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Abstract. In carbon-ion radiotherapy, single-beam delivery each day in alternate

directions has been commonly practiced for efficient operation, taking advantage

of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose

conformation to a tumor. These treatments are generally fractionated and their

plans are evaluated with total RBE-weighted dose, which is however deficient in

relevance to the biological effect. In this study, we reformulate the biologically

effective dose (BED) to normalize the dose-fractionation and cell-repopulation effects

as well as the RBE of treating radiation, based on the inactivation of a reference cell

line by a reference carbon-ion radiation. The BED distribution virtually represents

the biological effect of a treatment regardless of radiation modality or fractionation

scheme. We applied the BED formulation to simplistic model treatments and to a

preclinical survey for hypofractionation based on an actual prostate-cancer treatment

with carbon ions. The proposed formulation was demonstrated to be practical and

implicative. For the prostate-cancer treatment in 12 fractions, the distributions of

BED and of RBE-weighted dose were very similar. With hypofractionation, while the

RBE-weighted-dose distribution varied significantly, the BED distribution was nearly

invariant, implying that the carbon-ion radiotherapy would be virtually insensitive to

fractionation. However, treatment evaluation with such simplistic biological dose is

intrinsically limited and must be complemented in practice by clinical experience and

biology experiment.
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1. Introduction

The basis of radiotherapy (RT) for cancer treatment lies in the radiobiology of human

tissues and cells. Douglas and Fowler (1976) first proposed a formula for cell-survival

fraction S in instant radiation exposure as an exponential linear quadratic (LQ) function

of dose D,

S = e−αD−βD2

, (1)

where α and β are the LQ dose coefficients of the cell sensitivity to the radiation, based

on the hypothesis that the cell inactivation by lethal or double-sublethal damage was

correlated with biological response. The LQ model is generally considered as valid for

fractionated RT of up to 10 Gy fractions (Fowler, 1989). As indicated by the model, the

relative biological effect per unit dose increases with fraction dose, which is referred to

as the dose-fractionation effect. In clinical practice, radiation oncologists evaluate the

total fractionated dose for the assessment of treatment. However, the same total dose

may not generally yield the same biological effect with a different number of fractions or

with different fractionation into uneven doses. The concept of biologically effective dose

(BED) was introduced for universal assessment of treatment by the total dose in infinite

fractions for the same biological effect (Barendsen, 1982), where the BED was originally

referred to as extrapolated response dose as it extrapolates the dose-fractionation effect

to the limit of infinite fractionation.

Besides dose fractionation, radiation quality modifies the relative biological effect

per unit dose especially of ions whose linear energy transfer (LET) rises with depth to

cause the Bragg peak. The use of such ion beams for RT was pioneered in the United

States, for which dose prescription incorporated depth-dependent weighting of relative

biological effectiveness (RBE) against a reference radiation to give a uniform biological

effect in a spread-out Bragg peak (SOBP) (Castro, 1993). Subsequently, clinical research

and practice developed intensively with carbon ions in Japan and Germany. The high

uniformity of the RBE-weighted dose (RWD) to a tumor facilitates the delivery of

single beams with daily different dose distributions for efficient operation of carbon-ion

RT. Such uneven dose fractionation except to a tumor has been commonly practiced

in Japan including clinical studies to optimize dose prescription in fewer fractions, or

hypofractionation (Kamada et al., 2015). In Germany, carbon-ion beams have been

occasionally used as a boost in multimodal RT (Combs and Debus, 2013). Nevertheless,

these treatments may still be evaluated unconsciously with the total RWD distribution

despite its intrinsic deficiency in additivity.

The BED concept was extended for high-LET radiations to be an equivalent

total dose in infinite fractions with a reference radiation (Dale and Jones, 1999; Jones

et al., 2006; Carabe-Fernandez et al., 2007) in the form of

DBE =

n
∑

i=1

Di

(

ǫmaxi +
ǫmin

2
i Di

αref/βref

)

, (2)

where Di is the physical dose delivered at the i-th fraction of n total fractions,
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ǫmaxi = αi/αref and ǫmini =
√

βi/βref are the maximum and minimum RBEs at

infinitesimal and infinite dose limits and αref/βref is the α/β ratio for the reference

radiation that is typically an x ray. While the αref/βref values for many tumor and

normal-tissue cells have been established, the RBE limits or the LQ dose coefficients

for carbon-ion radiation vary with depth of beam penetration and are not generally

available. The fact that the physical dose and the radiosensitivity largely vary in a

target tumor discourages the use of the BED in (2).

Kellerer and Roissi (1972) developed a microdosimetric theory of dual radiation

action for the yield of elementary lesions in a micrometer-sized domain as a LQ function

of dose, where the linear dose coefficient is related to single-event energy deposition

while the quadratic dose coefficient is independent of radiation. The microdosimetric

theory was statistically reinforced to deal with cell survival (Hawkins, 1994) and has

eventually been applied to treatment planning of carbon-ion RT (Inaniwa et al., 2010),

in which the LQ model is rewritten as

S = e−α0D−βD(ζ+D) or α = α0 + ζ β, (3)

where α0 and β are the cell-intrinsic parameters independent of radiation and ζ is the

saturation-corrected dose-mean single-event specific energy in the domain. The ζ and

thus α parameters increase with LET typically below 100 keV/µm, above which the

saturation correction effectively accounts for the overkill effect.

The microdosimetric LQ model is the current basis of the clinical dosimetry system

for carbon-ion RT at the National Institute of Radiological Sciences (NIRS) of Japan

(Inaniwa et al., 2015). In this study, we attempt to apply the BED concept to practical

and valid assessment of carbon-ion RT treatment plans. In the following sections, we

review basic radiobiology to reformulate the BED to be readily obtainable in treatment

planning and apply it to two simplistic model treatments and a typical prostate-cancer

treatment to demonstrate its usability and to obtain theoretical implications for dose

fractionation including hypofractionation.

2. Methods and Materials

2.1. Radiobiological modeling

2.1.1. Survival factor In radiobiology, survival fraction is defined as a fraction of

clonogenic cells surviving a radiation exposure. In fractionated RT, the survival fraction

will be modified by cell repopulation over time, which we refer to as survival factor. On

the hypothesis of the constant rates for cell division and natural loss (Dale, 1989), the

survival factor at time t after the delivery of i-th fraction dose Di at time ti is formulated

as

Si(t) = e−αiDi−βiD2
i 2(t−ti)/Td , (4)

where αi and βi are the LQ dose coefficients and Td is the effective doubling time for

the surviving tumorigenic cancer cells, which we assume to equal to the tumor-doubling
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time. The survival factor at the end of a treatment in n fractions is formulated as

S =

n−1
∏

i=1

Si(ti+1)Sn(tn) =

n
∏

i=1

e−αiDi−βiD
2
i · eT ln 2/Td , (5)

where T = tn − t1 is the overall treatment time.

2.1.2. Biological effect The biological effect for an instant beam delivery of fraction i

is defined as

EBi = − lnSi(ti) = αiDi + βiD
2
i , (6)

which statistically corresponds to the mean number of unrepaired lethal damages per

cell. The biological effect for an overall treatment is similarly defined as

EB = − lnS =
n
∑

i=1

αiDi +
n
∑

i=1

βiD
2
i −

T ln 2

Td

, (7)

where the last term accounts for the cell-repopulation effect.

2.1.3. RBE-weighted dose Fraction RWD DRWi is the dose of a reference radiation

with LQ dose coefficients αref and βref to cause the same biological effect,

EBi = αiDi + βiD
2
i = αrefDRWi + βrefDRW

2
i . (8)

This leads to the symmetric solutions of physical dose and RWD,

D{i,RWi} =
α{i, ref}

β{i, ref}

(
√

1

4
+

β{i, ref}

α2
{i, ref}

EBi −
1

2

)

. (9)

The RBE of the treating radiation and the total RWD are defined as

ǫi =
DRWi

Di

and DRW =
n
∑

i=1

DRWi =
n
∑

i=1

ǫi Di. (10)

The total RWD is widely used in carbon-ion RT although it is deficient in relevance to

the biological effect against dose fractionation and against cancer-cell repopulation.

2.1.4. Biologically effective dose The BED is a total physical dose of reference radiation

in hypothetical infinite fractions for the same biological effect as with the actual

treatment and is simply given by the ratio of the biological effect to the α parameter of

interest (Barendsen, 1982). The instant BED from a fraction is therefore defined as

DBEi =
EBi

αref

= DRWi +
βref

αref

DRW
2
i , (11)

where the first linear dose term is independent of fractionation and the second quadratic

dose term accounts for the dose-fractionation effect. The BED for an overall treatment

is similarly defined as

DBE =
EB

αref
= DRW +

βref

αref

n
∑

i=1

DRWi
2 −

1

αref

T ln 2

Td
. (12)
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Excluding the third term for cancer-cell repopulation, the RWD-based formula (12)

is mathematically equivalent to (2) for the reference radiation with reassignments

αi → αref , βi → βref and Di → DRWi and is easy to use in the practice of carbon-

ion RT, where the RWD is well defined and always available.

2.1.5. Tumor-control probability The tumor-control probability (TCP) is radiobiolog-

ically modeled as the probability of inactivating all of the N0 tumorigenic cancer cells

that originally existed in a tumor (Munro and Gilbert, 1961) and is statistically given

by

PTC = e−N0S = exp
(

−N0e
−EB

)

, (13)

which should be high for a curative treatment. Inversely, when the number of

tumorigenic cancer cells is reasonably estimated, a curative TCP can be translated

into the biological effect of treatment,

EB = ln
N0

− lnPTC

. (14)

With a compensation for cancer-cell repopulation between fractions, the biological effect

of treatment may be evenly divided into n fractions of an instant biological effect of

EB1 =
1

n

(

ln
N0

− lnPTC
+

T ln 2

Td

)

, (15)

from which fraction dose D1 and RWD DRW1 can be determined by (9) to prescribe

optimum beam deliveries for curative RT.

2.1.6. Beam-delivery prescription A treatment fraction is normally prescribed with

RWD to a tumor, which is inversely converted with RBE to a physical dose to a reference

point for beam-delivery control or assessment. When multiple beams (b) are involved in

a fraction, their mixed radiation is characterized by the summed dose and the dose-mean

LQ dose coefficients,

Di =
∑

b

Dib, αi =
∑

b

αib

Dib

Di
and

√

βi =
∑

b

√

βib

Dib

Di
(16)

in the LQ model (Zaider and Rossi, 1980), with which its RBE can be calculated.

To allot the intended fraction RWD to the relevant beams with arbitrary specified

weights, the physical beam doses are generally derived iteratively by the LQ model or

deterministically by the lesion-additivity (LA) model (Lam, 1987). These radiation-

mixing models have been the basis of SOBP design and prescription of fractions each

involving multiple beams, for which no significant inconsistency has been found by

biology experiment (Inaniwa et al., 2010) or by clinical experience (Kamada et al., 2015).

2.2. Application to simplistic model treatments

We investigated the formulated dose representations in simplistic examples with four

model radiations of two modalities: a photon radiation with α = 0.3 Gy−1 and β = 0.06
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Gy−2 and three carbon-ion radiations sampled in a SOBP with α = 0.5, 1.0 and 1.5

Gy−1 and a common β = 0.06 Gy−2 based on a realistic radiobiology model (Inaniwa

et al., 2015), forN0 = 107 hypothetical cancer cells in a fast-growing tumor with doubling

time Td = 30 days. In the following model treatments, a prescribed fraction RWD taking

the photon radiation for reference was assumed to be delivered once a day, seven days

a week for simplicity. We generally note prescribed RWD values with postfix “(RBE)”

to indicate that they are RBE-weighted.

2.2.1. Dose fractionation For a carbon-ion RT treatment of total 40 Gy (RBE), we

varied the number of fractions to prescribe evenly.

2.2.2. Multimodal RT For a treatment initially with photons of 2 Gy fractions for 10

days, followed by carbon ions of 4 Gy (RBE) fractions for 6 days to total 44 Gy (RBE)

in 16 days, we evaluated the accumulation of treatment dose.

2.3. Application to a prostate-cancer treatment

2.3.1. Clinical dosimetry system At NIRS, carbon-ion RT doses are prescribed in

clinical dose defined as

DCi = fC DRWi = fC ǫi Di, (17)

where clinical factor fC = 2.41 was introduced for historical reasons and we note clinical-

dose values with postfix “(C)” for distinction so that 1 Gy (RBE) corresponds to 2.41

Gy (C). In this system, the RBE ǫi is defined against the reference radiation of a

typical carbon-ion beam at a central SOBP depth for the inactivation of in vitro tumor

cells of human salivary gland (HSG), which resulted in the LQ dose coefficients of

αref = 0.764 Gy−1 and βref = 0.0615 Gy−2 (Inaniwa et al., 2015). In other words, the

RWD is the dose of the reference carbon-ion radiation for an equivalent biological effect

and the clinical dose further involves artificial rescaling. This definition deviates from

the conventional RBE defined against an x ray with LQ dose coefficients of αx = 0.313

Gy−1 and βx = 0.0615 Gy−2 (Furusawa et al., 2000). The BED of carbon-ion radiation

in (12) can be readily converted with a factor of αref/αx = 2.44 to the BED of the x ray

in infinite fractions for an equivalent effect on the HSG tumor cells, for multimodal RT

treatments.

2.3.2. Clinical case For demonstration, we took a case of prostate-cancer patient who

received carbon-ion RT in 12 fractions of 4.3 Gy (C) over 3 weeks (Nomiya et al., 2014).

In the planning CT of the patient immobilized in a supine position, the clinical target

volume (CTV) included the prostate and the seminal vesicles. The planning target

volume (PTV) additionally included anterior and lateral margins of 10 mm each and a

posterior margin of 5 mm. Lateral opposing carbon-ion beams were used alternately for

the initial 8 fractions to cover the original PTV with more than 95% of the prescribed

fraction dose, or cumulatively with about 2/3 of the prescribed total dose. To care
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against the risk of complication, the posterior margin of the PTV near the rectum

was cut away to derive a restricted PTV, for which similar opposing beams with shrunk

fields were used alternately for the remaining 4 fractions. The daily single-beam delivery

was conducted with pencil-beam scanning (Furukawa et al., 2010) to conform 4.3 Gy

(C) to either PTV. The physical-dose and clinical-dose distributions per fraction were

calculated and stored in the treatment plan while the total clinical-dose distribution was

primarily used for clinical assessment of the plan.

2.3.3. Plan dose distributions Applying the microdosimetric implication of β = βref to

(8), the α/β ratio for each fraction can be obtained from a set of RWD DRWi = DCi/fC
and physical dose Di as

αi

βref

=
DRWi

Di

(

αref

βref

+DRWi −Di

)

. (18)

Using the distributions stored in the plan, we calculated the distributions of total

physical dose by
∑

iDi, total dose-mean α/β ratio by
∑

i(αi/βref)Di/
∑

i Di, total

clinical dose by
∑

i DCi and BED by (12), where we ignored the cell-repopulation effect

on the assumption of slow-growing prostate cancer with T ≪ Td.

2.3.4. Field fusion Aside from the actual treatment, we reduced the number of beams

from four to two to simplify the fractionation while conserving the total dose. In fact, the

field-shrinking approach was originated from the historical limitations of passive broad-

beam delivery. The field-modulation approach with pencil-beam scanning for multiple

target volumes and doses will improve the operational efficiency with fewer beams. To

simulate scanning beams of stepped target dose, we fused the original-field beams by

2/3 and the shrunk-field beams by 1/3 per direction into the left and right beams and

obtained their physical-dose and dose-mean α/β-ratio distributions. In addition, to

simulate even fractionation with the left and right beams delivered successively each

day, we further fused them by 1/2 each and obtained its physical-dose and dose-mean

α/β-ratio distributions.

2.3.5. Hypofractionation simulation We attempted a survey toward hypofractionation,

in which we virtually varied the number of fractions for each of the successive and

alternate delivery schemes. For the same BED of DBE = 24.49 Gy to the prostate as

with 12 fractions of 4.3 Gy (C) by (12), we additionally prescribed fraction clinical doses

of 6.124, 10.83 and 18.31 Gy (C) by (9) with EB1 = (DBE/αref)/n for n = 8, 4 and 2

fractions, respectively. Accordingly, we rescaled the respective fraction physical-dose

distributions by the same factors as for the prescribed clinical doses, or by 1.424, 2.519

and 4.258, based on the fact that the reference radiation quality with an invariant RBE

of 1 was in the prostate somewhere. We then obtained the BED distribution for each n

from the fraction physical-dose and dose-mean α/β-ratio distributions using (8)–(12).
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Figure 1. Dose fractionation effect calculated for a model treatment of total 40 Gy

(RBE) with carbon ions: (a) BED (DBE, ——) and TCP (PTC, - - - -) as functions

of number of fractions. (b) RBEs for low-α (· · · · · ·), mid-α (- - - -) and high-α (——)

carbon-ion radiations as functions of fraction RWD.

3. Results

3.1. Application to simplistic model treatments

3.1.1. Dose fractionation Figure 1(a) shows the BED and the TCP for the model

treatment of total 40 Gy (RBE). The BED decreased with number of fractions due to

dose fractionation and cancer-cell repopulation and correlated with the TCP. Figure 1(b)

shows the RBEs of the three carbon-ion radiations in a SOBP. The RBE values and

their variation decreased with the fraction RWD, which implies that the SOBP should

be designed differently for uniform treatment according to the prescribed fraction RWD.

3.1.2. Multimodal RT Figure 2 shows the representations of daily cumulative dose for

the model treatment of multimodal RT. After day 10, the change in prescribed fraction

dose from 2 Gy to 4 Gy (RBE) by a factor of 2 changed the BED slope by a larger factor

of 2.62 due to the quadratic term. On day 16 at the end of the treatment, the cell-

repopulation term reduced the BED by 1.16 Gy or 1.7%, while the TCP of 99.2% may

still be reasonably curative. If the same total RWD of 44 Gy (RBE) were evenly delivered
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and 6 fractions of 4 Gy (RBE) with carbon ions over 16 days: cumulative RWD (DRW,

· · · · · ·), BED (DBE, ——) and TCP (PTC, - - - -) as functions of number of delivered

fractions or days.
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Figure 3. Relation between fraction clinical dose (DC1) and fraction RWD (DRW1,

- - - -), instant BED (DBE1, ——) and the photon-equivalent fraction dose (Dx1,

· · · · · ·) in the NIRS clinical dosimetry system.

in 16 fractions of 2.75 Gy (RBE), the TCP would be reduced to 98.1% according to the

formulas in section 2.1, indicating the deficiency of RWD-based prescription against the

change of dose fractionation. To obtain the same TCP of 99.2% with 16 even fractions,

the required RWD would be 2.83 Gy (RBE) per fraction or 45.3 Gy (RBE) in total.

3.2. Application to a prostate-cancer treatment

Figure 3 shows the relation between fraction clinical dose and fraction RWD, instant

BED and the photon-equivalent dose, in the NIRS clinical dosimetry system. The

similarity between BED and RWD at small fraction sizes is due to the minor contribution

of the quadratic term, or DRW1 ≪ αref/βref in (11).

Figure 4 shows the dose distributions calculated for the actual prostate-cancer

treatment: Both of the (a) dose-mean α/β-ratio and (b) physical-dose distributions
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Figure 4. A planning CT image of the prostate-cancer patient in the isocenter plane

with green crosshairs for the right–left and anterior–posterior axes and color-wash

scales (10%, 30%, 50%, 70%, 90%, 95%, 105% and 110%) for the calculations of: (a)

dose-mean α/β ratio relative to 12.42 Gy, (b) total physical dose relative to 21.41 Gy,

(c) total clinical dose relative to 51.6 Gy (C) and (d) BED relative to 24.49 Gy.

were moderated in the opposing beam arrangement with concurrent enhancement in

the PTV, where the α/β ratio was high on the anterior and posterior sides and the

physical dose was high in the central region. The relative difference between the (c)

clinical-dose and (d) BED distributions was minor due to the small quadratic-term

contribution at the level of 4.3 Gy (C) or 1.78 Gy (RBE) as consistent with figure 3.

Figures 5(a) and 5(b) show the profiles of dose-mean α/β ratio and total physical

dose, where the two opposing beams were designed for the treatment plan of 12

fractions of 4.3 Gy (C) and were also reused for the hypofractionated treatment

plans with rescaling to conserve the BED to the point of reference radiation quality

with αref/βref = 12.42 Gy. The RWD distribution in figure 5(c) deformed with

hypofractionation while the BED distribution in figure 5(d) was nearly invariant. The

RWD distribution could give misleading impression for hypofractionated treatments.

The degraded BED uniformity in the SOBP with hypofractionation was caused by the

forced reuse of the beams designed for 4.3 Gy (C) fractions and would not have happened

if they had been designed for each fraction dose. Outside the SOBP, as compared to the
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Figure 5. Calculated profiles on the patient right–left axis for the prostate-cancer

treatment plans: (a) dose-mean α/β ratio, (b) total physical dose for 12 fractions, (c)

total RWD and (d) BED with successive beam delivery and (e) total RWD and (f)

BED with alternate beam delivery. In (a) and (b), the contributions of the left (- - - -)

and right (· · · · · ·) beams and their total (——) are separately shown with the reference

12.42 Gy level (— · —). In (c)–(f), the treatments were prescribed with the BED of

24.49 Gy in 12 (——), 8 (- - - -), 4 (· · · · · ·) and 2 (— · —) fractions.

successive beam delivery in figures 5(c) and 5(d), the alternate beam delivery in figures

5(e) and 5(f) slightly increased the RWD and BED themselves and the BED variation

with hypofractionation.

4. Discussion

Biological dosimetry is a concept of radiation dose measurement by consequential

response of a reference biological system. The NIRS clinical dose as well as its relevant

RWD and BED is a theoretical dose that offers virtual in vivo biological dosimetry

with the HSG tumor cell, which is a cancer cell of moderate radiosensitivity (Matsufuji

et al., 2007), later turned out to be of HeLa-contaminant origin (JCRB1070 HSGc-C,
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JCRB Cell Bank, National Institutes of Biomedical Innovation, Health and Nutrition,

Ibaraki, Osaka). While the reference to a single cell line is a conceptual limitation or

arbitrariness of the biological dosimetry, an experimental study showed small variation

among cell lines in RBE of carbon-ion beams against x ray at 10% survival level

(Suzuki et al., 2000), which may partially support its clinical validity. The BED is

a universal dose that may be useful for preclinical and retrospective studies involving

various radiation modalities or dose fractionations.

The fraction of cancer cells may vary from tumor to tumor and within each tumor

volume. If the initial cancer-cell population-density distribution ρ0(~r) = d3N0/d~r as

well as the BED distribution is somehow known, the TCP in (13) is modified to

PTC = exp

(

−

∫∫∫

ρ0(~r) e
−αref DBE(~r) d~r

)

(19)

for dose-distribution assessment under the hypothesis that the relevant cancer cells have

the same radiosensitivity as that of the in vitro reference model cell.

In reality, actual cancer and normal cells in a patient may be substantially different

from the reference in intrinsic radiosensitivity and in environmental conditions including

oxygen and biochemical concentrations, various cell interactions in tissues, etc. The

radiosensitivity may also be influenced by the time structure of radiation exposure

(Inaniwa et al., 2013). Furthermore, the relevance of clinical response to cell response

may vary among diseases and individuals. As a result, these biological doses may

not directly be related to the prognosis of treatment. Nevertheless, carbon-ion RT

has been conducted according to disease-specific treatment protocols with abundant

clinical experiences (Kamada et al., 2015). The clinically determined curative doses per

disease and organ tolerance doses should thus be reflecting all the differences between

the reference biology experiment and the actual cancer treatments of carbon-ion RT in

its own dose scale.

Another major arbitrariness exists with the reference radiation, which should be

chosen to minimize the overall inaccuracy of cancer treatment. For example, a few

percent inconsistency between the LQ and LA models was found in conventional RBE

of a mixed carbon-ion radiation against an x ray (Kanematsu et al., 2002), which should

have been minimized if the RBE had been defined only to relate similar-radiation

doses. The NIRS clinical dosimetry system, which is based on the RBE defined

against a typical treating radiation, is therefore advantageous for accurate prescription of

tumor doses in the modality-specific scale, excluding potentially inaccurate translation

to conventional photon doses. In other words, the LQ model is used here only to

correct variations of radiation quality within carbon-ion beams. This system has been

successful in fractionated carbon-ion RT (Kanai et al., 2006). However, for single-

fraction treatment of non-small-cell lung cancer, the curative dose clinically resulted in

50 Gy (C) (Takahashi et al., 2014) and deviated from an initial LQ-model estimation

of 28 Gy (C) or 12 Gy (RBE), which may have been beyond its valid dose range.

The microdosimetric implication of β invariance, which is assumed in this study

as well as in the NIRS clinical dosimetry system (Inaniwa et al., 2015), may however



Biological dose representation for carbon-ion radiotherapy 13

be controversial. In fact, there was a trend that β increased for fast neutrons from for

photons by factor 1.82 in average (Jones, 2010) and similarly with LET of ions typically

below 100 keV/µm (Friedrich et al., 2012). However, the fluctuations of the data points

comprising the trend were quite large, as it is generally difficult to determine β values

accurately in cell-survival experiments. To mitigate the influence of β errors, application

of the LQ model should be limited to small fraction doses with D . α/β so that the

quadratic term will remain minor. In the preclinical survey for hypofractionation of

the prostate-cancer treatment, the fraction doses at the reference-radiation point in the

SOBP with the α/β ratio of 12.42 Gy were 1.78, 2.54, 4.49 and 7.60 Gy for equally

curative 12-, 8-, 4- and 2-fraction treatments, respectively. The fraction doses at a point

outside the SOBP with the α/β ratio of 6.6 Gy were 0.9, 1.3, 2.3 and 3.9 Gy, respectively.

Therefore, the hypofractionation analysis should have been reasonably valid.

In the prostate-cancer treatment, the BED distribution was very similar to the

clinical-dose distribution with 12 fractions of 4.3 Gy (C), which happens to be a typical

practice of carbon-ion RT (Kamada et al., 2015). In such a case, the clinical-dose

distribution can be approximately interpreted as the BED distribution with rescaling,

DBE(~r) ≈

(

1 +
βref

αref

ĎC1

fC

)

DC(~r)

fC
, (20)

where ĎC1 is the fraction clinical dose prescribed to a tumor. The hypofractionation

attempted for the prostate-cancer treatment apparently degraded the dose concentration

of the total RWD distribution, which was inconsistent with the BED distribution and

thus may indicate a deficiency of RWD for hypofractionated treatments. The observed

invariance of BED may have been caused by cancelation between the SOBP (high dose,

high α/β) and its outside regions (low dose, low α/β) in the relative dose-fractionation

effect (1 + Di βi/αi). The cancellation may generally be valid for carbon-ion beams

because their physical dose and LET are naturally correlated, implying that carbon-ion

RT may tend to be insensitive to fractionation. This fact may rationalize the use of

uneven fractionation such as with alternate single-beam delivery for efficient operation.

In reality, however, the therapeutic gain by fractionation should be evaluated with

accurate differentiation between cancer and normal cells in radiosensitivity (Yoshida

et al., 2015), or could be learned from clinical experiences retrospectively (Fukahori

et al., 2016).

5. Conclusions

The BED is a representation of treatment dose that normalizes the effects of dose

fractionation, inherent tumor growth and the RBE of treating radiation. For assessment

of carbon-ion RT treatment, we simplified the RBE concept to be biological dose

for a reference cell line and reformulated it as a derivative of the clinical dose used

in practice. The BED will theoretically be useful for preclinical and retrospective

studies when variation in fractionation is involved. For a prostate-cancer treatment

of carbon-ion RT, we found that the BED and RWD distributions were very similar
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at a normal fraction size, that the BED distribution was nearly invariant against

fractionation, that uneven fractionation was only slightly inferior to even fractionation in

dose concentration and that the RWD would not suffice for dose-distribution assessment

with radical hypofractionation. The BED can be converted to that of any radiation of

known α value, which will theoretically enable universal assessment of RT treatments of

various modalities. However, treatment evaluation with such simplistic biological dose

is intrinsically limited and must be complemented in practice by clinical experience and

biology experiment.
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