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The Role of Intelligence in Social 
Learning
Alexander Vostroknutov1, Luca Polonio1 & Giorgio Coricelli2

Studies in cultural evolution have uncovered many types of social learning strategies that are adaptive 
in certain environments. The efficiency of these strategies also depends on the individual characteristics 
of both the observer and the demonstrator. We investigate the relationship between intelligence and 
the ways social and individual information is utilised to make decisions in an uncertain environment. We 
measure fluid intelligence and study experimentally how individuals learn from observing the choices 
of a demonstrator in a 2-armed bandit problem with changing probabilities of a reward. Participants 
observe a demonstrator with high or low fluid intelligence. In some treatments they are aware of the 
intelligence score of the demonstrator and in others they are not. Low fluid intelligence individuals 
imitate the demonstrator more when her fluid intelligence is known than when it is not. Conversely, 
individuals with high fluid intelligence adjust their use of social information, as the observed behaviour 
changes, independently of the knowledge of the intelligence of the demonstrator. We provide evidence 
that intelligence determines how social and individual information is integrated in order to make 
choices in a changing uncertain environment.

Learning is an important and flexible process that allows humans to adapt to their environment. A first basic 
source of learning is personal experience. Humans interact directly with the environment and learn from the 
feedback they receive. A second source of learning is observing other people interacting with the same envi-
ronment. In a world where we need to adapt quickly to ever-changing circumstances (e.g., climate fluctuations, 
socio-political commotion), the ability to learn from others is fundamental because it allows us to foresee the 
consequences of our actions without experiencing them directly. However, people should be selective in which 
situations they rely on social learning strategy as it can be efficient in some cases and inefficient in others1–7. An 
efficient social learning strategy should specify under which circumstances to pay attention to social information, 
which individual to imitate, and the type of information that should be taken into account8,9. The most studied 
classes of social learning strategies include: frequency-dependent rules, such as conformity or anti-conformity to 
the most chosen alternative10–13; payoff-based rules, where the level of imitation depends on the payoffs achieved 
by a demonstrator in the recent past14,15; confidence-based rules, when confidence of individuals and demon-
strators modulates imitation13; and prestige-based rules, where the level of imitation depends on the status of the 
observed other16–19.

Another aspect is how the integration of social and individual information is accomplished20,21. In an environ-
ment where demonstrators are observed repeatedly, on the one hand, it is possible to learn from others using sim-
ple reinforcement learning22, which is the case when an agent imitates others, evaluates the feedback she receives 
after imitation, and chooses whether to keep imitating or not, depending on the outcome23–27. On the other hand, a 
more strategic use of social information involves understanding the rationale behind the observed choices6,13,28–30. 
This is a more sophisticated mechanism of learning that requires the agent to integrate what she has observed with 
the feedback she has directly received from the environment. The adoption of this integrated learning process 
can be more efficient, especially when the environment is changing or when the expertise of the demonstrator is 
unknown, but is also costlier since it requires a higher level of attention and an ability to understand and integrate 
signals coming from different sources. A key question is, thus, when and how to switch between social and individ-
ual learning. Experimental evidence shows that individuals increase their level of imitation with task difficulty and 
cost of individual learning, and decrease it with the probability of changes in the environment13,31. The tendency 
to use social learning is also related to the cognitive abilities of the individual. In particular, individuals with low 
intelligence scores use social (instead of individual) learning more often, as compared to the individuals with high 
intelligence scores, who, in addition, have a higher ability to understand when and whom to copy32.
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The goal of this study is to determine how variation in fluid intelligence of participants and demonstrators 
modulates the use of social information and employment of different social learning strategies. In particular, 
we are interested in how individual characteristics related to fluid intelligence influence imitation decisions. To 
achieve this, we study behaviour of participants in a complex, stochastic, and unstable environment while they are 
observing another individual choosing in the same setting33,34. The task was designed so that individual learning 
requires effort and, more importantly, it is hard to recognise the competence of the observed model from her 
choices alone. To see how reliance on social information and rate of copying the demonstrator change, we have 
participants observe the actions of either a highly competent or less competent other, and vary the availability of 
the information about her fluid intelligence. In addition, the dynamic nature of the task and multiple imitation 
choices that each participant has to make allow us to investigate in detail how social and individual information 
is integrated.

Evidence from experimental economics literature on strategic thinking suggests that the cost of learning 
in interactive settings varies with fluid intelligence35–40. Studies in cultural evolution literature find a variation 
in social learning strategies that depends on social group and individual characteristics13,32,41,42. Having these 
findings in mind, we hypothesize that low fluid intelligence participants have a relatively high cost of learning, 
which implies that it should be difficult for them to perform efficiently in the task and, as a consequence, hard to 
interpret the observed actions of the demonstrator when her competence is unknown. This should lead to low 
confidence, low efficiency, and, as a result, strong dependence of the imitation rate on the information about the 
demonstrator’s intelligence (prestige bias). Behaviourally, we should, thus, observe (1) relatively low earnings; (2) 
inability to modulate imitation rate with changing characteristics of choices of the demonstrator; (3) no difference 
in imitation rates between competent and less competent demonstrators when their intelligence is unknown; 
(4) stable increase in imitation when the intelligence of the competent demonstrator is known (and, as a result, 
increase in earnings). High fluid intelligence participants, who have low cost of learning, should be able to learn 
well in the task and also able to recognise the competence level of the demonstrator from her actions even if her 
intelligence is unknown. This should lead to high confidence, high efficiency, and dependence of the imitation 
rate on the dynamic features of the demonstrator’s choices instead of the information about her intelligence (no 
prestige bias). For high fluid intelligence participants we should, thus, observe (1) relatively high earnings; (2) 
dependence of the imitation rate on the changing properties of the observed choices; (3) different imitation rates 
of competent and less competent demonstrators when their intelligence is unknown; (4) no difference in imita-
tion rates of a competent demonstrator when her intelligence is known vs. when it is not.

To test our hypotheses we use a two-armed bandit problem in which the probabilities of reward from the two 
arms are determined by two independent stochastic processes. In each trial, participants choose one of the two 
arms, which gives them a fixed reward with some probability (Fig. 1A2). The probabilities of reward from the two 
arms change over time as shown in Fig. 1B. Participants were not informed about the exact processes guiding the 
probability changes, but they knew that these probabilities change gradually. In Experiment 1, participants make 
their decisions in 200 trials without the possibility to learn from others. In Experiments 2 and 3, participants are 
presented with exactly the same 200 trials as in Experiment 1, but, from time to time before their choice, they are 
able to observe the action of a demonstrator (Fig. 1A1). They are aware that this person, whom they observe, was 
making her choices in a previous experimental session (Experiment 1) and that the probabilities of reward that 
she faced were the same as the probabilities in the current experiment (Fig. 1B). To assess intelligence, we use 
a 20-minute version of the Raven Advanced Progressive Matrices Test as a measure of fluid intelligence of our 
participants43. The Raven APM test was found to be a measure of the general ability to think in an abstract way, 
recognize patterns, reason, and discern relationships, all of which should be crucial for efficient learning from 
observation in a changing stochastic environment. Before starting the task, participants in Experiments 2 and 
3 were provided with the histograms of the Raven APM scores (from now, Raven scores) of participants from 
Experiment 1 (Fig. 1C). Two participants were used to act as demonstrators: a participant with a low Raven score 
(15 matrices solved correctly) and a participant with a high Raven score (28 correct matrices). Participants were 
not aware of the relation between the Raven score and the performance of the demonstrator in the learning task.

In order to test the hypothesis that high fluid intelligence participants can recognise the competence of the 
demonstrator by only observing her actions, whereas low fluid intelligence participants cannot (Hypothesis 1), 
we run two treatments in which participants observe a low or high Raven demonstrator, but her Raven score is 
not visible. Participants, included in these two treatments (NovisLow for a low Raven other and NovisHigh for a 
high Raven other), see the histogram of the Raven scores from Experiment 1 (Fig. 1C top) and are told that the 
person they observe is one of those represented on it. To test the hypothesis that low fluid intelligence participants 
react to the information about the Raven score of the demonstrator and high fluid intelligence participants do not 
(Hypothesis 2), we run two more treatments (VisLow for a low Raven other and VisHigh for a high Raven other) 
in which the Raven score of the demonstrator is visible to participants. This information is delivered through the 
same histogram as in the previously described treatments, only now the Raven score of the observed individual 
is indicated with a red bar (Fig. 1C middle and bottom). To test the hypothesis that high (low) fluid intelli-
gence participants (do not) modulate their imitation with the changing properties of choices of the demonstrator 
(Hypothesis 3), we introduce in our analysis an observable measure of demonstrator’s confidence—the number 
of times she switches between actions—and check if the imitation rate is influenced by it dynamically44. Finally, to 
verify that the differences among the four treatments come from fluid intelligence and not from the information 
about participants’ own Raven score we provide information about one’s own Raven score in Experiment 2, and 
we do not in Experiment 3 (see Table 3 in Appendix B.1 for the detailed information about all experiments and 
treatments).
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Results
Imitation.  We start with providing evidence for the hypotheses that are concerned with the reactions of par-
ticipants to the Raven score of the demonstrator and its visibility (Hypotheses 1 and 2). We analyse the aggregate 
average levels of imitation in the four treatments of Experiment 2. By imitation we mean the situations when a 
participant chooses the same action as the observed other. There are two types of imitation. The first is pure imi-
tation: a participant sees what the observed other has chosen and decides to choose the same action. The second 
is coincidental imitation: a participant chooses the same action as the observed other because she thinks this is 
the best action to choose regardless of what the demonstrator does (for example when the probabilities of reward 
from the two arms are very different and it is obvious which arm is better at the moment).

We would like to focus our analysis on the cases of pure imitation. However, in the periods in which partici-
pants observe a demonstrator’s choice we cannot tell apart pure imitation from coincidental one. One way to con-
trol for coincidental imitation is to notice that, in the periods when the other is not observed, all cases of imitation 
are coincidental. Therefore, assuming that, on average, coincidental imitation is the same when the demonstrator 
is observed and not observed, we can use the average rate of imitation in the periods when the demonstrator 
is not observed as a proxy for the average coincidental imitation when she is observed. Thus, we consider an 
adjusted imitation rate that, for each participant, is equal to the average rate of imitation in periods when the other 
is observed minus the average rate of imitation when her actions are not observed. This adjustment is necessary 
to correctly estimate pure imitation since the behaviour of participants is very heterogeneous: the rate of coinci-
dental imitation when the demonstrator is not observed ranges from 0.38 to 0.87.

Figure 2A shows the adjusted rates of imitation in the NovisHigh, NovisLow, VisHigh, and VisLow treatments 
averaged by the terciles of the Raven score of participants. We see significant differences in the adjusted rate of 
imitation between observing high and low Raven demonstrators for all terciles of the Raven score of partici-
pants and both a visible and non-visible Raven score of the demonstrator except for Low Raven participants 
(tercile 1) in the NovisHigh and NovisLow treatments. Middle and high Raven participants (terciles 2 and 3) are 
able to recognise a competent demonstrator even when her Raven score is unknown, while low Raven partici-
pants are not, which provides support for Hypothesis 1. This result shows that fluid intelligence correlates with 
the ability to understand when copying the demonstrator is worthwhile and corroborates previous findings that 

Figure 1.  Experimental design. (A) Participants choose between two options which can give them a 10 cents 
reward with some probability (A2). In each trial, a red figurine, presented after a fixation screen, informs 
participants that it is time to choose. In Experiment 1 participants choose without observing anyone’s 
choices. In Experiments 2 and 3, periodically (6–12 trials in a row, for a total of 100 out of 200 trials across 
the experiment), and before their choice, participants can observe the choice of another participant who took 
part in Experiment 1 (A1). The observed other is represented by a green figurine and her choice is shown 
with a green tick. Participants do not observe the outcome of that choice. (B) Throughout the 200 trials of the 
experiment the probabilities of reward from the two arms change according to prespecified random processes 
(the two lines on the graph). It was carefully explained to participants in Experiments 2 and 3 that these 
probabilities were the same for them and the demonstrator they observe. (C) Participants in Experiments 2 
and 3 received different information on the observed other. In the NovisHigh and NovisLow treatments they 
see only the distribution of the Raven scores of potential demonstrators (graph at the top). In the VisHigh and 
VisLow treatments they see the distribution and the Raven score of the other they observe marked by a red 
bar (graph in the middle and at the bottom). In Experiment 2 all participants know their own Raven score. In 
Experiment 3 participants took the Raven test before the main task, but were not informed about their Raven 
score (everything else was as in Experiment 2).
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high performance demonstrators (in our case high Raven other) are copied more often13. We provide an addi-
tional angle to these results: when participants are not informed about the competence of the demonstrator (the 
NovisHigh and NovisLow treatments), they copy the high performance other more often than the low perfor-
mance one only when they can recognise her as such. In our experiment low Raven participants are less able to 
do that, so their rate of imitation of the high performance demonstrator does not change based on the observed 
behavior of the demonstrator.

Next, we turn to the analysis of the visibility of the Raven score of the demonstrator (Hypothesis 2). When we 
compare imitation rates in the VisHigh and NovisHigh treatments we find that low and middle Raven partici-
pants increase their imitation when they know that the other is high Raven (increase in imitation: 0.097*, t-test 
p = 0.032 and 0.097*, p = 0.034 respectively; see Appendix B.2 for details). This supports Hypothesis 2 and sug-
gests that low/middle Raven participants interpret the information about the Raven score of the demonstrator as 
a signal of competence in the task even though they do not know how much Raven score correlates with it. This 
is in line with the studies on unconditional copying of successful, knowledgeable, or prestigious models14,17,45–48. 
Conversely, high Raven participants are not significantly affected by the visibility of the high Raven score of the 
demonstrator (−0.031, p = 0.419). Unlike low/middle Raven participants, they do not react to this information 
but identify a competent demonstrator by her actions. Taken together, we find that intelligence determines the 
sensitivity to (possibly irrelevant) information about the skills of the demonstrator. Similar differential reliance 
on learning from models was found in between-cultures studies42,49. We add to this literature by showing that 
variation in social learning strategies can arise from difference in the ability to interpret the actions of the demon-
strator, which is correlated with fluid intelligence. It should be also noted that our results are robust when using a 
different measure of participants’ cognitive ability (see Appendix B.3).

An additional question of interest is whether low Raven participants learn during the experiment and become 
more like high Raven participants, or whether they maintain their tendency to imitate a high Raven demonstrator 
more when her Raven score is known? Figure 2B–E show the dynamics of the adjusted imitation rate of low and 
high Raven participants (below and above the median Raven score). Figure 2B,C illustrate the moving averages 
in the VisHigh and NovisHigh treatments. Low Raven participants demonstrate a significantly increased rate of 
imitation when they know that the demonstrator is high Raven, which lasts almost until the end of the experi-
ment as predicted by Hypothesis 2. High Raven participants are affected by this information only in the first 28 
periods of observation and then exhibit the same imitation rate as in the NovisHigh treatment. This suggests that 
high Raven participants learn to understand the meaning behind the choices of the other after about 28 periods 
of observation, whereas low Raven participants do not and keep relying on the information about the demonstra-
tor’s Raven score. Figure 2D,E show the dynamics of imitation for the low Raven other. In this case, neither high 
nor low Raven participants change their rate of imitation with the visibility of the Raven score of the demonstra-
tor. The difference in behaviour of high and low Raven participants can be interpreted in terms of difficulty to 
learn. One possibility is that low Raven participants have a high cost of asocial learning, and it is difficult for them 
to interpret the observed choices of the demonstrator. Therefore, following the observed other, when her high 
competence is known, is adaptive for low Raven participants50. High Raven participants seem to be able to learn 

Figure 2.  Adjusted imitation rate in Experiment 2. (A) The adjusted rate of imitation by the terciles of the Raven 
score of the participants in treatments with a non-visible and visible Raven score of the other. Blue (red) bars 
represent the adjusted rate of imitation in treatments in which participants observed the high (low) Raven other. 
The p-values (from left to right: 0.003, 0.004, <0.001, <0.001, 0.033) denote the significance of the t-tests on the 
differences in coefficients of an ordinary least squares (OLS) regression that the bars represent (first column of 
Table 4 in Appendix B.2). (B) The dynamics of the running average of the adjusted imitation rate of low Raven 
participants (below median Raven score) when they observe a high Raven other (only for 100 periods when the 
action of the other is observed). Ranges are ±1 SE. (C) Same as B only for high Raven participants (above median 
Raven score). (D,E) Analogous graphs for the situation when the low Raven other is observed.
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how to perform in the task as it unfolds and become more confident in interpreting the actions of the demonstra-
tor. Thus, they rely on the information about the Raven score of the other only at the beginning of the task. This 
result supports the evidence provided in previous experiments13 that an increase in confidence shifts the balance 
between social and asocial learning towards the latter.

Efficiency and Earnings.  Next we test the hypothesis that high Raven participants exhibit higher efficiency 
of choices and earn more than low Raven participants. A choice of a participant is efficient if she chooses the 
action with the highest probability of reward. In our data the lowest efficiency rate is 0.45 and the highest effi-
ciency rate is 0.87, which is a dramatic difference suggesting that some participants are much better at learning 
the task than others (see Fig. 5 in Appendix B.4 for the distribution). Figure 3 shows the improvement in the 
efficiency rankings for the four treatments of Experiment 2 as compared with Experiment 1.

The figure shows that the efficiency improvements of high Raven participants are larger than those of low 
Raven participants in all treatments except NovisLow (improvement of 0.5 is due to chance). To support this find-
ing, we perform non-parametric tests on individual efficiency rates. The Kruskall-Wallis test of the nine groups 
(participants in Experiment 1 and low and high Raven participants in the four treatments of Experiment 2) shows 
a significant difference among them (p = 0.042). For low Raven participants we can reject the null hypothesis of 
equal distributions of efficiency rates only for the VisHigh treatment (rank-sum test: p = 0.031). For high Raven 
participants we can reject the equal distributions hypothesis for all but the NovisLow treatment (rank-sum tests: 
p = 0.063 in the VisLow treatment; p = 0.018 in NovisHigh; p = 0.004 in VisHigh). In support of Hypothesis 3, 
low Raven participants significantly increase their performance only when they know the Raven score of the 
high Raven demonstrator, while high Raven participants manage to increase their efficiency in all but NovisLow 
treatment. This constitutes direct evidence that high Raven participants are able to extract useful information 
about the environment just by looking at the behaviour of the demonstrator, which confirms the importance of 
balancing social and individual information42.

Participants’ earnings are closely related to efficiency, thus, it is not surprising that we observe similar results. 
Low Raven participants show significantly higher earnings, as compared to the earnings of the participants in 
Experiment 1, only when they know that they observe a high Raven demonstrator (rank-sum test: p = 0.044). 
High Raven participants increase their earnings in the NovisHigh and VisHigh treatments (rank-sum tests: 
p = 0.056 - NovisHigh; p = 0.002 - VisHigh). This shows that high Raven participants earn more money whenever 
they observe a high Raven other (with visible Raven score or not) and low Raven participants do so only when 
they know that they are observing a high Raven other.

Finally, we analyse where the difference in efficiency improvements between low and high Raven participants 
comes from. We relate it to two characteristics of participants: their Raven score and how often they switch 
between actions. The latter is a measure of how confident participants are about the expected rewards from the 
two actions. When expected probabilities of rewards are very different, participants are sure about which action 
is better. This leads to high confidence and low number of switches between actions. When expected rewards 
from the two actions are very similar, participants are uncertain about which action should be chosen. Thus, their 
level of confidence is low and they might switch a lot between actions. The number of switches is also a noticeable 
feature of the behavior of the demonstrator, which can be taken as a proxy for her level of confidence and, thus, 
can be utilised in the decision to imitate (see the next section). Table 5 in Appendix B.5 reports the regressions 
that connect one’s own Raven score, number of switches, and efficiency/earnings. The regressions show that high 
Raven participants switch less than low Raven participants and also earn more money, and that a high number of 
switches decreases efficiency and earnings. Therefore, we find an observable behavioural property—number of 
switches—that is correlated with the Raven score, determines how efficient the asocial learning strategy is, and 
can potentially signal the confidence level of the demonstrator.

Strategic Use of Social Information.  To support the hypothesis that high Raven participants are more 
strategic than low Raven ones in their reliance on social information (Hypothesis 3), we analyse imitation choices 

Figure 3.  Efficiency improvements over Experiment 1. The bars show the proportion of periods in which the 
average efficiency in Experiment 2 (by treatment and Raven score of participants) exceeds average efficiency in 
Experiment 1 (both smoothed by 5-period moving average). The bar colours stand for the Raven score of the 
observed other. Ranges are ±1 SE.
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period by period and test if participants are able to infer the connection between the number of switches of 
the demonstrator and her efficiency. We estimate a panel logit regression reported in Table 1 (see Table 7 in 
Appendix B.6 for the linear probability model) where the dependent variable is an indicator of whether a partici-
pant has chosen the same action as the demonstrator or not.

We find that the imitation choices of both high and low Raven participants depend on value of imitation, the 
variable that tracks how successful imitation was in the recent past: the higher its value, the more participants 
imitate the other. This finding is not surprising since such behaviour is the simplest and the most natural way of 
modulating imitation choices. The regression suggests, however, that low Raven participants do not seem to be 
able to make more complex inferences about the observed choices: they do not use the number of switches of 
the demonstrator as a signal of her efficiency, and earnings (see Appendix B.5). Conversely, high Raven partic-
ipants do increase their imitation when they observe that the demonstrator does not switch too often. Thus, in 
accordance with Hypothesis 3, we conclude that high Raven participants are more strategic than low Raven par-
ticipants in weighing up social against individual information. In particular, they are able to interpret the number 
of switches of the demonstrator as a signal of her confidence about the choice and to use it to modulate their 
imitation. This fits well with the previous findings that the use of social information increases with the confidence 
of the demonstrator13.

Experiment 3.  All previous analysis was based on the data from Experiment 2, where participants knew 
their own Raven score. It is not inconceivable though that the effects on imitation reported above are caused 
simply by this information and not by the fluid intelligence. In order to show that this is not the case, we ran 
Experiment 3 that is the same as Experiment 2 in all respects except that participants were not informed about 
their own Raven score. We find two differences between the experiments. First, in Experiment 3 low Raven 
participants imitate the high Raven demonstrator significantly more than the low Raven one when her Raven 
score is not visible (NovisHigh and NovisLow treatments). This can be explained by the higher amount of effort 
that low Raven participants put into learning from the actions of the demonstrator when they do not know that 
their Raven score is low (see Appendix B.6 for the detailed comparison of all analyses). It should be mentioned, 
though, that the imitation rate of low Raven participants in the NovisHigh treatment is not significantly different 
in the two experiments. Moreover, Table 6 in Appendix B.6 shows that low Raven participants in Experiment 3, 
as well as in Experiment 2, do not react to the number of switches of the other. This confirms that high and low 
Raven participants use different modes of weighing up social and asocial information in both experiments. The 
second difference we find is that in Experiment 3 participants’ imitation choices are noisier. This can be related to 
variation in beliefs that participants have about their own ability to perform in the task. Such variability can lead 
to increased noise in the decisions to imitate as it is less clear to participants how their own competence relates 
to that of the demonstrator. In fact, this result supports our claim that the information about participants’ own 
Raven score as well as demonstrator’s is associated with their confidence. The uncertainty about one’s own Raven 
score in Experiment 3 does not change the results, and the support for our hypotheses is not undermined.

Discussion
Many studies attempted to identify factors that can explain the diversity of social learning strategies both within 
and between groups. It was found that many demographic characteristics like, for example, income, ethnicity, 

Participants:

Prob[imitation = 1]

Low Raven High Raven

visible
0.057 0.274

(0.317) (0.238)

value of imitation
1.011*** 1.209***

(0.236) (0.215)

switches of other
−0.546 −0.664*

(0.351) (0.304)

visible × value of imitation
0.118 −0.356

(0.346) (0.281)

visible × switches of other
0.216 0.002

(0.51) (0.413)

constant
0.388 0.281

(0.222) (0.178)

N observations 6,095 8,463

N participants 67 93

Table 1.  Random effects logit regression of imitation choices in Experiment 2. The dependent variable 
imitation is 1 when a participant chooses the same action as the demonstrator (see Appendix A for the 
description of all variables used in the analyses). The independent variable visible is 1 if the Raven score of the 
demonstrator is known to participants. The variable value of imitation tracks the average payoff obtained from 
choosing the same action as the demonstrator in the last 10 times she was observed. The variable switches of 
other is equal to the number of switches between actions that the demonstrator made in the last 10 times her 
actions were observed. Standard errors in parentheses. *p < 0.05; **p < 0.01; ***p < 0.001.
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and gender, can not explain this variability32,51–54. We show that intelligence plays a role in the way people choose 
to weigh up social and individual information in their decisions. In particular, high fluid intelligence individuals 
are able to recognize whether the demonstrator is getting high or low payoffs from just observing her actions and 
without knowing her intelligence. As a result, high fluid intelligence individuals imitate the demonstrator when 
they deem it worthwhile. Conversely, low fluid intelligence individuals are unable to extract this information 
from observations and resort to unconditional imitation when they know that the demonstrator has high fluid 
intelligence. This is in line with the hypothesis that people turn to social learning when they are uncertain about 
their own ability or, in other words, their level of confidence is low55,56. These two modes of processing social 
information are also related to the findings in studies that explore the degree of reliance on social learning when 
individual learning is costly or difficult1,57–60.

One possible reason why we do find different social learning strategies used by low and high fluid intelligence 
participants is that in our experiment we did not give explicit information about how hard the task is. When the 
difficulty of the task is provided by the experimenter13, it is plausible to expect that all participants react to it in 
a similar way. In our case, participants have to learn themselves how difficult the task is for them. Therefore, the 
choice of how much to rely on social and asocial information depends on participants’ confidence about how to 
choose in the task and their ability to recognise the competence of the demonstrator. Our findings suggest that 
these two features are determined by fluid intelligence.

Our results can be interpreted in the light of theories that integrate social and individual learning1,61–64. In 
particular, we find that, at the beginning of the learning task, high fluid intelligence individuals rely on the infor-
mation about the intelligence of the demonstrator by increasing their imitation (see Fig. 2C). In the rest of the task 
their imitation rate stops being dependent on this knowledge and is modulated only by the characteristics of the 
observed behaviour. This is in line with theories that suggest that in the absence of experience, behaviour is driven 
by social learning, and later the reliance on social learning decreases as individual information accumulates1,62. 
This does not apply to low fluid intelligence individuals who rely on social learning throughout the task when they 
know that the demonstrator has high intelligence. Thus, we cannot exclude the possibility that low fluid intelli-
gence individuals are unable to integrate the two types of learning65,66.

Methods
The study consisted of three experiments: Experiment 1 in which participants made choices in a 2-armed bandit 
problem without observing others’ actions, and Experiments 2 and 3 in which participants made choices in the 
same environment with the only difference that in half the trials they observed the choices made by one of the 
two participants selected from the first experiment. The purpose of Experiment 1 was to select two participants, 
one with a high and one with a low Raven score, in order to use them as demonstrators in Experiments 2 and 3. 
Moreover, we used the data from Experiment 1 to evaluate the improvement in efficiency of the participants in 
Experiments 2 and 3.

The two demonstrators were chosen using the following procedure. First, we divided participants into deciles 
of Raven score. Then we calculated the median number of switches between actions for participants in the first 
and tenth decile. We chose two participants (one in the first and one in the tenth decile) who were the closest to 
the median. The aim of this procedure was to select two participants who would have a prototypical behaviour 
in terms of the number of switches in the two extremes of the Raven dimension (the number of switches of the 
low and high Raven participants are equal to 49 and 20, respectively). We decided to use the number of switches 
parameter for two reasons: (1) it is an index related to the earnings of the participants and (2) using simulations 
of optimal behaviour in stationary 2-armed bandit problem we found that the number of switches is an impor-
tant parameter that can be interpreted as a signal of confidence44: sophisticated learners interpret a relatively 
high number of switches as a signal of bad payoffs and learn to decrease imitation when the number of switches 
increases.

Participants in Experiments 2 and 3 were divided into four treatments with 2 × 2 design. The dimensions were: 
(1) the Raven score of the observed other (High or Low) and (2) the information participants received about the 
Raven score of the observed other (Visible or Non-visible). The Raven score of the observed other could be high 
(28 correct matrices) or low (15 correct matrices). The treatments are, thus, called VisHigh, VisLow, NovisHigh, 
and NovisLow. Only participants in the VisHigh and VisLow treatments knew the Raven score of the demonstra-
tor. Participants in the NovisHigh and NovisLow treatments were matched with the corresponding demonstrator 
without knowing his/her score on the Raven test.

Experiment 2 and Experiment 3 differed in only one respect: in Experiment 2 participants were informed 
about their own Raven score before the learning task and in Experiment 3 they were not (though, they did take 
the Raven test before the learning task). Apart from this difference, the experiments were identical.

For the main experiments (Experiments 2 and 3), nine NovisHigh and NovisLow, and ten VisHigh and 
VisLow sessions were conducted. In each session half the participants observed the high Raven other and the 
other half observed the low Raven other. All participants were recruited from the subject pool of the Cognitive 
and Experimental Economics Laboratory at the University of Trento (CEEL). The dates of the sessions and the 
number of participants per session are reported in Table 9, Appendix G. Summary statistics are provided in 
Appendix B.1. Non-parametric tests ensure that participants in all experiments come from the same population: 
no significant differences were found.

On average participants earned about 20.06, in addition to the 3 show-up fee. The presentation of the 2-armed 
bandit task was performed using a custom made program implemented in Matlab Psychophysical toolbox. The 
tests and questionnaires were administered with z-Tree software package67. A detailed timeline of the experiment 
and all instructions are reported in Appendix C.
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Experiment 1.  51 participants took part in Experiment 1. In the first part of the experiment participants 
made choices in a 2-armed bandit problem. In the second part they completed a 20-minutes version of the Raven 
Advanced Progressive Matrices test68, the Holt & Laury Risk Aversion test, the Cognitive Reflection Test, and the 
Empathy Quotient questionnaire69, which was added to the study in order to assess whether empathic abilities 
affect the way participants imitate others. The time-constrained version of the Raven APM test has been shown to 
be an adequate predictor of the unconstrained Raven APM score68.

After entering the lab, participants were randomly assigned to a PC terminal and were given a copy of the 
instructions (see Appendix C). Instructions were read aloud by the experimenter, and then a set of control ques-
tions were provided to ensure the understanding of the 2-armed bandit problem.

The probabilities of getting a 10 cents reward from each of the two hands followed independent stochastic 
processes (see Fig. 1B). The process is a decaying Gaussian random walk with parameters λ = 0.8, decay centre 
θ = 0.5, and Gaussian noise with standard deviation 0.270.

Participants were not aware of how the probabilities change but it was made clear that they would change 
slowly and independently of their choices, earnings, and each other. The 2-armed bandit task included 200 trials 
divided into four blocks of approximately 50 trials each. At the end of the task participants were not informed 
about their earnings until after they completed the second part of the experiment (participants were not told their 
total earnings at the end of the choice task, though, in principle, they could have calculated it by observing the 
outcomes after each trial). In the second part of the experiment, participants where provided with 20 minutes ver-
sion of the Raven Advanced Progressive Matrices test. They were told that they have 20 minutes to solve as many 
problems as they can and that they would earn 30 cents for each correct answer. If participants did not complete 
an item or their answer was incorrect they would earn 0 cents for that item. At the end of the Raven test partici-
pants completed the Holt and Laury lottery task (with real incentives, see Appendix E), the CRT test and the EQ 
questionnaire (Appendices C and F). There was no time limit to complete these three tasks and no payment was 
provided for the CRT test, and the EQ questionnaire. At the end of the Holt & Laury task a single lottery was 
selected at random and played by the computer to determine payment.

At the end of the second phase, participants were paid according to their choices in the 2-armed bandit prob-
lem, their performance in the Raven problems, the outcome of the selected lottery, and a show-up fee of € 3.

Experiments 2 and 3.  In Experiments 2, 160 participants first completed the 20-minute version of Raven 
APM test, the Holt & Laury Risk Aversion test, the Cognitive Reflection Test, and the Empathy Quotient ques-
tionnaire, and then played in the 2-armed bandit task. Before the learning task they were informed about their 
own Raven score. The only difference with Experiment 1 was that participants in the 2-armed bandit problem, 
sometimes, and before making their choices, also observed the choices (but not the outcomes) made by one of 
the two selected participants from Experiment 1. The choices of the demonstrator were provided in half the trials 
(in 100 out of the 200 trials) between trial 10 and trial 200 in blocks of randomized length of 6 to 12 consecutive 
trials. It was made clear to participants that the observed behaviour was from a real person who took part in the 
experiment approximately one month before and that he/she chose in the same exact environment (the prob-
abilities of reward in each period were identical). Participants knew that the observed other has completed all 
parts of the experiment, including the Raven test that they completed at the beginning of the experiment. They 
were also informed that the demonstrator did not herself observe anyone while choosing in the 2-armed bandit 
problem task.

Experiment 3 had 142 participants and was the same as Experiment 2, only participants were not informed 
about their Raven score before the learning task. Also, participants in Experiment 3 did not complete the Holt & 
Laury Risk Aversion test, the Cognitive Reflection Test, and the Empathy Quotient questionnaire.

In Experiments 2 and 3 participants were shown (and explained) a histogram of the number of the Raven 
APM problems solved by the 51 participants from Experiment 1 (see Fig. 9 version A in Appendix C). In this way, 
in Experiment 2 they had the possibility to compare their score in the Raven test, which they knew before starting 
the 2-armed bandit task, with that of the group from which the demonstrator was chosen. No information about 
a possible connection between performance in the Raven test and the learning task was provided.

The instructions were identical for all participants, except for the information that was given about the 
score obtained by the observed other. In the NovisHigh and the NovisLow treatments the score obtained by 
the observed other remained unknown (only the distribution of all Raven score was known). Conversely, in the 
VisHigh and the VisLow treatments the score of the observed other was marked in red on the histogram and 
shown on the screen during the experiment (see Fig. 9 versions B and C in Appendix C).

Data availability.  The data are available upon request.

Ethics committee.  The study was approved by the Human Research Ethics Committee of the University of 
Trento (http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee).

Informed consent.  All participants gave informed consent to take part in the experiment.

Guidelines and Regulations.  All experiments were carried out in accordance with relevant guidelines 
and regulations of the Human Research Ethics Committee of the University of Trento (http://www.unitn.it/en/
ateneo/1755/human-research-ethics-committee).

Experimental protocol.  The experimental protocol was approved by the Human Research Ethics 
Committee of the University of Trento (http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee).

http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee
http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee
http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee
http://www.unitn.it/en/ateneo/1755/human-research-ethics-committee
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Images Used in the Experimental Design.  All images used in the experimental design (Fig. 1 and all 
figures in Appendix C) were drawn by the authors and are not subject to any copyright. In particular, the drawing 
of a person was drawn by the authors and the picture of a coin was obtained by scanning a real 10 cents coin.
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