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Created mangrove wetlands store 
belowground carbon and surface 
elevation change enables them to 
adjust to sea-level rise
Ken W. Krauss  1, Nicole Cormier1, Michael J. Osland  1, Matthew L. Kirwan  2, Camille L. 
Stagg1, Janet A. Nestlerode3, Marc J. Russell3, Andrew S. From1, Amanda C. Spivak4, Darrin D. 
Dantin3, James E. Harvey3 & Alejandro E. Almario3

Mangrove wetlands provide ecosystem services for millions of people, most prominently by providing 
storm protection, food and fodder. Mangrove wetlands are also valuable ecosystems for promoting 
carbon (C) sequestration and storage. However, loss of mangrove wetlands and these ecosystem 
services are a global concern, prompting the restoration and creation of mangrove wetlands as 
a potential solution. Here, we investigate soil surface elevation change, and its components, in 
created mangrove wetlands over a 25 year developmental gradient. All created mangrove wetlands 
were exceeding current relative sea-level rise rates (2.6 mm yr−1), with surface elevation change of 
4.2–11.0 mm yr−1 compared with 1.5–7.2 mm yr−1 for nearby reference mangroves. While mangrove 
wetlands store C persistently in roots/soils, storage capacity is most valuable if maintained with future 
sea-level rise. Through empirical modeling, we discovered that properly designed creation projects may 
not only yield enhanced C storage, but also can facilitate wetland persistence perennially under current 
rates of sea-level rise and, for most sites, for over a century with projected medium accelerations in sea-
level rise (IPCC RCP 6.0). Only the fastest projected accelerations in sea-level rise (IPCC RCP 8.5) led to 
widespread submergence and potential loss of stored C for created mangrove wetlands before 2100.

Mangrove wetlands occupy 83,4951 to >137,000 km2 of coastline2, 3, providing ecosystem services for millions of 
people4. Loss of these services is a global concern5, including the efficiency with which tidal wetlands sequester 
carbon (C) as persistent biomass in soils6–9. Creation, restoration, and rehabilitation of tidal ecosystems, such as 
mangrove wetlands, are important components of climate change mitigation strategies for coastal societies glob-
ally5, in part because of C storage in roots and soils10, 11. Mangrove wetlands are also capable of adjusting their soil 
surface elevations adaptively with sea level to help influence their course along populated coastlines, as long as 
sea-level rise rates are not too high and the mangrove ecosystem itself remains relatively healthy12.

Successful restoration of mangrove wetlands can be undertaken using several techniques, but in southern 
Florida, USA, often begins by mechanically grading or modifying shorelines to a known intertidal elevation to 
facilitate natural tidal flooding, followed by planting or relying on natural recruitment of mangrove trees13. In 
some cases, projects might simply involve breaking down physical shoreline barriers to restore tidal connectiv-
ity14; however, at times more careful consideration of biogeochemical conditions is necessary to ensure success-
ful restoration. In tropical and sub-tropical regions, herbaceous macrophytes, once established, can facilitate 
the trapping of mangrove propagules where there is a local propagule supply from surrounding forests15–17. As 
mangrove wetlands develop, sediment deposition, leaf and branch litter fall, sediment retention, emergent root 
structure, belowground root volume expansion and contraction, and organic matter decomposition all contrib-
ute to soil surface elevation change12, 18. However, created mangrove wetlands must adjust soil surface elevations 
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with sea-level rise, or at least at rates high enough to facilitate community development that coincides with the 
appropriate time scale of targeted benefits.

Surface elevation change for natural mangrove wetlands ranges from −5.8 to 6.3 mm yr−1, a rate that reflects 
a balance between vertical accretion of sediments (range from 0.7 to 20.8 mm yr−1) and sub-surface change from 
compaction, decomposition, and/or root zone expansion (range from −19.9 to 2.8 mm yr−1)12, 19, 20. Yet, man-
grove wetlands often experience surface elevation deficits (that is, sea-level rise >surface elevation change) as 
a response to natural geomorphic evolution or as a result of anthropogenic impact. For example, nearly 69% of 
mangrove wetlands included in a recent meta-analysis from the Indo-Pacific were actively submerging naturally, 
but with some sites, such as coastal Vietnam, submerging at a higher rate as a consequence of reduced sediment 
delivery from comprehensive damming of rivers21. Nevertheless, coastal wetlands have a natural capacity to adjust 
to rising sea level that scientists are just beginning to understand, leading to the suggestion that extreme coastal 
wetland loss scenarios may be overstated for some natural tidal wetlands22. We know even less about sea-level rise 
influences on created mangrove wetlands, but often we assume long-term persistence when scoping the benefits 
of climate change mitigation projects.

Tracking soil surface elevation change in created mangrove wetlands over time is critical to assess the 
longer-term resilience of created mangrove wetlands to sea level, but reliable observations are few. Young man-
grove tree roots recolonizing a denuded site in Sydney Harbor, Australia, facilitated soil volume expansion and 
mineral sedimentation to yield a small soil surface elevation increment (2.9 mm yr−1)23; however, inter-annual 
variability in rainfall also exerted influence over surface elevation processes such that the influence of mangrove 
forest maturity was slightly obscured in this analysis23, 24. Mechanistically, increased mangrove plantation den-
sity can facilitate surface elevation increases through vertical accretion of sediments, retention of deposited 
sediments, and root growth25, 26. Decomposition rates of leaves and roots can be species-specific and slower in 
restored sites compared to natural mangrove forests27. Thus, it is not surprising that surface elevation change as 
high as 9.9 mm yr−1 has been recorded in at least one mangrove wetland site restored 14–17 years previously27; a 
rate much higher than typically found in older, natural mangrove wetlands12, 19. Other restoration activities, such 
as re-establishing hydrologic connectivity, have resulted in more modest elevation gains (e.g., 2.5 mm yr−1 in the 
Hunter River, Australia)28.

Following restoration, early gains in surface elevation may eventually decline, or even reverse, as soils compact 
and organic matter decomposes over time. Certainly, one would not expect a surface elevation change rate of 
9.9 mm yr−1 (ref. 27) to be maintained perennially. Indeed, soil organic matter, total nitrogen, and redox potential 
increased with stand age until approximately 11 years in Rhizophora mucronata plantations in the Philippines, 
and subsequently began to level off with progressive stand maturity29. Despite rapid initial soil development, 
these plantations were estimated to not reach full maturity until approximately 25 years29. Documenting surface 
elevation developmental processes over a range of mangrove wetland ages in relation to sea-level rise has not been 
attempted anywhere in the world.

Here, we assessed surface elevation change (also referred to recently as vertical land motion, VLMw, of the 
wetland soil surface20), vertical accretion of sediments, and sub-surface change (that is, either shallow subsid-
ence from root zone compaction or swelling from root zone expansion) over a five-year period in 18 tidal man-
grove wetlands – nine created and nine reference – spanning the geographic range of Tampa Bay, Florida, USA 
(Supplementary Figure 1). The created mangrove wetlands were originally established as tidal salt marshes, which 
transitioned naturally to mangrove forests over time; research assessments were established for C storage deter-
mination in July 201010. At the time of the first surface elevation change measurements in February 2011, sites 
ranged in age from 2.4–20.2 yr. Ages at the date of the last measurement reported herein (January 2016) ranged 
from 7.3–25.1 yr. Sites also differed slightly in elevation (NAVD88) (Supplementary Table 1) and land use his-
tory10, and were projected to reach functional equivalency to adjacent natural forests in soil bulk density, organic 
matter, C, and nitrogen in 19–25 years10, in close agreement with restoration timelines established for mangrove 
wetlands in the Philippines29.

Tampa Bay represents the largest open-water estuary in the State of Florida, with intertidal wetlands com-
posed of both salt marshes and mangroves. Tides are characterized as lower microtidal (<1 m tidal range), and 
newly created salt marshes (Spartina alterniflora) overtopping sands are naturally colonized by combinations of 
three mangrove species native to the region: Rhizophora mangle, Avicennia germinans, and Laguncularia race-
mosa. The order of colonization by these species is somewhat variable, but mixed mangrove communities often 
develop on these sites30.

Results and Discussion
Drivers of surface elevation change in created mangrove wetlands. We suspected that root zone 
processes would be critical in influencing the surface elevation trajectories on created mangrove wetland sites. 
We discovered that not only were there no statistical differences between deep surface elevation change measure-
ments (insertion depth of ~8.7 m; see Materials and Methods) versus shallow soil surface elevation change meas-
urements (insertion depth of 50 cm) (Fig. 1a; P = 0.344, F test), but also shallow SET measurements explained 
68–75% of the variation in deep SET response. This suggests that the majority of surface elevation change over 
our measurement period was constrained within the top 50 cm of soil, reiterating a fundamental role for root 
zone processes in influencing surface elevation patterns in Caribbean mangrove wetlands31. Thus, the root zone, 
which is credited for contributing to C gain in mangrove wetland soils11, was responsible for a large percentage 
of observed surface elevation change – including loss and gain – suggesting that mangrove wetland creation 
for C sequestration and sea-level rise resilience may be compatible goals into the foreseeable future. A different 
process, vertical accretion of sediments, influenced surface elevation change strongly on reference sites (R = 0.81, 
P = 0.008, F test), but not significantly on created sites (R = 0.63, P > 0.05, F test) (Fig. 1b), while the opposite 
held for sub-surface change (Fig. 1c). Sub-surface change influenced surface elevation change on created sites 
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Figure 1. Sedimentation and soil drivers of surface elevation change. Relationship between shallow surface 
elevation change (a), vertical accretion of sediments (b), sub-surface change (c), soil C content (d), soil bulk 
density (e), and soil total nitrogen content (f) with surface elevation change from created mangrove wetlands 
compared with co-located reference mangrove wetlands in Tampa Bay, Florida, USA. Symbols represent means 
(±SE, bi-directional) of average responses by site, with soil samples (d–f) representing the average from three 
plots per site.
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(R = 0.92, P < 0.001, F test) but not on reference sites (R = 0.24, P > 0.05, F test). Overall, vertical accretion of 
sediments ranged from 3.7 to 9.1 mm yr−1, and sub-surface change ranged from a compaction rate of −3.8 mm 
yr−1 to a root zone expansion rate of 4.9 mm yr−1 (Fig. 2; site pairings, actual means, and standard errors are 
summarized in Supplementary Table 2). Sustained increases in surface elevation as created mangrove wetlands 
progressed in age over 25 years was driven by a greater capacity for sub-surface expansion than vertical accretion 
of sediments as sites aged.

Subsurface expansion during the early successional period likely reflects volume expansion from fine and 
coarse root accumulation, as was also documented in Belizean mangrove wetlands31, which overshadowed driv-
ers of shallow subsidence typical of mature forests, such as compaction, root mortality, and decomposition12. 
Development of an organic soil would be a stronger prerequisite for documenting compaction than deposition 
of pliable mineral sediment in many newly developing mangrove wetland sites. However, tidal wetlands range 
widely in their reliance on mineral versus biogenic influences to maintain surface elevation gain as they respond 
to sea-level rise. Soil C, bulk density and total nitrogen concentrations, though sometimes auto-correlated, had no 
influence on surface elevation change for created or reference mangrove wetlands in Tampa Bay (Fig. 1d–f); how-
ever, we expect that this will change over time. Several studies have defined variable relationships between vertical 
accretion of sediments and surface elevation change from natural mangrove wetlands31–33, suggesting mineral 
sedimentation, root zone, and soil hydration dynamics as co-drivers of surface elevation change. While soil C 
and total nitrogen concentrations increased10, 31 and soil bulk density decreased10 as mangroves developed in new 
areas in the Philippines and Florida, it is noteworthy that newly created mangrove wetlands had a tendency to 
accrete sediments at very high rates initially25–27, followed by later reductions as root-based soils, or peats, were 
formed, decomposed, and compacted.

Central to surface elevation control on these created mangrove wetlands over time was a shift from the influ-
ences of root zone expansion and vertical accretion of sediments for younger mangrove wetlands as new roots 
occupied soils to an increased influence of shallow subsidence and compaction in comparison to reference sites, 
and as created mangrove wetlands aged. This is also depicted as higher bulk density values for created mangrove 
wetlands versus corresponding reference mangrove wetlands of much greater age (Fig. 1e). While vertical accre-
tion of sediments was very high on some created mangrove wetland sites (up to 7.8 mm yr−1), rates were not 
higher than reference sites overall (up to 9.1 mm yr−1) (P = 0.588, F Test), suggesting regional control on vertical 
accretion of sediments21. However, comparative rates of vertical accretion of sediments between created man-
grove wetland sites and paired reference mangrove wetlands (within 0.1–2.5 km of each other) were sometimes 
disparate (Fig. 3a), indicating that in some cases, either local delivery of sediments or the influence of specific root 
characteristics influenced surface elevation change and may need consideration during placement of future man-
grove wetland creation projects globally. With the strong relationship between vertical accretion of sediments and 
surface elevation change for reference mangrove wetlands (Fig. 1b), and the developing relationship for created 

Figure 2. Summary of surface elevation change as related to vertical accretion of sediments versus sub-surface 
change. Sites are arranged by decreasing rates of surface elevation change. Stacked bars depict the contribution 
of vertical accretion of sediments and sub-surface change (root volume expansion or compaction) to surface 
elevation change for nine created mangrove wetlands (Cr) versus nine co-located reference mangrove wetlands 
(Ref) in Tampa Bay, Florida, USA. Symbols for surface elevation change represent mean (±SE) response per 
site, or the cumulative contribution of surface accretion combined with sub-surface change. Identical numbers 
identify created (Cr) and reference (Ref) site pairings.
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mangrove wetlands, positioning projects closer to sources of sediments may affect more rapid early control of sur-
face elevation change. Some mangrove wetlands depend strongly on sedimentation to influence surface elevation 
change34, 35. Also, all three mangrove species produce different root types (i.e., prop roots versus different types of 
pneumatophores), which can influence deposition, retention, and compaction of sediments36.

Figure 3. Characteristics of vertical accretion of sediments and surface elevation change. Vertical accretion 
of sediments (a) and surface elevation change (b) comparisons for created mangrove wetlands versus their 
paired reference sites depict a differential reliance on drivers of surface elevation change. Solid blue lines (a,b) 
represent a 1:1 relationship for x and y axes. Vertical accretion of sediments (c) and surface elevation change 
(d) versus age for created mangrove wetland sites (as in January 2016) relative to naturally established reference 
mangrove wetland response indicates the trajectory of development toward natural forest condition. Symbols 
(a,b) represent means (±SE, bi-directional) of average vertical accretion of sediments or surface elevation 
change response by site, and means (±SE) of vertical accretion of sediments (c) or surface elevation change (d) 
along the age gradient.
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Mangrove wetland creation, carbon, and current sea-level rise. Over the first 20 years of devel-
opment, these mangrove wetlands in Tampa Bay accumulated C in the top 10 cm of soil at a rate of 218 g C 
m−2  yr−1 (ref. 10); therefore, even with little initial capacity for storage of C at depths below 10 cm, C storage 
paced the 99–226 gC m−2 yr−1 reported for tidal wetlands globally8, 37, 38. Over the ensuing five years, surface eleva-
tion change on these same created mangrove wetland sites averaged 7.2 mm yr−1 (±2.9, SE), or roughly 2.7 times 
current sea-level rise for Tampa Bay. Surface elevation change rates are elevated initially, but settle over time to 
rates closer to reference mangrove wetlands (Fig. 3d). The higher rate of surface elevation change was influenced 
greatly by the expansion of the root zone on created mangrove wetland sites (Fig. 4a), which pushes up on the soil 
surface from the amassing of subaerial root material as vegetation colonizes and develops on these new sites18. 
The sheer density of aerial roots and herbaceous shoot structures, which expand in diameter just at the soil sur-
face and position fine roots to retain deposited sediments, also influence surface elevation gain36, 39. For example, 
root volume expansion was responsible for 1.2 to 10.8 mm yr−1 of surface elevation change in a low-sediment 
Caribbean carbonate system31. The capacity for positive surface elevation change was much stronger for created 
mangrove wetlands than their corresponding reference forests; although this was not predictable through pol-
ynomial regression (R2 = 0.23, P > 0.05, F test) (Fig. 3b). Persistent root zone expansion was replaced over two 
decades by a greater reliance on mineral deposition to offset root zone compaction, or subsidence, as created 
mangrove wetlands developed further with age. Surface elevation change for reference mangrove wetlands in 
Tampa Bay averaged 3.9 mm yr−1 (±1.7, SE), which was much less than observed for the created mangrove wet-
lands (P < 0.001, F test), and only 1.5 times higher than current sea-level rise (Fig. 4b). Thus, while vertical accre-
tion of mineral sediments remained similar on created versus reference sites, root zone expansion was replaced by 
root zone compaction over time. In keeping with this trend, bulk density also decreased with created mangrove 
wetland age to approximate natural forests in 25 years10, reflecting the greater compaction capacity over time as 
greater organic fractions contributed to soil structure.

Experimental manipulations of mangrove tree plantings in Sri Lanka suggest much wider application of our 
results from Tampa Bay. There, Rhizophora mucronata plantation densities were manipulated in order to relate 
surface elevation dynamics, vertical accretion of sediments, and vegetation influences25. Vertical accretion of 
sediments related positively to seedling density, and increased for approximately two years, leveling off as sur-
face elevation change (that is, roughly equivalent to shallow surface elevation change in our study) reached a 
threshold elevation between vertical accretion of sediments and root zone expansion. Soils were not yet com-
pactable and influenced strongly by root in-growth, somewhat like our younger created mangrove wetlands in 
Tampa Bay. Furthermore, the mix of marsh grass (Spartina alterniflora), forbs (for example, Batis maritima), and 
mangrove seedlings of various species (R. mangle, A. germinans, and L. racemosa) and colonization trajectories, 

Figure 4. Surface elevation change, vertical accretion of sediments, and root zone expansion versus subsidence. 
Root zone expansion as the primary driver of surface elevation change on created mangrove wetlands (a) is 
contrasted to shallow subsidence, or root zone compaction, as the primary driver of surface elevation change on 
reference mangrove wetlands (b) in Tampa Bay, Florida, USA. Cartoons depict cross-sections of representative 
created versus reference mangrove wetlands, including average tree heights and relative influence of the root 
zone. Symbols represent means (±SE) of the nine created mangrove wetlands and nine reference mangrove 
wetlands over five years of monitoring.
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growth rates, and sizes on created mangrove wetlands in Tampa Bay potentially contributed to overyielding of 
belowground volume increment (and positive surface elevation change), as has also been demonstrated in young 
mangrove wetland restoration sites in Kenya40. Root growth can be prolific as mangrove seedlings grow in close 
association, influencing surface elevation change through facilitated accretion and root volume expansion at 
higher densities (up to ~7 seedlings m−2)26. The degree to which such influences level-off is unknown, but based 
on the trajectory of surface elevation change development for created mangroves in Tampa Bay versus reference 
mangrove wetland surface elevation change response, that shift might occur around 25 years (Fig. 3c,d), corre-
sponding nicely to well-described measures of biomass increases in mangrove forestry41, 42.

Curiously, some tidal wetlands can accumulate C in soils while simultaneously experiencing surface elevation 
deficits. One example includes tidal freshwater forests, which from several locations along the south Atlantic 
coast of the U.S., accumulate C in soils at rates of 49–82 g C m−2 yr−1, while simultaneously remaining quite sus-
ceptible to sea-level rise43. Based upon an empirical model presented in Lovelock et al.21, which considers tidal 
range, intertidal position, and local surface elevation deficit, many tidal wetlands might yet be around for several 
additional centuries even with surface elevation deficits of 2–4 mm yr−1; tidal range, intertidal position, and the 
rate of local sea-level rise are key. The tidal range for Tampa Bay is only 0.67 m44, which might limit migration 
capacity for mangrove wetlands by restricting the intertidal area and forcing a greater reliance on in-situ surface 
elevation gains. How might a reduction in surface elevation change as created mangrove wetlands develop over 
time influence long-term susceptibility to sea-level rise in Tampa Bay? Simplistically, surface elevation change is 
higher than current sea-level rise for Tampa Bay (Fig. 4); however, this comparison excludes IPCC projections 
of increased rates of sea-level rise into the future45 and assumes a static elevation devoid of known biogenic 
feedbacks among vegetation productivity and vertical accretion of sediments as influenced by the elevation of 
the wetland relative to current sea level46. Such direct comparisons using linear relationships can overestimate 
wetland change22, justifying the use of modeling to answer this question fully.

Modeling: future perspectives assuiming accelerated sea-level rise. We considered two sea-level 
rise acceleration scenarios: a medium acceleration (0.55 m by 2100; IPCC RCP 6.0) and a high acceleration 
(0.74 m by 2100; IPCC RCP 8.5). All 18 mangrove wetland sites – created and reference – were considered dur-
ing modeling scenarios; increases in site elevation (NAVD88) relative to sea-level rise occurs as either a sur-
plus or deficit over time, such that for the latter, drowning might occur related to the capacity for maximum 
surface elevation change recorded from these sites. For the medium sea-level rise scenario (RCP 6.0), only a 
single site is projected to be lost by 2052 (Fig. 5a), demonstrating the importance of vertical position within 
the intertidal frame at the beginning of simulations21. This site had the lowest starting elevation of −0.1265 m 

Figure 5. Modelled year of submergence versus starting elevation (m NAVD88) for two accelerated sea-level 
rise scenarios. Projected year of submergence versus site elevation as a continuous (a) and discrete (b) function 
for medium sea-level rise projections (dashed line, IPCC RCP 6.0; 0.55 m by 2100), and projected year of 
submergence versus site elevation as a continuous (c) and discrete (d) function for fast sea-level rise projections 
(dashed line, IPCC RCP 8.5; 0.74 m by 2100) for nine created mangrove wetlands (pink lines and symbols) 
versus nine co-located reference mangrove wetlands (green lines and symbols) in Tampa Bay, Florida, USA.
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NAVD88 (Fig. 5b); despite surface elevation change adjustment of 3.9 mm yr−1, this acceleration in sea-level rise 
pressed this one site to submerge fairly quickly. Sea-level rise rates of 5.2 mm yr−1 documented through part of the 
Holocene (specifically 10,600–7,700 yr BP) for the western Atlantic47 also inhibited mangrove colonization over 
that period, until sea-level rise rates slowed to create accommodation space for colonization31, 48. In addition, ele-
vations across sites are converging through time, but a near constant slope after about 2070 indicates that all sites 
are near the maximum rate of surface elevation change (Fig. 5a) based on the empirical relationship developed 
here-in (Supplementary Figure 2), with no differentiation between submergence dates for created versus reference 
mangrove wetlands (Fig. 5b). Under this medium scenario, no created mangrove wetland site was projected to 
submerge before 2100.

For the fast sea-level rise scenario (RCP 8.5), all sites are projected to submerge by 2100 (Fig. 5c), ranging 
in date of submergence from 2079–2092 for created mangrove wetlands to 2036–2089 for reference mangrove 
wetlands (Fig. 5d). Thus for RCP 8.5, the initial elevation (NAVD88) of the mangrove wetland site did not affect 
whether the mangrove wetland submerged before 2100, but rather, initial site elevation influenced the year in 
which submergence would occur. Together, these results suggest that created and natural mangrove wetlands will 
eventually build at similar rates, and that wetlands created at relatively high elevations may survive sea level rise 
longer than natural wetlands among a range of SLR scenarios.

Considering the date of mangrove wetland creation and the rate of soil C storage documented on these sites 
(218 g C m−2 yr−1)10, total soil C storage in these created mangrove wetland sites in Tampa Bay since establish-
ment in 1990–2008 would range from 201 to 240 Mg C ha−1 through 2100 with current sea-level rise and RCP 
6.0 (medium) sea-level rise acceleration scenarios. Similarly, assuming that all C is lost when created mangrove 
wetlands submerge, total soil C storage would be reduced to 155 to 214 Mg C ha−1 among sites through 2100 
under an RCP 8.5 (fast) sea-level rise acceleration scenario. In addition, for current and RCP 6.0 scenarios, soil C 
sequestration would continue beyond 2100; however, the relationship between mangrove wetland site submer-
gence and soil C loss after submergence under the RCP 8.5 scenario is not fully understood. Landward migration 
of created and natural mangrove wetlands would generate additional opportunities for soil C storage as long as 
sea-level rise acceleration is not too fast and migration corridors are available49–51.

Materials and Methods
Background. Study sites in Tampa Bay were originally established to understand how long it takes created 
tidal wetlands, transitioning naturally from marsh to mangrove wetlands, to become functionally equivalent 
to adjacent natural reference mangrove wetlands. Original structural metrics for rating functional equivalency 
included marsh aboveground biomass, marsh plant stem density, juvenile mangrove tree height, juvenile man-
grove tree density, adult tree diameter, and adult tree density, while soil metrics included bulk density, sand con-
tent, moisture, organic matter, C, and nitrogen10 (see “Soil sampling”, Supplementary Information). We are adding 
measurements of vertical accretion of sediments and surface elevation change to this assessment, and broadening 
the scope and inference through modeling.

Study sites and experimental design. Projects aimed at restoring mangrove function globally are termed 
many things52, but all attempt to restore the ecological functions that mangrove wetlands once provided to indi-
vidual coastlines. All created sites in Tampa Bay represent newly created intertidal areas that were graded to tidal 
elevation using a mix of upland soils atop underlying sand, planted with marsh grass (Spartina alterniflora)53, and 
seeded naturally with mangroves13. Initially, the newly graded soils of the youngest sites had very little organic 
matter (<2%) and a high percentage of sand (>60%)10, relying on root development from vegetation to increase 
organic matter content over time. Because of an abundant propagule supply from all three primary mangrove tree 
species in the region (Rhizophora mangle, Laguncularia racemosa, Avicennia germinans), mangroves began to 
colonize sites within three years and eventually shaded out marsh grasses by 11–12 years10.

We used a space-for-time substitution approach54 by identifying creation projects that were previously com-
pleted using reasonably similar approaches but that were also of different ages. Sites were created between 1990 
and 2008, and selected to be adjacent to nearby natural mangrove wetlands that were seemingly unstressed to use 
as reference sites (Supplementary Figure 1, Supplementary Table 1). Reference sites likely vary considerably in 
age. Along with the original space-for-time approach, we also re-measured plots annually over 5 years to establish 
the equivalent of a 25 year record of vertical accretion of sediments and surface elevation change.

Surface elevation change and sedimentation processes. Surface elevation change and vertical accre-
tion of sediments on each mangrove wetland site were measured using the Surface Elevation Table – Marker 
Horizon (SET-MH) approach55. The SET was modified through subsequent designs56, and makes use of rods 
driven to National Geodetic Survey (NGS) refusal standards for Class B rods57, for straight-forward comparisons 
with regional tide gauges (rod SET, hereafter SET, see conceptual diagram in ref. 20). Thus, tide gauge records of 
relative sea-level rise (RSLR) combined with SET measurements of surface elevation change, allow for calcula-
tions of wetland-specific rates of relative sea-level rise (RSLRwet), using the following formula20:

= −RSLR RSLR surface elevation change (1)wet

It is important to make the distinction for wetland scientists that tide gauge readings include surface elevation 
change and vertical land motion from glacial isostatic adjustment and tectonics20 and represent the more com-
mon measure of RSLR used globally. Both RSLRwet and RSLR are relative, but to different things. Because we are 
ultimately interested in RSLRwet for created mangrove wetland sites in Tampa Bay, we use the SET approach to 
isolate and track surface elevation change (see “SET-MH installation and procedure”, Supplementary Information, 
for additional SET-MH details).

http://2
http://1
http://1
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Determination of current sea-level rise. Current, relative sea-level rise (RSLR) for Tampa Bay was deter-
mined as a linear increase in monthly mean sea level (meters) with the average seasonal cycle removed. Data were 
from National Oceanic and Atmospheric Administration (NOAA) Gauge #8726520 (St. Petersburg, Florida), 
and trends have been archived since January of 1947 (http://tidesandcurrents.noaa.gov). The mean 69-year RSLR 
trend for Tampa Bay is 2.6 mm yr−1 (±0.25 mm yr−1, 95% Confidence Interval, downloaded January 2016). 
This gauge is surveyed against terrestrial benchmarks inserted to depths of 14.6 m (6520 H 1993), 10.9 m (6520 J 
1997), and 13.1 m (6520 K 1998), along with a number of shallow benchmarks to confirm stability. Thus, it is 
assumed that vertical land motion from glacial isostatic adjustment and tectonics at the SETs and tide gauge 
survey datum cancel, with the difference in measurements of surface elevation change and RSLR equating to 
RSLRwet

20 (see “Elevation Surveys and Soil Sampling”, Supplementary Information, for details on RTK elevation 
and soil surveys).

Empirical modeling. We considered two sea-level rise acceleration scenarios: a medium acceleration 
(0.55 m by 2100; IPCC RCP 6.0) and a high acceleration (0.74 m by 2100; IPCC RCP 8.5), both superimposed 
on a local subsidence rate of 0.9 mm yr−1 inferred from tide gauges. A simple, empirical relationship depicting 
five-year vertical accretion of sediments and surface elevation change response from our reference forests versus 
absolute elevation (NAVD88) was developed to support the model, and indicates a feedback whereby the lower 
elevation site (−0.1265 m, NAVD88) and the higher elevation sites (0.2049–0.3039 m, NAVD88) have a reduced 
capacity for surface elevation adjustment and vertical accretion of sediments (Supplementary Figure 2), while 
surface elevation change and vertical accretion of sediments are maximized at moderate elevations. This curvi-
linear relationship for mangrove wetlands fits similar to productivity-inundation and sedimentation-inundation 
algorithms developed for marshes39, 46, 58, 59; however, threshold elevations for mangrove wetlands are expected to 
be characteristically higher60, 61, though to date, have been undefined specifically. From this, a simple model was 
developed to predict the response of mangrove wetland elevation to accelerated sea-level rise over the 21st century 
(see “Empirical Model Development”, Supplementary Information, for additional model details).

Statistical analyses. From each of the two SETs per site, four directions were measured as an average of 
nine pin measurements incorporating soil micro-topographic variability. Not all pins were available for each 
measurement period, and can be obscured by oyster shells, crab holes, mangrove prop roots, and other objects 
(see raw data, link provided under “Additional information”). Thus, each SET provided four surface elevation 
change measurements, from up to nine observations of each measurement. The four directions were initially 
treated as sub-samples, and thus, the SETs were treated as the experimental unit; directions were nested within 
each experimental unit to avoid pseudoreplication62, 63 and to adjust for sub-sampling. However, we found that for 
all analyses the variance component for “direction(SET)” was significant (P < 0.001, F test), indicating that the all 
eight directions could be considered independent samples, allowing us to drop the nesting term and treat direc-
tions as samples (n = 8 per site). Shallow-SET data were treated similarly, except that only four directions were 
available as sample replicates for shallow-SETs. Three independent measures of vertical accretion of sediments 
were made from feldspar MH plots per SET (n = 9 per site). Sub-surface change is a derived variable, calculated 
as the difference between surface elevation change (using the SET) and vertical accretion of sediments (using the 
MH).

Standard regression procedures were used to test the null hypothesis that SET, shallow-SET, vertical accretion 
of sediments, and sub-surface change trends did not differ significantly from a slope of 0 over time. Slopes were 
further analyzed using ANOVA techniques for differences among sites, and for differences between created and 
reference mangrove wetlands, using a general linear model (Type 1 error valid for regression models with cat-
egorical variables)34. Correlation analyses were used to determine inter-relatedness among measures of surface 
elevation change, vertical accretion of sediments, and soil properties. All data were analyzed using SAS (Version 
9.4, SAS Institute, Cary, North Carolina, USA), and the residuals of each model were normal with homogeneous 
variances without transformation.

References
 1. Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for 

the 21st century (CGMFC-21). Global Ecol. Biogeogr. 25, 729–738, doi:10.1111/geb.2016.25.issue-6 (2016).
 2. Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeogr. 20, 

154–159, doi:10.1111/geb.2011.20.issue-1 (2011).
 3. Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves. (Earthscan, 2010).
 4. Costanza, R. et al. Changes in the global value of ecosystem services. Global Environ. Change 26, 152–158, doi:10.1016/j.

gloenvcha.2014.04.002 (2014).
 5. Duarte, C. M. et al. The role of coastal plant communities for climate change mitigation and adaptation. Nature Clim. Change 3, 

961–968, doi:10.1038/nclimate1970 (2013).
 6. Craft, C. et al. The pace of ecosystem development of constructed Spartina alterniflora marshes. Ecol. Appl. 13, 1417–1432, 

doi:10.1890/02-5086 (2003).
 7. Donato, D. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci 4, 293–297, doi:10.1038/ngeo1123 

(2011).
 8. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in 

sequestering CO2. Front. Ecol. Environ. 9, 552–560, doi:10.1890/110004 (2011).
 9. Murdiyarso, D. et al. The potential of Indonesian mangrove forests for global climate change mitigation. Nature Clim. Change 5, 

1089–1092, doi:10.1038/nclimate2734 (2015).
 10. Osland, M. J. et al. Ecosystem development after mangrove wetland creation: Plant-soil change across a 20-year chronosequence. 

Ecosystems 15, 848–866, doi:10.1007/s10021-012-9551-1 (2012).
 11. Middleton, B. A. & McKee, K. L. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J. 

Ecol. 89, 818–828, doi:10.1046/j.0022-0477.2001.00602.x (2001).

http://tidesandcurrents.noaa.gov
http://2
http://dx.doi.org/10.1111/geb.2016.25.issue-6
http://dx.doi.org/10.1111/geb.2011.20.issue-1
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
http://dx.doi.org/10.1016/j.gloenvcha.2014.04.002
http://dx.doi.org/10.1038/nclimate1970
http://dx.doi.org/10.1890/02-5086
http://dx.doi.org/10.1038/ngeo1123
http://dx.doi.org/10.1890/110004
http://dx.doi.org/10.1038/nclimate2734
http://dx.doi.org/10.1007/s10021-012-9551-1
http://dx.doi.org/10.1046/j.0022-0477.2001.00602.x


www.nature.com/scientificreports/

1 0Scientific RepoRts | 7: 1030  | DOI:10.1038/s41598-017-01224-2

 12. Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34, doi:10.1111/nph.12605 (2014).
 13. Lewis, R. R., Hodgson, A. B. & Mauseth, G. S. Project facilitates the natural reseeding of mangrove forests (Florida). Ecol. Restor. 23, 

276–277 (2005).
 14. Lewis, R. R. et al. Stress in mangrove forests: early detection and preemptive rehabilitation are essential for future successful 

worldwide mangrove forest management. Mar. Pollut. Bull. 109, 764–771, doi:10.1016/j.marpolbul.2016.03.006 (2016).
 15. McKee, K. L., Rooth, J. E. & Feller, I. C. Mangrove recruitment after forest disturbance is facilitated by herbaceous species in the 

Caribbean. Ecol. Appl. 17, 1678–1693, doi:10.1890/06-1614.1 (2007).
 16. Peterson, J. M. & Bell, S. S. Tidal events and salt marsh structure influence black mangrove (Avicennia germinans) recruitment across 

an ecotone. Ecology 93, 1648–1658, doi:10.1890/11-1430.1 (2012).
 17. Lewis, R. R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418, 

doi:10.1016/j.ecoleng.2004.10.003 (2005).
 18. McKee, K. L. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuar. Coast. Shelf Sci. 91, 

475–483, doi:10.1016/j.ecss.2010.05.001 (2011).
 19. Sasmito, S. D., Murdiyarso, D., Friess, D. A. & Kurnianto, S. Can mangroves keep pace with contemporary sea level rise? A global 

data review. Wetlands Ecol. Manage. 24, 263–278, doi:10.1007/s11273-015-9466-7 (2016).
 20. Cahoon, D. R. Estimating relative sea-level rise and submergence potential at a coastal wetland. Estuaries Coasts 38, 1077–1084, 

doi:10.1007/s12237-014-9872-8 (2015).
 21. Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563, doi:10.1038/

nature15538 (2015).
 22. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea 

level rise. Nature Clim. Change 6, 253–260, doi:10.1038/nclimate2909 (2016).
 23. Rogers, K., Saintilan, N. & Cahoon, D. Surface elevation dynamics in a regenerating mangrove forest at Homebush Bay, Australia. 

Wetlands Ecol. Manage. 13, 587–598, doi:10.1007/s11273-004-0003-3 (2005).
 24. Rogers, K. & Saintilan, N. Relationships between surface elevation and groundwater in mangrove forests of Southeast Australia. J. 

Coast. Res. 24, 63–69, doi:10.2112/05-0519.1 (2008).
 25. Huxham, M. et al. Intra- and interspecific facilitation in mangroves may increase resilience to climate change threats. Phil. Trans. 

Royal Soc. B. 365, 2127–2135, doi:10.1098/rstb.2010.0094 (2010).
 26. Kumara, M. P., Jayatissa, L. P., Krauss, K. W., Phillips, D. H. & Huxham, M. High mangrove density enhances surface accretion, 

surface elevation change, and tree survival in coastal areas susceptible to sea-level rise. Oecologia 164, 545–553, doi:10.1007/s00442-
010-1705-2 (2010).

 27. McKee, K. L. & Faulkner, P. L. Restoration of biogeochemical function in mangrove forests. Rest. Ecol. 8, 247–259, doi:10.1046/
j.1526-100x.2000.80036.x (2000).

 28. Howe, A. J., Rodríguez, J. F. & Saco, P. M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of 
the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 84, 75–83, doi:10.1016/j.ecss.2009.06.006 (2009).

 29. Salmo, S. G. III, Lovelock, C. E. & Duke, N. C. Vegetation and soil characteristics as indicators of restoration trajectories in restored 
mangroves. Hydrobiologia 720, 1–18, doi:10.1007/s10750-013-1617-3 (2013).

 30. Lewis, R. R. & Dunstan, F. M. The possible role of Spartina alterniflora Loisel. in establishment of mangroves in Florida. In 
Proceeding of the Second Annual Conference on Restoration of Coastal Vegetation in Florida (ed. Lewis, R. R. III), pp. 82–100 (1975).

 31. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil 
elevation. Glob. Ecol. Biogeogr. 16, 545–556, doi:10.1111/geb.2007.16.issue-5 (2007).

 32. Cahoon, D. R., Reed, D. J. & Day, J. W. Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: 
Kaye and Barghoorn revisited. Mar. Geol. 128, 1–9, doi:10.1016/0025-3227(95)00087-F (1995).

 33. Lovelock, C. E., Bennion, V., Grinham, A. & Cahoon, D. R. The role of surface and subsurface processes in keeping pace with sea 
level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14, 745–757, doi:10.1007/s10021-011-9443-9 
(2011).

 34. Krauss, K. W. et al. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of 
Micronesia. Ecosystems 13, 129–143, doi:10.1007/s10021-009-9307-8 (2010).

 35. Sidik, F., Neil, D. & Lovelock, C. E. Effect of high sedimentation rates on surface sediment dynamics and mangrove growth in the 
Porong River, Indonesia. Mar. Pollut. Bull. 107, 355–363, doi:10.1016/j.marpolbul.2016.02.048 (2016).

 36. Krauss, K. W., Allen, J. A. & Cahoon, D. R. Differential rates of vertical accretion and elevation change among aerial root types in 
Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 56, 251–259, doi:10.1016/S0272-7714(02)00184-1 (2003).

 37. Craft, C. B., Reader, J. M., Sacco, J. N. & Broome, S. W. Twenty-five years of ecosystem development of constructed Spartina 
alterniflora (Loisel) marshes. Ecol. Appl. 9, 1405–1419, doi:10.1890/1051-0761(1999)009[1405:TFYOED]2.0.CO;2 (1999).

 38. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. 
Biogeochem. Cycles 17, 1111, doi:10.1029/2002GB001917 (2003).

 39. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Response of coastal wetlands to rising sea level. Ecology 
83, 2869–2877, doi:10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2 (2002).

 40. Lang’at, J. K., Kirui, B. K. Y., Skov, M. W., Kairo, J. G., Mencuccini, M. & Huxham, M. Species mixing boosts root yield in mangrove 
trees. Oecologia 172, 271–278, doi:10.1007/s00442-012-2490-x (2013).

 41. Watson, J. G. Mangrove forests of the Malay Peninsula. Malayan Forest Records 6, 1–275 (1928).
 42. Eong, O. J. Mangroves – a carbon source or sink. Chemosphere 27, 1097–1107, doi:10.1016/0045-6535(93)90070-L (1993).
 43. Craft, C. B. Tidal freshwater forest accretion does not keep pace with sea level rise. Glob. Change Biol. 18, 3615–3623, doi:10.1111/

gcb.12009 (2012).
 44. Lewis, R. R. & Estevez, E. D. The Ecology of Tampa Bay, Florida: A Community Profile Biological Report No. 85 (U.S. Department of 

the Interior, U.S. Fish and Wildlife Service, 1988).
 45. Church, J. A. et al. In Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1137–1216 (Cambridge Univ. Press, 

2013).
 46. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging 

brackish marsh. J. Ecol. 100, 764–770, doi:10.1111/j.1365-2745.2012.01957.x (2012).
 47. Toscano, M. A. & Macintyre, I. G. Corrected western Atlantic sea-level curve for the last 11,000 years based on calibrated C-14 dates 

from Acropora palmata framework and intertidal mangrove peat. Coral Reefs 22, 257–270, doi:10.1007/s00338-003-0315-4 (2003).
 48. Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A. & Saintilan, N. Mangrove sedimentation and 

response to relative sea-level rise. Annu. Rev. Mar. Sci. 8, 243–266, doi:10.1146/annurev-marine-122414-034025 (2016).
 49. Brinson, M. M., Christian, R. R. & Blum, L. K. Multiple states in the sea-level induced transition from terrestrial forest to estuary. 

Estuar. Coasts 18, 648–659, doi:10.2307/1352383 (1995).
 50. Kirwan, K. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 405, 53–60, 

doi:10.1038/nature12856 (2013).
 51. Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-

level rise. Front. Ecol. Environ. 14, 307–316, doi:10.1002/fee.1282 (2016).
 52. Field, C. D. Rehabilitation of mangrove ecosystems: An overview. Mar. Pollut. Bull. 37, 383–392, doi:10.1016/S0025-

326X(99)00106-X (1998).

http://dx.doi.org/10.1111/nph.12605
http://dx.doi.org/10.1016/j.marpolbul.2016.03.006
http://dx.doi.org/10.1890/06-1614.1
http://dx.doi.org/10.1890/11-1430.1
http://dx.doi.org/10.1016/j.ecoleng.2004.10.003
http://dx.doi.org/10.1016/j.ecss.2010.05.001
http://dx.doi.org/10.1007/s11273-015-9466-7
http://dx.doi.org/10.1007/s12237-014-9872-8
http://dx.doi.org/10.1038/nature15538
http://dx.doi.org/10.1038/nature15538
http://dx.doi.org/10.1038/nclimate2909
http://dx.doi.org/10.1007/s11273-004-0003-3
http://dx.doi.org/10.2112/05-0519.1
http://dx.doi.org/10.1098/rstb.2010.0094
http://dx.doi.org/10.1007/s00442-010-1705-2
http://dx.doi.org/10.1007/s00442-010-1705-2
http://dx.doi.org/10.1046/j.1526-100x.2000.80036.x
http://dx.doi.org/10.1046/j.1526-100x.2000.80036.x
http://dx.doi.org/10.1016/j.ecss.2009.06.006
http://dx.doi.org/10.1007/s10750-013-1617-3
http://dx.doi.org/10.1111/geb.2007.16.issue-5
http://dx.doi.org/10.1016/0025-3227(95)00087-F
http://dx.doi.org/10.1007/s10021-011-9443-9
http://dx.doi.org/10.1007/s10021-009-9307-8
http://dx.doi.org/10.1016/j.marpolbul.2016.02.048
http://dx.doi.org/10.1016/S0272-7714(02)00184-1
http://dx.doi.org/10.1029/2002GB001917
http://dx.doi.org/10.1007/s00442-012-2490-x
http://dx.doi.org/10.1016/0045-6535(93)90070-L
http://dx.doi.org/10.1111/gcb.12009
http://dx.doi.org/10.1111/gcb.12009
http://dx.doi.org/10.1111/j.1365-2745.2012.01957.x
http://dx.doi.org/10.1007/s00338-003-0315-4
http://dx.doi.org/10.1146/annurev-marine-122414-034025
http://dx.doi.org/10.2307/1352383
http://dx.doi.org/10.1038/nature12856
http://dx.doi.org/10.1002/fee.1282
http://dx.doi.org/10.1016/S0025-326X(99)00106-X
http://dx.doi.org/10.1016/S0025-326X(99)00106-X


www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 1030  | DOI:10.1038/s41598-017-01224-2

 53. Lewis, R. R. III. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Engineer. 24, 403–418, 
doi:10.1016/j.ecoleng.2004.10.003 (2005).

 54. Pickett, S. T. A. & Ostfeld, R. S. In Long-term Studies in Ecology: Approaches and Alternatives (ed. Likens, G. E.) 110–135 (Springer, 
1989).

 55. Cahoon, D. R., Reed, D. & Day, J. W. Jr. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: 
Kaye and Barghoorn revisited. Marine Geol 128, 1–9, doi:10.1016/0025-3227(95)00087-F (1995).

 56. Cahoon, D. R. et al. High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. 
Res. 72, 734–739, doi:10.1306/020702720734 (2002).

 57. Floyd, R. P. Geodetic Bench Marks: NOAA Manual NOS NGS 1, National Oceanic and Atmospheric Administration, Rockville. Md. 
52 p (1978).

 58. Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophysics 50, 
RG1002, doi:10.1029/2011RG000359 (2012).

 59. Kirwan, M. L., Christian, R. R., Blum, L. K. & Brinson, M. M. On the relationship between sea level and Spartina alterniflora 
production. Ecosystems 15, 140–147, doi:10.1007/s10021-011-9498-7 (2012).

 60. Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and 
saltmarsh ecosystems. Biol. Rev. 87, 346–366, doi:10.1111/j.1469-185X.2011.00198.x (2012).

 61. Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401, 
doi:10.1029/2010GL045489 (2010).

 62. Graham, S. A. & Mendelssohn, I. A. Coastal wetland stability maintained through counterbalancing accretionary responses to 
chronic nutrient enrichment. Ecology 95, 3271–3283, doi:10.1890/14-0196.1 (2014).

 63. Stagg, C. L. et al. Processes contributing to resilience of coastal wetlands to sea-level rise. Ecosystems 19, 1445–1459, doi:10.1007/
s10021-016-0015-x (2016).

Acknowledgements
Funding for this research was provided by the U.S. Environmental Protection Agency, Gulf Ecology Division; 
U.S. Geological Survey, Climate and Land Use Change R&D Program; and U.S. Geological Survey, Environments 
Program. We thank Darren Johnson for conducting the statistical analysis, Josh Jones for assistance with SET 
installation, Gordon Anderson for providing comparative NAVD88 elevations from marsh-transitional mangrove 
wetland communities in Everglades National Park, and Kerrylee Rogers (University of Wollongong, Australia) 
for reviewing a previous version of this manuscript. Any use of trade, firm, or product names is for descriptive 
purposes only and does not imply endorsement by the U.S. Government.

Author Contributions
K.W.K. conceived and designed the surface elevation component of this study to assess the sea-level rise 
vulnerability of created versus reference tidal wetlands empirically, oversaw the data analysis, and led the writing 
of the paper. N.C. led the installation of SETs, collected field data, and contributed to writing. M.J.O. conceived 
and designed the overall chronosequence experiment and contributed to writing. M.L.K. developed the empirical 
sea-level rise model, ran simulations, and contributed to writing. C.L.S. contributed to the design of the surface 
elevation component of this study, assisted with installation of SETs, and contributed to writing. J.A.N., M.J.R., 
A.S.F., A.C.S., D.D.D., J.E.H., and A.E.A. assisted with installation of SETs, collected field data, and/or assisted 
with writing.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-01224-2
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1016/j.ecoleng.2004.10.003
http://dx.doi.org/10.1016/0025-3227(95)00087-F
http://dx.doi.org/10.1306/020702720734
http://dx.doi.org/10.1029/2011RG000359
http://dx.doi.org/10.1007/s10021-011-9498-7
http://dx.doi.org/10.1111/j.1469-185X.2011.00198.x
http://dx.doi.org/10.1029/2010GL045489
http://dx.doi.org/10.1890/14-0196.1
http://dx.doi.org/10.1007/s10021-016-0015-x
http://dx.doi.org/10.1007/s10021-016-0015-x
http://dx.doi.org/10.1038/s41598-017-01224-2
http://creativecommons.org/licenses/by/4.0/

	Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise
	Recommended Citation
	Authors

	Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise
	Results and Discussion
	Drivers of surface elevation change in created mangrove wetlands. 
	Mangrove wetland creation, carbon, and current sea-level rise. 
	Modeling: future perspectives assuiming accelerated sea-level rise. 


	Materials and Methods
	Background. 
	Study sites and experimental design. 
	Surface elevation change and sedimentation processes. 
	Determination of current sea-level rise. 
	Empirical modeling. 
	Statistical analyses. 

	Acknowledgements
	Figure 1 Sedimentation and soil drivers of surface elevation change.
	Figure 2 Summary of surface elevation change as related to vertical accretion of sediments versus sub-surface change.
	Figure 3 Characteristics of vertical accretion of sediments and surface elevation change.
	Figure 4 Surface elevation change, vertical accretion of sediments, and root zone expansion versus subsidence.
	Figure 5 Modelled year of submergence versus starting elevation (m NAVD88) for two accelerated sea-level rise scenarios.


