
W&M ScholarWorks W&M ScholarWorks

Reports

2016

Vertical One-dimensional (1-D) Simulations of Horizontal Velocity Vertical One-dimensional (1-D) Simulations of Horizontal Velocity

Profiles Profiles

Jerome P.Y. Maa

Jian Shen

Xiaoteng Shen

Shao Yuyang

Follow this and additional works at: https://scholarworks.wm.edu/reports

 Part of the Hydrology Commons, and the Marine Biology Commons

Recommended Citation Recommended Citation
Maa, J. P., Shen, J., Shen, X., & Yuyang, S. (2016) Vertical One-dimensional (1-D) Simulations of Horizontal
Velocity Profiles. Special scientific report (Virginia Institute of Marine Science); no. 156. Virginia Institute
of Marine Science, William & Mary. https://doi.org/10.21220/V5RW2X

This Report is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in
Reports by an authorized administrator of W&M ScholarWorks. For more information, please contact
scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235397432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/reports
https://scholarworks.wm.edu/reports?utm_source=scholarworks.wm.edu%2Freports%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1054?utm_source=scholarworks.wm.edu%2Freports%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Freports%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Vertical One-dimensional (1-D) Simulations of

Horizontal Velocity Profiles

by

Jerome P.-Y. Maa, Jian Shen, Xiaoteng Shen

Virginia Institute of Marine Science
College of William and Mary
Gloucester Point, VA 23062

and

Yuyang Shao

Hohai University
Nanjing, China.

Special Scientific Report No. 156

January 2016

i

Abstract:

Details of a vertical 1-D hydrodynamic model to simulate the horizontal velocity profiles for tidal

estuarial flows with possible stratifications caused by salinity or Suspended Sediment Concentration (SSC)

are presented. The standard 2nd order k-ε model was implemented to address the turbulent flow with

possible stratification effects. Simulation results are verified with two field measurements for steady non-

stratified flows and a field measurement for tidal estuary non-stratified flow. The stratification effect of

salinity and suspended sediment concentration are also checked with the following descriptions: “Salinity

stratification will change the typical logarithmic velocity profile to a linear profile for most of the water

column.” It appears that the possible high gradient of near-bottom (less than 0.5 m) SSC when the near-

bed SSC is high only significantly alter the velocity profile when the turbulence is weak. The source

codes, in FORTRAN 90, samples of the ASCII input data files, and a post process codes for plotting

results using Matlab are attached for future uses.

Cite this report as:

Maa, Jerome P.Y.; Shen, Jian; Shen, Xiaoteng and Shao, Yuyang. 2015. Vertical One-dimensional (1-D)
Simulations of Horizontal Velocity Profiles. Special Scientific Report No. 156. Virginia Institute of
Marine Science, College of William & Mary. http://hdl.handle.net/10288/22091

ii

Table of Contents Page

Abstract i

Table of Contents ii

Table of Figures iii

1. Introduction 1

2. Governing Equation for Hydrodynamics 2

3. Governing Equation for Turbulence 5

4. Vertical Profiles of Salinity and SSC Distributions 7

5. Numerical formulations 7

5.1. Horizontal Velocity 8

5.2. Turbulent kinetic energy 9

5.3. Dissipation rate 11

5.4. Vertical velocity, w 13

6. Model Validations 13

6.1. Steady flows 13

6.2. Tidal current 17

6.3. Salinity induced stratified flows 19

6.4. Near bottom stratification caused by high SSC gradient 21

7. Discussion and Conclusions 24

8. Acknowledgments 26

9. References 26

10. Appendix I. Source Codes for the Vertical 1-D Hydrodynamic Model. 29

11. Appendix II. Selected Input Data Files for the 1-D Hydrodynamic Model. 56

12. Appendix III. Source Codes for Plotting the Simulation Results 60

iii

Table of Figures Page

Fig. 1. The grid and variables specified in this vertical 1-D hydrodynamic model. ∆z for
each cell is the same, but it may change slightly with time during a tidal cycle, in order
to have (N-1) ∆z = h+η. ………………………………………………………………….. 8

Fig. 2. Comparison of simulated steady turbulent flows without stratification. (a) Eddy
viscosity profile from the parabolic eddy viscosity model versus the k-ε model. (b)The
simulated velocity profiles. dη/dx = - 0.00002 and ∆z = 0.02 m. The only reason of
selecting a negative pressure gradient is to produce positive horizontal velocities. …….. 15

Fig. 3. Comparison of the effect of grid size on simulated velocity profiles, with the
same pressure gradient, dη/dx = -0.000023, no stratification. The data (o) are coming
from the first case study given by Gonzalez et al., 1996. ………………………………... 15

Fig. 4. Comparison of selected grid resolutions to have the best logarithm velocity
profile. Pressure gradients are different for each resolution in order to best fit the data.
It reveals that ∆z = 2 cm is the better choice. …………………………………………….. 16

Fig. 5. Comparison of simulated and measured two velocity profiles at Chicago Sanitary
and Ship Canal with 2 cm resolution. Data are from Gonzalez et al. (1996) ……………. 17

Fig. 6. Comparison of simulated tidal current amplitude profiles at the station in Menai
Strait, GB with measurements from Rippeth et al., (2002). The measured tidal range is
about 4.5 m with mainly M2 tide and no stratification. A nominal grid size ∆z = 2 cm is
used, and zero constant pressure gradient is assumed. (a) Phase lag = 44 deg. (b) phase
angle = 40 degrees. …………………………………………………………………….. 19

Fig. 7. Simulated tidal current amplitudes at the station in Menai Strait, GB, after adding
a constant pressure gradient = -3x10

-6
 to represent the possible steady flow. (a) plot on a

linear scale to show the excellent fit with data, and (b) plot on a semi-log plot to show
the excellent log fit. …………………………………………………………………….. 19

Fig. 8. Simulated velocity profiles for a steady, weak turbulent flow with (solid line) and
without (dashed line) a small linear salinity gradient. (a) u, (b) eddy viscosity, and
(3) salinity. The pressure gradient is dη/dx = -1x10

-6
. Reynolds number for the non-

stratification flow is around 2.5x10
5. …………………………………………………….. 21

Fig. 9. Simulated velocity profiles for a steady, strong turbulent flow with a relatively
strong salinity stratification at middle water depth. (a) u, (b) eddy viscosity, and
(c) salinity. The pressure gradient is dη/dx = - 5x10

-5
. Reynolds number = 1.5x10

7
 and

Richardson number ≈ 0.33. …………………………………………………………….. 21

iv

 page
Fig. 10. Comparison of simulated velocity profiles for a steady turbulent flow with and
without a gradient of suspended sediment concentration (SSC) at bottom with Co = 3 g/L.

(a) u, (b) SSC. The pressure gradient is dη/dx = - 5x10
-5

. Reynolds number for the no
(b) SSC flow is around 1.2x10

7
. …………………………………………………….. 22

Fig. 11. Comparison of simulated velocity profiles for a relative weak steady turbulent
flow with different gradient of suspended sediment concentration (SSC) at bottom with
Co = 10 g/L. (a) u, (b) eddy viscosity, and (c) SSC. dη/dx = - 5x10

-5
. Reynolds number

for the no SSC flow is around 2.3x10
6
. …………………………………………….. 23

Fig. 12. Comparison of simulated velocity profiles for a steady, strong turbulent flow
with different gradient of suspended sediment concentration (SSC) at bottom with Co =

10 g/L. (a) u, (b) eddy viscosity, and (c) SSC. dη/dx = - 5x10
-5

. Reynolds number for
the no SSC flow is around 1.2x10

7
. ……………………………………………………… 24

1

Introduction

Simultaneous measurements of vertical profiles of flow velocity, Suspended Sediment

Concentration (SSC), and salinity in estuaries are important because these data are necessary to

better understand why the measured velocity profiles behave as that. Although three-

dimensional (3-D) numerical models to simulate these hydrodynamic processes are available for

studying the reason(s) of having the observed profiles, the cost is quite high, and also subjected

to many limitations that make the use of a 3-D model impractical. On the other hand, a vertical

one-dimensional (1-D) numerical hydrodynamic model is capable of simulating many observed

profiles with a much better results and small cost.

Vertical 1-D models that are capable of simulating velocity profiles for steady flows, tidal

flows, with or with stratification effects are needed for detail analysis of observed phenomena.

Many models are available, for example, the General Ocean Turbulence Model (GOTM, Umlauf

et al., 2000) developed in 1998 by two Europe scientists (M.R.Villarreal, Spain and P.-P.

Mathieu, Italy), and later, with contributions from users. There is also a document available on

web to explain what has been done and how to use the model. It is not easy, however, to clearly

understand why and how this vertical 1-D model was implemented the way it did, especially for

engineers who are not familiar with applications in oceanography. Since the governing equation

for this vertical 1-D hydrodynamic model is relatively simple for coding, with the objective to

examine other processes (e.g., to find the critical bed shear stress for deposition, Maa et al., 2008;

to address the paradigm about erosion and deposition, Ha and Maa 2009; to estimate the settling

velocity of fine sediments, Shao et al., 2011; and to study flocculation of suspended fine

sediment, Shen and Maa, 2015) that are concurrently happened in this vertical 1-D system, a

2

vertical 1-D hydrodynamic model was first developed, verified, and documented in this report.

The computer codes, written in FORTRAN 90, input data files, and post process codes, written

in Matlab, to produce figures are all attached for future applications.

In this 1-D model to mimic the turbulent velocity profiles, the standard k-ε scheme was

implemented. Other simplified eddy viscosity models, except the parabolic eddy viscosity model

for non-stratified flows, were all omitted. A minor modification of the k-ε scheme was also

included to handle the possible large shear strain near bed.

Governing Equation for Hydrodynamics

 The simplified and linearized momentum equation that controls the vertical variation of

horizontal velocity for turbulent flows in estuaries with the unsteady hydrostatic pressure

assumption and possible stratification caused by salinity and suspended sediment is

∂
∂

∂
∂

+
∂

∂
−=

∂
∂

z
uzz

zzx
tg

zt
tzu

t
f)()(

)(
1)(

)(
1),(νρ

ρ
ηρ

ρ
 (1)

where u is the time-averaged horizontal velocity, gρf ∂η/∂x is the unsteady pressure gradient in x

direction (i.e., the along channel direction), η(t) is the fluctuation of water surface elevation, ρf is

the density of water at surface, ρ(z) is the local density of water which includes the effect of

suspended sediment, salinity, and temperature, t is time, g is gravitational acceleration, υt is the

turbulent eddy viscosity with a minimum equal to the molecular viscosity, z is the vertical

coordinate with z = 0 at the rigid bottom and z = h + η at the water surface, h is the mean water

depth. The time-averaged variables described in this study have an average duration much

3

longer than the time scale for turbulence fluctuation, but still much smaller than the variation of

applied forces, e.g., tidal periods. The boundary conditions are as follows:

1. At z = 0, u = 0.

2. Zero shear stress (no wind) at the free water surface, i.e., du/dz = 0 at z = h + η.

3. The initial condition at t = 0 is given, or u = 0 if unknown.

 The no-slip boundary condition used in this study indicates that this numerical model

should have a high resolution grid in order to have several cells within the viscous sub-layer.

This high resolution (e.g. less than 1 mm) does not necessary had the correct simulation results

on turbulent velocity profiles. In this study, an attempt to address this problem is given later in

the section of model verification.

 For this vertical 1-D simulation, the information of ∂η/∂x required to solve Eq. 1 is

usually not available. If data for the vertical profile of horizontal velocity, e.g., u(z), are

available for a steady flow, then it is possible to use the trial-and-error approach, i.e., using the

simulated results to find the most possible ∂η/∂x. Using the measured velocity profile and an

empirical formulation to find shear velocity, u*, and the energy slope is also possible, but that is

just another type of trial-and-error approach. Because many uncertainty involved in the

estimation of u*, this 2nd approach is not used.

 For tidal flows, it is much easier to request the time series of η at the tidal current

measurement site. Thus, a change of ∂η/∂x in Eq. 1 to ∂η/∂t is a convenient option. Assuming

η(x) = η0 e-βx e-i(kx - σt), where η0 is the tidal amplitude at x = 0, β is the tidal amplitude

attenuation rate in the x direction, i = (-1)1/2, k = 2π/L is the tidal wave number, L is the tidal

wave length, σ = 2π/T and T is the tidal period. It can be shown that ∂η/∂x = Ψ∂η/∂t, where Ψ =

4

-1/C + iβ/σ and C = σ/k is tidal phase velocity. This implies that a phase lag is involved after the

change from ∂η/∂x to ∂η/∂t. The phase lag, tan-1(-Cβ/σ), caused by the attenuation of tidal

amplitude may be changed by channel geographic, bathymetric, and bottom friction. Since tidal

waves are shallow water waves, C = [g(h + η)]1/2.

 The continuity equation (Eq. 2) must be satisfied at all places and all times

0=
∂
∂

+
∂
∂

z
w

x
u (2)

where w is the time averaged vertical velocity. With the bottom boundary condition w(z = 0) = 0,

Eq. 2 can be used to estimate w at any elevation, z, in the water column as

dz
t
udz

x
uzw

zz

∫∫ ∂
∂

Φ−=
∂
∂

−=
00

)((3)

The change of ∂u/∂x to ∂u/∂t is necessary because no ∂u/∂x information in this 1-D model. For

periodic tidal flows, the tidal velocity can be described as u(x, t) = u0 e-αx e-i(kx - σt), where u0 is the

velocity amplitude at the beginning of the tidal channel where x = 0, α is a positive number that

represents the attenuation rate of tidal current. Thus, there is a relationship as ∂u/∂x = Φ∂u/∂t,

where Φ = -1/C + iα/σ,. For steady flows, Eq. 3 clearly shows that w = 0 in the entire water

column.

In any estuary, fresh water discharge will provide a pressure gradient to push water

moving toward downstream direction, and thus, the maximum ebb flow may become larger than

that of maximum flood. To include this freshwater induced pressure force, a constant pressure

gradient can be added to the ∂η/∂x term. Because the freshwater discharge may vary with time,

5

this added pressure gradient may also change with time, but in a much slow rate when compared

with that of tidal flows. For this reason, a constant may be used, at least at a particular time.

Governing Equation for Turbulence

Although there are zero order, first-order, and one-parameter models approximations for

eddy viscosity (Rodi, 1993; Wilcox, 2006), they are not used because a better second-order

model already exists. The only exception is the use of the parabolic eddy viscosity model for a

non-stratified, steady, turbulent flows (Henderson, 1966). The only purposes is to show that this

simple parabolic eddy viscosity profile is an exceptional simple model.

The second-order, k-ε model given by Rodi (1993) was used. Turbulent eddy viscosity

can be determined as µt = ρνt = ρCµ k2/ε where k is the total turbulent kinetic energy, k = (u’2 +

v’2 + w’2)/2, ε is the turbulent energy dissipation, and Cµ = 0.09. Notice however, Cµ may not

be a constant for flows with a high strain rate (Shih et al., 1994). They said “…this model will

become non-reliable in the case of large mean strain rate (e.g., Sk/ε > 3.7 …” where S =

(2Si,jSi,j)1/2 and Si,j = (∂ui /∂xj + ∂uj /∂xi)/2. They suggested that Cµ will decrease to a minimum

of 0.05 when Sk/ε = 6. In this vertical 1-D modeling, Si,j = 1/2(∂u/∂z) and their suggestion was

implemented in the codes using a simple linear decreasing function between Sk/ε = 3.7 and 6.

The generation, transport, and distribution of k and ε are described by the following two

equations (e.g., Rodi, 1993; Wilcox, 2006).

ρε
σ
µρρ

−++

∂
∂

∂
∂

=
∂

∂
+

∂
∂ GP

z
k

zz
wk

t
k

k

t (4)

6

k
CGCP

k
C

zzz
w

t
t

2

231)(ερεε
σ
µερρε

εεε
ε

−++

∂
∂

∂
∂

=
∂

∂
+

∂
∂ (5)

where 2)(
z
uP t ∂
∂

= ρν is the production of turbulent kinetic energy, 2N
PzP

gG
r

t

r

t µρµ
ρ

=
∂
∂

= is the

buoyancy effect term, N is the Brunt–Väisälä frequency, C1ε = 1.44, C2ε = 1.92, σk = 1, σε = 1.3

are constants, and Pr is the Prandtl Number which is the ratio of momentum eddy diffusivity and

the mass/heat transfer eddy diffusivity. In general, Pr = 0.89 was suggested (Wilcox, 2006). For

the coefficient C3ε, Rodi (1980) suggested a range between 0 and 0.3. Uittenbogaard et al. (1992)

have claimed that the buoyancy effect for turbulence dissipation is negligible, i.e., C3ε = 0. This

zero C3ε was also used by Toorman (2002) with satisfied results. For this reason, it was used in

this study.

 Boundary conditions of k and ε near the bottom (marked with the subscript b) are

specified at an elevation, zb, about the rigid bottom. In general, zb is above the viscous sub-layer

for a smooth bottom or at a small distance from the mean rigid bed elevation for rough beds.

The bottom boundary conditions are kb = u*
2/(Cµ)1/2 and εb = u*

3/κzb where u* is the shear

velocity and κ is the von Karman constant. Boundary conditions at free surface (marked with

the subscript s) are

ks = u*s
2/(Cµ)1/2 (6)

and

7

)]/1([

)(
2

*

2/3

µ

µ

κ
ε

Ckuahh

Ck

ss

s
s −+
= (7)

where a = 0.07 is a constant, h is the water depth, u*s is the shear velocity at the surface.

Obviously, if there is no shear force at the free surface, then u*s = ks = εs = 0.

The density gradient in the vertical direction caused by salinity, temperature, or/and

suspended sediment difference in the water column, if exist, will produce negative buoyancy

force and suppress turbulence if the density gradient is sufficiently large. In practice, the local

Richardson Number, Ri = [(g/ρ)(∂ρ/∂z)/(du/dz)2], is used to determine the importance of

buoyancy force, and when Ri is larger than 1/4, the shear force will have difficulty to overcome

the buoyancy force and the flow will be stratified (Turner, 1973).

Vertical Profiles of Salinity and SSC Distributions

 Because this study is a vertical 1-D model, the time history of salinity and SSC profiles

for the entire simulation period must be given. These profiles serve the purpose for modifying

eddy viscosity when buoyancy force (G in Eqs. 5 and 6) existed. The salinity and SSC profiles

at each time step must be interpolated from the given salinity and SSC profiles.

Numerical formulations

 In this modeling, u, ρ, νt, κ, and ε are all specified at the center of a cell, only w is

specified at the bottom side of a cell (Fig. 1). Totally there are N - 1 cells to represent the entire

water column.

8

Fig. 1. The grid and variables specified in this vertical 1-D hydrodynamic model. ∆z for
each cell is the same, but it may change slightly with time during a tidal cycle, in order to
have (N-1) ∆z = h+η.

Horizontal Velocity: The Crank-Nicolson scheme (Smith, 1978) with the implicit factor, θ, was

used to formulate the implicit finite difference form of Eq. 1 as follows.

k
jj

k
jj

k
jj

j

fk
jj

k
jj

k
jj ubububt

x
tg

uauaua 1111
1
11

11
11

)(
−−++

+
++

++
−− +++∆

∂
∂

=++
η

ρ
ρ

 (8)

where k and k+1 are two consecutive time steps, uj-1,uj, uj+1 are horizontal velocity component

specified at the center of three consecutive cells, j-1, j, and j+1, respectively, aj and bj are

coefficients given next

21,11,12,1 4
)(

z
t

z
ta

j
jtjjtjjtj ∆

∆
−+

∆
∆

−= −+++− ρ
θνρνρθν (9a)

2,21
z
ta jtj ∆

∆
+=

θν (9b)

21,11,12,1 4
)(

z
t

z
ta

j
jtjjtjjtj ∆

∆
−−

∆
∆

−= −−+++ ρ
θνρνρθν (9c)

21,11,12,1 4
)1()()1(
z

t
z

tb
j

jtjjtjjtj ∆
∆−

−−
∆

∆−
= −−++− ρ

θνρνρθν (9d)

9

2,
)1(21

z
tb jtj ∆

∆−
−=

θν (9e)

21,11,12,1 4
)1()()1(
z

t
z

tb
j

jtjjtjjtj ∆
∆−

−+
∆

∆−
= −−+++ ρ

θνρνρθν (9f)

where the eddy viscosity, νt, specified in the above equations are all at time step k. When

applying Eq. 8 at the top cell, j = n -1, and using the top boundary condition, un = un-1, one obtain

the following

k
nnn

k
nn

n

fk
nnn

k
nn

ubbubt
x
tg

uaaua
1122

1

1
11

1
22

)()()(
−−−−

−

+

−−

+

−−
+++∆

∂
∂

=++
η

ρ

ρ
 (10)

When applying Eq. 8 to the bottom cell, j = 1, the velocity at cell 0 is u0 and it can be specified as

-u1, and thus, it is a known and can be moved to the right hand side of Eq. 8 and rewritten as

kkkfkk ubububt
x
tg

uauaa 101122
1

1
22

1
101

)()(−++∆
∂

∂
=+− ++ η

ρ
ρ

 (11)

Combine Eqs. 11, 8 and 10, a tri-diagonal matrix can be established as au = b where a is a 3 x

(N-1) matrix that contains all the coefficients given in the left-hand side of Eqs. 11, 8 and 10, u is

a column matrix for the velocity at time level k+1 and b is also a column matrix that contains all

the right-hand terms given in Eqs. 11, 8, and 10. This matrix equation was solved by using the

traditional tri-diagonal matrix solver (Hildebrand, 1965). Notice that the tri-diagonal matrix

equation can only be built if eddy viscosity information is available. The followings are details

on solving the k-ε equation for eddy viscosity.

Turbulent kinetic energy: The same Crank-Nicolson scheme (Smith, 1978) was used to

formulate an implicit finite difference form of Eq. 4 as follows.

10

j
k
jj

k
jj

k
jj

k
jj

k
jj

k
jj Rkqkqkqkpkpkp +++=++ ++−−

+
++

++
−− 1111

1
11

11
11 (12)

where

jtj
k

jtjjtj
k

jjj
mmwmp ,

3
1,11,1

3
11)(

4
νρ

σ
νρνρ

σ
ρ −−+−= −−++− (13a)

p m m w wj j
k

j t j j j j j= + + −+ + − −ρ
σ

ρ ν ρ ρ
2 3

1 1 1 1 1, () (13b)

p m w m m
j j j

k
j t j j t j

k
j t j+ + + − −= − − −1 1

3
1 1 1 1

3

4
ρ

σ
ρ ν ρ ν

σ
ρ ν(), , , (13c)

q m w m m
j j j

k
j t j j t j

k
j t j− + + − −= − − +1 2

4
1 1 1 1

4

4
ρ

σ
ρ ν ρ ν

σ
ρ ν(), , , (13d)

)(2
11112,

4
−−++ −−−= jjjjjtj

k
jj wwmmq ρρνρ

σ
ρ (13e)

q m w m m
j j j

k
j j j j

k
j j+ + + − −= − + − +1 2

4
1 1 1 1

4

4
ρ

σ
ρ ν ρ ν

σ
ρ ν() (13f)

t
zP

tg
z

uu
tR k

jj

k
j

k
j

r

k
jt

k
j

k
j

jtjj
∆−

∆

−
∆+

∆

−
∆= −+−+ ερ

ρρν
νρ

22
11,

2

11

,
 (13g)

z
tm

∆
∆

=
21
θ ,

z
tm

∆
∆−

=
2

)1(
2

θ , 23 z
tm

∆
∆

=
θ and 24

)1(
z

tm
∆

∆−
=

θ

When applying Eq. 12 at the surface cell (cell number j = n-1) with no wind stress, k at

the water surface should be zero. This can be achieved by assuming there is a fictional layer

above the free surface with the same layer thickness and kn = - kn-1. Also the density and velocity

for the fictional layer (layer n) were assumed as the same as that for layer n-1. Thus, Eq. 12

becomes

111122
1
11

1
22)(−−−−−−

+
−−

+
−− +−+=−+ n

k
nn

k
nn

k
nn

k
nnn

k
nn Rkqkqkqkppkp (14)

11

The bottom boundary condition for k is kb = u*
2/Cµ

1/2. Notice that this condition is

specified at an elevation zb above the bed with a corresponding cell number b.

For implementing this boundary condition, near bed velocities, i.e., located from 0.1 m to

0.8 m above the bed, were used to find u*, assuming the log velocity profile, u = u*/χ log(z/z0),

can be used in this range, where χ = 0.4 is the von Karman Constant. For all the cells that were

below cell b, the k values were linearly interpreted between 0 and kb with k = 0 at z = 0. If

applying Eq. 12 to cell b+1, then it becomes

12211
1
22

1
11)(+++++

+
++

+
++ +++−=+ b

k
bb

k
bbbbb

k
bb

k
bb Rkqkqkpqkpkp (15)

Equation 15, 12 and 14 were used to build a tri-diagonal matrix equation, pk = q, where k is a

column matrix includes kb+1, kb+2, …, kn-1 for the next time step, p is a tri-diagonal matrix that

includes all these coefficients on the left-hand side of Eqs. 15, 12, and 14 and q is a column

matrix that includes all terms on the right-hand side of Eqs. 15, 12, and 14. Again, this matrix

equation was solved by using the tri-diagonal matrix equation solver.

Dissipation rate: Similarly, the finite difference equation for ε is

k
jj

k
jj

k
jj

k
jj

k
jj

k
jj TTTSSS 1111

1
11

11
11 ++−−

+
++

++
−− ++=++ εεεεεε (16)

where

jtjjtjjtjjjj
mm

wmS ,
3

1,11,1
3

11)(
4

νρ
σ

νρνρ
σ

ρ
εε

−−+−= −−++− (17a)

12

jjj
k
jjjjjjjtjjj

ktNcktcwwm
m

S //)(
2

1211111,
3 ∆−∆+−++=

−−++
θερρρνρ

σ
ρ

εε
ε

jtjjtjjtjjjj
mm

wmS ,
3

1,11,1
3

11)(
4

νρ
σ

νρνρ
σ

ρ
εε

−−−= −−+++ (17c)

jtjjtjjtjjjj
mm

wmT ,
4

1,11,1
4

21)(
4

νρ
σ

νρνρ
σ

ρ
εε

+−−= −−++− (17d)

jjjtjjjjjjj ktNcmwwmT /)1(2)(1,
4

11112 ∆−+−−−= −−++ θνρ
σ

ρρρ ε
ε

 (17e)

jtjjtjjtjjjj
mmwmT ,

4
1,11,1

4
21)(

4
νρ

σ
νρνρ

σ
ρ

εε

+−+−= −−+++ (17f)

and

∆

−
−

∆

−
= −+−+

zP
gc

z
uu

N jj

r

jtjj
jtjj 22

11,
3

2
11

,

ρρν
νρ ε (17g)

When applying Eq. 16 at the surface cell (cell number j = n-1) with no wind stress, ε at

the water surface should be zero. This can be achieved by letting εn = - εn-1. Also because the

gradient of eddy viscosity, the production and buoyant terms are all negligible small or zero at

the surface, these terms were neglected. Thus, Eq. 16 becomes

k
nnn

k
nn

k
nnn

k
nn TTTSSS 1122

1
11

1
22)()(−−−−

+
−−

+
−− −+=−+ εεεε (18)

When applying Eq. 16 at the cell b+1 and with the boundary condition εb = u*
3/κzb, it becomes

k
bb

k
bbbbb

k
bb

k
bb TTSTSS 2211

1
22

1
11)(++++

+
++

+
++ ++−=+ εεεεε (19)

Again, Eqs. 19, 16 and 18 were used to build a matrix equation Sε = T for solving the ε at the

next time step, where ε is a column matrix includes εb+1, εb+2, …, εn-1 for the next time step, S is

13

a tri-diagonal matrix that includes all these coefficients on the left-hand side of Eqs. 19, 16, and

18 and T is a column matrix that includes all terms on the right-hand side of Eqs. 19, 16, and 18.

Notice however, because the denominator k would be zero at the beginning of a simulation if

started with a zero velocity profile, the term εj/kj should be set to zero because it has no meaning

when kj = 0. The ε terms below cell b were also determined by linear interpretation between 0

and εb.

Vertical velocity, w: The vertical profile of w can be estimated based on the continuity equation

(Eq. 3). The finite difference formulation is given next.

 ∑
=

+ ∆∆−Φ=
J

j

k
j

k
jJ tzuuw

1

1 /)((20)

where wJ is the vertical velocity at cell number J, and the boundary condition is w1 = 0.

Although the exact value of Φ is unknown in prior, but it may be assumed that it is the same as ψ.

 In order to have correct tidal phase speed, the total water depth, i.e., h + η, shall be used

instead of a fixed water depth. Since the time series of tidal elevation is given as input for this

1-D model, the new η is used to change the total water depth by changing ∆z, but the total

number of cells remains the same. Because of the large number of cells in z direction (more than

200), the change of ∆z is rather small and usually do not cause stability problem with the

selected ∆t.

14

Model Validations

 The following cases were selected to verify the modeling results: (1) Steady current,

(2)Tidal current, (3) stratified flow caused by salinity, and (4) stratified flow caused by

suspended sediment concentration.

Steady flows. For checking this 1-D model, steady open channel flows without stratification

were first used. For the first verification, the simulated velocity profile by using the parabolic

distribution of the eddy viscosity profile were compared with that using the k - ε model for eddy

viscosity. The result (Fig. 2) indicates a small difference in the eddy viscosity profiles. This

result also demonstrates that the parabolic distribution of eddy viscosity is a very good

approximation for steady, non-stratified flows. The small difference in velocity profile mainly

caused by the small difference of eddy viscosity near the bottom.

 The model was then checked with field measurements for steady open channel flows

without stratification. The SSC is also low such that the influence of SSC is neglected. Two

data sets published by Gonzalez et al. (1996) were used. They used a 1200 kHz ADCP to

measure the vertical profiles of horizontal velocity at the center of the Chicago Sanitary and Ship

Canal. The two cases they presented have water depths of 7.45 m and 8.23 m, respectively. This

canal has a rocky bottom and the width of this canal (about 49 m) is more than 5 times of the

canal depth, so that this 1-D model is suitable of simulating the velocity profile at the canal

center without the effect of side boundary. Although they provided estimated energy slopes

15

Fig. 2. Comparison of simulated steady turbulent flows without stratification. (a) Eddy
viscosity profile from the parabolic eddy viscosity model versus the k-ε model. (b)The
simulated velocity profiles. dη/dx = - 0.00002 and ∆z = 0.02 m. The only reason of
selecting a negative pressure gradient is to produce positive horizontal velocities.

Fig. 3. Comparison of the effect of grid size on simulated velocity profiles, with the same
pressure gradient, dη/dx = -0.000023, no stratification. The data (o) are coming from the
first case study given by Gonzalez et al., 1996.

16

 (2.896 x10-5 and 4.83 x10-6) for these two cases, these two data are not used directly because we

used the no-slip bottom boundary condition that requires a small size on vertical grid. With the

same pressure gradient (∂η/∂x = -0.000023), the simulated velocity profiles of seven selected

grid size (see Fig. 3) are very different. Even with the grid size of 0.2 mm, it appears that the

profile is still changing. More important, when plot the simulated velocity profiles on semi-log

scale with different and best-fitted pressure gradient (Fig. 4), it indicates that the resolution of 2

cm may be the best choice to use the no-slip boundary condition. This is because the simulated

velocity profile with this grid resolution is close to a straight line in this semi-log plot. This

selection is based on the understanding that for a steady turbulent, non-stratified flow, the

Fig. 4. Comparison of selected grid resolutions to have the best logarithm velocity profile.
Pressure gradients are different for each resolution in order to best fit the data. It reveals
that ∆z = 2 cm is the best choice.

17

Fig. 5. Comparison of simulated and measured two velocity profiles at Chicago Sanitary
and Ship Canal with 2 cm resolution. Data are from Gonzalez et al. (1996)

velocity profile is varying according to the log law. For this reason, the grid resolution of 2 cm

become the first option for the following studies to find the most possible pressure gradient, and

then, back to check the fit of a straight line in a semi-log plot of the velocity profile.

With the selection of ∆z = 0.02 m, and using the trial-and-error approach, the best fitted

driving pressure gradient can be found to produce the corresponding velocity profiles that match

well with the measurements (Fig. 5). The selected ∂η/∂x and the model computed shear velocity,

u*, versus that given by Gonzalez et al. (1996), i.e., the energy slope, S, and the estimated u*m,

are also marked in the figure. Although these values are not exactly the same, they are close.

18

Tidal current. The velocity profiles measured at Menai Strait, U.K. by Rippeth et al. (2002) were

used. The channel length is about 20 km with a minimum channel width about 300 m. The

mean water depth is about 12.5 m at the measurement site and there is no stratification because

of the well-mixed salinity. The tidal current profiles were measured by using a bottom mounted

1200 kHz ADCP, and thus, there is no data for the bottom and the top 1 m. For this case, the

periodical tidal flow was generated using a sinusoidal function with a tidal amplitude of 2.25 m

for the M2 tide. The sinusoidal time series of water surface elevation were used to get ∂η/∂t and

then transfer to ∂η/∂x accordingly. For this reason, a phase lag = tan-1(-Cβ/σ) can be changed to

bring the simulated velocity profile to better fit the observed profile. At this time, it is assumed

that there is no constant pressure gradient along this Strait. If select a phase angle of 44 degrees,

the simulation results, however, shows the maximum flood current amplitude was somewhat

underestimated but the maximum ebb current amplitudes was a little overestimated (Fig. 6a). If

reduce the phase lag to 40 degrees, the maximum ebb current amplitude can be matched very

well, but the underestimation of maximum flood current become more severe. This situation

appears showing that there is a steady flow on the flood direction, and calls for the addition of a

constant pressure gradient, ∂η/∂x = -3x10
-6

 to the system. With this addition, the simulated

results matches excellent with the observation (Fig. 7a). The good linear trend of the simulated

results and the measurements on a semi-log plot indicates that it is a fully developed turbulent

flow (Fig. 7b).

Although it appears that there is no difference on long-term averaged water surface

elevations on both sides of the Menai Strait, it is possible that mean water level difference exists

during any particular short period of time (David Bowers, personal communication).

19

Fig. 6. Comparison of simulated tidal current amplitude profiles at the station in Menai
Strait, GB with measurements from Rippeth et al., (2002). The measured tidal range is
about 4.5 m with mainly M2 tide and no stratification. A nominal grid size ∆z = 2 cm is
used, and zero constant pressure gradient is assumed. (a) Phase lag = 44 deg. (b) phase
angle = 40 degrees.

Fig. 7. Simulated tidal current amplitudes at the station in Menai Strait, GB, after adding
a constant pressure gradient = -3x10

-6
 to represent the possible steady flow. (a) plot on a

linear scale to show the excellent fit with data, and (b) plot on a semi-log plot to show the
excellent log fit.

20

Salinity induced stratified flows. McCutcheon (1981) derived a modification of the logarithmic

velocity profile for stratified flows which shows a linear increase of velocity for the

top half of water column. He also conducted a laboratory experiment to support his solution.

His lab experiment, however, was carried out in a 18 m long flume, and thus, the turbulence

might not be able to be fully developed. Anwar (1983) showed that the vertical profile of

horizontal velocity for a stratified estuarine flow will change from a typical logarithmic profile to

a linear profile, except for the bottom 0.5 m. This change will greatly increase the near surface

velocity, but not necessary near the bottom. Unfortunately, there is no data on vertical salinity

distribution for model verification. Nevertheless, it is worth to check if the model simulation

results also show this features. For a weakly stratified steady, open channel flow with a salinity

difference of 2 psu linearly varies from top to bottom (Fig. 8c), the velocity profile indeed shows

a linearly increasing trend (Fig. 8a). This is caused by a very different eddy viscosity (Fig. 8b).

The velocity and eddy viscosity profiles derived by the same pressure gradient, but no salinity

stratified effect are also shown in Fig. 8 for comparison.

For a stronger turbulent flow which is induced by a strong salinity gradient, the velocity

profile is also shown a linearly increased trend (Fig. 9). The difference with that given in Fig. 8

is that the stratification effect is more concentrated at the middle water column, and thus, the

middle portion of the water column has a linearly increased velocity profile.

21

Fig. 8. Simulated velocity profiles for a steady, weak turbulent flow with (solid line) and
without (dashed line) a small linear salinity gradient. (a) u, (b) eddy viscosity, and (3)
salinity. The pressure gradient is dη/dx = -1x10

-6
. Reynolds number for the non-

stratification flow is around 2.5x10
5.

Fig. 9. Simulated velocity profiles for a steady, strong turbulent flow with a relatively
strong salinity stratification at middle water depth. (a) u, (b) eddy viscosity, and (c)
salinity. The pressure gradient is dη/dx = - 5x10

-5
. Reynolds number = 1.5x10

7
 and

Richardson number ≈ 0.33.

22

Near bottom stratification caused by high SSC gradient. Near the bottom, suspended sediment

concentration could be high under severe erosion or deposition environments. If assume a

constant settling velocity, ws, for suspended sediment and a constant near bed diffusivity, D, the

SSC profile would be exponentially decreased when moving away from the bed (Henderson,

1966). With this reason, a SSC profile is selected as C = Co exp(-wsz/D) to check its effect on

eddy viscosity, as well as the horizontal velocity profiles, where Co is the SSC at bottom.

A reasonable turbulent flow was selected to check the effect of bottom SSC gradient,

which is selected as Co = 3 g/L and ws/D = 1.1 as a first attempt. Although 3 g/L is not low, the

effect on velocity profile is small. A maximum difference at water surface for this 10 m water

depth flow is only about 10% (Fig. 10) and may be neglected.

Fig. 10. Comparison of simulated velocity profiles for a steady turbulent flow with and
without a gradient of suspended sediment concentration (SSC) at bottom with Co = 3 g/L.

(a) u, (b) SSC. The pressure gradient is dη/dx = - 5x10
-5

. Reynolds number for the no
SSC flow is around 1.2x10

7
.

23

If Co increase to 10 g/L and the turbulence is also reduced somewhat, however, the

impact could be significant (Fig. 11). If the SSC has the same exponential decreasing rate (i.e.,

ws and D remain the same), the maximum velocity at water surface could be 2.6 times of that

without the SSC effect. Even if the SSC decreasing rate is doubled (the dotted line in Fig. 11c),

the maximum velocity at water surface is still about doubled (Fig. 11a).

If the turbulence is strong, the impact of near-bed SSC gradient will be depressed (Fig.

12). Nevertheless, there is still a nearly 30% increase of the maximum velocity at water surface,

if consider the SSC gradient.

Fig. 11. Comparison of simulated velocity profiles for a relative weak steady turbulent
flow with different gradient of suspended sediment concentration (SSC) at bottom with
Co = 10 g/L. (a) u, (b) eddy viscosity, and (c) SSC. The pressure gradient is dη/dx = -
5x10

-5
. Reynolds number for the no SSC flow is around 2.3x10

6
.

24

Fig. 12. Comparison of simulated velocity profiles for a steady, strong turbulent flow
with different gradient of suspended sediment concentration (SSC) at bottom with Co =
10 g/L. (a) u, (b) eddy viscosity, and (c) SSC. The pressure gradient is dη/dx = - 5x10

-5
.

Reynolds number for the no SSC flow is around 1.2x10
7
.

The above selected cases for checking the codes demonstrate that the computer codes for

simulating eddy viscosity, horizontal velocity, and stratification effects all work well.

Discussion and Conclusions

The effect of shear force acted on the water surface has not been implemented in this

model yet, because there is no current need for that. But it can be done in the near future.

Although it has been checked for the selection of the best suitable grid resolution (i.e., 2

cm), this selection is good for applications with a water depth varies from a few meters up to 15

m. This resolution is not intended to address the velocity profile within the viscous sub-layer,

nor for a much shallower water depth, less than 80 cm.

25

For most laboratory experiments with a limited length of flume, the possibility of having

a fully developed turbulent flow must be checked first. If it is a fully developed lab flow,

reducing the grid size should be able to simulate the lab experimental data.

Although the presented numerical scheme is a semi-implicit approximation, there is still a

limitation on numerical stability. With the suggested 2 cm resolution, a time interval of 0.1 to 1

s is possible, and it may decrease somewhat with the severity of stratification.

Although tidal flow is not a steady flow, the good fit of logarithmic velocity profiles

suggests that the maximum flood or maximum ebb current also a fully developed turbulent flow,

even limited by the tidal period.

 The salinity and SSC profiles given in the verification cases do not imply that these

profiles should be available under these flow conditions. It is understood that there should be

reasons to have a particular salinity or salinity profile, but these profiles used in the verification

test are just assigned to check their influence on velocity. The possibility of their existence

under the associated Reynolds number and Richardson number has not been checked.

 Only the global Richardson number, Ri = [(g/h)(ρ
b
-ρ

t
)/ρ

m
]/[(u

t
 -u

b
)/h]

2
 can be given in

the figures, despite the graduate variation of water density in the water column (in other words,

this is not a clearly divided two-layer flow). The subscript, t, b, and m stand for top, bottom, and

mean. For a better seen of the local stratification effect, the local Richardson is a much better

index.

 Salinity gradient will change the eddy viscosity profile significantly. The change of

velocity profile from a logarithmic distribution to a linear distribution means the surface current

velocity will be greatly increased.

26

 The near-bed gradient of SSC should be large enough to have sufficient impact on the

eddy viscosity and the velocity. There are three parameters that will affect the gradient of near-

bed SSC: (1) settling velocity, ws (2) eddy diffusivity, D, and (3) Co. This study indicates that Co

on the order of 10 g/L is necessary to produce sufficient impact. If ws is high, e.g., for granular

sediments which is relatively heavy and large, then the gradient will be large, but the affected

area will be small and close to bed. If turbulence is strong, i.e., D is large, although the gradient

will be smaller, but the affected near-bed area will be large. It is the combined effect of these

three parameters that affects the eddy viscosity and velocity profiles. Nevertheless, the reduction

of near-bed eddy viscosity stands for the reduction of the bottom friction, and that can increase

the current velocity for the entire water column.

 As a conclusion, a vertical 1-D hydrodynamic model has been developed that is capable

of simulating stratified tidal estuarial flows. This is the bases for study other advanced topics,

such as the profile of floc size distribution, settling velocity, erosion and deposition, and

suspended sediment concentration in the near future.

Acknowledgments

We appreciate Ms. T.-M. Li for her comments on tidal wave propagation simulation.

References

Anwar, H.O., 1983. Turbulence measurements in stratified and well-mixed estuarine flows.
Estuarine, Coastal and Shelf Science, 17, 243-260.

Gonzalez, J.A., C.S. Melching, and K.A. Oberg, 1996. Analysis of open-channel velocity
measurements collected with an acoustic Doppler current profiler. Proceedings of the 1st

27

International Conference on New/Emerging Concepts for Rivers. International Water Resources
Association.

Ha, H.K. and J. P.-Y. Maa, 2009. Evaluation of two conflicting paradigms for cohesive sediment
deposition. Marine Geology, 265, 120-129.

Henderson, F.M., 1966. Open Channel Flow. MacMillan Co., New York. 522pp.

Hildebrand, F.B., 1965. Methods of Applied Mathematics, Prentice-Hall, New Jersey. 362 pp.

Maa, J. P.-Y., J.-I. Kwon and K.-N. Hwang, H.K. Ha, 2008. Critical bed shear stress for cohesive
sediment deposition under steady flows. Journal of Hydraulic Engineering, 134(12), 1767-1771.

McCutcheon, S.C., 1981. Vertical velocity profiles in stratified flows. Journal of Hydraulic
Division, ASCE, 107(HY8), 973-988.

Rippeth, T.P., E. Williams, and J.H. Simpson, 2002. Reynolds Stress and Turbulent Energy
Production in a Tidal Channel. Journal of Physical Oceanography, 32, 1242-1251.

Rodi, W. 1993. Turbulence models and their application in hydraulics. International
Association for Hydraulic Research, Delft, 3rd edition, Balkema

Shao, Y.Y., Y. Yan and J.P.-Y. Maa, 2011. In-situ measurements of settling velocity near Baimao
Shoal in Changjiang Estuary. Journal of Hydraulic Engineering, ASCE, 137(3), 372-380.

Shen X. and Jerome P.-Y. Maa, 2015. Modeling floc size distribution of suspended cohesive
sediments using quadrature method of moments. Marine Geology, 359, 106-119.

Shih, T.H., W.W. Liou, A. Shabbir, Z. Yang, and J. Zhu, 1994. A new k-ε eddy viscosity model
for high Reynolds number turbulent flows - Model development and validation. Institute for
Computational Mechanics in Propulsion and Center for Modeling of Turbulence and Transition.
Lewis Research Center, Cleveland, Ohio, NASA, ICOMP-94-21, NASA technical memorandum
106721.

Shih, T.H., L.A. Povinelli, N.-S. Liu and M.G. Potapczuk, and J.L. Lumley, 1999. A Generalized
Wall Function, NASA/TM-1999-209398, ICOMP-99-08, Glenn Research Center, NASA.

Toorman, E.A. 2002. Modelling of turbulent flow with suspended cohesive sediment. In: Fine
Sediment Dynamics in the Marine Environment, Eds. J.C. Winterwerp and C. Kranenburg.
Elsevier Sciences, Netherland.

Turner, J.S., 1973. Buoyancy Effects in Fluids, Cambridge University Press.

28

Uittenbogaard, R.E., avan Kester, J.A. TH and G. Stelling, 1992. Implementation of three
turbulence models in RISULA for rectangular horizontal grids, Report Z162, Delft Hydraulics.

Wilcox, D. C., 2006. Turbulence Modeling for CFD, Edition 3, DCW Industries, La Canada,
CA.

Umlauf, L., H. Burchard, and K. Bolding, 2000. General Ocean Turbulence Model (GOTM),
Source Code and Test Case Documentation. Version 4.0.

http://www.cfd-online.com/Books/show_book.php?book_id=1

29

Appendix I. Source Codes for the Vertical 1-D Hydrodynamic Model.

The codes presented here is for reference. If needed, one can request a digital copy of all the
files, and others if available, given in this report. Please contact maa@vims.edu for details.

program V1D
!
!It simulates the velocity profiles for turbulent estuary tidal flows
! by solving the following three equations together. Density gradient effect
! is included in the k-e equation for stratified flows
!
! du 1 dp d du
! --- = ----- ---- + -[eddy(z)--] vertical 1-D equ of momentum conservation
! dt L(z) dx d dz
!
! vertical 1-D equation of turbulent kinematic Energy, k equation
!
! vertical 1-D equation of energy dissipation equation, e equation
!
! where u : the horizontal velocity of water motion
! w : vertical velocity of water motion
! dp/dx : (change to dy/dx) the hydrostatic pressure gradient force
! eddy : turbulent eddy viscosity, minimum = 1x10^-6 M^2/s
! t : time
! z : the vertical coordinate
! L : water density, a function of z
! g : gravitional acceleration, 9.8 m/s^2
!
!salinity & SSC profiles are interpreted at each time step among profiles or
! generated from a constant profile internally.
!
!The input file (e.g., keflow1.dat) contains all the needed input data which
! are described in the input data file.
!There is one output files (e.g., keflow1.lis). All the input data are copied.
! The velocity, eddy voscosity, tke, eps, salinity, suspended sediment conc.
! water density, and vertical velocity profiles at selected time are listed.
!There is a Matlab program (profiles_plt.m and others) to read the output
! file and plot profiles.
!
!A fictional layer (layer nz) above top (between j = nz & nz+1) were added to
! allow the zero shear stress at the water surface By using u(nz) = u(nz-1).
!
!A fictional layer (Layer 0) below the bottom allow the specify exactly zero
! velocity at z = 0.
!
!Notice that u, SSC, and salinity are specified at the center of a cell,
! between (z=j*dz & (j+1)*dz). W is specified at the lower boarder of a cell
!
! ----------------
! here is the top fictional layer, u(nz)=u(nz-1) for surface shear free flow
! z = h ---------------- j=nz, top, w(nz)
! | u(nz-1), C(nz-1), w(nz-1)
! z = depth-dz --------------- j=nz-1

mailto:maa@vims.edu

30

! | u(nz-2), C(nz-2), w(nz-2)
! ---------------- j=nzm2
! .
! .
! .
! | u(3), C(3), ws(3)
! z = 2dz ----------------- j=3,
! | u(2), C(2), ws(2)
! z = dz ----------------- j=2,
! | u(1), C(1), ws(1)
! z = 0 ----------------- j=1, bottom, w(1) = 0
! here is the bottom fictional layer, u(0)=-u(1)
! -----------------
!
!The Fortran Compiler used is Lahay LF95.
!Please contact maa@vims.edu at the Virginia Institute of Marine Science
! if you find any bug.
!The support of the sabbatic leave at HoHai University and VIMS is sincerely
! acknowledged. Jerome Maa, 2010
!
!This Program uses a nominal constant grid size, 0.02 m, it changes a little
! depends on flood or edd. For steady flow, it does not change.
!
!ng is the possible maximum number of grid cells in this 1-D model
!nt is the possible maximum number of records on tidal elevation, salinity
! and SSC that are within one tidal cycle
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)
integer chk, case_option, depo_optiopn, erosion_option
character*30 infile, dydx_file, eta_file, ssc_file, sal_file, outfile,
chkfile
character*18 name
character*80 title, mark
character*11 timemark

common/parame/ nz,nzm1,nzm2, dt,dz,depth, dydx_in, period,wave_amp,wavek,cgm
common/param2/ eddy_const, theta, Res_E_D
common/settli/ ssc_c1, ssc_c2, ssc_a, ssc_b, ssc_c, ssc_d, ssc_e, ws(ng)
common/array2/ z(ng),zc(ng), u(ng),dis(ng), conc(ng), cneu(ng), cl(ng), uave
common/array0/ w(ng), dydx, eta, shear(ng)
common/turbul/ tke(ng), eps(ng), eddy(ng), ustar, ustar_old, roughness
common/tide_g/ Ng_tide, hr_tide(nt),eta_given(nt), eta_old, phase_r, offset
common/salini/ ngsal,hr_sal(nt),dep_sal(nt),zc_sal(nt,ng),sal(nt,ng),
salinity(ng)
common/erodep/ erosion_option, ssc_m0, tau_cr, depo_option, tau_cd
common/sscgiv/ ngssc, hr_ssc(nt), dep_ssc(nt), zc_ssc(nt,ng), ssc(nt,ng)
common/leastq/ zb, jzb, ze, jze, iption_BC

grav=9.8
pi=3.1415926
pi2=2*pi

print*,' Select: 0. parabolic; 1.keflow1; 2.keflow2; 3.keflow3'

31

print*,' 4. Gonzalez_1; 5.Gonzalez_2 6.Rippeth; '
print*,' 10. sal_prpf1; 11.sal_prof2; 12.sal_prof3;'
print*,' 13. ssc_prof1; 14.ssc_prof2; 15.ssc_prof3; 16.ssc_prof4;'
print*,' Select <0, 1, 2, ...> : ';
read(*,*) case_option

select case (case_option)
case(0)
 name= 'parabolic'
case(1)
 name= 'keflow1'
case(2)
 name= 'keflow2'
case(3)
 name= 'keflow3'
case(4)
 name= 'Gonzalez_1'
case(5)
 name= 'Gonzalez_2'
case(6)
 name= 'Rippeth'
case(10)
 name= 'sal_prof1'
case(11)
 name= 'sal_prof2'
case(12)
 name= 'sal_prof3'
case(13)
 name= 'ssc_prof1'
case(14)
 name= 'ssc_prof2'
case(15)
 name= 'ssc_prof3'
case(16)
 name= 'ssc_prof4'
end select

infile=adjustl(adjustr(name) // '.dat')
print*,'input file name =', infile
open(1,file=infile, form='formatted', status='old')

outfile=adjustl(adjustr(name) // '.lis')
open(8,file=outfile, form='formatted', status='unknown')

read(1,'(a80)') mark
read(1,'(a80)') title

write(8,'(a80)') title
write(*,'(a80)') title

do i=1,21
 read(1,'(a80)') mark
end do
read(1,*) ntotal,dt,nzm1,dz, iption_flow,iption_BC, period,wave_amp, &

32

 dydx_in, ncheck, id, phase, offset, eddy_const
nz=nzm1+1
nzm2=nz-2
if (nz .ge. ng) then
 write(*,10) ng, nzm1
10 format(' Parameter ng=',i5,', is smaller than needed. Change it to ', i5)
 stop
end if

!clean the arrays
do i=1, nzm1
 z(i)=0.0
 zc(i)=0
 u(i)=0
 w(i)=0
 cl(i)=0
 cneu(i)=0
 ws(i)=0.0
 conc(i)=0.0
 tke(i)=0.0
 eps(i)=0.0
 eddy(i)=0.0
 dis(i)=0.0
end do
w(nz)=0.0

!calculate the coordinates for each cell in this vertical 1-D model
z(1)=0
zc(1)=z(1)+0.5*dz
do i=2, nzm1
 z(i)=z(i-1) + dz
 zc(i)=z(i) + 0.5*dz
end do

depth=dz*nzm1
depth_mean=depth

write(*,30)ntotal,dt,nzm1,dz,iption_flow,iption_BC,period,wave_amp,dydx_in, &
 ncheck,id, phase,offset, eddy_const
30 format(' total time steps =',i9 /' delt t (sec) =',f10.4/ &
 ' total z-segments =',i6 /' cell size (m) =',f10.3/ &
 ' option for flow dydx=',i5 /' option for Bottom BC=',i5 / &
 ' tidal wave per.(s) =',f10.2/' Tidal wave amp (m) =',f10.3/ &
 ' dydx_in (Steadyflow)=',f12.7/' ncheck =',i6/ &
 ' turbulence ID =',i5 /' tidal phase lag(deg)=',f10.5/ &
 ' dydx offset (m/m) =',f10.7/' the constant Eddy =',f10.6)
!temperature effect is not included in the program yet, however, the next
! statement is needed to calculate water density profile
temperature = 10.0

read(1, '(a80)') mark
print*, mark
if (iption_flow .eq. 3 .or. iption_flow .eq. 1) then
 read(1,'(a30)') eta_file

33

 print*,'input time series file for tidal elevation=', eta_file
 call tide_read(eta_file)
end if

!read in SALINITY profile data (in ppt)
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,*) ksalinity, sal_top, sal_bottom

!this part is for reading time series of salinity profile.
read(1,'(a80)') mark
print*,mark
if(ksalinity .eq. 3) then
 read(1,'(a30)') sal_file
 print*,'input salinity from file =', sal_file
 call salinity_read(sal_file)
else
 write(*,35) ksalinity, sal_top, sal_bottom
35 format(' Salinity option =', i5/' Top salinity (psu) =', f8.2/ &
 ' Bot. Salinity (pau) =',f8.2)
end if
! provide the initial salinity profile
call sal_interpretation(Ksalinity, sal_top, sal_bottom, 0.0)

!read in the information for suspended sediment concentration (in g/L)
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,'(a80)') mark
read(1,*) kSSC, ssc_bottom, ssc_rate

!this part is for reading time series of SSC profiles.
read(1,'(a80)') mark
print*,mark
if(kSSC .eq. 3) then
 read(1,'(a30)') ssc_file
 print*,'input SSC profiles from file =', ssc_file
 call ssc_read(ssc_file)
else
 write(*,38) kSSC, ssc_bottom, ssc_rate
38 format(' SSC input option =', i5/' Bottom SSC (g/L) =', f8.2/ &
 ' exp. decrease rate=',f8.4)
end if

! provide the initial SSC profiles
call ssc_interpretation(KSSC, ssc_bottom, ssc_rate, 0.0)

close(1)

34

!the numerical scheme is semi-implicit, Crank-Nicolson scheme, with theta =
0.5
theta=0.5

! zb=0.1 m is selected as the nearbed elevation that TKE & eps are provided
! as the boundary conditions. For u, it depends on the parameter iption_BC.
! If iption_BC = 1, it also calculate u_b at this level as the boundary
condition
zb=0.1
jzb=int(zb/dz)

!the next line is a function available in Lahay FORTRAN for mark the time.
call time(timemark)

if (iption_flow .eq. 0) then
 print*,'Steady flow '
 wavek=0.0
 cgm=0
end if

!calculate wave length for periodic load
if (iption_flow .eq. 2) then
! print*,' A Periodic loading, tidal wave period = ', period
 call airy(period, depth, wL, wavekh)
 cgm=pi2/period
 wavek=pi2/wL
end if

write(8,40) ntotal,dt,nzm1,depth,iption_flow,iption_BC, period, &
 wave_amp, dydx_in, id, phase, offset,eddy_const, zb
40 format('total time steps =',i9 /'delt t (sec) =',f8.2/ &
 'total z-segments =',i6 /'mean water dep(m)=',f10.3/ &
 'iption flow dydx =',i5 /'iption bottom BC =',i5/ &
 'tidalwave per.(s)=',f10.2/'Tidalwave amp (m)=',f10.3/ &
 'dydx_in (Steady) =',f12.7/'turbulence ID =',i5/ &
 'tid phaselag(deg)=',f10.5/'Const pres. grad.=',f11.7/ &
 'used const eddy =',f9.6 /'bottom BC at z(m)=',f8.2)
phase_r=0.0174532*phase

!-**********************************-
!start the time cycle
 write(*,70)
70 format(' step depth(m) eta(m) dydx ub(cm/s) uave(cm/s) u*(m/s)
roughness(m)')

ustar_old=0.0
eta_old=0.0
do n=1, ntotal
 timet=n*dt

! using linear interpretation to estimate the salinity and SSC profile at
next time

 call SSC_interpretation(KSSC, ssc_bottom, ssc_rate, timet)

35

 call sal_interpretation(Ksalinity, sal_top, sal_bottom, timet)

!Pure Water density is slightly less than 1000 kg/m^3, add the deviation for
temperature
! and salinity, as well as that from conc(i), i.e., suspended sediment
concentration,
! in unit of g/L (i.e., = kg/M^3)
 do i=1, nzm1
 cL(i)=1000.0 + sigma(temperature, salinity(i)) + conc(i)
! check if top layer is heavier than lower layer, more than 1kg/m^3.
 if(i .ge. 2) then
 if((cL(i) - cL(i-1)) .gt. 0.1) then
 print*,' ****warning ***'
 write(*,72) timet/3600, i, cL(i), cL(i-1)
72 format(' time=',f6.2, 'hr, cell=',i5,' cL(i)=', f8.3,' cL(i-1)=',
f8.3)
 end if
 end if
 end do

 call pressure_gradient(iption_flow, timet)

! calculating turbulent eddy coefficient
 call current_eddy(id)

 call velocity_noslip(iption)

!update water surface elevation and each cell size if it is a tidal/wave flow
 if (iption_flow .ne. 0) then
! depth=depth + w(nz)*dt
 depth=depth + (eta-eta_old)
 dz=depth/nzm1
 zc(1)=0.5*dz
 z(1)=0.0
 do i=2, nzm1
 z(i)=z(i-1) + dz
 zc(i)=zc(i-1) + dz
 end do
 end if

 ustar_old=ustar

!check if need to save data at selected time interval
 if (n .eq. 1 .or. n .eq. ncheck*int(n/ncheck)) then
!find the total mass after each time step

 write(8,70)
 write(*,75) n, depth, eta, dydx, 100*u(jzb), 100*uave, ustar,
roughness
 write(8,75) n, depth, eta, dydx, 100*u(jzb), 100*uave, ustar,
roughness
75 format(i8, 2f7.3, f12.8, 5f9.3)

 write(8,200) (100*u(i1),i1=1,nzm1)

36

200 format(' velocity profile (cm/s)'/(10f8.2))

 write(8,210) (10000*cneu(i1),i1=1,nzm1)
210 format(' 10000 *Total viscosity profile (m2/s)'/(10f10.3))

 write(8,215) (1000*tke(i1),i1=1,nzm1)
215 format(' 1000 * TKE profile (m2/s2)'/(10f10.3))

 write(8,220) (1000*eps(i1),i1=1,nzm1)
220 format(' 1000 * EPS profile (m2/s3)'/(10f10.3))

 write(8,225) (salinity(i1), i1=1,nzm1)
225 format(' salinity profile (ppt) '/(10f8.2))

 write(8,230) (conc(i1), i1=1,nzm1)
230 format(' sediment concentration (g/L) '/(10f9.4))

 write(8,235) (CL(i1), i1=1,nzm1)
235 format(' water density profile (kg/M3) '/(10f8.2))

 write(8,245) (100.0*w(i1), i1=1,nz)
245 format(' vertical velocity (cm/sec) '/(10f8.3))

 end if
!save the water surface elevation
 eta_old = eta

!of ntotal cycle
end do

close(8)
print*,' program stops'
print*,'Program started at ', timemark
call time(timemark)
print*,'Program ended at ', timemark
stop
end
!
!---
subroutine salinity_read(filename)
!input
! filename: the filename where measured salinity data are stored
!
!Output
! five variables are pass back by a common block /salini/
! ng_sal : number of salinity profiles
! hr_sal : the time (in hour) when a salinity profile are given
! dep_sal : the water depth at the time a salinity profile is given
! sal_hr(nt,nzm1) : salinity at each cell specified at the given hour
! zc_sal(nt,nzm1) : elevation of where the salinity were specified
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)

37

character*30 filename
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/salini/ ng_sal, hr_sal(nt),dep_sal(nt), zc_sal(nt,ng),sal(nt,ng),
salinity(ng)

 open(3, file=filename, form='formatted', status='old')
 read(3,'(a80)') title
 write(*,'(a80)') title
 read(3,'(a80)') mark
 read(3,*) ng_sal
 if(ng_sal .gt. nt) then
 write(*,10) ng_sal, nt
10 format('************************************'/ &
 ' Ng_sal > nt'/i6,' ',i5/' increase nt please')
 end if
 print*,'Number of salinity profile in the salinity time series =', ng_sal
 read(3,*) nzm1_chk
 if (nzm1_chk .ne. nzm1) then
 print*,'***'
 print*,' nzm1 <> nz when reading salinity data ',nzm1, nzm1_chk
 return
 end if
 do i=1,ng_sal
 read(3,'(a80)') mark
 read(3,*) hr_sal(i), dep_sal(i)
 read(3,'(a80)') mark
 read(3,*) (zc_sal(i,j),j=1,nzm1)
 read(3,'(a80)') mark
 read(3,*) (sal(i,j),j=1,nzm1)
 end do
 close(3)
 print*,'......... Completed reading salinity file'
return
end
!
!---
Subroutine sal_interpretation(Ksal_code, sal_t, sal_b, timet)
!
! ksal_code = 1, a constant or linear distribution
! = 2, a stratified s profile is generated
! = 3, to interpret the vertical salinity profile from a given time
! series of vertical salinity profiles. for this option, s-b
! and s_t are not used
! sal-b : bottom salinity (ppt)
! sal_t : salinity (ppt) at the top of water column
!
! timet : the time a profile is needed
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h, o-z)
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm

38

common/salini/ ng_sal, hr_sal(nt),dep_sal(nt),zc_sal(nt,ng),
sal(nt,ng),salinity(ng)
common/array2/ z(ng),zc(ng), u(ng),dis(ng), conc(ng), cneu(ng), cl(ng), uave

dimension zzc(ng), x(ng), ss(ng)

!linear distribution, include zero or/and constant salinity
if(ksal_code .eq. 1) then
 salinity(1)=sal_b
 salinity(nzm1)=sal_t
 do i=2,nzm2
 salinity(i)=salinity(1) - (sal_b - sal_t)*zc(i)/depth
 end do
end if

!A possible stratification, s curve shape
if(ksal_code .eq. 2) then
 pi=3.1415926
 do i=1, nzm1
 x(i)=z(i) - 0.5*depth
 x(i)=pi*x(i)/depth;
 ss(i)=sin(x(i));
 end do

 smax=0
 do i=1,nzm1
 ss(i)=ss(i) + 1.0
 ss(i)=ss(i)**2
 if(smax .lt. ss(i)) smax=ss(i)
 end do

 do i=1,nzm1
 ss(i)=sal_t + ss(i)*(sal_b - sal_t)/smax
 end do

 do i=1,nzm1
 k=nzm1-i+1
 salinity(k)=ss(i)
 end do
end if

if (ksal_code .eq. 3) then
!using linear interpretation to increase resolution in time domain, find
!where the specified time is related to the two records: one behind & one
after
 time=timet
 time_hr=time/3600
 do while (time_hr .gt. hr_sal(ng_sal))
 time_hr=time_hr - hr_sal(ng_sal)
 end do
 do k=1,ng_sal-1
 if (time_hr .ge. hr_sal(k) .and. time_hr .lt. hr_sal(k+1)) ks=k
 end do

39

 do j=1,nzm1
 sal1=sal(ks,j)
 sal2=sal(ks+1,j)
 salinity(j)=sal1 + (time_hr - hr_sal(ks))*(sal2-sal1)/(hr_sal(ks+1)-
hr_sal(ks))
 end do
end if

return
end
!
!--
subroutine ssc_read(filename)
!input
! filename: where measured suspended sediment concentration data are stored
!
!Output
! five variables are pass back by a common block /sscgiv/
! Nsscg : number of SSC profile
! hr_ssc : the time (in hr) that a SSC profiles are measured
! dep_ssc : the water depth at the time that SSC profiles are made
! ssc : ssc profiles (maximum of nt profiles, 6 points at each profile)
! ssc_temp: linear interpreted SSC profiles to increase vertical resolution
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)

character*30 filename
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/sscgiv/ ng_ssc, hr_ssc(nt), dep_ssc(nt), zc_ssc(nt,ng), ssc(nt,ng)

 open(3, file=filename, form='formatted', status='old')
 read(3,'(a80)') title
 write(*,'(a80)') title
 read(3,'(a80)') mark
 read(3,*) ng_ssc
 print*,'Number of suspended sediment concentration profiles read =',
ng_ssc
 read(3,*) nzm1_chk
 if (nzm1_chk .ne. nzm1) then
 print*,'***'
 print*,' nzm1 <> nz when reading SSC data ', nzm1, nzm1_chk
 return
 end if
 do i=1,ng_ssc
 read(3,'(a80)') mark
 read(3,*) hr_ssc(i), dep_ssc(i)
 read(3,'(a80)') mark
 read(3,*) (zc_ssc(i,j), j=1,nzm1)
 read(3,'(a80)') mark
 read(3,*) (ssc(i,j), j=1,nzm1)
 end do
 close(3)

40

 print*,'......... Completed reading SSC files'
return
end
!
!--

Subroutine SSC_interpretation(KSSC_code, ssc_b, ssc_rate, timet)
!
! kssc_code = 1, an exponential decrease profile or a constant
! = 2, bottom half has a constant SSC_B, zero on top half.
! = 3, to read a time series of SSC profile
! ssc_b : bottom SSC (g/L)
! ssc_rate: exponential decreasing rate of SSC
!
! timet : the time a profile is needed
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h, o-z)
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/array2/ z(ng),zc(ng), u(ng),dis(ng), conc(ng), cneu(ng), cl(ng), uave
common/sscgiv/ ng_ssc, hr_ssc(nt),dep_ssc(nt),zc_ssc(nt,ng), ssc(nt,ng)

!SSC profile: an exponential decreasing profile or a constant
if(kssc_code .eq. 1) then
 conc(1)=ssc_b
 do i=2,nzm1
 conc(i)=ssc_b *exp(ssc_rate*zc(i))
 end do
end if

!a special case of SSC profile for simulate hear transfer problem
if(kssc_code .eq. 2) then
 nhalf=nzm1/2
 do i=1,nhalf
 conc(i)=ssc_b
 end do
end if

if(kssc_code .eq. 3) then
! to interpret the SSC profile for all cells at any time
! where the specified time is related to the two records: one behind & one
after
 time=timet
 time_hr=time/3600
 do while (time_hr .gt. hr_ssc(ng_ssc))
 time_hr=time_hr - hr_ssc(ng_ssc)
 end do

!find what are the two records that the current time is in between
 do k=1,ng_ssc
 if (time_hr .ge. hr_ssc(k) .and. time_hr .lt. hr_ssc(k+1)) ks=k
 end do

41

 do j=1,nzm1
 ssc1=ssc(ks,j)
 ssc2=ssc(ks+1,j)
 conc(j)=ssc1 + (time_hr - hr_ssc(ks))*(ssc2-ssc1)/(hr_ssc(ks+1)-
hr_ssc(ks))
 end do
end if

return
end
!
!
!---
subroutine tide_read(filename)
!
!this is to read eta time series as the given
!
!input
! filename: the filename where tidal elevation data are stored
!
!Output
! three variables are pass back by a common block /tide_g/
! N_tide : number of tidal elevation data
! hr_tide : The time that eta (or water depth) are given
! eta_given : the recorded water depth or tidal elevation data
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)

character*30 filename
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/tide_g/ Ng_tide, hr_tide(nt), eta_given(nt), eta_old, phase_r, offset
dimension depth_given(nt)

 print*,' Openning eta time series file: ', filename
 open(2,file=filename, form='formatted', status='old')
 read(2,'(a80)') title
 write(*,'(a80)') title
 read(2,'(a80)') mark
 read(2,'(a80)') mark

 depth_mean=0
 do i=1,100
 read(2,*, END=20) day, hr, depth_given(i)
 hr_tide(i)=24*day + hr
 if (i.eq. 1) beg=hr_tide(1)
 hr_tide(i)=hr_tide(i) - beg
 depth_mean=depth_mean + depth_given(i)
 end do
20 close(2)
 ng_tide=i-1;
 depth_mean=depth_mean/ng_tide

42

 period=3600*hr_tide(Ng_tide)
 print*,'Period of the given tidal time series (sec)=', period
 print*,'Mean water depth (m)= ', depth_mean
 cgm=6.2832/period
 print*,'......... Completed reading tide file'
 print*,' hr_tide depth eta'
 do i=1,Ng_tide
 eta_given(i)=depth_given(i) - depth_mean
 write(*,30) hr_tide(i), depth_given(i), eta_given(i)
30 format(3f10.3)
 end do
return
end
!
!---
!A function to calculate unit weight of water for given temperature and
salinity
FUNCTION SIGMA(T,S)
real*8 S0,E1,E2,B1,B2, T,S, SIGMA
S0=((6.76786136E-6*S - 4.8249614E-4)*S+0.814876577)*S - 0.0934458632
E1=(((-1.4380306E-7*T-0.00198248399)*T-0.545939111)*T + 4.53168426)*T
B1=((-1.0843E-6*T+9.8185E-5)*T - 0.0047867)*T + 1.
B2=((1.667E-8*T-8.164E-7)*T + 1.803E-5)*T
E2=(B2*S0+B1)*S0
SIGMA=E1/(T+67.26) + E2
RETURN
END

!---
subroutine pressure_gradient(iption, timet)
!
!This is a function to provide dydx information at each time step
!
!input
! iption: option for calculating dydx:
! 0. a given constant for steady flows
! 1. using a time series of d(eta)/dx record, 1 tidal wave period
long;
! 2. using a sine function
! 3. using a time series of eta record, 1 tidal wave period long;
! timet : the time for next time step, in unit of seconds.
! this variabel is replace immediately by 'time' for local
calculation
! other input variables: N_tide and hr_tide(N_tide)
! are pass to this subroutine by a common block /tide_g/
!
!Output
! dydx : The water surface gradient for the next time step. non-dimension.
! This parameter is return to 'main' by using a common block
/array0/
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)
complex*16 zi, zpsi, zdydx

43

common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/array0/ w(ng), dydx, eta, shear(ng)
common/tide_g/ Ng_tide, hr_tide(nt),eta_given(nt), eta_old, phase_r, offset

pi=3.1416
grav=9.8
zi=(0, 1)
x=0

!replace the global time variable for local uses
time=timet

if(iption .eq. 0) then
 dydx=dydx_in
end if

if(iption .eq. 1) then
!not done yet (probably there will be no this kind of input data)
end if

if (iption .eq. 2) then
!use a sine function to calculate tidal elevation and find d(eta)/dt first,
and then
!transfer to d(eta)/dx, add a constant p. gradient to represent freshwater
discharge
 x=0.0
 eta=wave_amp*exp(-zi*(wavek*x-cgm*time + pi/2))
 dydt=(eta - eta_old)/dt
end if

if (iption .eq. 3) then
! use a given time series of (eta(i), i=1, Ng_tide-1) to find d(eta)/dt at
any
! particular time first, and then transfer to d(eta)/dx.
! first make sure the given time is within the range (in hr) in which the
tidal
! time series data are provided

 time_hr=time/3600
 do while (time_hr .gt. hr_tide(Ng_tide))
 time_hr=time_hr - hr_tide(Ng_tide)
 end do

!now search which two time records that the next time step is in between
 do i=1,Ng_tide-1
 if (time_hr .ge. hr_tide(i) .and. time_hr .lt. hr_tide(i+1)) ise=i
 end do
 dydt=(eta_given(ise+1) - eta_given(ise))/(3600.0*(hr_tide(ise+1) -
hr_tide(ise)))
 eta=eta_given(ise) + dydt*3600.0*(time_hr - hr_tide(ise))
end if

if (iption .eq. 2 .or. iption .eq. 3) then

44

!calculates spatial gradient, according to dy/dx=psi*dy/dt where psi=-
1/C+i(beta/cgm)
 wave_C=sqrt(grav*depth)
 wavek=2*pi/(wave_C*period)
! beta is the attenuation rate of tidal amplitude along the tidal channel
 beta=-wavek*tan(phase_r)
 zpsi=-1/wave_C + zi*beta/cgm
 zdydx=zpsi*dydt
 rdydx=sqrt(real(zdydx)**2 + aimag(zdydx)**2)
 pdydx=atan2(aimag(zdydx), real(zdydx))
 if (iption .eq. 3) dydx = rdydx*sin(pdydx)
 if (iption .eq. 2) dydx = rdydx*sin(pdydx) + offset
! if (iption .eq. 2) dydx = real(zdydx) + offset; /******checked, not
work*******/
end if

return
end
!
!--
subroutine velocity_noslip(iption)
!this subroutine build the tri-diagonal matrix equation and solved for
! horizontal velocity by using no-slip boundary condition.
!
! iption = 0 : for steady flow;
! iption = 1 : for wave/tidal flow with internally calculated d(eta)/dx
! = 2 : for wave/tidal flow with input d(eta)/dx time series, not
possible
! = 3 : for wave/tidal flow with input eta time series;
!
!It then calculate the vertical velocity w, if it is not a steady flow.

parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h,o-z)
complex*16 zi, zpsi

common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/settli/ set_c1, set_c2, set_a, set_b, set_c, set_d, set_e, ws(ng)
common/array2/ z(ng),zc(ng), u(ng),dis(ng), conc(ng), cneu(ng), cL(ng), uave
common/array0/ w(ng), dydx, eta, shear(ng)
common/tide_g/ N_tide, hr_tide(nt),eta_given(nt),eta_old, phase_r,offset
common/leastq/ zb, jzb, ze, jze, iption_BC
common/param2/ eddy_const, theta, Res_E_D

dimension clow(ng), diag(ng), upper(ng), unew(ng), b(ng)
dimension dudt(ng)

if(iption_BC .eq. 1) then
 print*,'Should not use this function (velocity_noslip), iption_BC == 1'
 stop
end if

45

grav=9.8
pi=3.1415926
pi2=2*pi
zi=(0, 1)

!specify the implicit factor
ttzz=theta*dt/dz/dz
ttzz4=theta*dt/dz/dz/4.0
cttzz=(1.0 - theta)*dt/dz/dz
cttzz4=(1.0 - theta)*dt/dz/dz/4.0

!the properties at cell 0 (the fictional layer) is set equal to that at cell
1
 a1=-cneu(1)*ttzz + (cL(2)*cneu(2)-cL(1)*cneu(1))*ttzz4/cL(1)
 a2=1 + 2.0*cneu(1)*ttzz
 a3=-cneu(1)*ttzz - (cL(2)*cneu(2)-cL(1)*cneu(1))*ttzz4/cL(1)
 diag(1)=-a1+a2
 Upper(1)=a3

 b1=cneu(1)*cttzz - (cL(2)*cneu(2)-cL(1)*cneu(1))*cttzz4/cL(1)
 b2=1 - 2.0*cneu(1)*cttzz
 b3=cneu(1)*cttzz + (cL(2)*cneu(2)-cL(1)*cneu(1))*cttzz4/cL(1)
 bforce=-cl(nzm1)/cl(1)*grav*dydx*dt
 b(1)=bforce - b1*u(1) + b2*u(1) + b3*u(2)

!the middle cells
 do j=2,nzm2
 a1=-cneu(j)*ttzz + (cL(j+1)*cneu(j+1)-cL(j-1)*cneu(j-1))*ttzz4/cL(j)
 a2=1 + 2*cneu(j)*ttzz
 a3=-cneu(j)*ttzz - (cL(j+1)*cneu(j+1)-cL(j-1)*cneu(j-1))*ttzz4/cL(j)
 cLow(j)=a1
 diag(j)=a2
 Upper(j)=a3

 b1=cneu(j)*cttzz - (cL(j+1)*cneu(j+1)-cL(j-1)*cneu(j-1))*cttzz4/cL(j)
 b2=1 - 2.0*cneu(j)*cttzz
 b3=cneu(j)*cttzz + (cL(j+1)*cneu(j+1)-cL(j-1)*cneu(j-1))*cttzz4/cL(j)
 bforce=-cL(nzm1)/cL(j)*grav*dydx*dt
 b(j)=bforce + b1*u(j-1) + b2*u(j) + b3*u(j+1)
 end do

!the top cell
!the properties at cell nz (the fictional layer) is set equal to that at cell
nz-1
 a1=-cneu(nzm1)*ttzz + (cL(nzm1)*cneu(nzm1)-cL(nz-2)*cneu(nz-
2))*ttzz4/cL(nzm1)
 a2=1 + 2.0*cneu(nzm1)*ttzz
 a3=-cneu(nzm1)*ttzz - (cL(nzm1)*cneu(nzm1)-cL(nz-2)*cneu(nz-
2))*ttzz4/cL(nzm1)
 clow(nzm1)=a1
 diag(nzm1)=a2+a3

 b1=cneu(nzm1)*cttzz - (cL(nzm1)*cneu(nzm1)-cL(nz-2)*cneu(nz-
2))*cttzz4/cL(nzm1)

46

 b2=1 - 2.0*cneu(nzm1)*cttzz
 b3=cneu(nzm1)*cttzz + (cL(nzm1)*cneu(nzm1)-cL(nz-2)*cneu(nz-
2))*cttzz4/cL(nzm1)
 bforce=-grav*dydx*dt
 b(nzm1)=bforce + b1*u(nzm2) + (b2 + b3)*u(nzm1)
 j=nzm1

!now call the tridiagonal matrix solver and find the solution

 call tridiagonal(nzm1, cLow,diag,Upper, b, unew)

!calculate du/dt, update horizontal vel. component u, and then
! calculate vertical velocity component, w
 do j=1,nzm1
 dudt(j)=(unew(j) - u(j))/dt
 u(j)=unew(j)
 end do

return
end

!--
subroutine current_eddy(ID)
!id is an input parameter
!id = 0; a zero order estimation of eddy viscosity, i.e., constant
!id = 1; a zero order estimation of eddy viscosity, i.e., parabolic profile
!id = 2; a 2nd order estimation, using k-e model
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h, o-z)
real*8 Len, m1,m2,m3,m4, m5, m6
character*1 q

common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/param2/ eddy_const, theta, Res_E_D
common/settli/ set_c1, set_c2, set_a, set_b, set_c, set_d, set_e, ws(ng)
common/array2/ z(ng),zc(ng), u(ng), dis(ng), conc(ng), cneu(ng), cL(ng), uave
common/array0/ w(ng), dydx, eta, shear(ng)
common/turbul/ tke(ng), eps(ng), eddy(ng), ustar, ustar_old, roughness
common/leastq/ zb, jzb, ze, jze, iption_BC

dimension belo(ng),diag(ng),abov(ng),right(ng), dudz(ng)
dimension temp(ng)

!cneu include two parts: molecular viscosity, vis, & turbulent vis., eddy.
!stratification effects is only included in 2nd order estimation

vis=1.0e-6

if (id .eq. 0) then
!zeroth order approximation, a constnat, unit m^2/s.
 do j=1,nzm1
 cneu(j)=eddy_const

47

 end do
end if

if (id .eq. 1) then
!parabolic eddy viscosity approximation, zero order
!first calculate vertical gradient of horizontal velocity
 dudz(1)=abs(u(2) + u(1)) / (2.0*dz)
 dudz(nzm1)=0
 do j=2,nzm2
 dudz(j)=abs(u(j+1) - u(j-1)) / (2.0*dz)
 end do
!estimating the parabolic eddy viscosity profile
 do j=1,nzm1
 dum=1.0 - zc(j)/depth
 Len=0.4 * zc(j) * sqrt(dum)
 cneu(j)=Len*Len*dudz(j)
 if (cneu(j) .lt. vis) cneu(j) = vis
 end do
!The next line is not needed for this case, but provided to make the CRT
display more
!consistent with the turbulent flows
 call shearvelocity(ustar, roughness)
end if

if (id .eq. 2) then
!2nd order k-e approximation. You will need to estimate shear velocity first
! This bottom B.C. is specified at zb(=0.1 m) above the bed. The
corresponding
! cell number is 0.1/dz. For these cells below this cell, The k values are
! prorated between kb and 0 because k = 0 at z = 0,
!The correct selection of zb should be based on the flow. If the total water
depth
! is small, then one need to adjust this value (in the main program)
!
 call shearvelocity(ustar, roughness)
 c_meu=0.09
 tke_zb=ustar*ustar/sqrt(C_meu)
 PR=0.89
 cgm_k=1.0
 grav=9.8

 m1=theta*dt/(2.0*dz)
 m2=(1.0-theta)*dt/(2.0*dz)
 m3=theta*dt/(dz*dz)
 m4=(1.0-theta)*dt/(dz*dz)

!starts from the cell right above 'jzb'. This is becasue of the selection of
a 0.1 m
! above bed as the elevation above viscous sublayer.
 j=jzb+1
 nj=1
 temp1=(CL(j+1)*eddy(j+1)-CL(j-1)*eddy(j-1))/(4.0*cgm_k)
 temp2=CL(j)*eddy(j)/cgm_k

48

 p1=-m1*CL(j-1)*w(j-1) + m3*temp1 - m3*temp2
 diag(nj)=CL(j) + 2.0*m3*CL(j)*eddy(j)/cgm_k
 abov(nj)= m1*CL(j+1)*w(j+1) - m3*temp1 - m3*temp2

 q1= m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 q2=CL(j) - 2.0*m4*CL(j)*eddy(j)/cgm_k
 q3=-m2*CL(j+1)*w(j+1) + m4*temp1 + m4*temp2
 P=dt*CL(j)*eddy(j)*((u(j+1) - u(j-1))/(2.0*dz))**2
 G=grav*dt*eddy(j)*(cL(j+1) - cL(j-1))/(2.0*dz*PR)

 diss=CL(j)*eps(j)*dt
 right(nj)=(q1-p1)*tke_zb + q2*tke(j) + q3*tke(j+1) + P + G - diss

!for the internal cells
 do j=jzb+2,nzm2
 nj=nj+1
 temp1=(CL(j+1)*eddy(j+1)-CL(j-1)*eddy(j-1))/(4.0*cgm_k)
 temp2=CL(j)*eddy(j)/cgm_k

 belo(nj)=-m1*CL(j-1)*w(j-1) + m3*temp1 -m3*temp2
 diag(nj)=CL(j) + 2.0*m3*CL(j)*eddy(j)/cgm_k
 abov(nj)= m1*CL(j+1)*w(j+1) - m3*temp1 - m3*temp2

 q1=m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 q2=CL(j) - 2.0*m4*CL(j)*eddy(j)/cgm_k
 q3=-m2*CL(j+1)*w(j+1) + m4*temp1 + m4*temp2
 P=dt*CL(j)*eddy(j)*((u(j+1) - u(j-1))/(2.0*dz))**2
 G=grav*dt*eddy(j)*(cL(j+1) - cL(j-1))/(2.0*dz*PR)

 diss=CL(j)*eps(j)*dt
 right(nj)=q1*tke(j-1) + q2*tke(j) + q3*tke(j+1) + P + G - diss
 end do

!for the water surface cell
 j=nzm1
 nj=nj+1
 temp1=(CL(j)*eddy(j) - CL(j-1)*eddy(j-1))/(2.0*cgm_k)
 temp2=CL(j)*eddy(j)/cgm_k

 belo(nj)=-m1*CL(j-1)*w(j-1) + m3*temp1 - m3*temp2
 diag(nj)=CL(j) + 2.0*m3*CL(j)*eddy(j)/cgm_k
 abo = m1*CL(j)*w(j) - m3*temp2 - m3*temp2
!the next line is marked by by Li, March 26. 2011, not convergent though.
! abo = m1*CL(j)*w(j) - m3*temp1 - m3*temp2
 diag(nj)= diag(nj) - abo

 q1=m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 q2=CL(j) - 2.0*m4*CL(j)*eddy(j)/cgm_k
 q3=-m2*CL(j)*w(j) + m4*temp1 + m4*temp2
 P=dt*CL(j)*eddy(j)*((u(j) - u(j-1))/(2.0*dz))**2
! the term u(j) may need to change to u(j+1) when there is a wind shear
 G=0
 diss=CL(j)*eps(j)*dt

49

 right(nj)=q1*tke(j-1) + q2*tke(j) - q3*tke(j) + P + G - diss

!now call the tridiagonal matrix solver and find the solution. Notice that
! only the cell between nb+1 and nzm1 are solved for

 call tridiagonal(nj, belo,diag,abov, right, temp)

!update the results
 do j=1,nj
 if (temp(j) .lt. 0.0) temp(j) = 1.0e-8
 tke(j+jzb)= temp(j)
 end do
 tke(jzb)=tke_zb

!update the tke for the near bed zone.
 do j=1,jzb-1
 tke(j)=tke_zb*(j-0.5)*dz/((jzb-0.5)*dz)
 end do

!finished the k equation, now works on the eps equation
 cgm_e=1.3
 c1e=1.44
 c2e=1.92
!the value of c3e has a range between 0 and 0.3
 c3e=0.0
 m5=dt/(2.0*dz)
 m6=dt/(dz*dz)
 eps_zb=abs(ustar**3)/(0.41*zb)

! if(q .eq. 'y' .and. nt .ge. ntchk) write(8,11) ustar, eps_zb
!11 format(' Tri-diagonal matrix eq. for EPS with ustar, e_zb=
',e12.6,2x,e12.6)

!Start from the cell above zb = 10 cm
 nj=1
 j=jzb+1
 temp1= (CL(j+1)*eddy(j+1) - CL(j-1)*eddy(j-1))/(4.0*cgm_e)
 temp2= CL(j)*eddy(j)/cgm_e
 P=CL(j)*eddy(j)*((u(j+1) - u(j-1))/(2.0*dz))**2
 G=grav*eddy(j)*(cL(j+1) - cL(j-1))/(2.0*dz*PR)

 S1=-m1*CL(j-1)*w(j-1) + m3*temp1 - m3*temp2
 diag(nj)=CL(j) + 2.0*m3*temp2
 if(tke(j) .ge. 1.0e-30) then
 diag(nj)=diag(nj) + C2e*CL(j)*dt*eps(j)/tke(j) -
c1e*theta*dt*(P+c3e*G)/tke(j)
 end if
 abov(nj)=m1*CL(J+1)*w(j+1) - m3*temp1 - m3*temp2

 T1=-m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 T2=CL(j) - 2.0*m4*temp2
 if(tke(j) .ge. 1.0e-30) then
 T2=T2 + c1e*(1-theta)*dt*(P + c3e*G)/tke(j)
 end if

50

 T3= m2*CL(j+1)*w(j+1) + m4*temp1 + m4*temp2

 right(nj)=(T1-S1)*eps_zb + T2*eps(j) + T3*eps(j+1)
! if(q .eq. 'y' .and. nt .ge. ntchk) write(8,2)
nj,diag(nj),abov(nj),right(nj), G

!for the internal cells
 do j=jzb+2,nzm2
 nj=nj+1
 temp1= (CL(j+1)*eddy(j+1) - CL(j-1)*eddy(j-1))/(4.0*cgm_e)
 temp2= CL(j)*eddy(j)/cgm_e
 P=CL(j)*eddy(j)*((u(j+1) - u(j-1))/(2.0*dz))**2
 G=grav*eddy(j)*(cL(j+1) - cL(j-1))/(2.0*dz*PR)

 belo(nj)=-m1*CL(j-1)*w(j-1) + m3*temp1 - m3*temp2
 diag(nj)=CL(j) + 2.0*m3*temp2
 if(tke(j) .ge. 1.0e-30) then
 diag(nj)=diag(nj) + C2e*CL(j)*dt*eps(j)/tke(j) -
c1e*theta*dt*(P+c3e*G)/tke(j)
 end if
 abov(nj)=m1*CL(J+1)*w(j+1) - m3*temp1 - m3*temp2

 T1=-m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 T2=CL(j) - 2.0*m4*temp2
 if(tke(j) .ge. 1.0e-30) then
 T2=T2 + c1e*(1-theta)*dt*(P + c3e*G)/tke(j)
 end if
 T3= m2*CL(j+1)*w(j+1) + m4*temp1 + m4*temp2
 right(nj)=T1*eps(j-1) + T2*eps(j) + T3*eps(j+1)
! if(q.eq.'y' .and. nt.ge.ntchk) write(8,3)
nj,belo(nj),diag(nj),abov(nj),right(nj),G
 end do

!for the top cell
 nj=nj+1
 j=nzm1
 temp1= (CL(j)*eddy(j) - CL(j-1)*eddy(j-1))/(2.0*cgm_e)
 temp2= CL(j)*eddy(j)/cgm_e
 P=CL(j)*eddy(j)*((u(j) - u(j-1))/(2.0*dz))**2
 G=grav*eddy(j)*(cL(j) - cL(j-1))/(2.0*dz*PR)

 belo(nj)=-m1*CL(j-1)*w(j-1) + m3*temp1 - m3*temp2
 diag(nj)=CL(j) + 2.0*m3*temp2
 if(tke(j) .ge. 1.0e-30) then
 diag(nj)=diag(nj) + C2e*CL(j)*dt*eps(j)/tke(j) -
c1e*theta*dt*(P+c3e*G)/tke(j)
 end if
 s3=m1*CL(J)*w(j) - m3*temp1 - m3*temp2
 diag(nj)=diag(nj) - S3

 T1=-m2*CL(j-1)*w(j-1) - m4*temp1 + m4*temp2
 T2=CL(j) - 2.0*m4*temp2
 if(tke(j) .ge. 1.0e-30) then
 T2=T2 + c1e*(1-theta)*dt*(P + c3e*G)/tke(j)

51

 end if
 T3= m2*CL(j)*w(j) + m4*temp1 + m4*temp2
 right(nj)=T1*eps(j-1) + (T2-T3)*eps(j)
! if(q.eq.'y' .and. nt.ge.ntchk) write(8,4) nj, belo(nj), diag(nj),
right(nj), G

!now call the tridiagonal matrix solver and find the solution
 call tridiagonal(nj, belo,diag,abov, right, temp)

!update EPS
 do j=1,nj
 if (temp(j) .lt. 0.0) temp(j) = 1.0e-8
 eps(j+jzb)=temp(j)
 end do
 eps(jzb)=eps_zb

!estimate EPS for the bottom area
 do j=1,jzb-1
 eps(j)=eps_zb*(j-0.5)*dz/((jzb-0.5)*dz)
 end do

!complete the update of k-e, now update the eddy viscosity and cneu
 do j=1,nzm1
 if(tke(j) .lt. 1.0e-22 .or. eps(j) .lt. 1.0e-22) then
 eddy(j)=vis
 else
 eddy(j)=vis + c_meu*tke(j)*tke(j)/eps(j)
 end if
 cneu(j)=eddy(j)
! print*,'j, tke, eps, eddy = ',j, tke(j), eps(j), eddy(j)
 end do

end if !(for 2nd order k-e model)

return
end

!---
Subroutine Shearvelocity(ustar, roughness)
!when the depth averaged velocity is small, i.e., less than 0.1 m/s, a simple
! formula (u*=0.077U) is used.
! Otherwise, using the least squares fitting with velocity data from previous
! step that are beween 0.1 m and 0.8 m above bed to find u_star.
! The above two values should be checked before simulating a flow, especially
! when the water depth is small.
!
!velocity profile in the constant shear stress zone is
!
! u(z)=(u*/k)log(z) + b, where k : von Karman constant;
! b : -(u*/k)log(zo)
! u* : shear velocity
! zo : roughness height
! this equation is a linear equation, and can be simplified as

52

! y = mx + b where m = U*/K and x = log(z)
! the calculated u(j) is treated as experimental data y(j), and
! u(z) in the velocity profile equation is treated as y
! the corresponding tern, log(zc(j)), is treated as x(j), experimental data.
!
parameter (ng=48000, nt=70, nd=0)
implicit real*8 (a-h, o-z)
common/parame/ nz,nzm1,nzm2, dt,dz, depth, dydx_in, period,wave_amp,
wavek,cgm
common/array2/ z(ng),zc(ng), u(ng),dis(ng), conc(ng), cneu(ng), cL(ng), uave
common/leastq/ zb1, jzb1, ze, jze, iption_BC

!change the lower elevation for interpreting shear velocity and roughness
zb=zb1
jzb=int(zb/dz)

!the following numbers must be checked for any simulation
ze=0.8
if (ze .gt. 0.3*depth) then
 print*,'***'
 print*,'Please check ze because ze '
 print*,' should represent a near-bed zone for an open channel flows '
 print*,'***'
end if
jze=int(ze/dz)

!find the depth-averaged velocity
 uave=0.0
 do i=1,nzm1
 uave=uave + u(i)*dz
 end do
 uave=uave/depth

if (abs(uave) .ge. 0.1) then
!uses log law to find u*
 ny=jze - jzb + 1
 if(ny .le. 2) then
 print*,'increase vertical resolution to have more points in the log
layer'
 print*,' usually this is caused by dz become too big or negative.
This '
 print*,' measns a stability problem. Reduce dt would be the first
option'
 stop
 end if
 sumxi=0
 sumyi=0
 sumxiyi=0
 sumxi2=0
 do j=jzb,jze
 sumxi=sumxi + log(zc(j))
 sumyi=sumyi + u(j)
 sumxi2=sumxi2 + log(zc(j))*log(zc(j))
 sumxiyi=sumxiyi + log(zc(j))*u(j)

53

 end do
 slope=(ny*sumxiyi - sumyi*sumxi)/(ny*sumxi2 - sumxi*sumxi)
 !bed shear stress
 ustar=0.41*slope
 b_sec=(sumyi - slope*sumxi)/ny
 clog_zo=-0.41*b_sec/ustar
 roughness=dexp(clog_zo)
 if (roughness .le. 0.001) roughness=0.001
 if (roughness .ge. 0.2*depth) roughness=0.2*depth

else
!uses the depth averaged velocity to find u*. Because
Tau=1/2*density_water*Cd*U^2
! which can be translated to (u*)^2=(Cd/2)U^2. if Cd = 0.012, then u*=0.077U
! this formulation may not be accurate, but it is only used when uave is
small,
! so that the influence should be small too.
 ustar=0.077*uave
 roughness=0.001
end if

!change ustar to reflect the density effect
ave_water_density=0
do i=1, nzm1
 ave_water_density = ave_water_density + cL(i)
end do
ave_water_density=ave_water_density/nzm1
shear=ustar*ustar*ave_water_density
ustar=sqrt(shear/cL(1))

return
end
!
!--
subroutine airy(period, depth, waveL, wavekh)
! This function calculates the wave number and wave length based on
! small amplitude wave theory.
! period : in second.
! depth : in meter.
! wavek : in meter^-1
!
implicit real*8 (a-h, o-y)
grav=9.8
dol0=depth/(1.56*period*period)
if (dol0 .ge. 0.7) then
 waveL=1.56*period*period
 wavekh=6.2832*depth/wavel
else
 if (dol0 .ge. 0.01) then
 cgm=6.2832/period
 y=cgm*cgm*depth/grav
 sum=1.0 + 0.6666666666*y + 0.355555555*y*y + &
 0.1608465608*y*y*y + 0.0632098765*y*y*y*y + &
 0.0217540484*y*y*y*y*y + 0.00654078*y*y*y*y*y*y

54

 wavekh=sqrt(y*y + y/sum)
 waveL=6.2832*depth/wavekh
 else
!long wave
 c=sqrt(grav*depth)
 waveL=c*period
 wavekh=6.2832*depth/wavel
 end if
end if
!
return
end
!
!--
subroutine tridiagonal(n, a,d,u,e, z)

!This subroutine solves the tridiagonal matrix equation DZ=E.
! where D is stored in 3 one-dimensional arrays.
!input:
! n is the order of matrix G.
! a(i) is the lower diagonal elements, from a(2) to a(n)
! d(i) is the diagonal elements, from d(1) to d(n)
! u(i) is the upper diagonal elements, from u(1) to u(n-1)
! e(i) is a column matrix, the right hand side of Eq. DZ=E
! from e(1) to e(n)
!
!return:
! z(i) is the returned answer, from z(1) to z(n)
!
!The complete picture is depicted as follows:
!
! | d1 u1 0 0 0 0 0 ... | | z1 | | e1 |
! | a2 d2 u2 0 0 0 0 ... | | z2 | | e2 |
! | 0 a3 d3 u3 0 0 0 ... | | z3 | | e3 |
! | 0 0 a4 d4 u4 0 0 ... | | z4 | = | e4 |
! | | | . | | . |
! | 0 0 0 am dm um | | zm | | em |
! | 0 0 0 0.... an dn | | zn | | en |
!
!where m=n-1

parameter (ng=48000)
implicit real*8 (a-h, o-z)
dimension p(ng), q(ng), y(ng)
dimension a(1), d(1), u(1), e(1), z(1)

p(1)=d(1)
q(1)=u(1)/d(1)
do i=2, n-1
 p(i)=d(i)-a(i)*q(i-1)
 q(i)=u(i)/p(i)
end do
p(n)=d(n) - a(n)*q(n-1)

55

y(1)=e(1)/d(1)
do i=2, n
 y(i)=(e(i)-a(i)*y(i-1))/p(i)
end do

z(n)=y(n)
do i=n-1, 1, -1
 z(i)=y(i)-q(i)*z(i+1)
end do

return
end

56

Appendix II. Selected Input Data Files for the 1-D Hydrodynamic Model.

Case 1.
I.project title
 vertical 1-D strong turbulent flows, use k-e model, for steady non-stratified flows
II. total: total # of iteration
 dt : size of time increment, in second.
 nzm1 : # of grid cells in the vertical direction
 dz : cell size in the vertical direction, in meter
iption_flow: 0, for Steady flow;
 1, for wave/tidal flow with input d(eta)/dx time series;
 2, for wave/tidal flow with internally calculated d(eta)/dx
 3, for wave/tidal flow with input eta time series;
 iption_BC: 0 for using no-slip boundary condition;
 : 1 for using log velocity profile to estimate the velocity
 an elevation z_b about the bottom as the bottom B.C.
 period: wave period, if not a wave then use 0.0
 wave_amp: wave amplitude, inmaterial if not for wave
 dydx : water surface slope, for steady flow
 nob_rec : to skip this # of time steps before saving everything once
 ID : 0, use constant eddy viscosity,
 1, use parabolic eddy viscosity
 2, use k-e model to calculate eddy viscosity
 phase : the phase difference caused by friction (degree)
 offset: tidal amplitude difference between flood and ebb (m)
eddy_const: a constant used to simulate flow with constant viscosity for ID=0
 100000 0.5 500 0.02 0 0 0.0 0.0 -0.00005 5000 2 0.0 0.0 0.0
III.input filename where the time series of water surface elevation are stored
IV.salinity dist. option: followed by salinity_top and Salinity_bottom.
 1.Linear;
 2.fixed s shape profile;
 3.prepared input file; for option 3, given any two numbers
1 0.0 0.0
V.the input filename where the time series of salinity distribution are stored
VI.initial suspended sediment concentration profile (g/L).
 1.a fixed exponential decreasing profile, include uniform profile.
 ssc(z) = ssc_b * exp(ssc_rate*z). ssc_rate must be a negative number
 2.a constant ssc (ssc_b) for the bottom half, and zero for the top half
 3.prepared input file; For option 2, give zero for SSC_rate
 For option 3, give zeros for SSC_b & SSC_rate
 1 0.0 0.0
VII.the input filename where time series of SSC distributions are stored

57

Case 2.
I.project title
 Vertical 1-D turbulent tidal flows, at Menai Strait, G.B., By Rippet et al., 2002
II.total: total # of iteration
 dt : size of time increment, in second.
 nzm1 : # of grid cells in the vertical direction
 dz : cell size in the vertical direction, in meter
iption_flow: 0, for Steady flow;
 1, for wave/tidal flow with input d(eta)/dx time series;
 2, for wave/tidal flow with internally calculated d(eta)/dx
 3, for wave/tidal flow with input eta time series;
 iption_BC: 0 for using no-slip boundary condition;
 : 1 for using log velocity profile to estimate the velocity
 an elevation z_b about the bottom as the bottom B.C.
 period: wave period, if not a wave then use 99
 wave_h: wave height, in material if not for wave
 dydx : water surface slope, for steady flow
 nob_rec: to skip this # of time steps before saving
 ID : 0, use constant eddy viscosity,
 1, use parabolic eddy viscosity
 2, use k-e model to calculate eddy viscosity
 phase : the phase difference caused by wave attenuation (degree)
 offset: constant pressure gradient caused by freshwater discharge
eddy_const: a constant used to simulate flow with constant viscosity for ID=0
 600000 0.5 687 0.02 2 0 44640.0 2.25 0.000 4000 2 44.0 -0.000003 0.0
III.input filename for storing the time series of water surface elevation
IV.salinity dist. option: followed by salinity_top and Salinity_bottom
 1.Linear;
 2.fixed S shape profile;
 3.prepared input file; For option 3, give any two numbers
1 0.0 0.0
V.the input filename for storing time series of salinity distribution
VI.options on SSC profile (g/L), followed by ssc_b for bottom SSC & ssc_rate.
 1.a fixed exponential decreasing profile (include uniform profile,
 ssc(z) = ssc_b * exp(ssc_rate*z). ssc_rate must be a negative number
 2.a constant ssc (ssc_b) for the bottom half, and zero for the top half
 3.prepared input file; For option 2, give zero for SSC_rate
 For option 3, give zeros for SSC_b & SSC_rate
 1 0.0 0.0
VII.the input filename where time series of SSC distributions are stored

58

Case 3.
I.project title
 vertical 1-D turbulent flows, use k-e model, salinity caused stratified flows
II. total: total # of iteration
 dt : size of time increment, in second.
 nzm1 : # of grid cells in the vertical direction
 dz : cell size in the vertical direction, in meter
iption_flow: 0, for Steady flow;
 1, for wave/tidal flow with input d(eta)/dx time series;
 2, for wave/tidal flow with internally calculated d(eta)/dx
 3, for wave/tidal flow with input eta time series;
 iption_BC: 0 for using no-slip boundary condition;
 : 1 for using log velocity profile to estimate the velocity
 an elevation z_b about the bottom as the bottom B.C.
 period: wave period, if not a wave then use 0.0
 wave_amp: wave amplitude, inmaterial if not for wave
 dydx : water surface slope, for steady flow
 nob_rec : to skip this # of time steps before saving everything once
 ID : 0, use constant eddy viscosity,
 1, use parabolic eddy viscosity
 2, use k-e model to calculate eddy viscosity
 phase : the phase difference caused by friction (degree)
 offset: tidal amplitude difference between flood and ebb (m)
eddy_const: a constant used to simulate flow with constant viscosity for ID=0
 195000 1.0 150 0.02 0 0 0.0 0.0 -0.000001 5000 2 0.0 0.0 0.0
III.input filename where the time series of water surface elevation are stored
IV.salinity dist. option: followed by salinity_top and Salinity_bottom.
 1.Linear;
 2.fixed s shape profile;
 3.prepared input file; for option 3, given any two numbers
1 5.0 7.0
V.the input filename where the time series of salinity distribution are stored
VI.initial suspended sediment concentration profile (g/L).
 1.a fixed exponential decreasing profile, include uniform profile.
 ssc(z) = ssc_b * exp(ssc_rate*z). ssc_rate must be a negative number
 2.a constant ssc (ssc_b) for the bottom half, and zero for the top half
 3.prepared input file; For option 2, give zero for SSC_rate
 For option 3, give zeros for SSC_b & SSC_rate
 1 0.0 0.0
VII.the input filename where time series of SSC distributions are stored

59

Case 4.
I.project title
 vertical 1-D steady turbulent flows, use k-e model, SSC caused stratified flows
II. total: total # of iteration
 dt : size of time increment, in second.
 nzm1 : # of grid cells in the vertical direction
 dz : cell size in the vertical direction, in meter
 iption : 0, for Steady flow;
 1, for wave/tidal flow with input d(eta)/dx time series;
 2, for wave/tidal flow with internally calculated d(eta)/dx
 3, for wave/tidal flow with input eta time series;
 iption_BC: 0 for using no-slip boundary condition;
 : 1 for using log velocity profile to estimate the velocity
 an elevation z_b about the bottom as the bottom B.C.
 period: wave period, inmaterial if iption = 0 or 2
 wave_amp: wave height, inmaterial if not for wave flow
 dydx : water surface slope, for steady flow
 no_rec : to skip this # of time steps before saving once
 ID : 0, use constant eddy viscosity,
 1, use parabolic eddy viscosity
 2, use k-e model to calculate eddy viscosity
 phase : the phase difference caused by friction (degree)
 offset: tidal amplitude difference between flood and ebb (m)
 eddy : the constant eddy viscosity, give a number even if ID <> 0
 125000 0.50 500 0.020 0 0 0.0 0.0 -0.00005 5000 2 0.0 0.0 0.0
III.input filename for storing the time series if water surface elevation
IV.options for salinity info: followed by Salinity_top and salinity_bottom.
 1. Linear;
 2. fixed s shape profile;
 3. prepared input file; For option 3, give any two numbers
1 0.0 0.0
V.the input filename for storing time series of salinity distribution
VI.initial suspended sediment concentration profile (g/L).
 1.a fixed exponential decreasing profile (include uniform profile,
 ssc(z) = ssc_b * exp(ssc_rate*z). ssc_rate must be a negative number
 2.a constant ssc (ssc_b) for the bottom half, and zero for the top half
 3.prepared input file; For option 2, give zero for SSC_rate
 For option 3, give zeros for SSC_b & SSC_rate
 1 3.0 -1.1
VII.the input filename where time series of SSC distributions are stored

60

Appendix III. Source Codes for Plotting the Simulation Results

%Program: profiles_plt.m
%MathLab M file for plot the results of program V1D.F90
%
% Program developed by Jerome P.-Y. Maa at
% Virginia Institute of Marine Science, June 2009
clear all; close all; clc;

[name,path]=uigetfile('c:\1-d\eord*.lis','Available Data files');
file=[path,name];
[fid, message]=fopen(file);
if fid == -1 disp([message,' for', file]); end

 % read data file name from the log file
 header=fgets(fid);
 header=fgets(fid); ns=length(header); nt_s=header(19:ns-1);
 nt=str2num(nt_s);
 header=fgets(fid); ns=length(header); dt_s=header(19:ns-1);
 dt= str2num(dt_s);

 header=fgets(fid); ns=length(header); nz_s=header(19:ns-1);
 nz=str2num(nz_s);
 header=fgets(fid); ns=length(header); depth_s=header(19:ns-1);
 depth= str2num(depth_s);

 header=fgets(fid); ns=length(header); Iption_s=header(19:ns-1);
 Iption_flow= str2num(Iption_s);
 header=fgets(fid); ns=length(header); iption_BC_s=header(19:ns-1);
 iption_BC= str2num(iption_BC_s);

 header=fgets(fid); ns=length(header); period_s=header(19:ns-1);
 period= str2num(period_s);
 header=fgets(fid); ns=length(header); waveH_s=header(19:ns-1);
 waveH= str2num(waveH_s);
 header=fgets(fid); ns=length(header); dydx_s=header(19:ns-1);
 dydx= str2num(dydx_s);

 header=fgets(fid); ns=length(header); ID_s=header(19:ns-1);
 ID= str2num(ID_s);
 header=fgets(fid); ns=length(header); phase_s=header(19:ns-1);
 phase= str2num(phase_s);
 header=fgets(fid); ns=length(header); offset_s=header(19:ns-1);
 offset= str2num(offset_s);
 header=fgets(fid); ns=length(header); eddy_const_s=header(19:ns-1);
 eddy_const= str2num(eddy_const_s);

 header=fgets(fid); ns=length(header); zb_s=header(19:ns-1);
 zb= str2num(zb_s);
 if iption_BC == 0 zb=0; end
 disp(['iption_bd= ', iption_BC_s]);
 disp(['z_d for U= ', num2str(zb),' m']);

61

 k=0;

 figure(1); clf;
 while ~feof(fid)
 k=k+1;
 fgets(fid);
 a=fscanf(fid,'%f %f %f %f %f %f %f %f', 8); fgets(fid);
 step(k)=a(1); %time step
 time_chk=a(1)*dt; %time
 depth=a(2); dz=100*depth/nz;
 eta(k)=a(3);

 %read horizontal velocity
 fgets(fid);
 u=fscanf(fid,'%f', nz); fgets(fid); %in cm/s
 y=dz*(0:1:nz-1) + 0.5*dz; y=0.01*y;

 disp(['time = ',num2str(time_chk),'s., dep=', num2str(depth)]);
 plot(u, y, '-g', 'linewidth', 1); hold on;

 %read total viscosity
 header=fgets(fid); coe_s=header(1:6); coe1=str2num(coe_s);
 cneu=fscanf(fid,'%f', nz); fgets(fid); cneu=cneu/coe1;

 %read tke for current
 header=fgets(fid); coe_s=header(1:6); coe2=str2num(coe_s);
 tke=fscanf(fid,'%f', nz); fgets(fid); tke=tke/coe2;

 %read eps for current
 header=fgets(fid); coe_s=header(1:6); coe3=str2num(coe_s);
 eps=fscanf(fid,'%f', nz); fgets(fid); eps=eps/coe3;

 %read salinity
 header=fgets(fid);
 sal=fscanf(fid,'%f', nz); fgets(fid);

 %read suspended sediment concentration profiles
 header=fgets(fid);
 ssc=fscanf(fid,'%f', nz); fgets(fid);

 %read water density
 header=fgets(fid);
 water_density=fscanf(fid,'%f', nz); fgets(fid);

 %read vertical velocity profile
 header=fgets(fid);
 w=fscanf(fid,'%f', nz+1); fgets(fid);
 % do next time step
 end
plot(u, y, '-b', 'linewidth', 2); hold on;
title(name);

62

figure(2); clf;
subplot(1, 2, 1);
plot(tke, y, '-r', 'linewidth', 2); hold on;
text(0.5*max(tke), 0.5*depth,'r: tke');
plot(eps, y, '--k', 'linewidth', 2); hold on;
text(0.4*max(tke), 0.4*depth,'k: eps');
xlabel('TKE (m/s)2 EPS'); ylabel('z (m)');
subplot(1, 2, 2);
plot(cneu, y, '-k', 'linewidth', 2); hold on;
xlabel('cneu (m2/s)'); ylabel('z (m)');
title(name);

figure(3); clf;
subplot(1, 2, 1);
plot(ssc, y, '-k', 'linewidth', 2); hold on;
xlabel('SSC (g/L)'); ylabel('z (m)');
subplot(1, 2, 2);
plot(sal, y, '-k', 'linewidth', 2); hold on;
xlabel('Salinity (psu)');
title(name);

	Vertical One-dimensional (1-D) Simulations of Horizontal Velocity Profiles
	Recommended Citation

	Vertical One-dimensional (1-D) Simulations of
	Horizontal Velocity Profiles
	January 2016

