have been identified by biochemical methods and include
proteins known to be involved in the phosphorylation-mediated regulation of a wide variety of
cellular processes [28]. Many of these aPKs have been shown to bare significant structural
homology to ePKs despite their lack of sequence similarity, while others are structurally distinct
[13]. Some aPK families are conserved across numerous species, including prokaryotes, while
others are restricted to metazoans.

To date, little is known about the classification of protein kinases in lophotrochozoa, a little-
studied clade of bilaterian animals that includes marine bivalves. The recent availability of the
C. gigas genome [5] represents a unique opportunity for a comprehensive study of the kinome
in a species adapted to life in the intertidal zone, a stressful and highly dynamic environment.
In the present article, we describe the first genome-wide analysis of C. gigas protein kinases.
We identified, annotated and classified protein kinases in C. gigas according to their kinase
domain taxonomy, and compared the resulting kinome to those of other species.

Activation of protein kinases is mainly governed by post-translational modification, such as
rapid (within minutes) phosphorylation/dephosphorylation processes. However, long- term
(within hours) activation of kinases has been shown to induce modification of their gene
expression [29]. Analyses of mRNA expression levels of protein kinases has already been done
in widely-studied organism from yeast to humans, offering insight into signaling in unicellular
and multicellular organisms [16]. Data mining of transcriptome data [5] allowed us to analyze
specific expression of protein kinases during early development and in response to environ-
mental factors. Our study sheds light on the molecular signals that might be involved in the
adaptation of oysters to their environment.

Materials and Methods

Identification of ePKs and aPKs in the C. gigas genome
The identification of eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs) was
based on predicted proteins of Crassostrea gigas, as it was done similarly in Caenorhabditis ele-
gans [11], microsporidia species [19] and Dictyostelium [30]. C. gigas predicted proteins were
retrieved from version 9 of the complete genome and downloaded from NCBI (http://www.
ncbi.nlm.nih.gov/bioproject/PRJNA70283) [5]. Initially, putative protein kinases were detected
using a Hidden Markov Model (HMM) profile based on known ePKs, in order to screen the
26,086 predicted C. gigas proteins. To assess the first selection, we also identified protein
kinases using ePKs PFAM (PF00069) [31]. For the final catalog, we compared the annotation
as protein kinase (using HMM and PFAM) with the automatic annotation of the proteome [5]
using an in-house non-stringent E-value cut-off of 10−2. We carefully inspected all annotations
and were able to improve the annotation for 9 protein kinases in the proteome.

Classification
Crassostrea gigas ePKs and aPKs were classified into groups and families, based on the similar-
ity of their catalytic domains with other species, including human Homo sapiens, mouseMus
musculus [32], the sea urchin Strongylocentrotus purpuratus [17], the nematode Caenorhabditis
elegans [11], the fruit fly Drosophila melanogaster and the amoeba Dictyostelium discoideum
[30], all downloaded from Kinbase (http://www.kinase.com/kinbase). Proteins were classified
according to existing taxonomy by BLAST search with an E-value cutoff of 10−10. Some protein
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kinases with multiple conserved catalytic domains could be classified into different groups. In
this case, multiple sequence alignment was performed to infer a phylogenetic tree to allow us to
manually reclassify them into better fitting groups. Information about the 371 selected
sequences is provided as supplementary information (S1 Table): Genbank accession number,
classification (group/family/subfamily), query definition, best hit name and percentage of iden-
tity compared to other species with corresponding E-values.

Phylogenetic analysis
A phylogenetic tree was built using the C. gigas ePK domains using the neighbor joining
method. Sequences analysis was performed using the maximum likelihood method of PhyML
[33]. For the RGC group, a tree was built from protein sequences aligned against the entire
PF00069 domain with hmmalign [34], manually refined using Jalview [35], then significant
blocks were selected. The oyster RGC phylogenetic tree was inferred with the maximum likeli-
hood method of PhyML with 1000 bootstrap replicates, using the complete set of human,
urchin, nematode, fruit fly genes encoding RGC kinases, and insulin-related peptide receptor
(EKC21734.1) as outgroup. Both trees were visualized using the Figtree program (http://tree.
bio.ed.ac.uk/software/figtree).

Data mining of available RNA-seq data for C. gigas
Information regarding down and up-regulation of gene expression was extracted from C. gigas
RNA-seq data (49 bp single-end Illumina reads) available on the NCBI website [5]. Gene
expression levels were measured by RPKM (reads per kilobase per million mapped reads) [5].
To minimize the influence of sequencing depth between samples, the total read number was
normalized by multiplying a normalization factor [36]. This strategy introduces a scaling factor
called Trimmed Mean of M-values (TMM), which aims at representing the “global fold-
change” [36].

The RNA-seq data used were obtained from several developmental stages: egg, two cell
stage, four cell stage, morula, blastula, gastrula, trochophore, D-larva, umbo larva, pediveliger,
and two additional datasets consisting of spat (day 22 post fertilization) and juveniles (day 215
post fertilization) [5]. Genes encoding kinases with expression values< 1 RPKM were consid-
ered to be non-expressed.

Additional RNA-seq data, published by the same authors, were obtained from adult oys-
ters subjected to 8 types of environmental factors [5]. Differentially expressed genes were
detected using a method [37] which was constructed based on a Poisson distribution in order
to avoid the influence of sequencing depth and gene length [5]. Seven oysters were exposed
to different temperatures (5, 10, 15, 20, 25, 30 and 35°C) and gills were sampled after 12h and
7 days. Oysters maintained at 20°C were used as the control. Gills were collected at 7 days to
evaluate the impact of salinity on 7 oysters (5, 10, 15, 20, 25, 30 and 40 ppm), with a salinity
of 30 ppm as control. Fifteen oysters were exposed to air and gills and adductor muscles
were collected after 1, 3, 5, 7, 9, 10 and 11 days. Control oysters were placed in aerated seawa-
ter. For metal toxicity studies, gills and the digestive glands of 10 oysters exposed to zinc
(1 mg/L) were sampled at 0 and 12 h, and after 5, 7, 9 and 13 days. In another experiment,
gills and digestive glands were sampled in 4 oysters exposed during 12 h and 9 days to each
of the five metals (zinc at 1 mg/L; cadmium at 100μg/L; copper at 100μg/L; lead at 500μg/L;
mercury at 20 μg/L). Control oysters were kept in seawater at 20°C and salinity of 30 ppm
without metal addition [5].
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Results and Discussion

Overall description of the first marine bivalve kinome
The genome of C. gigas was used to construct an in silico proteome containing 26,086 single
encoded proteins. Among them, we generated a non-redundant set of 371 protein kinases (S1
Table) using the HMM profile and BLAST homology searches in metazoan model organisms.
The ePKs were then classified based on the known sequences of the catalytic region, together
with features of the non-catalytic accessory domains, since their modular architecture is pre-
dominant to define their biological roles even though it is conserved to varying degrees among
the ePKs [38] (Table 1).

The resulting kinome corresponds to 1.4% of the whole proteome. This result is consistent
with the correlation previously observed between kinome size and genome size [19]. Their evo-
lutionary position provides important information on the evolution of kinases in Lophotrocho-
zoa, a relatively distant group of species compared to those for which the kinome had already
been characterized. Assignments of C. gigas ePKs and aPKs to different groups, including data
from representative species, are shown in Table 1. In C. gigas (genome size: 557 Mb), we identi-
fied a total of 362 ePKs, a number close to the 329 identified in the sea urchin S. purpuratus
(genome size: 814 Mb) [17] [39], but different from C. elegans for which 434 ePKs (genome
size: 103 Mb) have been discovered [40].

Based on our classification of ePKs and aPKs (S1 Table), we then determined which protein
kinases were conserved between C. gigas and other species, and investigated their biological
functions. Phylogenetic analyses with metazoan ePKs were performed to validate the affiliation
of each oyster ePK (Fig 1). We showed that all ePKs were distributed into nine distinct classes,
as described in almost all available kinomes. Indeed, some fungal species including the yeast S.
cerevisiae have a reduced kinome with the loss of one or more groups (for instance the TK
group) [20] [41]. The nine ePK groups are present as a single cluster, although some protein
kinases were distributed in the phylogenetic tree into unexpected groups based on the BLAST
and HMM-based analyses. This may be due to the inherently imperfect nature of the heuristic
methods used to generate phylogenies [17]. Overall, the nine groups of ePKs are well

Table 1. Taxonomic distribution of protein kinases (ePKs, aPKs) in various species.

Oyster Yeasta Worma Drosophilaa Sea urchinb Humana

Group of
kinases

Crassostrea
gigas

Saccharomyces
cerevisiae

Caenorhabditis
elegans

Drosophila
melanogaster

Strongylocentrotus
purpuratus

Homo
sapiens

AGC 28 17 30 30 29 63

CAMK 51 21 46 32 50 74

CMGC 39 21 49 33 35 61

CK1 6 4 85 10 6 12

RGC 23 0 27 6 8 5

TK 70 0 90 32 53 90

TKL 40 0 15 17 35 43

STE 28 14 25 18 21 47

Other 77 38 67 45 92 83

aPK 9 15 20 17 24 40

TOTAL
Kinases

371 130 454 240 353 518

a data from [16]
b data from [17]

doi:10.1371/journal.pone.0155435.t001
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represented, with a distribution similar to sea urchin, worm, drosophila or even human
kinomes. The classification of 28 protein kinases remained ambiguous due to low sequence
similarity and high BLAST E-values, suggesting that they might correspond to oyster-specific
kinases. In S. purpuratus, 21 protein kinases with no family-level homologs in other organisms
were identified as urchin-specific and belong to the Other group [17]. The function of urchin-
specific protein kinases is unknown. They were shown to display weak expression during
embryo development, thus suggesting that these kinases should be mainly implicated in adult-
specific functions [17]. In C. gigas, another surprising feature of the oyster kinome is the large

Fig 1. A tree of theC. gigas ePKs superfamily. Phylogenic analysis of amino acid sequences of C. gigas ePKs domains by
neighbor joining. The tree is visualized with Figtree. The color blocks represent the nine groups of ePKs shown in this tree: AGC
(PKA, PKG, PKC containing), CAMK (Ca/Calmodulin-type), CMGC (CDK, MAPK, GSK, CDKL), CK1 (Casein kinases), RGC
(receptor guanylate cyclase), TK (tyrosine kinases), TKL (tyrosine kinase-like), STE and Others. The aPK superfamily was
excluded from this analysis.

doi:10.1371/journal.pone.0155435.g001
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number of protein kinases that belong to the RGC group. A detailed description of observed
similarities between kinomes of C. gigas and other species for the nine ePK groups, including
RGC and the aPKs, is presented below.

AGC group
Twenty-eight AGC kinases were found in C. gigas, representing 7.5% of its kinome. This is sim-
ilar to the number of AGC kinases described in the worm C. elegans (6.6%) and the sea urchin
S. purpuratus (8.2%), but lower than in Drosophila and human (12.5%) (Table 1). AGC kinases
have been well described in humans, with roles in signal transduction networks and an influ-
ence on a large range of biological responses [21]. Specifically, they are involved in growth fac-
tors, insulin and lipid signaling, and are linked to G protein coupled receptors. In C. gigas, the
AGC group (28 members) contains all the families and subfamilies existing in the metazoan
lineage, but has fewer members as compared to human (63 members). Interestingly, several
members of the AGC group are represented by a single ortholog, in contrast to humans that
have multiple redundant isoforms. C. gigas has only one protein kinase AKT (Protein kinase B)
(while there are three in human and two in sea urchin) and one p70S6K (2 in human; 1 in sea
urchin). In mammals, AKT was shown to be a protooncogene regulated by the lipid tyrosine
kinase phosphatidylinositol 3 kinase (PI3-K) functioning as a cell survival signal to protect
cells from apoptosis, and p70S6K controls the rate of protein translation during growth. Target
studies of mRNA expression showed that these functions might be conserved in C. gigas,
because AKT is regulated during gametogenesis [42] and p70S6K is involved in insulin signal-
ing [43]. Insulin receptor, RAS, PI3-K and PDK1, all act as upstream activators of AKT, that is
inducing cell survival. Each of these components of the PI3-K/AKT pathway is conserved in C.
gigas, providing a powerful system for understanding cell survival signal in response to stress.

We also identified one animal-specific YANK (yet another novel kinase) (while there are
four in human and one in the sea urchin) with unknown function. A detailed classification of
AGC in C. gigas is provided in S1 Table.

CAMK group
Fifty-one CAMK kinases were identified in C. gigas, covering all families and subfamilies
described in human (74 CAMK) and in the sea urchin (50 CAMK) (Table 1). Calcium-medi-
ated signaling plays crucial roles in vertebrates during fertilization, embryonic development,
signal transduction (through MAPK signaling), protein secretion, transport and memory [22]
[44]. The C. gigas kinome includes five MLCK (Myosin Light Chain Kinases), that phosphory-
late the regulatory light chain of sarcomeric myosin [45], and four MARK (Microtubule Asso-
ciated Kinases) that play roles in cytoskeletal organization and microtubule dynamics [46]. A
similar number of TSSK (testis-specific serine/threonine-protein kinases) has been identified
in C. gigas. TSSK are known to play an important role in spermatogenesis in humans [47]. In
another marine bivalve, the Peruvian scallop Argopecten purpuratus, the mRNA of one TSSK
was shown to be differentially expressed depending on the maturation stage, sex and tissue
analyzed, suggesting a potential function of TSSK in reproductive mechanisms [48].

In the AGC group we identified the catalytic subunit α of the 5’-AMP-activated protein
kinase (AMPK). AMPK is an heterotrimeric kinase composed of a catalytic α-subunit and two
regulatory subunits, β and γ. Interestingly, each of the AMPK subunits are encoded by a single
gene in C. gigas [42]; the absence of redundancy simplified functional studies of AMPK in this
species. The protein kinase AMPK is a key regulator of cell energy metabolism in eukaryotes
[49]. As it is the case for almost all kinases, AMPK activation is regulated at the post-transla-
tional level through its phosphorylation, and C. gigas AMPKα has conserved the characteristic
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threonine 172 active site, as well as the binding domain for regulatory β and γ subunits [50]. In
mammals, AMPK is activated by metabolic stresses such as glucose deprivation, oxidative
phosphorylation, ischemia, and hypoxia [51] [52]. In C. gigas, the activation of AMPKα con-
trols metabolism during gametogenesis [42] and is activated in response to environmental-
stress, for example 6h of hypoxia [53] or 14 days of exposure to low concentrations of pesti-
cides [54]. In another bivalve, the freshwater mussel Elliptio complanata, AMPKα has been
proposed as a biomarker of in situ short-term contamination [55].

CMGC group
Thirty nine CMGC in C. gigas are distributed between all families and subfamilies described in
humans (61 members) [13] as well as in the sea urchin (35 members) [17] (Table 1). The CDK
(Cyclin-Dependent Kinase) andMAPK (Mitogen-Activated Protein Kinase) families represent
around 70% of this group. We identified the three major MAPK cascades in C. gigas represented
by ERK, p38MAPK and JNK, known to be crucial in cell signal transduction [56]. In another
bivalve, the musselMytilus galloprovincialis, the p38 MAPK and JNK signaling pathways are acti-
vated in response to various environmental stressors, such as temperature or heavy metals, leading
to regulation of apoptosis [57] [58]. C. gigas also has five members of the DYRK (Dual specificity
Tyrosine Regulated Kinase) family that play key roles in cell proliferation and apoptosis induction
in response to stress such as DNA damage [59]. The C. gigas kinome includes one casein kinase
CK2 known to be involved in the response to oxidative stress inM. galloprovincialis [60] and the
regulation of carbohydrate metabolism [61]. In the CMGC group, GSK-3β is present as a single
ortholog andmight be a key regulator of gonadal development [62], as demonstrated in the Portu-
guese oyster, Crassostrea angulata [63]. In C. gigas, MAPK signaling is also mainly implied in
maintaining metaphase I arrest in oocytes [64].

CK1 group
The Crassostrea gigas kinome contains six proteins of the CK1 group, including four isoforms
of casein kinase 1 and two isoforms of TTBK (Tau-tubulin kinase). CK1 and TTBK are
involved in diverse cellular processes, including membrane trafficking, circadian rhythm, cell
cycle progression, chromosome segregation, apoptosis, cell division, DNA repair, and cellular
differentiation [65]. CK1 is the smallest group of protein kinases in most of the species for
which the kinome has been identified [66], with four members in budding yeast, and six in
human and C. gigas. Surprisingly, in C. elegans, 87 CK1 were characterized, and it was hypothe-
sized that this huge diversification might be an adaptation allowing enhanced DNA repair in
response to excessive exposure to environmental stressors and mutagens [11].

RGC group
RGC kinases are single-pass transmembrane receptors and have a catalytically inactive kinase
domain, but an active guanylate cyclase domain that catalyzes the synthesis of cyclic GMP
from the energy carrier GTP (Guanosine triphosphate) [67]. These receptors are activated by
external ligands such as Atrial, Brain Ventricular and C-type Natriuretic Peptides (ANP, BNP,
VNP and CNP), which are endocrine hormones involved in cardiovascular and osmoregula-
tion systems in vertebrates [68] [69]. The RGC group is particularly abundant in C. gigas with
23 protein kinases, i.e. 15 more than in the sea urchin and 18 more than in human. This is one
of the most remarkable aspect of C. gigas kinome. A phylogenetic analysis of RGC protein
kinases was performed to better characterize this group in C. gigas (Fig 2). We identified eight
oyster-specific RGCs that differ from the expanded RGC group of C. elegans (Fig 2) and corre-
spond to a single homolog in sea urchin. As in C. gigas, RGC kinases are also particularly
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Fig 2. Phylogenetic analysis ofC. gigasRGC kinases. This tree was generated from RGC domain amino acid sequences
from several species (Red:C. gigas, Purple: S. Purpuratus, Green:C. elegans, Blue:H. sapiens, Black: D.melanogaster), using
the PhyMLmaximum likehood program and visualized with Figtree. A protein kinase from the TK group was used as outgroup
(Insulin-related peptide receptor [CgEKC21734.1]). Corresponding maximum parsimony (MP) bootstrap values are shown on
each branch.

doi:10.1371/journal.pone.0155435.g002
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abundant in C. elegans (27 members) and this particularity is not observed in other species (Fig
2). Interestingly, in C. elegans, RGC kinases have been associated with a worm-specific sensory
receptor system [70] involved in alkalinity sensing [71], olfaction and odor sensing [72]. C. ele-
gans RGCs have also been described as salt receptor proteins [73]. In C. gigas, little is known
about the function of RGCs. In the American oyster Crassostrea virginica, the peptides binding
RGCs have been characterized in gills [74] [75], where their expression levels were reduced
under low salinity [76]. The high number of RGC protein kinases could be an adaptation of C.
gigas living in a highly dynamic marine environment. It would therefore be interesting to deter-
mine whether the RGC group also plays a role in the oyster sensory receptor system.

TK group
In C. gigas, the TK group contains 70 ePKs representing 19% of its kinome. Evolutionarily, this
group appears to be the youngest of the kinase groups, as it is absent in plants and unicellular
organisms like the amoeba Dictyostelium discoideum or the yeast S. cerevisiae [16] [77]. Each
TK family is classified either as a membrane receptor (21 families) or as a cytoplasmic tyrosine
kinase (11 families) [77]. The C. gigas kinome contains 40 TK receptor and 30 cytoplasmic TK
(S1 Table). These are key components for the relay of extracellular signals into the cell.

TK receptors are involved in various biological processes, including growth, development and
immunity [78]. In C. gigas, nine TK families exist as single isoforms (Ret, insR, Ryk, Sev, CCK4,
Trk, LmR, VEGFR, PDGFR), including insulin-related peptide receptors involved in growth regu-
lation [79] and EGFR. The EGFR signaling module has been highly conserved throughout the
course of evolution [80]. EGFR is a cell-surface receptor that plays key roles in growth and cellular
proliferation, whose function is dependent on the diversity of EGFR ligands, such as epidermal
growth factor or transforming growth factor α [81]. EGFR activates several signal transduction
cascades that can regulate DNA synthesis, cell proliferation, differentiation, adhesion, migration
and apoptosis and in mammals, EGFR contributes to the maturation of epithelial tissues, axon
regeneration, wound repair and regeneration. In C. elegans, the EGFR network plays a central
developmental role, determining the fate of several types of cells [81]. In Drosophila, a unique
EGRF participates in gametogenesis, segmentation, wing and eye development [82]. In C. gigas,
the ligand binding domain of the gene encoding EGFR exhibits a poor sequence similarity with
human EGFR [83]. Based on its expression level in C. gigas and functional analysis, both in C.
gigas and in a mouse cell line, it was demonstrated that C. gigas EGFR plays a role in cell migration
during wound healing of mantle and conserves the ability to activate cell proliferation [83].

Cytoplasmic TKs are involved in oxidative, temperature or osmotic regulation [84] [85]
[86]. In our classification, five TK were considered as TK-unique in C. gigas based on compari-
sons with ePK domains from other species. In this study, we highlighted the fact that C. gigas
shares an expansion of the Src family with the sea urchin. In S. purpuratus, this is required for
egg activation [87] and was considered to be echinoderm-specific [17]. Like the sea urchin and
Drosophila, C. gigas lacks the Axl kinase receptor that is involved in hematopoiesis in mam-
mals [88]. In the C. gigas kinome, the most represented TK subfamily is FERs, with eight mem-
bers, whereas the sea urchin and Drosophila have just a single member and the worm, in
contrast, possesses 38 FERs. In C. elegans, FRK1 is a FER that is essential for morphogenesis
and differentiation of the epidermis during embryonic development [89]. The putative role of
FER in oyster development remains to be investigated in C. gigas.

TKL group
The TKL group contains 40 ePKs representing 10% of the C. gigas kinome, which is similar to
Drosophila, sea urchins and humans. Four TKL were classified in unique families based on
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domain comparisons with ePK domains from other species. The seven major families of the
TKL group that have been identified in other species are present in the oyster kinome. MLK
(Mixed Lineage Kinases) and RAF families are known to be sensitive to a wide range of stress-
ors and are involved in MAPK signaling [90]. MLKL subfamilies in C. gigas are present as sin-
gle homologs. Six members of LRRK (Leucine rich repeat kinases) were found in C. gigas, three
in the sea urchin and one in C. elegans. In Drosophila and C. elegans, overexpression of LRRK
induced neurodegeneration and modulated mitochondrial function [91] [92] [93]. In C. gigas,
functional studies were performed on several TKL in the transforming growth factor β (TGF-
β) pathway. Some receptors were characterized (activin-like receptors) [94] [95], including the
TGF-β receptor [96] and the Bone Morphogenetic Protein Receptor (BMPR1) [97]. The role of
the TGF-β signaling pathway was also described in germinal cell proliferation [98] [99] and
immunity [100].

STE group
Twenty-nine protein kinases were classified in the STE group in the C. gigas kinome. This
group contains the components of the cellular signal transduction upstream of MAPK and
includes three families: STE20 (MAP4K), STE11 (MAP3K) and STE7 (MAP2K). Generally,
MAP4K activates MAP3K, which activates MAP2K, which finally activates MAPK [101]. The
MAPK signaling pathway is crucial in eukaryotes for response to stress and signaling into the
cell [102]. The 11 subfamilies of STE20 and five subfamilies of STE11 existing in metazoans are
present in the C. gigas kinome, as in the sea urchin. In contrast to humans, members of the
STE11 family are present as single orthologs, except for MEKK4 which has two orthologs in C.
gigas. Sea urchins and oysters have the same number of STE7 protein kinases (MEK3, MEK4,
MEK5 and MEK7), known to be dual specificity protein kinases because they phosphorylate
their target MAPK on both the threonine and tyrosine residues. Surprisingly, the MEK5/ERK5
signaling pathway was considered to be secondarily lost by protostomes [103]. Here, we show
that C. gigas possesses MEK5 (STE group) and ERK5 (CMGC group), suggesting that the
MEK5/ERK5 signaling pathway exists in Lophotrochozoa and is therefore not deuterostome-
specific. The existence of all the components of the MAPK signaling pathway in C. gigasmay
reflect its ability to be receptive and cope with environmental factors as reported in C. elegans
[11]. Moreover, as suggested for the sea urchin and C. elegans [17] [18], the Pacific oyster
should be a good species for investigating MAPK pathways, as the absence of redundancy
would simplify functional studies.

The “Other” group
The “Other” group includes 77 protein kinases and constitutes the largest group in C. gigas
(21% of the kinome), as in the sea urchin (26%) and Drosophila (19%) (Table 1). Similarly to
other species, their ePK domains do not fit into any of the other major groups described above.
Various protein kinases, such as Mos (Moloney murine sarcoma kinase), SgK071 (serine/thre-
onine Kinase-like domain containing 1) and Topk (Lymphokine-activated killer T-cell-origi-
nated protein kinase), were not found by HMM searches, but were identified using BLAST
searches. However, C. gigas lacks the KIS (Kinase Interacting Stathmin), a kinase involved in
advanced functions of the nervous system [104]. In the Other group, some families are espe-
cially well represented, such as the IKK (Inhibitor of nuclear factor Kappa B Kinase) with 11
members. They share structural and functional properties with their mammalian homologs
and play a central role in cell signaling through Nuclear Factor-Kappa B (NF-Kappa B) [105].
NF-Kappa B is involved in the toll-like receptor pathway in innate immunity in oysters and
other bivalve mollusks [3]. We also identified the Protein Kinase R (PKR) in this group, which
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is involved in the antiviral response [106]. The NEK (NIMA-related serine/threonine Kinase)
family is abundant, with 19 members in the C. gigas kinome as opposed to 11 (NEK1 to
NEK11) in humans. In vertebrates, several NEK have an important role in controlling the cell
cycle by contributing to the establishment of the microtubule bundle [107]. They are also
important for cellular repair and recovery from DNA damage [108] [109]. This high number
of NEKs might reflect an adaptation of oysters living in a highly dynamic marine environment
to cope with DNA damage.

Atypical protein kinases
Regarding the atypical protein kinases, it was surprising to discover that C. gigas had fewer
members than other species studied in kinome comparisons. For example, the Pacific oyster
has nine aPKs, whereas 15 are present in yeast, 17 in Drosophila, 20 in the worm, 24 in the sea
urchin and 40 in humans. This group contains a number of lipid, sugar, and other small-mole-
cule kinases. Indeed, the oyster atypical kinases were assigned to the alpha, RIO or PIKK (Phos-
phatidyl inositol 3’ kinase-related kinase) families. These proteins play a role in DNA repair
and cell-cycle progression, but their functions in marine invertebrates remain unknown. The
atypical protein kinases are now classified in the PKL (Protein Kinase-Like) group and share
common structural features with protein kinases.

Expression of protein kinases during development
Transcriptomes from developmental stages in C. gigas were obtained from RNA-seq (49 bp
single-end Illumina reads) on a total of 250,000 zygotes maintained at 26°C and salinity around
30 ppm [5]. They provide valuable resources for studying protein kinase expression, in order to
determine which kinases could be involved in the differentiation of cell types from egg to juve-
nile. These transcriptomes were obtained from 38 biological samples representing three major
developmental processes: cleavage, gastrulation and organogenesis. In this analysis, a threshold
of 1 RPKM was used to classify genes as expressed or not (S1 Table). Our results show that
more than 70% of the kinome was expressed during early development in C. gigas (Fig 3).
Indeed, 70% of the kinome was expressed in eggs, 74% in embryos at the end of the cleavage
(blastula stage), 77% at the end of the gastrulation, 83% in trochophore larvae, 88% in D-larvae,
90% for umbo larvae, 91% for pediveliger larvae, then 91% in spat and the maximum of 93% in
juveniles (Fig 3). The lowest percentage of kinome was expressed at the 4-cell stage (68%; Fig
3) and might reflect a basal activity of weakly expressed genes, whose RPKM is close to the
threshold of 1. From egg to metamorphosis, protein kinase genes belonging to all the classified
groups in C. gigas were expressed, but not from all subfamilies (S1 Table). Not surprisingly, the
kinases associated with spermiogenesis, such as TSSK in the CAMK group, were weakly
expressed since maturation had not occurred either in spat nor in juveniles (S1 Table).

Embryogenesis corresponds to the process by which the embryo forms and develops. It
starts with the fertilization of the egg cell and is followed by mitotic divisions, known as cleav-
age, leading to a late embryo called morula. From egg to juvenile, all the aPK genes are
expressed, suggesting their involvement in all stages of the developing embryo. Almost all
genes belonging to CMGC group, including MAPK signaling, were expressed in eggs (92%;
Table 2). During cleavage, three more CMGC genes were expressed, suggesting their implica-
tion during the first mitotic divisions: two CDK7 (Cyclin-Dependent Kinase 7) and DYRK2
(Dual-specificity tYrosine phosphorylation Regulated Kinase 2). In various species including
the gastropod Haliotis asinina, CMGC kinases including MAPK signaling are crucial in pat-
terning and establishing axial symmetry during embryogenesis [102]. We can hypothesize that
the expression of all representatives of CMGC group in C. gigas from egg to morula might
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reflect their conserved roles in the organization of the symmetry in oyster embryos. Gastrula-
tion follows the cleavage stages and is characterized by cell movements resulting in a massive
reorganization of the embryo from a simple spherical ball of cells, the blastula, to a multi-lay-
ered organism, the gastrula. During gastrulation, many of the cells at or near the surface of the
embryo move to a more interior location. We identified several protein kinase genes belonging
to different ePK groups that start to be expressed during gastrulation: PKCα, LRRK, PKG,
HUNK, BRSK, DCAMKL, QIK, MEKK2 and GCN2 (S1 Table). They may be involved in con-
volution and differentiation of the cells into different dermal layers. In the frog Xenopus laevis,
the different isoforms of protein kinase PKC are associated with Wnt signaling, leading to con-
vergent extension movements [110]. LRRK2 is also involved in Wnt signaling in vertebrates
[111]. PKG (c-GMP dependent protein kinase) is expressed during gastrulation of the medaka
fish Oryzias latipes and is necessary to maintain embryo development by phosphorylating tar-
gets of SHH (Sonic Hedgehog), a crucial pathway for embryogenesis in vertebrates [112].
These pathways linked with gastrulation processes might thus be conserved between verte-
brates and invertebrates.

In C. gigas, after gastrulation, organogenesis starts with the development of the larva
(trochophore, D-shape, umbo and pediveliger) involving cell reorganization until metamor-
phosis. Some protein kinase genes start to be expressed and belong to several groups: the
CAMK group, with CASK (Calcium/calmodulin-dependent Serine protein Kinase) and MLCK
(Myosin Light-Chain Kinase), the STE group with YSK (Yeast Sps1/Ste20-related Kinase 4)

Fig 3. Number of protein kinases genes expressed duringCrassostrea gigas development.Number of ePK and aPK genes
expressed duringCrassostrea gigas development (% of total 371 protein kinases). The development stages were grouped
according to the following: cleavage begins from the two cell stage to blastula, gastrulation is from blastula to gastrula stages.
Genes with expression values < 1 RPKMwere considered to be non-expressed.

doi:10.1371/journal.pone.0155435.g003
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and MKC (Metastatic Kidney Cancer), and some members of NEK families in the Other group
(S1 Table). Because their mRNAs are expressed from the first steps of the cleavage, MLCK and
NEK might belong to the regulation of the early development in C. gigas. MLCK was shown to
be crucial to larval settlement of the intertidal barnacle Balanus amphitrite, by modulating
muscle contraction and motility of larvae [113]. MLCK is also involved in axon pathway for-
mation in Drosophila embryos [114]. NEK proteins were identified in mammals as necessary
for the development of the nervous system [107].

Metamorphosis is an important step, transforming larvae into spat with a reorganization of
most larval organs to form a juvenile oyster with its definitive organs. We identified 3 protein
kinase genes belonging to the TK group, Syk (Spleen tyrosine kinase), Tie (tyrosine kinase with
immunoglobulin-like and EGF-like domains) and Csk (C-Src kinase) that start to be expressed
between the pediveliger larval stage and spat (S1 Table). We can hypothesize that these tyrosine
kinases might participate in the regulation of metamorphosis. Indeed, in the bryozoan Bugula
neritina and the barnacle Balanus amphitrite, a tyrosine kinase inhibitor was shown to prevent
metamorphosis [115].

Expression of protein kinases under environmental stressors
We performed an in silico analysis to identify down- and up-regulated kinases genes in oysters
subjected to 8 different potential sources of stress: temperature, salinity, exposure to air, and to
five metals (cadmium, copper, mercury, lead and zinc) [5]. Among the 371 genes encoding
protein kinases, we found that 177 genes (48% of the C. gigas kinome) were differentially

Table 2. Number and percentage of ePK and aPK genes expressed duringCrassostrea gigas development.

Expressed genes

Group Total genes Egg Cleavage Gastrulation Trochophore larvae D larvae Umbo larvae Pediveliger larvae Spat Juvenile

AGC 28 25 25 28 28 28 28 28 28 28

89% 89% 100% 100% 100% 100% 100% 100% 100%

CAMK 51 36 38 39 43 43 42 43 43 44

71% 75% 76% 84% 84% 82% 84% 84% 86%

CMGC 39 36 39 39 39 39 39 39 39 39

92% 100% 100% 100% 100% 100% 100% 100% 100%

CK1 6 5 6 6 6 6 6 6 6 6

83% 100% 100% 100% 100% 100% 100% 100% 100%

RGC 23 4 5 6 12 15 16 18 15 13

17% 22% 26% 52% 65% 70% 78% 65% 57%

TK 70 42 44 43 48 53 59 59 63 63

60% 63% 61% 69% 76% 84% 84% 90% 90%

TKL 40 25 27 30 31 36 37 36 39 39

63% 68% 75% 78% 90% 93% 90% 98% 98%

STE 28 22 24 25 27 27 28 28 27 28

79% 86% 89% 96% 96% 100% 100% 96% 100%

Other 77 56 59 61 65 71 70 72 72 75

73% 77% 79% 84% 92% 91% 94% 94% 97%

aPK 9 9 9 9 9 9 9 9 9 9

100% 100% 100% 100% 100% 100% 100% 100% 100%

The development stages were grouped according to the following: cleavage begins from the two cell stage to blastula, gastrulation is from blastula to

gastrula stages.

doi:10.1371/journal.pone.0155435.t002
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expressed under at least one factor relative to the compared condition (Table 3). This corre-
sponds to around 3% of the 5,844 genes identified from transcriptome datasets that were mod-
ulated (up or down-regulated) by these factors [5].

Exposure to air is a serious stressor, causing hypoxia and leading to a decrease of ATP con-
centration in the hemolymph [116]. Among the different potential sources of stress, air expo-
sure affected the expression of the largest number of protein kinase genes (110), corresponding
to 30% of the oyster kinome (Table 3). Interestingly, three genes of the CK1 group were under-
expressed following exposure to air (Table 3) without being affected by any other stressors (Fig
4). The highest numbers of differentially expressed genes under exposure to air were found in
the TK (11 up-regulated, 12 down-regulated) and Other (23 down-regulated) groups (Table 3).
Given the expected roles of TK and NEKs (in the Other group), the regulation of cell growth,
differentiation, proliferation, cell-cycle or apoptosis might be modified by exposure to air.

Thermal stress triggered changes in the expression of 53 protein kinase genes (Table 3), cor-
responding to 14% of the C. gigas kinome and 7% of the 776 differentially expressed genes
identified in the transcriptome data [5]. The response of C. gigas to thermal stress includes
inhibition of apoptosis, stabilization of protein conformation and protein refolding [117]. Sev-
eral genes in the TK and Other groups were up or down–regulated and we can hypothesize

Table 3. Number and percentage of ePK and aPK genes up- and down-regulated under environmental stressors.

Differentially expressed genes under stressors

Group Total genes Exposure to
air

Temperature Salinity Cadmium Copper Mercury Lead Zinc

Up Down Up Down Up Down Up Down Up Down Up Down Up Down Up Down

AGC 28 1 3 0 0 0 1 0 0 0 0 0 0 0 0 2 1

4% 11% - - - 4% - - - - - - - - 7% 4%

CAMK 51 1 15 2 5 2 3 0 1 0 0 0 2 1 0 2 3

2% 29% 4% 10% 4% 6% - 2% - - - 4% 2% - 4% 6%

CMGC 39 1 16 3 5 2 0 0 1 0 1 0 1 1 1 3 0

3% 41% 8% 13% 5% - - 3% - 3% - 3% 3% 3% 8% -

CK1 6 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

- 50% - - - - - - - - - - - - - -

RGC 23 1 5 1 0 0 0 1 0 0 0 0 1 0 0 2 0

4% 22% 4% - - - 4% - - - - 4% - - 9% -

TK 70 11 12 9 3 5 2 5 1 2 1 5 1 6 0 17 4

16% 17% 13% 7% 7% 3% 7% 1% 3% 1% 7% 1% 9% - 24% 6%

TKL 40 1 9 1 4 5 1 3 0 0 4 0 2 3 1 7 4

2% 23% 3% 10% 13% 2% 8% - - 10% - 5% 8% 3% 18% 10%

STE 28 2 4 0 0 0 0 0 1 0 1 0 0 0 0 4 0

7% 14% - - - - - 4% - 4% - - - - 14% -

Other 77 0 23 5 12 7 6 2 6 0 0 4 4 3 12 12 5

- 30% 6% 16% 9% 8% 3% 8% - - 5% 5% 4% 16% 16% 6%

aPK 9 0 2 0 2 0 2 0 0 0 2 0 0 0 1 2 0

- 22% - 22% - 22% - - - 22% - - - 11% 22% -

Total 371 18 92 21 31 21 15 11 10 2 9 9 11 14 15 51 17

Transcriptome data were obtained by RNA-seq, normalized, and differentially expressed genes were detected using a referenced statistical method

constructed based on a Poisson distribution [5]. Eight types of stressors are shown (exposure to air, temperature, salinity, and to 5 metals: cadmium,

copper, mercury, lead and zinc).

doi:10.1371/journal.pone.0155435.t003
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that the functions of these kinases can be modulated by a temperature stress in oysters. The
PI3K (Phosphatidylinositol-4,5-bisphosphate 3-Kinase)/AKT/mTOR (mechanistic target of
rapamycin) pathway was shown to be involved in the oyster’s response to chronic thermal

Fig 4. Group-level comparison of ePK and aPK genes up and down-regulated under environmental stressors. (A) Up-
regulated protein kinases. (B) Down-regulated protein kinases. Pie charts depict the proportion of the protein kinases group, and the
total number of pie is presented in Table 3. The absence of a pie chart means no regulation was observed.

doi:10.1371/journal.pone.0155435.g004
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stress during three months [118]. In contrast, we observed that none of the genes from the
AGC group, including AKT kinase, responded to 12 hours or 7 days of thermal stress. Simi-
larly, we showed that none of the mRNA encoding STE kinases were differentially expressed
after thermal stress, although MAPK signaling was previously shown to be activated for signal
transduction in stress conditions [57] [58] [101]. Actually, the absence of gene regulation
might not necessarily reflect the absence of function, since protein kinases are known to be
mostly activated at the post-translational level.

Estuaries are characterized by variations in salinity due to rainfall and tides. Organisms like
C. gigas are subjected daily to these variations and have developed mechanisms to adapt their
behavior by closing their shells and ceasing to feed when exposed to low-salinity water [119].
Variations in salinity changed the expression of 35 protein kinase genes (Table 3), correspond-
ing to 9.5% of the C. gigas kinome and 3% of the 1024 differentially expressed genes identified
in the transcriptome data [5]. Based on our classification, we showed that protein kinase genes
differentially expressed under the salinity constraint were mainly associated with the regulation
of metabolism, cytoskeletal organization, and immune response (S1 Table). In the CAMK
group, hyposalinity changed the expression of 3 MLRK genes (2 up-regulated; 1 down-regu-
lated) (S1 Table). MLRK are known to be myosin light chain kinases associated with the passive
elasticity of muscle. Our results suggest reorganization of cytoskeletal components during
hyposalinity. Five kinases from TK group (Csk, Met, Eph and Ror, Fer) were up-regulated in
response to hyposalinity (Table 3), indicating that variations of salinity could modulate the cell
adhesion and communication, signal transduction and cytoskeleton organization in C. gigas. In
TK group, hyposalinity up-regulated 1 Fer (S1 Table), a protein kinase known to be involved in
signaling and regulation of cell-cell interactions [120], as already observed in C. gigas under
salinity stress [121].

In the Other group, the gene encoding PKR (protein kinase R) was up-regulated in response
to hypersalinity and down-regulated in response to hyposalinity (S1 Table). In C. gigas, over-
expression of the PKR gene has been associated with a protective antiviral immune response
against Ostreid herpesvirus (OsHV-1 μvar), induced by polyinosinic: polycytidylic acid (Poly I:
C) injection [106] [122]. In mammals, the activation of PKR is one of the mechanisms permit-
ting early blocking of viral replication via inhibition of protein synthesis [123] and activation
of autophagy [124]. The PKR gene in C. gigas is homologous to vertebrate ISG (interferon stim-
ulated gene) and plays a role in pathogen recognition and activation of innate immunity [122].
Taken together, modulation of PKR by salinity might indicate that salinity could have an
impact on the ability of C. gigas to resist to viral infections.

Oysters living in coastal environments that suffer from human expansion may also be
exposed to anthropogenic contaminations, such as heavy metals [125]. Heavy metal exposure
changed the expression of 96 mRNA encoding protein kinases (S1 Table), corresponding to
26% of the C. gigas kinome and 9% of the 1024 differentially expressed genes identified in the
transcriptome data [5]. With the exception of the CK1 group, genes encoding kinases in all
ePK groups responded to heavy metal exposure (Fig 4). Heavy metal exposure modulated the
expression of genes that mainly belong to TK, TKL and Other groups (Table 3; Fig 4). Most of
these TK genes were up-regulated, and we can hypothesize that changes in TK expression
could reflect that heavy metals can interfere on growth hormone regulation, as observed in fish
[126].

Conclusion
The characterization of the C. gigas kinome and the identification of differentially expressed
protein kinases was made possible thanks to the recently published oyster genome and a rich
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transcriptome datasets. The C. gigas kinome might have an original evolutionary position,
because the number, classification and distribution of protein kinases is closer to deutero-
stomes (sea urchin and human) than to protostomes (nematode and fly). Kinase gene redun-
dancy in the C. gigas kinome concerns about 30% of the genes. The lack of redundant protein
kinases isoforms in several groups suggests that the Pacific oyster C. gigas could be a good spe-
cies for the development of functional research dealing with protein kinases, for example, to
study developmental processes, given that most protein kinases are expressed during the first
stages of embryogenesis. Here we also identified the kinases that are mobilized in the Pacific
oyster to deal with changes in temperature or salinity, with exposure to air, and after contami-
nation by heavy metals, as well as during development. We provide new insights into the key
pathways that may be crucial for adaptation to life in a highly dynamic environment.
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S1 Table. Identified Crassostrea gigas protein kinases. Genbank accession number, classifica-
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expression induced by stressors. Y: yes. U: up-regulation. D: Down-regulation.
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