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ABSTRACT

Web crawlers have been developed for several malicious purposes like downloading

server data without permission from website administrator. Armored stealthy

crawlers are evolving against new anti-crawler mechanisms in the arms race

between the crawler developers and crawler defenders.

In this thesis, we develop a new anti-crawler mechanism called PathMarker to detect and
constrain crawlers that crawl content of servers stealthily and persistently. The basic
idea is to add a marker to each web page URL and then encrypt the URL and marker.
By using the URL path and user information contained in the marker as the new
features of our detection modules, we could accurately detect stealthy crawlers even
most distributed crawlers at the earliest stage. Besides effectively detecting crawlers,
PathMarker can also dramatically suppress the efficiency of crawlers before they are
detected by misleading the crawlers visiting same page’s URL with different markers.
We deploy our approach on a forum website to collect normal users’ data. The
evaluation results show that PathMarker can quickly capture all 12 open-source and
in-house crawlers, plus two external crawlers (i.e., Googlebots and Yahoo Slurp).
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Protecting Web Contents against Persistent and Stealthy Crawlers



Chapter 1

Introduction

With the prosperity of Internet data scale, the demand of crawlers has dramatically in-

creasing. The 2014 bot traffic report from Incapsula [20] points out that bots account

for 56% of all website traffic, and malicious bots contributes almost one third of the

web traffic. Besides the increasing of the total amount of crawlers, more and more algo-

rithms [5, 11, 7, 22] are available for malicious crawlers too. As the result, it becomes

more tough for the website administrator to detect the attacking crawlers now.

To detect and constrain malicious crawlers, researchers have developed a number of

anti-crawler mechanisms [35, 38, 32, 13, 40, 26, 29, 16, 17, 21]. Among these works,

heuristic detection mechanisms have been widely adopted to identify and defeat malicious

crawlers through analyzing the User-Agent, referrer, and even cookie fields in the HTTP

request headers as well as monitoring the visiting rate of each individual visitor. However,

they cannot guarantee to detect crawlers that can manipulate those observed features.

Alternatively, machine learning detection mechanisms can detect malicious crawlers based

on the different visiting patterns of normal users and malicious crawlers. Many recent

works use these two techniques together to defend the attackers.

Different mechanisms could protect websites from different crawlers because they use

different features. Among those major targets of malicious crawlers, one type is the website

that contains a limited number of confidential document or treasured content. The basic

shelter of these websites is requesting users to login before accessing its most valued data.

However, even only authorized or paid users are allowed to access those website pages,

an insider attacker still has the chance to crawl the entire website and use them with

malevolent purposes like selling them or phishing other normal users. For instance, one
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malicious doctor may implement a crawler with his or her user account then the crawler

could pass the authentication of the hospital’s server and download all patients’ document

from the hospital’s internal network. After that, the doctor could sell it to medicine

dealers.

Most insider attackers of the websites above crawl the precious contents stealthily and

persistently. The crawlers are persistent means they can reasonably sacrifice the efficiency.

Furthermore, The crawlers are stealthy so run extra work to better mimic the access

behaviors of real users. Thus, it becomes a challenge to detect such a crawler accurately

at its earliest stage. Moreover, several insiders may coordinate and use a divide-and-

conquer strategy to increase the crawling speed. For most anti-crawler systems, when a

malicious crawler operates by itself, the systems can easily block single crawler’s access to

the web server using a network firewall. However, when a number of robots coordinate from

different identities, it becomes more difficult to automatically block all of them. Because of

these properties, the heuristic features or machine learning features of known anti-crawler

mechanisms might not work well for detecting the crawlers that target on valuable content

of websites. For instance, when a crawler sets a random time gap between two sequential

requests, it can escape most anti-crawler mechanisms that work based on the time-related

features.

In this paper, we develop a new anti-crawler system called PathMarker that aims to

detect and constrain stealthy persistent crawlers targeting at websites that require user

to login with valid user accounts for accessing a limited number of valuable content. The

main idea is to add an marker to each web page URL and record the web page path and

user information in the markers to help identify and confine crawlers. Given one website,

PathMarker can automatically generate and append a marker to each web page’s URL.

We call the marker as URL marker, which records the information about the page that

contains this link and the user account who collects this link. With the aid of URL marker,

we can filter many basic crawlers by checking the information in marker. Furthermore,

we can build accurate URL visiting path for every user based on the URL marker and
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then calculate the visiting depth and width of each single user. Next, we can leverage

machine learning techniques to detect crawlers based on the different patterns of URL

visiting paths and different URL visiting timings between human beings and malicious

crawlers. We adopt Support Vector Machine (SVM) to model the normal users and

crawlers using the features related to the URL marker. Finally, we use CAPTCHAs to

verify any suspicious user in case our machine learning reports a false positive case.

To avoid the armored attackers forge or reuse the URL markers, we encrypt the URL

marker along with the original URL except the domain name to further protect the website

structure against crawlers. The crawlers will possibly collect different web links for the

same web page because the URL markers of the same page might be different. Thus, we

can suppress attacker’s crawling efficiency especially for the distributed crawlers because

every user ID of the distributed crawlers would get different encrypted links for the same

page. Moreover, when distributed crawlers share collected links in a pool, we can detect

them through a user ID mismatch, since the user who collects the page may not be the

same as the one who visits the URLs contained in this page.

We develop a PathMarker prototype on an online open source forum website. We set

up the forum website and integrate our anti-crawler mechanism. We first train a SVM

model based on the log data collected from more than 100 normal users and 6 in-house

crawlers, and then test the model using 6 open-source crawlers and another set of normal

user data. The experimental results show that our anti-crawler technique can effectively

detect all mentioned crawlers. Moreover, two external crawlers, Googlebot [30] and Yahoo

Slurp, are also detected. We unveil the distributed nature of Googlebot and study how

PathMarker is able to suppress the efficiency of such crawlers.

In summary, we make the following contributions.

• We develop an anti-crawler system named PathMarker to detect persistent and

stealthy web crawlers. It can differentiate normal users from malicious crawlers by

using the URL visiting path and URL visiting timing features derived from the URL
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marker. We can reduce the download speed of individual persistent crawler that mimics

human being’s download behavior to the level of human beings.

• PathMarker is able to instantly detect distributed crawlers that share links with

each other. If the distributed crawlers do not share links in a pool, our encrypted URL

technique can effectively suppress their efficiency.

• We implement a PathMarker prototype on an online forum website and show that

it is simple to deploy our mechanism on existing websites. The experimental results

show that PathMarker is capable of detecting a number of state-of-the-art crawlers.

The remaining of the paper is organized as follows. Section 2 introduces background

information. Section 3 presents our threat model. We present the architecture of Path-

Marker in Section 4 and detail the security analysis in Section 5. The system implemen-

tation and evaluation are shown in Section 6. We discuss interesting observations and

potential extensions in Section 7. We discuss related works in Section 8. Finally, we

conclude the paper in Section 9.
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Chapter 2

Background

The web crawler starts by visiting a seed page, which is usually the homepage of the

target website. By parsing the seed page the crawler collects URLs embedded in the page.

Based on the crawling algorithm, the crawler picks next page to visit from the collected

URLs [28]. We show a simple website structure example in Figure 2.1. The maximum

depth of this web structure is 3 and the maximum width is 2. We show two sample paths

both travelling through three pages but in different orders, where the visiting path A is

homepage, page1 and page3 and the visiting path B is homepage, page1, and page2. Path

A has depth of 3 and width of 1 and path B has depth of 2 and width of 2.

Home Page

Page 1 Page 2

Page 3 Page 4

Figure 2.1: A Website Structure Example

The different crawling algorithms will have different depth and width of the visiting

web paths for the same website. First, starting from the seed page, depth-first crawlers

greedily visit the URLs as far as possible in a branch of a website tree graph before

backtracking. In Figure 2.1, the depth-first crawler’s visiting path is homepage, page1,
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page3, page4, and page2. Alternatively, breadth-first crawlers try to visit all links of a

page before visiting links from another page. In Figure 2.1, the breadth-first crawler’s

visiting path is homepage, page1, page2, page3, and page4. The backlink number-first

crawlers aim to collect most valuable content of a server. The backlink number of a page

represents the number of other pages that are linking to the page. Therefore, the backlink

number reflects the popularity of a page. However, the algorithm require some knowledge

about the target pages to compute the backlink number before running the crawler which

means this algortihm does not work for crawling unknown website pages. Similar to the

backlink number-first algorithm, PageRank-first crawlers also try to crawl more important

web pages first, but they estimate the importance of a web page based on not only the

number links linking to this page, but also the quality of these links. For the crawlers have

no preference about depth or width like backlink number-first crawlers or PageRank-first

crawlers, we would classify them as ”Random-like” in our paper.
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Chapter 3

Threat Model and Our Goals

We focus on the insiders that have valid user accounts of the targeted websites and attempt

to download the entire web contents for profit. One persistent insider may crawl the entire

website in a long time period and also the insider could be stealthy by mimicing the access

behaviors of human beings. Moreover, a small number of insiders with valid user accounts

may coordinate to acquire the whole content of the website.

Our work targets at detecting crawlers who have access to all or part of protected

website contents. We assume each user may register one or multiple user accounts on

the same website, but the number of total accounts controlled by one user is limited due

to economic concerns (e.g., paying the premium), labor concern (repeating registration

process), or identity constraints (real name or ID number required). The websites that

allow anonymous web page requests are out the scope of this paper because most of

the valuable content or confidential document will not be reviewed by everyone without

restriction. Also, we do not consider the case that one attacker could control a large

number of user accounts by cracking the website’s password database because in this case

the attacker could use each user ID only few times and we have small chance to realize

one user ID’s visiting behavior within few requests.

Our anti-crawler mechanism targets at achieving four important goals.

1. High Accuracy. PathMarker should provide an accurate detection that is able to detect

and constrain most crawling activities with a low false positive rate. Moreover, it should

also be able to detect distributed crawlers that may coordinate with each other to bypass

the detection on individual crawlers.
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2. Fast Detection. The system should ensure a rapid response, which means it can not

only detect malicious crawlers, but also detect a suspicious crawler at its earliest stage

in order to minimize the loss.

3. Low User Experience Degradation. A good defense mechanism should not affect user

experience. Therefore, we need to guarantee the normal usage of websites under our

threat model will not be affected apparently.

4. Delay the crawler those could hide from PathMarker. for the unknown crawler with

really delicate algorithms who can impersonate human beings to bypass our detection,

we should suppress their crawling efficiency to the level of normal human beings.
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Chapter 4

System Design

PathMarker requires some modification on the protected website to provide more web page

visiting information for crawler detection. With the website extension, we can develop an

efficient crawler detection mechanism that is able to achieve all the four goals in Section 3.

4.1 Website Modification

PathMarker requires two major changes, namely, adding URL marker and expanding

access log, on the target website system to help record more web page visiting information

for both heuristic detection and machine learning based detection. The URL marker

is used to track the visiting path of visitors by recording the parent page and detect

distributed crawlers by matching the current visitor with the page obtainer in URL marker.

As a definition in our work, if the user gets page 2s link from page then page 1 is the parent

page of page 2. Basically the parent page of a link is the page that contains this link.

Since the marker part is useful for PathMarker and the server receive every marker at the

same time as handling he request, we modify the log function of the server for recording

those markers correctly. We will discuss the details about the modifications in the next

subsections.

4.1.1 Adding URL Marker

We add a URL marker at the end of each hyperlink URL inside a page. Each URL marker

records the page that the URL is retrieved from and the user who obtained the URL. By

analyzing these information we are able to verify if a user is visiting a URL that is obtained
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by other users through comparing their access logs. We can learn the causal relationship

between two links from the URL markers and accurately determine the width and depth

of the visiting path. If we do not use the URL marker, then we only could estimate the

depth and width based on semantic analysis of every URL, this method takes much time

and could not calculate the depth or width of a session accurately. Moreover, the URL

marker can be used to effectively detect distributed crawlers that share a URL pool.

The URL marker is appended directly in the URL of each page so it is viewable to all

visitors. To protect the information from leaking to the attacker or reusing by the attacker,

we encrypt the path and URL marker on the server side. Here we use one key for all users

and because we do not worry that different users might reuse others’ ciphertext because

our URL marker could help us detect this case. We encrypt the path as well since it can

help constrain distributed crawlers by forcing them to repeatedly visit the same page that

may have many different URL markers.

For example, a typical URL of the domain A is: A.com/B/C.html.

After we add the URLmarker to it, it would be: A.com/B/C.html/mk:B/root.html;User1.

The appended URL marker is mk:B/root.html;User1 which means this URL is re-

trieved from the page A.com/B/root.html and “User1” is the user who obtains the URL.

The whole URL after encryption using AES-256-CBC is A.com/en:bf37cf8f8f6cb5f39248

25013e3f79c04086d1e569a7891686fd7e3fa3818a8e.

In a static website, we only need to apply a simple server script function to modify

all links in a web page. In a dynamic system, there is usually a URL generator function,

which can be modified to add the URL marker.

4.1.2 Expanding Access Log

Most websites maintain their access logs, which record the information of all visitors such

as IP address, the page URL that is being visited, and timestamp. PathMarker extends

the access log to record more information. When a new request is received, the server

decrypts the encrypted URL and parses the plaintext to get the URL marker. Then the
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access log records user ID, user IP, visiting URL, URL marker information, and timestamp.

Table 4.1 shows an example on logs and how we calculate depth and width according to

the logs.

Table 4.1: Example Logs for Computing Path Features

Log ID
Log Info Analyzing Result

User ID User IP URL Marker timestamp Short Session ID Deepest page MAX depth Widest Page MAX width

1 1 127.0.0.1 URL1 URL0; 1 0 1 URL1 1 URL0 0

2 1 127.0.0.1 URL2 URL1; 1 3 1 URL2 2 URL1 1

3 1 127.0.0.1 URL3 URL2; 1 8 1 URL3 3 URL1 1

4 1 127.0.0.1 URL2 URL3; 1 10 1 URL2 4 URL1 1

5 1 127.0.0.1 URL4 URL2; 1 15 1 URL4 5 URL2 2

6 1 127.0.0.1 URL5 URL2; 1 17 1 URL4 5 URL2 3

7 1 127.0.0.1 URL6 URL3; 3 20 1 URL4 5 URL2 3

8 1 127.0.0.1 URL7 URL1; 1 32 8 URL4 5 URL2 3

For PathMarker, we need to calculate the depth and width of a group of continuous

logs belong to the same user and we call this group as a session. For each given session

who contains some logs, we processing the session log by log. For each log, at first we

need to check the information in the URL markers is correct. For example, the log 7 in

table 4.1 shows user 1 visits a page with URL marker of user 3, this might happen if user

3 share the link to user 1. If user 1 visits links of other users more than the upper limit

we define, then we set user 1 as a suspicious user.

If the user ID in the marker could match with the current visitor’s ID, then we check

the log’s parent page that saved in the marker for calculating the depth and width. Here

depth represents how deep a page is and width means how many subpages of one page are

visited by the user. Basically if user retrieves the URL a from the page of URL b and he

visits both pages and he visits URL b is ealier than visits URL a, we consider that URL

a is deeper than URL b and URL b’s width should add 1 because URL a was visited.

1. If this log’s URLs parent page is not viewed within this session before this log then we

set this log’s URL with depth 1 and width 0 such as the log 1 of table 4.1. Then, we

skip to the next log.

2. If the URL’s parent page appears in the same session and being viewed before it, then

we set this log’s URL’s depth = its parent page’s URL’s depth + 1. Similarly, If the
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link’s parent page appears in the session before it, we set its parent page’s URL’s width

= its parent page’s URL’s width + 1. Note if one session contains a URL several times,

we would keep adding the depth. For instance, in the 4.1, both log 2 and log 4 are

generated for URL2 but the later log still add 1 depth for whole session.

After we check all logs of entire session, we set and the session’s depth and width as

the maximum depth and depth of all URLs being requested within this session. Finally

we get the depth and width for this session. To better utilize the depth and width we get,

In the meantime, PathMarker runs an individual monitoring process locally to monitor

each newly added log. This process decides if and when to send a user to the machine

learning module for further analysis. This monitoring process are working based on our

new conceptions which we are discussing below.

The first conception is Short Session. We consider a user is in a short session if the

user requests two pages within a couple of seconds. We use 10 seconds as the default

interval time for our experiment since our user study shows that normal users generate

two requests within 10 seconds among a single visiting period. The parameter can be

tuned according to each website’s specific user scenario. In Table 4.1, the short session ID

means the first log ID for current short cession and the log 8 starts a new short session

since the interval time between log 7 and log 8 is larger than 10 seconds. As long as a new

request is made after the 10 second time period, the following requests will be grouped in

another short session. The length of a session is the number of log entries in the session.

Therefore, the length of a short session varies depending on the visiting pattern of the

user.

The other concepts is Long Session. PathMarker keeps track of each new log. If the

number of new log of a visitor reaches the length of a long session, one alert will be raised

and this long session will be sent to machine learning module for further analysis. The

length of a long session is fixed. If the system set the length of long session is X, then for

every user the first X logs would be the first long session, X + 1 to 2X logs would be the
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second session so on. We define these two concepts because we discover that users have

different pattern about depth and width in their short term and long term while crawlers

always behave similarly and we would discuss the details of this observation in section

6.2. In this case we want to use the short session to present the pattern of every one’s

short term behavior and long session could represent the user’s long term behavior. Since

various website systems may have different average short session length and long session’s

length should be longer than this average value to present different pattern of the same

user, we recommend to set the length of a long session as twice of the average length of

all users’ short sessions’ lengths. For the rest of the paper, when we are talking about the

short session, it represents the short session that only belongs to one long session. If a

visitor keeps visiting pages within 10 seconds and his short session across from one long

session to another, then we separate the logs as two short sessions.

 1s  5s  7s 23s  1s 2s
log#0 log#1 log#2 log#3 log#4 log#57

…...
log#58 log#59 log#60 log#61

 14s

short session 1

long session

 3s  7s 14s
log#62 log#63

short
sess-
ion 2 short session 3

Figure 4.1: New Definitons about Session

To explain our conceptions, let’s define the long session’s length is 60 (we would discuss

why we set this value in the section 6.2). Then we assume there is a new user whose first

64 logs’ time gaps show as Figure 4.1. According to the figure, we could see in the figure,

this user only finishes one long session which is log#0 to log#59 and he has three short

sessions: log#0 to log#3, log#58 to log#59 and log#59 to log#62. Actually the users

starts his second short session at log#58 and it could continue to log#62, however the

first long session stops at log#59 so we have to separate these logs into two short sessions.

Basically, every time when one user’s new logs are more than a long session, the system
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would use the machine learning module to analyze this user’s new long session. In the

section 4.2.2 we would discuss how to utilize these two conceptions to analyse the visiting

paths of different users.

4.2 Crawler Detection

Detection Pre-processing 

 Web 
Request

Collecting 
Features

Post-processing

Updating 
Blacklist

Checking 
Blacklist

Heuristic
Detection

Machine Learning
Detection

CAPTCHA 
Verification

if user is 
suspect

if user is normal, waiting for new request

Figure 4.2: PathMarker Architecture

Figure 4.2 is the architecture of our system. According to the figure, PathMarker

consists of three modules, namely, pre-processing module, detection module, and post-

processing module. The entire defense mechanism works as follows. For incoming HTTP

requests, the pre-processing module first recognizes the user IDs of requests. If the user

ID is in the blacklist that keeps all the known crawlers’ IDs, then it directly rejects the

request. For other users we would extract the URL markers from the original URLs and

then save the information.

After the pre-processing stage, PathMarker is able to defend persistent crawlers by

utilizing both heuristic detection and learning-based detection with the newly added path

features. It first uses heuristic detection to investigate basic web traffic patterns as well as

checks URL marker integrity. For instance, it will check if one user generates more than a

threshold of web requests. PathMarker also leverages machine learning detection technique

to identify suspicious users by learning both the visiting time features and visiting path

features from the URL marker and the access log. Since the system keeps logging each

user’s web access activities, the machine learning detection component will continuously

analyze the visitor’s behaviors and generate an alert when one visitor is suspicious.
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For both detection components, after a suspicious crawler is detected, it prompts

CAPTCHA to further reduce the false positive rate. After failing to correctly input the

CAPTCHA a couple of times, the user will be put into the blacklist. Otherwise, the

system releases the alert and continues monitoring the logs of the visitor.

Furthermore, we have a final defense to handle the case that there is unknown expert

crawler who could hide from our both layers of detection. We set a upper bound for each

user if they visit a certain percentage of total account. Any user visit more than the

percentage need to prove to the serve about his or her identity.

4.2.1 Heuristic Detection

Heuristic detection module performs basic analysis on the incoming traffic and aims to

discover crawlers based on basic traffic flow features. Since the crawler is usually much

faster than a human user, many crawlers can be easily identified through analyzing the

page visiting rate. PathMarker investigates the referrer, user agency, and cookies of all

incoming traffic. If one or more of these fields in over 10 HTTP requests within an hour

are abnormal (e.g. always no referrer, user agency is known bots’ agency, or some cookies

are missing), the user generating the requests will be labeled as a potential crawler.

Popping CAPTCHA

machine learning 
feature calculation

new log Checking  URL markers
Checking all heuristic features

new log +1
checking new logs’ total number

suspicious log +1
checking total suspicious logs

pass
heuristic
detection

not pass

total new logs are not enough for a long session,wait

total suspicious logs’ number is smaller than threshold, wait

suspicious logs
are enough

enough 
new logs for 

a long session

classification 
result is crawler

Figure 4.3: Heuristic Detection Working Flow

Besides these general features, this module is also responsible for URL marker integrity

checking, which is a new heuristic detection feature we proposed. Specifically, when a new

log is generated, the PathMarker first compares the URL of the page and the visitor ID

16



with the information recorded in the URL marker. If the visitor of this page is not the

one recorded in the URL marker (who is the obtainer of the page URL), we flag this log

entry and mark this user as a potential crawler that visits shared links obtained by other

crawlers. If the user is flagged multiple times within a time period, we mark this user as a

suspicious crawler and prompt it with a CAPTCHA. Basically, Figure 4.3 shows how the

system handle with each new log the server records.

Though heuristic detection have been deployed on many web systems, it is still a

challenge to accurately detect distributed crawlers that share the URLs for crawling.

With the integration of URL marker, our heuristic detection module can detect distributed

crawlers by examining the causal relationship among HTTP requests.

4.2.2 Machine Learning Detection

We use machine learning technique to determine if an active user who has one or more

long sessions is a normal user or a crawler. We adopt the supervised Support Vector

Machine (SVM) as the learning model in PathMarker. We identify six features to train

the SVM-based detection model, based on the fact that normal users and crawlers have

large difference in visiting path pattern and timing.

1. The depth rate of long session max(DL)
LLong

. max(DL) represents the maximum visiting

path depth in a long session and LLong represents the fixed length of the long session.

This feature describes how visitors keep reaching new pages as deep as possible in a

long session. For example, if user 1 just finishes a long session whose length is 60 and

we calculate the largest depth of this long session is 13, then this value would be 13
60 .

2. The width rate of long session max(WL)
LLong

. max(WL) represents the maximum visiting

path width of a long session. This attribute is similar to the depth rate of long session,

yet in the width dimension.

3. Time interval variation of long session V ar(IL)

IL
2 . Time interval is the time gap between

two consecutive requests, which is represented as I. This feature is computed as the
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variance of time interval in a long session over the square of the average time interval

in this long session.

4. The absolute difference between depth rate of long session and depth rate of longest

short session in the long session
∣

∣

∣

max(DL)
LLong

−
max(DS)
LShort

∣

∣

∣
. To compute this feature, we need

at first find out the longest short session in one long session. Then we calculate the

max(DS) which the maximum visiting path depth in this longest short session and

LShort which is the longest short session’s total length. This feature describes how is

the depth pattern of one user’s long session different from this user’s pattern of the

longest short session. One simple example is that when this feature is close to zero,

we could see there is no difference while most normal user would have a relatively high

depth rate for their short session.

5. The absolute difference between width rate of long session and width rate of longest

short session in the long session
∣

∣

∣

max(WL)
LLong

−
max(WS)
LShort

∣

∣

∣
. This feature describes width

pattern difference between the longest short session and a long session of a user.

6. Time interval variation of longest short session V ar(IS)

IS
2 . This feature is similar to time

interval variation of long session; however, the time interval is computed based on the

longest short session in the long session.

Feature 1, 2, 4, 5 are our new path-related features that present features in web-

site visiting path. In a short session, human beings usually have more obvious pattern.

Specifically, there are two common patterns when a user is viewing websites.

i. The user may open multiple web pages at one time, so the maximum width of the

user’s visiting path could be as large as the length of the short session.

ii. The user prefers to jump to another page after he or she takes a glance at one page,

so it will present a large depth of short session.
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However, for both cases of normal users, in a long session, the maximum depth and

width of a user’s visiting path is likely to be much smaller than the length of a long

session, since a long session may contain several short sessions (the length of a long session

is roughly double as the length of average short session) and these short sessions are

independent to each other in terms of depth and width. Meanwhile, crawlers usually have

homogeneous patterns in visiting path. For example, a depth-first crawler would have both

large depth rates of long session and short session, while a random-like crawler would have

a small rate of depth and width. For all the crawlers we test, their behaviors are consistent

when measuring the differences between short sessions and long sessions. Furthermore,

even one crawler wants to mimic human being’s visiting pattern based on our features,

it does not know the parameters because the default time interval for calculating short

session and the length of long session are different for different websites. This is one reason

why we suggest administrators set their parameters based on their servers’ logs. As the

conclusion, unless an attacker could get the rough parameters or mimic human beings

path-pattern well, even he or she sets the visiting with some delicated algorithms, we are

still able to find them out( we would discuss more in Section 6).

Besides the path-related features, we also have two timing features 3 and 6. Normal

users have a small variance of time interval of their short sessions while large variance

about long sessions. For most crawlers, they visit web pages in a more regulated pace

so the variance of time interval is very small compared to human visitors. Even for an

armored crawler that adds random delay in its visiting pattern, it still can be easily

detected since it does not produce different interval variance in a short session and a long

session as human beings. Again, by combining timing features with our two new sessions,

a crawler has to know the parameters about them for escaping our detecting mechanism.

We use variance of time interval divided by the square of the average time interval as the

features because it’s better to set all features of a SVM have similar ranges. Otherwise

we need one more step to balance these features and that cost time and resource.

Basically, oOur features well describe such difference so the SVM model is able to
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distinguish normal users from crawlers accurately. To get an idea result, the machine

learning model should be trained using data from normal users and crawlers. System

administrators may use some of or all crawlers available to crawl their own systems.

Therefore, it is straightforward to collect data of crawlers. However, collecting normal

user data is not easy since we need to guarantee that there is no crawler running when

collecting training data. We adopt a screening process from [21] that uses heuristic module

to filter out most suspicious users. Besides, we manually check the log of all users and

remove users with wrong URL markers.
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Chapter 5

Security Analysis

PathMarker consists of two layers of detection and one layer of verification. The detec-

tion mechanism consists of heuristic detection and machine learning detection, and the

verification method is to use CAPTCHA to constrain crawling activities and lower the

false positive rate. We show the effectiveness of PathMarker on detecting five types of

crawlers. We can also see that when an armored crawler can escape our detection, its

crawling efficiency will be suppressed to the manual download level of human beings.

For the types of crawlers, we analyze them with five categories.

1. Basic crawler. This kind of crawlers only use some basic solutions for escaping from

the defense system of the server. Heuristic detection module detects most of this type

of crawlers because they are not intended designed for stealing data. For instance, some

crawlers might camouflage themselves but they still visit the websites with uncontrolled

spped. Those crawlers are much faster than human beings and they can be detected by

checking the visiting rate. Some crawlers might conceal their activities for some aspects

like user agency, but they still expose other features so our heuristic detection module is

able to detect this type of crawlers by investigating the user agency, referrer, and cookie

fields of HTTP request headers.

2. Timing-aware hidden crawler. When the crawler hides all heuristic features well and

it can successfully mimic the timing features of human visitors, only their web page

access paths are different from normal users. This kind of crawlers have an increasing

ability to mimic human visitors. However, they can be detected due to their incomplete

imitation on web page access paths.
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3. Path-aware hidden crawler. This kind of crawler not only fakes the HTTP requests, but

also control its visiting path. It may be able to download contents from a web system in

a much more comprehensive scheme than pure depth-first or breadth-first algorithms.

It may even closely simulate visiting path of human users. Note that it is very hard to

simulate the visiting path of human users since it usually involves semantic analysis of

the content. Similar to timing-aware hidden crawlers, such crawlers incompletely mimic

human behaviors – the timing features are largely different from human beings, thus

they could be easily detected. Note that any crawler that does not expose a human-like

visiting and timing features will be eventually detected through multiple long sessions.

In other words, even for some long session a crawler safely escaped, it cannot always

bypass the detection.

4. Path-and-timing-aware hidden crawler. This sophisticated crawler is able to simulate

a human user in both timing and visiting path. Besides, it also modifies the HTTP

requests to make sure the requests are like from normal users. When it exposes almost

the same behaviors as human beings, its crawling rate is also downgraded to the level

of human beings. It can finally be detected when the download total volume is beyond

the threshold set by the website.

5. Distributed crawlers. They may share the URLs they collected or work individually.

In the case of sharing URLs, PathMarker can easily detect these crawlers by marker

integrity checking. In the other case that the workers work individually, they are down-

graded to individual crawlers. However, since the URLs are encrypted, these individual

crawlers cannot communicate with each other to avoid visiting repeated web pages.

Therefore, the crawling efficiency is suppressed by the visiting rate of a single crawler,

in which the visiting rate has to be similar to normal user visiting rate.

Based on the above analysis we could conclude that for all crawlers we could stop them

in the early stage unless the crawler belongs the category four which is a rare case for our
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mechanism. Moreover, even for the crawlers of type four above, PathMarker could quell

their efficiencies a lot.

Then let’s analyze the security of our path features. For any crawler, the URLs accessed

by them can be generally collected in two ways. The crawler may either collect URLs by

expanding and collecting URLs from a seeding page or constructing the URLs based on

URL patterns of the target system. However, adding URL marker and encryption part

of PathMarker could prevents crawlers from constructing URLs since the attacker could

not make a fake URL encrypted properly so our URL cannot be forged. Therefore, the

crawler can only collect URLs from the web pages so they have to visit the website with

a path and this is why our path features are reliable.

We use CAPTCHA to reduce the false positives of our detection model. Normal users

can simply answer a CAPTCHA and stay safe. Since CAPTCHA has been proven to

prevent bots, we use CAPTCHA in our system to identify the malicious crawlers.
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Chapter 6

Implementation and Evaluation

6.1 PathMarker Prototype

We implement a PathMarker prototype on an open-sourced web forum. The forum uses

a PHP function site url() to generate dynamic web pages. In the function, we add the

URL marker at the end of the URL and encrypt the whole URL except the domain

name. Upon receiving a request, we decrypt the URL before parsing it. We use the well-

known symmetric encryption algorithm AES to encrypt and decrypt the links. We create

a table in the database to track user status information. Specifically, the table records

the number of logs needed before completing a new long session, the number of marker

integrity checking failures during the past day, the number of abnormal HTTP requests

during the past day, number of wrong CAPTCHA input, and visiting rate. The number

of logs needed before completing a new long session decides whether the visitor would be

sent for analysis. Other attributes are used for heuristic detection. We use Support Vector

Machine (SVM) in the machine learning module, which is implemented using LIBSVM [9].

6.2 Normal User Study

We publicize the forum as a student discussing forum, where students may exchange

information and trade second-hand products. We require all users to agree with our data

policy to sign up. In our data policy, we state that user data would be used for research

purpose in an anonymous manner and the data will not be shared to other entities. Before

the forum is publicized, we automatically generated more than 2500 pages about previous
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news and short stories to guarantee that there is sufficient content for any crawlers to visit.

We also disable all anti-crawling reactions such as popping CAPTCHA and blacklisting

in our system to collect crawler data.

We do not build the forum as an insider-only forum for two reasons. First, it does

not affect our evaluation on PathMarker since we can still use the persistent and stealth

crawlers developed with different algorithms to crawl our website for testing the detection

efficiency. Second, we wish to attract external crawlers to crawl our system for presenting

our achievement. We need these external crawlers to evaluate the effectiveness of Path-

Marker to detect unknown crawlers. Therefore, we record user IP addresses in the URL

marker if the visitor is not a logged in user.

We collect user data from the forum in an one-month period, among which half of the

data is used for training and the other half is used for testing. We ensure the user data is

generated by real human users through heuristic detection(See Section 4.2.2) and manual

inspection. Besides the data of normal users, we include crawler data in the training set

by implementing 6 crawlers to crawl the system. The 6 crawlers are (1) Depth-first, (2)

Depth-first with delay, (3) Breadth-first, (4) Breadth-first with delay, (5) Random, and

(6) Random with delay. Random crawlers(5 and 6) will randomly choose a link to visit

from all links they gathered and put newly gained links in the link pool. As there are

many other crawling algorithms, we use random crawlers to represent those crawlers. It

is reasonable because in our threat model the attacker want to steal the content which

means he or she does not visit the content before so he or she does not know the website’s

structure or other information like popularities of different pages. In this case, most

advanced crawling algorithms required extra website information such as Backlink-first

or PageRank-first tend to be relatively randomly when they are using for downloading

unknown website.

Crawlers with delay indicate that they will wait some time between any consecutive

requests. In our implementation, the delay follows a Gaussian distribution with mean of 8

and standard deviation of 1 (d ∼ N(8, 1)). This configuration comes from our history logs
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of real users. The testing set also contains both normal user data and crawler data. The

crawler data consists of external crawler data and internal crawler data. We build internal

crawlers ourselves using all 6 types of crawler provided by Frontera [1], which relies on

Scrapy [2] to create web crawlers to crawl the system. Note that our result present a two-

step detection process. The first step decides whether the visitor is a crawler. If a crawler

is found, the second step classifies the visiting path of the crawler. Therefore, we train two

SVM models corresponding to the two steps. For crawler detection, the first step is good

enough. The reason we provide the second step is we want to show that there is existing

large difference even just among the crawlers while previous work do not exploit these

related fields very well. The only difference between two steps is that the SVM model

for the second step does not include user data in the training set and it classifies the

input visitor into three categories – Depth-first, Breadth-first and Random-like crawlers.

Actually according to our result of Figure 6.2 and Figure 6.1 we could see that almost all

crawlers’ visiting paths could fit in these three categories.

By analyzing the data of both crawlers and normal users, we first show they behave

differently in the forum. Specifically, we have the following observations.

1. No matter which algorithm the crawler is relying on, the features of a crawler’s long

session are similar to their features of short session. However, users expose significantly

different behaviors in long sessions and short sessions.

2. Normal users may show a similar visiting pattern as crawlers in a short session. Most

users have a clear Depth-First pattern. For example, when they finish viewing a page,

they choose a link from the current page to visit. In such case, the depth rate of their

short sessions is similar to a Depth-first crawler’s depth rate, which is very large. Some

other users prefer to open several links in one page at the same time and then view

these pages one by one. In such case, the width rate of the short session would be large.

3. The lengths of active users’ longest short session are similar. Most active users’ longest

short sessions contain 20-30 log entries. We therefore set the length of a long session as
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60 since we recommend the long session to be twice as a user’s longest short session.

4. Most time when active user starts a new short session, they would visit the site with

a different path, so the depth and width would not keep growing across different short

sessions. Therefore, we could see that the depth rate and width rate of long session are

usually smaller than short session for normal users.

To conclude, normal users would express different behaviors in short sessions and long

sessions. Meanwhile, crawlers perform similar behaviors in long sessions and short sessions.

Based on the different visiting paths crawlers and users expose, we carefully select the path

features in our SVM models.
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Figure 6.1: Differences Between Crawlers and Users about feature 1 and 2

To illustrate the effectiveness of our models, we show the four path features we use in

Figure 6.1 and Figure 6.2, in which each shape is a data point represents a long session. The
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Figure 6.2: Differences Between Crawlers and Users about feature 4 and 5

circles represent the sessions of normal user, the squares represent the sessions of breadth-

first crawlers, the triangles represent the sessions of depth-first crawlers and the stars

represent the sessions of random-like crawlers. Meanwhile, all the solid shapes represent

the case our machine learning module misjudge this session as other types. The depth

rate and width rate in long sessions are shown in Figure 6.1 and the depth rate difference

and width rate difference are also shown in Figure 6.2. Again, all the hollow points are the

sessions we classify correctly. We can clearly see that within a long session, crawlers show

extrusive path patterns in terms of width and depth. However, normal users seem having

moderate width and depth rate in a long session. We can also see that the behavior

difference between the longest short session and the corresponding long session is very

small for crawlers while observably for normal users.
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6.3 Performance Evaluation

We evaluate three aspects of PathMarker. They are (1) the accuracy of crawler detection

of PathMarker, (2) the capabilities of PathMarker to reduce the efficiency of distributed

crawlers and (3) performance overhead added to the web system. Besides, we also conduct

a case study on an external crawler – Googlebots – to show the security features of

PathMarker.

6.3.1 Detection Capabilities

We show the effectiveness and accuracy of detection. First we specifically study the

effectiveness and implication of marker integrity checking. Then we show that our SVM

model is able to correctly classify normal users and crawlers with a high accuracy.

Heuristic Detection. Our heuristic detection module consists of multiple validation

mechanisms such as HTTP header investigation and visiting rate limitation. However, we

only discuss the new URL marker integrity checking function since other mechanisms have

already been thoroughly studied before and were industrial standards for long time. The

number of all log entries of logged-in users is 2,608, among which only 6 logs contain wrong

URL marker information, which indicate that a user is visiting a link that is obtained by

other users. The percentage of requests with wrong URL marker is 0.23% only, meaning

that the users in our system do no usually share links to each other. After manually

checking the 6 logs, we believe these logs with wrong URL marker information are not

generated by distributed crawlers that share a link pool. Therefore, our system is not under

such attacks by any insiders. However, as we will show in our case study on Googlebots in

Section 6.3.4, the heuristic detection module is able to detect these link-sharing distributed

crawlers almost instantly.

Machine Learning Detection. Our test set contains both data from users and crawlers.

Besides the 6 crawlers we use to generate test data, we also find two external crawlers.

One is Googlebot and the other one is Yahoobot. We believe they are the only two search
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engines that try to crawl our system since all public visitors that generate relatively

abundant access logs (at least a long session) are recognized by us, among whom Google

and Yahoo are the only two search engines. Note that the URLs of our system is encrypted

so crawlers are likely to visit the same pages multiple times. Therefore, it is safe to assume

that any search engine should generate large amount of requests to crawl our system.

We noticed that these external crawlers are based on different crawling techniques.

Both Yahoo and Google use distributed crawlers, which are verified by verifying the user-

agency field of HTTP requests and IP address lookup. However, one of Yahoo’s bots is

responsible for over 90% of pages collected. This bot has generated over 50 long sessions

and all of them are classified as a crawler by our SVMmodel. Different from Yahoo, Google

uses an alternating approach for all distributed workers to crawl our system, which will

be discussed in detail in Section 6.3.4.

Table 6.1: Classification Result

Original Type Classify As 0 Classify As 1 Classify As 2 Classify As 3

0 96.43% 0% 3.57% 0%

1 0% 100% 0% 0%

2 0% 6.25% 93.75% 0%

3 1.51% 1.77% 0% 96.72%

Table 6.1 shows our classification results on the test set. For the accuracy about

discovering crawlers from normal users, we successfully identified 96.74% crawlers’ long

sessions and 96.43% normal users’ long sessions. Furthermore, For all the 3.26% crawlers’

long sessions that our SVM models misjudged as normal user long session, there is at least

one other long session of the same crawler that implies the visitor is not human being. So

finally we do not miss any crawler even it’s possible we misjudge its behavior for one or

two long session. After we have identified a crawler, we identify the path-patterns of the

crawler. As shown in Table 6.1, all three types of crawlers are correctly identified with

over 90% accuracy. Type 0 represents normal users. Type 1, 2, 3 represents crawlers that

expose extrusive Breadth-first, Depth-first, and random crawling features, respectively.
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Basically we could notice that most bots’ paths could be fit into the three patterns we

define for crawlers. Note that Google and Yahoo crawlers tend to expose Random-like

visiting path since they use popularity concerned crawling algorithms.

6.3.2 Suppressing Distributed Crawlers

As PathMarker cannot guarantee that all crawlers will be detected, web systems are still

vulnerable to smart crawlers that bypass all detection mechanisms. Besides, although the

efficiency of a single crawler is limited by simulating time features of normal users, dis-

tributed crawlers that leverage several user accounts to cooperate crawling remain threat-

ening. To mitigate the data loss of such cases, PathMarker relies on adding URL marker

to the URL and encrypting the whole URL to confuse crawlers. Markers can lead the

crawlers to visit repeated pages because markers could be different even for the same

page. The basic idea is after encryption the URL becomes different and unrecognizable

so the crawlers cannot tell if the page was visited or not. Suppressing crawlers mainly

contains two cases. First, a single crawler may repeatedly visit the same page if the page

is retrieved from different pages. Second, distributed crawlers may repeatedly visit the

same page if the page is collected by different user accounts. We now evaluate how much

pressure does PathMarker add to distributed crawlers.

We assume a website contains 10,000 unique pages, each page contains 100 links to

other pages. Among the 100 links, 20 of them are fixed, which means that these links

reside in each page. For example, the links in the header, footer, and side bars of a website

such as homepage and account management button in Facebook. The rest 80 links are

drawn from all the 10,000 links. We assume the links satisfy a Gaussian probability

distribution with mean 0 and standard deviation 3,333, which is a third of the number

of pages. Each page corresponds to a number between 1 and 9,999. The probability of a

page being selected is Pn = (cdf(n)− cdf(n− 1))× 2, in which n is the page number and

cdf is the cumulative density function. Note we double the probability of each page since

we ignore negative numbers. Besides, the the sum of probability of all pages is smaller
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than 1 since Gaussian distribution does not have a boundary. Therefore, we compensate

the probability to the last page.

Now we have developed a website model under PathMarker for a distributed crawler

to crawl. The crawlers do not share a link pool to select the next page to visit in order

to bypass URL marker integrity checking). Furthermore, the distributed crawlers could

share crawled page URLs for avoiding repeatly visiting same pages (If they do not share

this information they would have much worse crawling efficiency). We conduct two sets

of experiment. First, we show the web pages crawled in a fixed time period for single and

distributed crawlers. We assume the crawling efficiency of each distributed worker is the

same. Therefore, theoretically a distributed crawler consisting of 10 workers visit 10 times

of pages as a single crawler in a fixed time period.
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Figure 6.4: Overhead for Distributed Crawlers

Figure 6.3 shows the efficiency about visiting new pages for crawlers with different

total number. The number 91.8 of column 1 means when the crawler only has one worker,

for the first 100 new URLs got by the worker would cover 91.8 new pages while others

would be repeated. The efficiency of each individual worker decreases as the number of

worker increases. When using 100 workers, the efficiency of each worker is less than half

of a single crawler. More important point is that it’s easy to see while the crawlers are

keeping crawling, their efficiency would decrease because more and more repeated URLs

of same pages they would crawl. In general, crawlers would get the URLs of every page

twice or more from different parent pages but it couldn’t notice because the URL markers

are different and the final encrypted URLs they get are different.

Figure 6.4 illustrates the total work a 10-worker distributed crawler need to do for

obtain a certain percentage of the whole website. 100% work means the workload for

a crawler who could always visit new page and extra work means this crawler visits
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repeated pages. As the figure shows, crawling half of all content requires 143% more

queries than crawling an unencrypted website, which means that the crawlers waste 58.9%

of its crawling power. Furthermore, over 965% more queries are required to crawl 95% of

all content, which indicates a 278.1% crawling power waste. In conclude, we show that

even if armored distributed crawlers can escape all detection methods in PathMarker,

their efficiency will be largely suppressed by the encrypted path and URL markers and

the suppressing effect getting better when the total number of workers or targeted pages

is increasing.

6.3.3 System Overhead

Our defense system would introduce overhead to the server from two parts: analyzing

program and server modification. For analyzing program, the memory consumption is

limited. It is written by C and it is just a project whose size is 175KB. Furthermore, it is

separated from website so we do not need to worry about that it would affect the running

of website. For the server modification, the memory overhead is limited too. We need to

add two additional tables in server side but each table only has several columns and for

most websites the size of additional tables are much smaller than the size of their original

tables that save logs.

To evaluate the runtime overhead introduced by server modification, we conduct the

experiment to show how much runtime overhead PathMarker puts on the web system in a

visitor’s perspective. We record the time a HTTP request is received and the time the web

page is sent out. By computing the time interval we learn the time needed for the server

to generate the page. We setup two forum copies that have identical database tables, on

one of which we build PathMarker on it. We implement a crawler to automatically query

the homepage of the forum, which consists of 116 links, for 1,000 times on both of the two

copies. Note that crawlers may not fetch the images in the homepage. However, it does not

affect our experiment results since we are only interested in the time overhead introduced

by URL markers. The average time needed to generate a page without PathMarker is
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32.0ms and the average time needed to generate a page with PathMarker is 41.5ms. This

increase is acceptable since for a normal user, they would not feel any extra delay of a

10ms difference and the number of links in every page is large enough for the website

contain confidential documents.

6.3.4 Googlebots – A Case Study

After we publicize the online forum, we notice Google search engine is actively visiting it

by checking User-Agency and IP address lookup. Since Googlebots is the largest crawler

that uses sophisticated and evolving algorithm, we particularly study the behavior of

Googlebots under PathMarker to show its security features. Note that for the experiment

in this section, we use IP addresses to identify different crawlers so the information in the

URL marker is parent URL and the IP address about getting the link.

Googlebot is a typical distributed link sharing crawler. During the one-month data

collection, we discovered Googlebots from over 50 IP addresses, which indicate that at

least 50 crawling workers are crawling our system. There are 19,844 log entries recording

the activities of Googlebots. Although there are many workers visiting our system, we

notice that most of them only visit one or two times while several workers are responsible

for most of the requests (only 9 workers visited the website for over 25 times). We reckon

that Google is trying to probe the network and assign the fastest workers to crawl our

system. Now Google can be treated as an attacker who try to download the content of

our system using a distributed crawler consisting of several active workers. We ignore the

workers that visit our system very few times since it is almost infeasible to prohibited a

potential malicious visitor from downloading few pages. Besides, our threat model allows

an attacker to possess at most several user accounts.

Now we explain how Googlebots can be mitigated or detected by multiple defense

mechanisms. With URL marker appended in the end, the URL of a page varies depending

on the identity of the visitor and the page that links to it. Therefore, different visitor

collects different URLs for the same page. Even for a single visitor, the URL could be
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different because they may visit the page from different pages. Therefore, Google usually

collects multiple URLs to a same page and visit the page repeatedly. Among the 19,844

requests, only 1,010 pages (around 40% of total pages) are unique, which means that

Google has wasted almost 95% of its crawling power on visiting repeated pages. Note that

we encrypt the path and URL marker of a URL so that the attacker cannot parse the

collected URLs and find out whether they are linking to repeated or new pages.

Google crawler does not hide itself in HTTP requests by stating its identity as Google-

bots. However, it has an efficient rate control mechanism to avoid being banned due to

very high visiting speed. We found that in our dataset, each single worker will never visit

more than 5 pages in a short session. After manual checking we note that each worker

will wait for some time between each consecutive requests from several seconds to several

hundred of seconds. Therefore, Google is under kept itself safe from being banned by most

of visiting rate controlling system.

Table 6.2: Example Logs for Detecting Distributed Crawlers

Visitor IP URL Marker

66.249.67.83 home/node/show/12/ home/topic/show/855/;66.249.67.71

66.249.67.77 home/topic/add/ home/home/getmore/13/;66.249.67.83

66.249.67.86 home/policy/ home/user/profile/13/;66.249.67.80

66.249.67.80 home/node/ home/home/getmore/70/;66.249.67.92

66.249.67.71 home/node/show/12/15/ /index.php/node/show/12/8/;66.249.67.77

While the Googlebot is able to escape visiting rate detection, we can easily discover

that it is a distributed crawler by URL marker integrity checking. The total number of

wrong URL markers are 12,271, which is 62% of all requests by Googlebots, which means

that 62% of the URLs a worker visits is collected by other workers. We show several

examples of wrong URL markers in Table 6.2. The table records the IP address of the

visitor, the page URL, and the URL marker. From the last field of the URL markers

we can see that the collector of this URL marker is from a different IP address than the

visitor IP address. Therefore, the URL marker integrity checking mechanism can capture

distributed bots in a very clean and instant way.
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Figure 6.5: Depth and Width rate in long session for Google Bots

Even Googlebots can be easily detected through URL marker integrity checking, we

also analyze its path features to illustrate how different they are from normal users. We

gathered totally 381 long sessions from Googlebots, which means the SVM module is

invoked 381 times to analyze the owner of each long session. Figure 6.5 shows the depth

rate and width rate of long session of Googlebots and normal users. We can see an obvious

difference between the two groups even we only consider the two features. Among the 381

long session, our SVM model can correctly identify 376 of them as belonging to a crawler,

which indicates that the accuracy achieves 98.425%. We also emphasize that although

some of the long sessions are misjudged, every single worker has at least one correctly

identified long session. Therefore, all Googlebots that triggered our machine learning

module (which means having at least one long sessions) will be prompted a CAPTCHA

in a full functionality PathMarker system.
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In conclusion, we illustrate that Googlebots will be detected by both heuristic detection

and SVM detection. We also show how PathMarker can largely suppress the efficiency of

distributed crawlers by URL marker integrity checking and URL encryption.
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Chapter 7

Limitation and Discussion

7.1 Usability of URL Encryption

In PathMarker, the path and URL marker information in URLs are encrypted in order

to preserve the website structure and mitigate the efficiency of distributed crawlers. This

may trigger some usability issues of our system. We admit that users could not know

what’s the plaintext of URL so the user experience might be affected. The most severe

case we could see is that users might only remember the URL of the homepage because

other URLs are ciphertext and they are difficult to remember. However, since most users

do not remember URLs by themselves and our system works well when user reopens the

encrypted URLs in bookmark folder, we think this is not an important issue. Moreover,

current web pages have their own titles to identify the content so the plaintext of URL is

not necessary for the users. Another issue is users are only allowed to visit others’ links

under a threshold. For this problem, now we set a relatively high threshold for user to visit

URLs from others and for our forum all normal users have not been classified as crawler

because of visiting others’ links yet. We believe under our threat model, share links will

not be a common scenario after all these protected pages are not accessible to everyone.

Therefore, we believe that the impact on user experience is acceptable. Furthermore, we

still reveal domain name of every URLs so we do not need to worry that users would be

vulnerable to phishing attacks.

We believe for protecting valuable contents, it is acceptable to sacrifice some usability.

It is also feasible for us to only encrypt the URL marker part and expose the original

URLs to users but attackers might forge HTTP requests that can bypass URL marker
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integrity checking in this case. Furthermore, they can even infer the defense system and

fake visiting path in URL markers to further break down the machine learning accuracy

of PathMarker. Therefore, there is a trade-off between usability and security for server

maintainers.

7.2 System’s Configuration

In the paper, we mention that for our online forum, we use the condition that time

interval is larger 10 seconds to group a short session and we use 60 as the fixed length of

long session. For the other website administrators who want to equip PathMarker, they

only need to check their existing logs to decide the interval of short session and then all

parameters could be calculated and do not need to change. As long as their websites’

structure are not changed a lot or the content’s size they want to protect do not grow fast,

it is not necessary to re-set those parameters or re-train the SVM.

7.3 Deployability of PathMarker

There are many ways to implement the websites’ servers and generate web pages. From a

high level, there are two kinds of web pages: static web pages and dynamic web pages. For

the dynamic web pages, there are different server-side scripting languages like PHP and

Python to achieve dynamic website structures. Under this circumstance, we realize that

it is very difficult to design a generic tool for all website servers to adapt their URLs with

PathMarker. However, to survey our deployability, we look into two famous open-source

website framework (Discuz![10] and startBBS which is based on the CodeIgniter[15]) and

discuss with several website maintainers.

Based on our survey, we conclude that for static web pages it could deploy PathMarker

easily by automatically changing all the URLs in scripts. Besides, even for dynamic web

pages like [10] and [15], there are usually one or two most common functions to generate

URLs and the total functions would be less than 10. Basically, most dynamic web page
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servers are able to integrate PathMarker in their system. We believe it is a reasonable

implementation overhead for those who want to protect their valuable web contents.

7.4 Baiting Link

In PathMarker, we noticed the crawlers’ path patterns could be classified into three algo-

rithm categories, which are Depth-first, Breadth-first, and Random-like. In fact, knowing

the behavior of crawlers is able to help predicting the next link that may be visited, and

such information is helpful to capture the crawlers too. To show how it works, we intro-

duce a related concept – baiting link as the future work. known baiting link works as

a cushion between detection and CAPTCHA. It is a kind of link that hardly any nor-

mal users would be interested in. For example, it could be an outdated advertisement

in the corner of a webpage. Baiting link is used to enhance user experience while effec-

tively block crawlers. Since users seldom click the baiting link, they can still be safe from

CAPTCHA even though the crawler detection mechanism mistakenly consider them as

crawlers. When a baiting link is visited, a CAPTCHA pops up and the visitor is required

to input the correct CAPTCHA. If the user fails to recognize the CAPTCHA, the system

may simply block the user. A key challenge is to ensure that the baiting link will be

visited by a crawler within limited requests. For a Depth-first crawler, it is likely to visit

the first link of the next page, which can be where the baiting link located. Similarly, for

a Breadth-first crawler, it is likely to visit all pages of the next page so the baiting link

can be located at any place in the next page. Learning the crawling behavior of crawlers

can help websites put the baiting link in a location that can easily trap crawlers while not

attract normal users.
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Chapter 8

Related Work

Both crawlers and anti-crawler mechanisms evolve in their arms race. At the beginning, a

naive crawler is the kind of crawler that does not make any effort to conceal its activities

at all. It could be a rough crawler created by the attacker. Next, a basic crawler has

realized that it can be easily detected, so it forges its requests to make them look like

normal requests. Also, a timing-aware hidden crawler also control its timing features,

such limiting its visiting rate by adding random delays. Later, an armored crawler may

be able to simulate a human user in both visiting timing and visiting path patterns.

Moreover, distributed crawlers may assign crawling activities to multiple agents, who are

only responsible for downloading certain part of the website content. Each individual

crawler can be any of the above five types of crawlers.

Web crawlers have been studied and characterized for a long time[28, 24]. [14] inves-

tigates the difference between resources such as images crawler and human request; [12]

focuses on analyzes the features and preferences on search engine crawlers. Many works

have been published to show observations that are useful to detect crawlers from a large

scale network service [40, 26]. Frontier that decides the crawling behavior is a core com-

ponent of crawlers[28]. Many works optimize the frontier to help crawlers achieve better

crawling results. [5, 11, 22, 7]. For instance, [23] proposes a novel solution for mimicing

human behaviors according to the human observational proofs so the new crawler could

escape the detection of other defense systems.

Nowadays, many web systems deploy basic anti-crawling mechanism and they can de-

tect most naive and basic crawlers. Heuristic detection methods have been widely adopted

to identify and defeat malicious crawlers through analyzing the User-Agent, referrer, and
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even cookie fields in the HTTP request headers as well as monitoring the visiting rate

of each individual visitor. However, they are effective on reducing crawlers’ download

efficiency but cannot detect all stealthy crawlers. For instance, a persistent attacker can

easily surpass those heuristic detection mechanisms by camouflaging and rate limiting.

Moreover, attackers can deploy multiple bots to boost the crawling speed, though an in-

dividual crawler’s efficiency is bounded by the rate limitation set by the websites. One

recently work [36] also observed that cyber-criminals might misuse several accounts on

stealing sensitive information and they proposed a solution by mapping between an online

account and an IP address for capturing these crawlers. However, their final target are

detecting those accounts while protecting the content is not considered as the major target

in their work.

Researchers have developed numerous anti-crawling artifacts that explore machine

learning techniques to suppress the efficiency of crawlers[40, 26] or even completely block

them [35, 21, 38, 13], based on the observations that crawlers will behave differently from

human beings [38, 21]. One challenge for machine learning based solutions is to select

the set of effective features to train the machine learning model. In one of the earliest

work [38], Tan and Kumar develop 24 features to train the anti-crawling model.

A number of follow-up works focus on using various features under different scenarios

[41, 3, 19, 8, 40, 26, 21]. For example, Jacob et al. [21] use multiple timing features

to characterize crawlers, and they are able to differentiate crawlers and busy proxies

based on more regular time pattern of crawlers. Numerous features have been proposed

and proven to be effective for specific use cases [35, 34]. The usage of request-related

features such as the percentage of GET request and POST request, percentage of error

responses, and total number of pages requested has been proposed in [21]. There are

also other comprehensive features that profile the visiting behavior of crawlers, including

traffic timing shape [21], page popularity index, standard deviation in visiting depth [35],

clickstream related features[27, 4] and some special features for the Bayesian network to

recognize crawlers [32, 33, 37]. Some others are even trying to understand the crawlers to
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capture them [39, 31].

Constrained by the crawling algorithms for automatic web content download, it is

difficult for crawlers to perfectly mimic human beings’ visiting patterns. Therefore, path

related features can effectively differentiate crawlers and normal users. Stevanovic et al.

[35] uses standard deviation of requested page depth as one feature to describe the visiting

path. However, it cannot accurately reflect the difference between crawlers and normal

users since the page depth is simply extracted from parsing the URL. Tan and Kumor [38]

learn session depth and width from the referrer field of HTTP request headers to more

accurately describe the path information. However, it is easy for intelligent crawlers to

fake the referrer field of HTTP headers. Similarly, PathMarker also largely rely on path-

related features to identify crawlers. Differently, PathMarker relies on the URL marker

appended to each URL to learn the referring relationship between two requests. The URL

marker and path of a URL are encrypted so the crawler cannot fake visiting path through

forging URL markers.

How to deal with crawlers after detecting them is also an essential problem. Setting

traps in pages is a common method to catch crawlers [6]. Specifically, websites may

integrate invisible links in the web pages that only crawlers can view. As long as the

links are visited, the visitors will be directed to an infinite loop or wrong content. Park

et al. [29] capture crawlers that do not generate mouse or keystroke events. However,

these methods can be easily bypassed by page rendering analysis or imitating mouse

and keystroke operations. Among various kinds of crawler blocking mechanisms, using

CAPTCHA one of the most reliable one since it is a kind of Turing Test to finally detect

machine from users. Recently CAPTCHA techniques may even use video as CAPTCHA

[25, 18]. [18] also requires people to recognize more complex content of image such as the

orientation.
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Chapter 9

Conclusions

In this paper, we present an anti-crawler system named PathMarker to help server admin-

istrators capture stealthy persistent crawlers who want to download the contents of servers

maliciously. PathMarker appends URL markers at the end of all URLs to record informa-

tion regarding to visiting path and the URL obtainer. PathMarker is able to distinguish

crawlers from normal users based on their visiting path and time features. PathMarker

can quickly capture distributed crawlers by checking the URL marker integrity. Even for

the most advanced crawler that may bypass our detection, their crawling efficiency can

dramatically suppressed by our system to the level of human beings. We evaluate Path-

Marker on an online forum website. Through the data collected in one month period, we

are able to detect 12 popular crawlers with a high accuracy. Besides the crawlers we test,

we also detect external crawlers such as Yahoo and Google bots. Therefore, we conduct a

case study on Google crawlers to show the security features of the two layers of protection

mechanism of PathMarker.
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