
Colonial Academic Alliance Colonial Academic Alliance

Undergraduate Research Journal Undergraduate Research Journal

Volume 1 Article 5

2010

A Hybrid Root-kit for Linux Operating System A Hybrid Root-kit for Linux Operating System

Subrata Acharya Dr.
Towson University, sacharya@towson.edu

Brian Namovicz
Towson University, bnamov1@students.towson.edu

Jonathan Wiseman
Towson University, jwisem2@students.towson.edu

Follow this and additional works at: https://scholarworks.wm.edu/caaurj

Recommended Citation Recommended Citation
Acharya, Subrata Dr.; Namovicz, Brian; and Wiseman, Jonathan (2010) "A Hybrid Root-kit for Linux
Operating System," Colonial Academic Alliance Undergraduate Research Journal: Vol. 1 , Article 5.
Available at: https://scholarworks.wm.edu/caaurj/vol1/iss1/5

This Article is brought to you for free and open access by the Journals at W&M ScholarWorks. It has been accepted
for inclusion in Colonial Academic Alliance Undergraduate Research Journal by an authorized editor of W&M
ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235396695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/caaurj
https://scholarworks.wm.edu/caaurj
https://scholarworks.wm.edu/caaurj/vol1
https://scholarworks.wm.edu/caaurj/vol1/iss1/5
https://scholarworks.wm.edu/caaurj?utm_source=scholarworks.wm.edu%2Fcaaurj%2Fvol1%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/caaurj/vol1/iss1/5?utm_source=scholarworks.wm.edu%2Fcaaurj%2Fvol1%2Fiss1%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

1. Introduction

Hacking has been around almost since the first computers were connected
together. Every day many new vulnerabilities/exploits are released and many
computers become compromised. This is good for an attacker because there is a
constant stream of new vulnerabilities/exploits that can be leveraged to break into
computers. However, with newly published exploits comes a newly released patch
for those exploits (usually). This is the reason that attackers have developed
‘back-doors’ commonly referred to as root-kits.

A root-kit is a post-compromise tool that an attacker uses to maintain
access and often collects information from users such as passwords, credit card
information, social security numbers, and other sensitive information. The
importance of a root-kit is that once the vulnerability which was used to exploit
the system is patched, the attacker can still get back in through a ‘back-door’. The
purpose of this paper was to explore the area of root-kits by taking the role of an
attacker and actually developing a root-kit that targets the Linux 2.6 kernel. By
doing this we were are able to gain a great amount of insight into the internal
workings of the kernel as well as its shortcomings with regards to security by
developing a Linux Kernel Module (LKM) key-logger. We also look into some
common techniques used by root-kits for providing a back-door to the attacker.
Then we investigate some simple techniques that root-kits utilize for stealth (it is
imperative that the users/administrators do not know the system is compromised).
Finally, we look at a simple and elegant solution to infecting a compromised
computer with the root-kit we developed.

2. Hooking System Calls in Linux

One of the most common methods that root-kits have used over the years to
subvert systems is a technique known as hooks. Hooks work by modifying
function pointers to point to a malicious version of a function. By doing this an
attacker can gain complete control of the execution flow of a particular call.
Commonly targeted functions are system calls because any user-mode program
that does anything of interest (file access, memory allocation/management,
read/displaying data) must use system calls to communicate its intentions to the
kernel.

System calls are referred to by a table in memory called the system call
table. This table contains pointers to the functions that the user-mode program is
trying to use. For example a user may want to open a file using the fopen()
function in the C library. When the user calls fopen(), the C library processes this

1

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

call and passes the information to the operating specific implementation of the
open() system call. The open() is the user-mode interface for the kernel mode
system call sys_open(). Open() does some checks on the arguments to make sure
the user is allowed to open the file and then calls sys_open(). The call to
sys_open() causes the system to lookup the address of the sys_open() function in
the system call table and switch to kernel mode briefly while the function
completes and returns a file descriptor. The return value is passed up the function
call stack and eventually the user-mode program is given a handle to the file they
opened with the fopen() function.

A system call hook would intercept this request by changing the function
pointer in the system call table to point to a malicious version of sys_open()
instead of the real one. This function could simple collect the data passed and then
continue to pass the arguments to the real sys_open() or could completely rewrite
the way that sys_open() opens a file, the possibilities are nearly endless. This
entire process can be done easily with a Linux kernel module (LKM). This
technique has been known for a long time and is a favorite of hackers. Due to the
widespread abuse of system call hooks in the 2.4 Linux kernel, the kernel
developers decided that the 2.6 kernel was not going to allow LKMs to have
access to the system call table. To prevent system call hooks, the 2.6 kernels no
longer export the sys_table symbol. This means that in the 2.4 kernel a LKM
could refer to the sys_call_table[] array and directly manipulate the functions it
pointed to, now in the 2.6 kernel the sys_call_table[] array has no meaning.

However, this only makes things difficult, not impossible. There have
been a number of ways that people have successfully gained access to the system
call table. This is usually accomplished by reviewing the kernel source and
finding what other globally exported functions are near the system call table in
memory and using search techniques to find the array. The problem with this is
that these functions that are supposed to be near the system call table are not near
it in all versions of the 2.6 kernels so this is not a very elegant solution.

Our next thought was, “the kernel has to know where the system call table
is stored somehow, if we can find out how it knows, maybe then we can find it
too”. After a little bit of research we found that there is in fact one reference to the
system call table in the operating system. In the file /boot/System.map there is
data which the kernel uses on boot-up to know where everything is supposed to be
at in memory, this includes a reference to sys_call_table. This means that if we
can get a handle to the system call table by grabbing this address from the
/boot/System.map file and putting it into our LKM source code at compile time.
This handle is simply an unsigned long pointer that is set to the address from the

2

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

file. This pointer can then be referenced using array notation just as the
sys_call_table[] was used in the 2.4 kernel. This method is much more reliable,
compatible, and elegant than the searching methods that others have previously
used.

Now that we have a method to hook system calls, how can we use this to
log keystrokes? Well everything in the Linux operating system is in some way
represented as a file. This includes the standard input/output/error
(stdin/stdout/stderr). Processes interacting with this files use the same standard
file descriptors, stdin = 0, stdout = 1, stderr = 2. Knowing this, we could make a
system call hook for calls to sys_read(). Pseudo code for the evil function:

evil_sys_read(parameters)

if (file descriptor == 0)
log the buffer parameter

return real_sys_read(parameters)

This method was implemented and it worked like a charm. The same
method could even be used to see stdout/stderr also and log both sides of the
interaction. The problem was that it was not able to capture passwords, which is
one of the main goals of a key-logger. By looking into source code for the
getpass() function in the C library it seems that extra care is taken when passing
password data from a TTY device to the process. It appears that data is read
directly from the input queue of the TTY into the process. This seems to bypass
the sys_read() function that we were intercepting. It appears that our key logging
solution would have to exploit something at a lower level.

This effort was not the solution we were looking for; however it was not a
complete loss either. Most sources that we found on the Internet proclaim that it is
impossible to reliably hook system calls in the 2.6 Linux kernels via the system
call table. These rumors were certainly disproved by our experiments.

3. Linux Pseudo-terminals

With system call hooks not providing us with the data we wanted, it was time to
dig deeper and try to attack the TTY devices themselves. On most Linux
distributions a number of different type of terminal devices are available. The
most common and widely used is the pseudo-terminal devices. These devices
allow a configurable number of terminals to be created as they are needed by
different processes. This is a distinct advantage over previous terminal
implementations, all of which had a set number of terminals available (usually

3

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

64), which were always on and waiting to be connected to a process. The way that
the pseudo-terminal system works is by separating duties to a single pseudo-
terminal master (ptmx) and a configurable number of dynamically created
pseudo-terminal slaves (pts). Each of these pts devices are named after their index
and placed in the pts directory of the dev file system. For example, the first pts
would have the index 0 and the device node would be /dev/pts/0.

These file nodes, like all files can among other things be opened, read, and
written to by either their owner or the root user. For example, a root user can use
a command such as:

echo “hello world” > /dev/pts/0

The result is the words ‘hello world’ is printed onto the terminal that uses
/dev/pts/0. Note that the text is not put into the input queue of the terminal,
meaning that the text is only displayed and cannot be used to run commands as a
user in another terminal. We need to know how this entire system works in order
to potentially exploit it with a function hook.

The first question is how are the pts devices created dynamically? Well
there is a function in the C library which a process is supposed to use to allocate a
terminal for itself (getpt() function). This function works by calling open() on
/dev/ptmx. The open function for the ptmx device is specially written to do the
proper things involved with allocating a new pts, once it does this, it returns a file
descriptor to the pts that it created for the calling process.

So now we know that each time a user remotes into the target computer,
the SSH process forks off and drops privileges to the correct user, and then
probably uses the getpt() function which opens /dev/ptmx which returns a file
descriptor to a pts (/dev/pts/X). This pts is connected to the bash shell that the user
is likely using. Good, so now we understand enough about how the pseudo-
terminal system works to give processes access to pts.

4. Final Pseudo-terminal Key-Logger

Now that we know how to use hooks to intercept system calls and we know how
the pseudo-terminals work, we can develop a decent method to log keystrokes.
The first challenge is how we set hooks on the pseudo-terminals because they are
created dynamically. Well we know that the pseudo-terminal master (ptmx)
device is responsible for creating pseudo-terminal slaves (pts). So if we hook the
open call for /dev/ptmx, we can find when a new pts is being created and then set
the appropriate hooks on the pseudo-terminal slaves.

4

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

The next challenge is how do we set hooks on the pts device? The pts
devices are just a type of TTY device that we can find code for in the Linux kernel
source. After reviewing the code and finding how everything works, we found
that there are two possibly useful functions that we would like to create hooks for.
In the tty_struct structure, there is a tty_operations structure which points to the
driver specific functions that would be mapped to the file node’s file operations
structure (defines what the file does when the user attempts to open, read, write,
etc). So it would be great if we could just hook the functions for reading/writing
(tty_read, tty_write) to the terminal right? There is a problem. One of the other
security changes between the 2.4 and 2.6 Linux kernel was to make the
tty_operations structure constant, presumably to thwart simple key-logging hooks
like this. However, previously we discussed a way to create hooks despite the
kernel developer’s best efforts to stop us. A similar technique can be implemented
to bypass the constant declaration of the structure.

In the previously mentioned hook technique, the problem we had was
getting a handle to the correct location in memory that stored the function
pointers; in this case we already have it. The problem is we cannot directly write
to that location due to the structure being constant. But let’s think about this, we
have kernel level access; at kernel level almost anything is possible right? What if
instead of manipulating the pointer in the context of the structure, we manipulate
the pointer in the context of a memory address? It turns out this works really well,
regardless of the structure being constant. It is impossible to stop us from
overwriting the bytes that define the tty_read/tty_write function pointers in the
structure. To do this we create a regular pointer and set it to the address of the
tty_operations structure and by reading the source code, which is freely available,
we can determine the offset of the correct pointers in the structure. These pointers
can now be addressed using simple array/index notation rewritten to the addresses
of our malicious functions. The hooks are in place.

The final task was to find which function (tty_read or tty_write) was going
to give us the data we wanted (most importantly passwords). As indicated in the
Phrack article on writing a LKM Key-logger, the tty_read function is what we
wanted, so this was the first function we tried. Our technique for setting hooks for
this function worked beautifully, data was being captured and we event wrote the
code to write the captured text to specific files for each different pts device. There
was one problem, no passwords.

As previously mentioned, the problem with the system call hooks was that
they couldn’t collect masked passwords. But this time we are seeing everything
that goes through the TTY right? Not quite, because of the nature of TTYs they

5

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

work in full-duplex mode. When you type a character and you see it on the
screen, in the background the process that is displaying the characters is reading
the data from the TTY, this is called echoing. In the case of masked passwords, no
data is being read from the TTY, echoing is turned off. So it turns out that the data
we are looking for isn’t available via tty_read because the data is never read.

So we had to deviate from what the source told us should work and try to
hook the tty_write function. This was very straightforward, the code was nearly
identical to the tty_read hook. Once this code was implemented, like magic, we
were collecting masked passwords. Now anytime a user used a program like su
(switch user) or passwd (changes their password) we would log the inputted
password. We finally had a working LKM key-logger that theoretically works on
all of the 2.6 Linux kernels. To our knowledge this has not previously been done.
Although we focused on the pseudo-terminal TTYs, this technique attacks the TTY
infrastructure as a whole, not just pseudo-terminals. It could easily be ported to
work with other types of TTY devices. A particular interest may be the TTYs used
for local access, as these often are not pseudo-terminals and are likely to be used
by a user with high privileges. Also because these terminals are accessed locally,
the TTY hooks would capture the login itself. This usually wouldn’t happen in our
case because the pseudo-terminals are usually spawned for remote users after the
authentication occurs through another mechanism such as SSH.

5. Maintaining Access

The back-door is perhaps the most critical part of any root-kit. This is the part that
allows the hacker to regain access to the victim. When we started this paper it was
suggested that we base our paper off of an existing root-kit. The existing root-kit
that we found was a user-mode program that listened on a raw socket for a signal
(a specially crafted ICMP echo request). Upon receiving the signal, the program
would connect-back to a hard-coded IP address and port with a TCP socket. The
STDIN, and STDOUT file descriptors for the program were closed and then
redirected to read/write to the socket. This provided a simple shell over the
network. This was a good start.

It became apparent that this rudimentary back-door would need some
modifications. First, using a hard-coded IP address was not desirable. It may not
always be possible for an attacker to have the same IP address. So we modified
the program to connect-back to the IP address that sent the signal.

The other obvious addition that needed to be made was a good system for
triggering the back-door on the attacker’s side. For this we simply wrote a C

6

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

program that uses raw sockets to specially craft the signal (ICMP Echo w/ ID =
0xDEAD). When given the IP address of the target, the ICMP packet is crafted
and sent. Once the target receives the signal it attempts to connect to the source
address of the ICMP packet, this method of making the compromised computer
connect back bypasses the majority of firewalls because egress connections are
usually not filtered. To handle the connect back, the attacker simply uses a
program like netcat or the newer ncat (packaged with nmap) to listen on the
specified port and wait for the shell to connect.

6. Stealth

A major aspect of any root-kit is the ability to hide its presence on a machine.
Initially it was difficult to find resources that provided guidance on how to
implement these aspects. People in general shun the creation and use of root-kits.
Most of the leads that were found were forum sites. On these forums there would
be a person posing a question to the community on how to create different aspects
of root-kits. Inevitably the rest of the posts would be along the lines of, “There is
no legitimate use for that, you can only use that in a root-kit, and I’m not going to
tell you anything.” This trend was repeated across many different forums.

Without resources to work from this aspect of the paper was turning out to
be very difficult. The turning point was noticing that the programs that were
responsible for functions like ls, ps, and netstat all resided in the bin directory,
which root has full access to. With access to these programs and where they
resided a new possibility emerged, the idea of altering the results of these
functions by changing them.

It was decided that we would focus on ls, ps, and netstat. These programs
were deemed to be the most common tools that would indicate to the user that
something on the system is amiss. Hiding the root-kit from these common
programs would effectively hide the root-kit from most users.

The first attempt in changing these programs was to see if source code for
each could be obtained and altered. The altered program would then replace the
original program. Finding the code for these functions again proved difficult.
While looking for the source code another idea emerged, we could place an
intermediate program in place of the original program and have our program filter
the data given to the user.

This method is not unlike a man in the middle of an attack. We would
place our program in between the user and the intended program, like ls. The user

7

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

would interact with our program instead of directly with the original program. To
the user, our program would act and appear just like the original program. Our
program would then interact with the original program in the same way a user
would. Our program would then filter the results to hide anything we didn’t want
displayed to the user.

A side effect of using this method is that it is actually fairly simple to
execute. A program could be written in C and use the “system ()” function to call
the original function. Also because we were replacing the original program, by
changing the name of the original program and naming our program to match the
original name, we did not have to change anything to make it so our program
would be executed anytime the user entered in the command like ‘ls’. Our
program would automatically be in the execution path.

Once this tactic was decided upon the next step became determining ways
to filter the results of the original function. Several methods were investigated but
it was ultimately decided that three methods would be used. The three methods
utilize normal aspects of the original function calls and normal aspects of the
Linux OS.

While coming up with these ideas took a fair amount of time and effort,
the results were very simple. This became a theme of this section of the paper. A
purposeful attempt was made to keep this part of the paper as simple as possible.
The idea for this was to investigate what someone could do without very much
specialized knowledge of the OS. Every technique used could be done by any
person with a very basic knowledge of the Linux OS and of the C programming
language.

The first method used was to use the parameters of the original function.
This method was used to overcome ls. The function call ls has a parameter --
ignore=. This parameter will take a character string and cause ls to ignore any
files with that character string. The altered program takes input from the user and
appends -- ignore=’pwn3d*’ to the end. That command is sent to the original
program, which has now been renamed and moved. The original ls executes with
the ignore parameter and displays the output to the user minus any files with that
character string. To the user it appears identical to what they would expect, the
only difference is that any files with the character string “pwn3d” are hidden from
the user.

The second program we targeted was ps. Because parts of our root-kit are
normally in a running state it would be revealed by the ps command. The ps

8

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

command posed a difficulty. The original thought was to utilize grep to grep out
the line containing the process associated with the root-kit. The problem with this
method is that grep is then displayed as a process. To correct this we could also
grep out the grep. This wasn’t acceptable however because then all currently
running greps would be hidden. This method would hide any greps that were
running whether it was associated with what our program was doing or not. This
was a problem.

The best way to make sure someone doesn’t discover you’re hiding
something is to make sure you only hide exactly what you intended to. Humans
are good at pattern recognition. If you hide one thing in a group of many, a person
is not likely to notice the one thing missing. If you hide multiple things, and every
one of those things is the same, you create a pattern. If a user normally uses grep,
and performs ps and doesn’t see any of the greps, it will cause the user to
investigate. We don’t want to have anything that would pique someone’s
curiosity. We want to hide exactly what we intended and nothing more.

With grep not being useful in this case an alternative method needed to be
employed. The method chosen was to output the results of the ps to a file. Any
function call can have its output piped to a text file using ‘>’. Once the results of
the ps are in the file we could then read in the data, filter it, and then display it to
the user. Because grep was not running at the time of the ps, the only data we
needed to filter was data directly associated with the root-kit.

Our program took in the parameters entered by the user. The original ps
program, which was moved and renamed, was then used with the parameters
entered by the user. The output of the legitimate ps was piped into a text file. The
text file would be written in the temp folder. This was done because files in the
temp folder are not often examined and would at some point be deleted even if
our attempts to delete it failed. Once the output was written to the file, the data
from the text file was read back in. During the process of reading from the text
file the line associated with the root-kit was ignored. The data was then outputted
to the user and the text file was deleted.

The third program targeted was netstat. This program was targeted
because our root-kit listens on a raw socket for a signal and then establishes a
TCP connection to provide the attacker with shell access. All of these would be
revealed by the netstat command. In this case we could use grep to filter the
results for us. grep would not show up in a netstat so we didn’t have to worry
about hiding it. As with the parameter in ls that excludes certain data, grep has a
parameter that will cause it to ignore certain items. The parameter –v ‘char-string’

9

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

will cause grep to read all of the data except anything matching that character
string. grep is necessary here because netstat does not have its own parameter that
allows for the excluding of specific data.

Our program worked by taking in the input from the user. The user’s
parameters were then sent to the original version of netstat with grep –v ‘32569’ |
grep –v ‘raw’ appended to the end. The number 32569 is excluded because the
shell access program attempts to connect back to the attacker on port 32569. The
term raw refers to a raw socket, which is used to listen for the signal which
establishes the connection back to the attacker, this could raise some suspicion.
As a result of the inclusion of the greps, the output to the user included no
reference to the port in use or any raw sockets.

As stated earlier, the intent in this part of the paper was to see what could
be done using simple means. By creating our own programs to intercept requests
for common programs from the user we were able to effectively hide the root-
kit’s presence. Most users would not be able to detect the root-kit. This part of the
root-kit is by no means sophisticated and as such a professional could probably
easily detect it if they were looking for it, but that’s not the point. The targets of
most attacks are normal users without extensive technical skills. With the push for
people to use Linux, especially with netbooks, a whole new community of targets
has arisen. Using the methods we did, it is possible that any person with basic
knowledge of programming and the Linux OS could effectively attack a lot of
people. We only targeted three common programs. Using the same methods as
above it could be possible to target many other programs.

7. Infection

There is more to a root-kit than the programs that it encompasses. The attacker
has to have a good way of getting the root-kit onto the compromised server and
quickly installing/configuring it. After it is installed, everything must quickly be
cleaned up as to not accidentally tip off the system administrator to the malicious
software. In our case, all of our programs were written in C/C++. This means that
each of our programs would have to be individually compiled and then moved to
the correct locations once it is on the victim computer. Obviously a script would
be ideal for compilation/installation steps but a few questions remain. How do we
ensure the script can run on the target computer? How do we get the script and the
source code onto the target computer?

In order to ensure that our installation script can run on nearly any target
computer we have to reduce the number of dependencies for the root-kit. The first

10

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

choice we must make is what language do we write the script in? We could use
perl, python, ruby, java, etc. The problem with programming/scripting languages
is there are dependencies for them. Perl, python, and ruby need their respective
interpreters, java needs the java runtime environment, etc. The solution we came
up with was to use bash scripting. The reason to use bash scripting was simple;
the root-kit is designed for Linux, and the bourne-again shell (bash) is the
standard shell on nearly all Linux distributions. By using bash we can almost
completely eliminate the language dependency issue. The other dependency
issues that we run into are the requirement of gcc, make, and kernel module
dependencies (for key-logger). gcc and make are extremely common defaults on
most Linux distributions so again these are not much of a concern. The kernel
module dependencies however have potential to be a problem. In order to compile
a Linux Kernel Module (LKM) certain dependencies must be installed, and they
are often not installed by default. We were unable to find a good solution to
bypassing this dependency so for our purposes we will assume that the target has
the dependencies installed, and if not the root-kit would be tailored differently
(without a LKM included).

The other question we had to answer was how to get the script and the
source code onto the target. We decided that to minimize the number of file
transfers, we could include them into the bash installation script. This technique is
nothing new; it is common among malware programs often called ‘droppers’. The
technique uses the ‘echo’ command (simply repeats parameters to stdout), in
conjunction with the redirection operator to write a source code to files. So now,
almost all the steps for infection have been identified, except one, how do you get
the script on the target machine? This can really vary depending type of root
access that the attacker has gained. If the attacker has an actual shell, the wget
command can be used to download the script from a web server. If the attacker
instead has compromised the target through some type of web or database exploit
the script could be written to the victim by other means.

Once the installation script is on the target machine, infection is simple; the
script needs executable permissions (chmod 755). Then the script needs to be run.
When run, the script has a few defined phases that it goes through:

1. Write the source code out to source code files.
2. Compile the source code into the binaries (gcc/make).
3. Move necessary files (newly compiled and soon to be replaced).
4. Add reboot persistence (modify start up scripts)
5. Clean up (remove left over files, and installation script itself).

11

Acharya et al.: A Hybrid Root-kit for Linux Operating System

Published by W&M ScholarWorks, 2010

8. Conclusion

This paper encompasses a wide range of techniques involved in root-kits. The
key-logger made use of sophisticate methods to attack the machine at the kernel
mode level. The stealth part attacked the machine at the user mode level. This is a
perfect example of how security must encompass everything. Security techniques
monitoring the kernel alone would miss the user mode changes. Monitoring at the
user mode only would miss the kernel level changes. Attacks can occur at all
levels and in a nearly infinite number of combinations. Finally, the installation
script showed that delivering an attack such as this could be done using simple
and elegant methods. This paper was useful in that it exposed us to these different
aspects and made us consider the range of possible attacks. By doing that, we
began thinking about the entirety of the security challenge.

References

 Colbert, J., A. Rubni & G. Kroah-Hartman, Linux Device Drivers, 3rd Edition.,
O’Reilly Media, Inc, 2005.

Stevens, W., UNIX Network Programming, Volume 1, Second Edition, Pearson
Education Inc., 2002.

Writing Linux Kernel Key-logger, Volume 11, Issue 59, Phrack Inc. 18 (14).

ftp://ftp.kernel.org/pub/linux/kernel/v2.6, Kernel Developers, Linux Kernel
2.6.29.1 Source Code, 2009.

12

Colonial Academic Alliance Undergraduate Research Journal, Vol. 1 [2010], Art. 5

https://scholarworks.wm.edu/caaurj/vol1/iss1/5

	A Hybrid Root-kit for Linux Operating System
	Recommended Citation

	Microsoft Word - Final_CAAURJ.docx

