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In recent years, due to the great diffusion of e-commerce, online rating platforms quickly became a common
tool for purchase recommendations. However, instruments for their analysis did not evolve at the same speed.
Indeed, interesting information about users’ habits and tastes can be recovered just considering the bipartite
network of users and products, in which links represent products’ purchases and have different weights due to
the score assigned to the item in users’ reviews. With respect to other weighted bipartite networks, in these
systems we observe a maximum possible weight per link, that limits the variability of the outcomes. In the
present article we propose an entropy-based randomization method for this type of networks (i.e., bipartite rating
networks) by extending the configuration model framework: the randomized network satisfies the constraints of
the degree per rating, i.e., the number of given ratings received by the specified product or assigned by the single
user. We first show that such a null model is able to reproduce several nontrivial features of the real network
better than other null models. Then, using our model as benchmark, we project the information contained in
the real system on one of the layers: To provide an interpretation of the projection obtained, we run the Louvain
community detection on the obtained network and discuss the observed division in clusters. We are able to detect
groups of music albums due to the consumers’ taste or communities of movies due to their audience. Finally, we
show that our method is also able to handle the special case of categorical bipartite networks: we consider the
bipartite categorical network of scientific journals recognized for the scientific qualification in economics and
statistics. In the end, from the outcome of our method, the probability that each user appreciate every product can
be easily recovered. Therefore, this information may be employed in future applications to implement a more
detailed recommendation system that also takes into account information regarding the topology of the observed

network.

DOI: 10.1103/PhysRevE.99.022306

I. INTRODUCTION

Network theory [1,2] proved successful [3] in the descrip-
tion and modeling of a wide variety of systems, ranging from
the obvious cases of the internet [4,5], the world wide web
[6], and social networks [7]. In these settings it formed the
evidence on which computational social science is based [8],
to cell properties in biology [9], and fMRI imaging in brain
analysis [10,11], contributing to the new field of network
medicine [12,13] and to banks in financial systems [14,15].
Networks come in various shapes, from the simplest case
of similar vertices connected by binary edges, to weighted
and/or directed networks, to multigraphs where more than one
edge can connect two vertices, to bipartite graphs where two
distinct sets of vertices are present. Simple examples of the
latter case are bipartite graphs in which a connection is drawn
if an individual, on one set, performs or not a given task, on the
other set. A lot of work has been developed so far to analyze
this kind of data, a great part of it being focused on different
methods to identify the structure of the network (see, for
example, Ref. [16], where the authors discuss the drawbacks
of finding communities in bipartite networks and then propose

“carolina.becatti @imtlucca.it

2470-0045/2019/99(2)/022306(15)

022306-1

a new solution based on bipartite stochastic block models to
address this topic).

This work deals with the specific case of bipartite rating
networks, where the two sets of nodes are individuals and
items’ purchases while the edges represent reviews of prod-
ucts given by consumers and are weighted by the numerical
score received, as for example, in the well-known Amazon re-
view system. These kinds of graphs have been mostly studied
from a machine learning and computer science perspective,
to train models able to recommend items to people, based
on their taste and preferences. Different methodologies are
employed for this purpose; see Ref. [17] for an thorough
review of the literature on the topic and the recorded progress.

In this paper we focus on a different approach, providing
an analytical tool that could reveal useful in the development
of a recommendation system based on network topology. We
follow the stream of literature introduced by Refs. [18-20],
which defines an appropriate method to construct benchmark
models for the observed networks. Therefore, our attention
can be focused on the assessment of the significance of several
topological quantities measured on the graph. More specif-
ically, we compare the real system with its randomization,
represented by an ensemble of graphs with the same number
of nodes and all possibile link configurations. To have an
effective filter, we constrain the average over the ensemble of
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some topological quantities—in this case the degree sequence
per rating—and check if other nontrivial measures of the
actual network are reproduced. If not, then there is a signal
of a behavior that it is not captured by the constraints only.

The method works as follows: It first prescribes to define
an appropriate ensemble of graphs, with constant number of
nodes; second, it defines a probability distribution over the
ensemble through a constrained entropy maximization proce-
dure; then, the maximization of the related likelihood function
provides the probability that any possible pair of nodes in the
network of interest is connected. The constraints introduced in
the first maximization procedure are the topological quantities
of the real network, i.e., for binary and undirected networks
the degree of each node is used as a constraint. Once the
theoretical framework is complete, we can state if the real
values of some topological quantities substantially deviate
from the theoretical distribution, by comparing the actual
observations with the expectations of the null model.

Rating networks may be interpreted as classical weighted
networks, whose edges are weighted by a finite set of discrete
scores. In this context, appropriate constraints are represented
by the specification of nodes’ strengths only (weighted con-
figuration model, in Ref. [20]). Because of the extremely poor
predictive power of vertices’ strengths, an enriched version
of the previous model has also been introduced (enhanced
configuration model) in Ref. [21]; this method adds the topol-
ogy as additional information. However, the presence (in our
framework) of a finite number of discrete weights complicates
the problem formulation and increases the required compu-
tational effort. For these reasons, a preliminar “binarization”
procedure is often employed (it is the approach of Ref. [22],
but it is also common in recommendation systems, like in
Ref. [23]), by thresholding the edges’ weights. In this way, the
resulting network is binary and can be easily randomized with
the Bipartite Configuration Model in Ref. [24]. In this paper
we propose an alternative approach, constraining not only on
the presence of positive reviews, but on the exact ratings. Due
to its application, we indicate it in the following as bipartite
score configuration model (BiSCM). The peculiarity of our
approach is that we avoid the scores-related problems by
specifying a multidegree for each node in the network, i.e.,
by specifying the entire distribution of scores received by a
node. We will show that adding more constraints allows us to
define a more restrictive null model, thus to reproduce with
higher accuracy the features of the original network.

Let us highlight that our approach is general enough to
permit to randomize bipartite signed networks (as a subset
of rating networks) and bipartite categorical networks, the
latter being a subject to which, to the best of our knowledge,
there is a substantial scarcity of theoretical tools for their
analysis. For instance, while there are different proposals for
measuring the similarity among items in categorical datasets
[25], nontrivial null-models and benchmarks are practically
absent. The present methodology tries to fill this gap.

The rest of this paper is structured as follows. In the Sec. 11
we explain the ensemble construction procedure and show
how the model can be employed in two different kinds of
analysis: evaluation of the significance of some topological
quantities and projection of the bipartite network on one of its
layers. In Sec. III we briefly review the datasets used to test

FIG. 1. A simple bipartite graph. In the following, Latin letters
will indicate goods, while Greek letters will denote users.

the methods. The main results regarding the motifs analysis
are reported in Sec. IV, where we describe all the performed
analyses, while we characterize the communities found in the
projected and validated networks in Sec. V. Finally, we dis-
cuss possible future developments of the method in Sec. VI.

II. METHODS

In this section, we briefly introduce the used notation
and explain the necessary steps to construct the null model
ensemble. A bipartite network is a network that can be par-
titioned in two sets of nodes, such that only edges between
nodes belonging to different sets can be observed (see Fig. 1).
This kind of structure naturally arises whenever considering
collaboration networks (i.e., actors in the first set, movies on
the second set), export of products, consumers, goods, etc. To
distinguish between the two sets, the index running on one
set L is typically indicated by Latin letters, while the index
running on the second set I is indicated by Greek letters. The
number of nodes belonging to the two sets L and I will be
denoted with the symbols N, and Nt respectively. A bipartite
rating network with N = N, + Nr vertices and E edges can
be entirely specified by its N, x Nr adjacency matrix M
with entries m; , = f whenever product i has been reviewed
and assigned score § by user « and m;, = 0, otherwise. In
what follows, we only deal with the case in which users are
required to assign discrete numerical scores and the number
of possible scores is known, denoted from now on as Bax-
Therefore, 8 € {1, ..., Bmax}. All members of the benchmark
ensemble will have a constant number of vertices per layer,
respectively, equal to Ny and Nr. For the sake of simplicity, a
binary representation of the adjacency matrix entries will be
considered, defining m; o g = 6(m; o, B) for all B, where § is
the Kronecker § function. By doing so, the variable m; o g will
be equal to 1 if node « has reviewed node i with the numerical
score B and m; o g = 0 otherwise. We use the notation

kipgM) = "migp i=1,....Np. (1)

kapM) =Y "migp a=1,... Nr 2

to indicate the number of reviews with score 8, respectively,
received by a generic product i in Eq. (1) and assigned by a
generic user « in Eq. (2). The specification of Egs. (1) and (2)
for all scores B defines the distribution of scores received by
each node and constitute the fundamental constraints of our
problem.
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At this point we look for the probability distribution maxi-
mizing the (Shannon’s) entropy,

S=-Y P(M)InP(M), 3)
M

under the constraints (k; g) = k; g and (k, g) = ko p forall i, a
and for all scores B. In other words, we consider the prob-
ability distribution over the ensemble such that the expected
degree of each node, for every possible rating, equals on av-
erage its observed value, while keeping all the rest maximally
random. The solution to this bipartite maximization problem
gives the following probability distribution over the ensemble,

PMI%, ) = [ | gia(miaplZ. ). )

i,a

where ¥ is a Ny Smax dimensioned vector of Lagrangian mul-
tipliers that controls the expected degrees for each possible
rating for the set of products, while y is the analogous Nr Bmax
dimensioned vector of Lagrangian multipliers for the users.
The quantity

[15Cxip Yo, )"
I+ Zﬂ Xi,B Ya,p

for all scores determines the probability to observe one of
the entries between nodes i and « (refer to the Appendix for
further details). Notice that each node has been assigned a
vectorial Lagrangian multiplier (¥; if it belongs to the layer
L, y, if it belongs to the layer I') of dimension B.x. Thus,
the probability to observe a positive outcome, i.e., a link with
rating B, can be expressed as

qi,ut(mi,oz,ﬂ|fv )_;) = (5)

Xi,p Ya,B
1+ 25 Xi,p Yo,

for all i, o, and B. Therefore, the outcome of our method
allows to easily recover the probability that each user assigns
a given score to all items, for all observed rating levels in the
network.

To determine the numerical values for our Lagrangian mul-
tipliers, let us consider a specific real-world rating network
M*, for which the degree sequence {k; g(M™*), ko g(M*)} is
known for all i, and for each rating level 8. The log-
likelihood defined by Eq. (4) is given by

LEFIM) = kigM)Inxig+ Y ke s(M)Iny,
i,B a.p

- > In (1+2x,,5ya,,3>. (7)
i,o B

Then, the maximization procedure consists in finding the
specific parameter values (X*,y¥*) that maximize the
probability to observe the network of interest M*. Thus,
the benchmark model for the real-world network M* is
completely specified and it is possible to compare its observed
topological properties with the same quantities averaged over
the ensemble of graphs.

Let us conclude this section with some remarks: In the
whole manuscript we employed the exact result of our pro-
cedure, thus the average over the ensemble truly reproduces

Dia,p =

the score degree sequence observed in the real network. Nev-
ertheless, the null model’s calibration (i.e., the determination
of a numerical value for the Lagrangian multipliers X and )
may easily become costly, since the number of unknowns of
the problem grows linearly with the number of nodes in the
network N and observed scores Bmax [26]. For this reason, for
extremely large and sparse systems, a possible approximation
is provided in the Appendix. As in the Chung-Lu model [27],
we relax the constraints required by considering expected
values and we approximate the Lagrangian multipliers to be
proportional to the degree of the node for the given score. We
will show that for high degrees, this approximation systemat-
ically overestimates the exact probability, but there is a quite
good agreement for lower degrees.

It is worth noticing that no assumption has been made
so far concerning the nature of the different entries of the
adjacency matrix, but for the fact that they are mutually
exclusive. Therefore, our method is completely general and
can be employed in many different applications. For instance,
this framework can be intended as describing a multiedge
network in which B, is the maximum number of edges
allowed between any pair of nodes. Other possible extensions
can be toward the cases of signed networks or categorical
networks. In the former case, the different values of scores
would be 8 € {+1, —1}, indicating, respectively, presence of
a positive and negative link. In the latter case instead, each
score B is simply assigned one of the possible realisations of
a categorical variable: we will present an application to this
kind of data in one of the following sections.

A. Higher-order topological benchmark

Whenever dealing with numerical scores (lets us exclude
the case of categorical scores for the moment; we will discuss
this situation later on), we are able to distinguish “positive”
from “negative” reviews. More specifically, since in all cases
Bmax 1s known, it is possible to fix a threshold score to By, <
Bmax and interpret each review as “positive” whenever the
reviewed product has received a score greater or equal than
the threshold, meaning that it has been appreciated by the
user. Clearly, the “negative” reviews are analogously defined
as those that have been assigned a score smaller than the
threshold, meaning that the user who assigned the review
was not satisfied by the purchase. Therefore, at the end of
the described randomization procedure, we are able to define
a signed version of the original adjacency matrix, indicated
as M. This new matrix has entries mig =+1ormy, =—1,
whenever a positive (i.e., B < B < Bmax) Or, respectively,
negative (i.e., 1 < B8 < PBw) review was registered in the ob-
served data M*. In what follows, the aforementioned positive
or negative entries will be indicated using the shortcuts m;’, or
m; . respectively, denoting the presence of a positive or neg-
ative review, i.e., m} = 8(M; 4, +1) or m;, = 8(Miq, —1),
where § is again the Kronecker 8 function. Moreover, we
denote the quantities k;" = Y, m;, and ki =Y, m, re-
spectively, positive degree and negative degree, to indicate
the number of edges with positive or negative sign incident
to node i. The previous quantities are equivalently defined for
node «. Finally, the entries of the related probability matrices
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FIG. 2. Checkerboardlike motifs.

have been indicated as (mifa) and (m; ) with

(mi) = pla= > Pias:
B=>Bm

(M) = Pig = Z Pia.p
B<PBun

for all i, « and B. The previous terms, respectively, repre-
sent the probability to observe a positive or negative review
between a pair of nodes (i, «) and can be recovered from
the quantities p; 4 g defined in Eq. (6) and representing the
probability that user « reviews product i with a numerical
score equal to 8.

On the datasets, we first analyze the correlation between
neighbor nodes’ degrees, introducing a signed version of
the classical average nearest-neighbor degree (ANND). We
separately analyze all possible combinations of positive and
negative neighbors and positive and negative degrees, as fol-
lows:

=V 8 Za mrak; NN Zo{ mifak(;
KTV = St KM = S
np Nmx Za m;ak; v Za m;akt;
k"M) = = K" (M) = = ®)

i i

In the previous equations, the first apex letter is referred
to the sign of the edges incident to i, while the second one
indicates the sign of i’s neighbor degree. In other words, the
terms k" or k" in Eq. (8), respectively, identify the average
positive or negative degree of node i’s positive neighbors, i.e.,
the positive or negative degree of the other nodes that have
assigned a positive review to i. Clearly, replacing positive with
negative sign, we obtain the analogous interpretation for k"
and k.

Then, we compute the number of signed checkerboard-like
motifs ¢; [28] for each node, as follows:

(M) = Z Z r;1l+ﬁm;Laml_amj_/3 )
ap

The number of checkerboardlike motifs node i is involved
represents the number of times we observe a pair of prod-
ucts (i, j) that receives conflicting reviews from a pair of
users (o, B). Their graphical representation is provided in
Fig. 2, where continuous edges represent positive reviews
while dashed represent negative ones. In this case, user « has
appreciated product j and instead disliked i, while for § we
observe the exact opposite behavior. Clearly, both Eqgs. (8) and
(9) can be analogously defined for column nodes «.

@

©

FIG. 3. A V-motif.

B. Monopartite projections

The traditional way to analyze collaboration systems [29]
(e.g., actors in the movie system), is to project the informa-
tion contained in a bipartite network on one of the layers
by considering the statistical significance of their common
connections. From various attempts on boards [30] to more
recent approaches [31], several works [22,32-34] applied a
similar idea, making use of the bipartite configuration model.
Summarizing, once the probability for the single bipartite link
is calculated, it is possible to compute the probability that a
pair of nodes shares a link with an item on the opposite layer.
Such a pattern can be represented by a V-motif (see Fig. 3): If
the probabilities per link are independent, then the probability
of observing the single V-motif of Fig. 3 is simply given
by the product P(Vy”? = 1) = p; opja. Thus, the number of
common neighbors between i and j is Poisson-binomially
distributed [35,36], i.e., the distribution of Nr independent
Bernoulli events, each with different (in general) probabilities.
Comparing the observation on the real network with their
theoretical Poisson binomial distribution, it is possible to
calculate a p value for each pair of nodes on the same layer.
After a multiple hypothesis testing procedure it is possible
to state which connections of the monopartite projection are
statistically relevant, i.e., which are the nodes that share more
connections than expected by the null model.

In the present paper, as an application of the BiISCM null-
model as a benchmark, we extend such a procedure to rating
networks, considering pairs of items that receive both positive
reviews from the same customer. Indeed, the inclusion of extra
constraints in the randomization phase, allows to construct
a more restrictive null model. This fact is confirmed by
the results of our validation procedure, since all validated
networks are characterized by a very low connectance and the
communities observed have a very precise interpretation (as
shown in the following sections). If we set the threshold for
positive reviews at By, then the probability to simultaneously
observe positive reviews for the items (i, j) from the same
customer « is given by

P(Vof’j = 1) = pfa p;ia.

Now, the algorithm follows exactly the same steps of the orig-
inal procedure: From the probability that both items receive a
positive review from the same customer we calculate the dis-
tribution of common good reviews. Although several methods
are available in the literature, we employ the false discovery
rate procedure [37] to validate the previously calculated p
values, since it permits to have a stricter control on the false
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TABLE I. Data description

N N, Nr E o + -
(ML) MovieLens 2588 1 645 943 100 000 6.36 x 1072 0.83 0.17
(MI) Musical Instruments 2329 900 1429 10 261 7.98 x 1073 0.95 0.05
(SM) Smartphones 16 172 2256 13916 15 817 5.04 x 107* 0.73 0.27
(DM) Digital Music 7 000 2 500 4500 36 774 3.27 x 1073 0.91 0.09
(AN) Anvur dataset 1396 15 1381 14 903 7.19 x 107!

positives. The result of the algorithm is a threshold p value,
used to validate all the hypotheses at a time. For a quick recap,
the method’s recipe is the following:

(1) sort the vector of p values to be tested in ascending
order; _

(2) select the largest integer i satisfying

lues < i 10
pvalues S (10)
where ¢ is the chosen significance level;

(3) consider pvalue+ as the threshold value.

Then, all hypotheses which p value is smaller than or
equal to the threshold must be rejected, while we are not
able to reject all hypotheses whose p value is greater than
pvalue;. In all the applications we will consider ¢ = 0.05 as
the significance value.

III. DATASETS

The following datasets have been employed to test the
presented randomization procedure.

(1) MovieLens 100k: Bipartite network that collects
100 000 movies’ ratings. The website’s users are characterized
by some individual features, such as age, job, sex, state, and
zip code. For the set of movies we have information on the
release year, title, and genre. Each user can review a movie
with a numerical score 8 € {1, 2, 3, 4,5}, according to her
level of appreciation. We consider as positive all reviews
assigned a score greater than or equal to By, = 3. The data
has been downloaded from the repository [38] while any
additional information is provided in Ref. [39].

(2) Amazon: We collected three datasets involving different
categories of products. From Ref. [38] we downloaded the
musical instruments and digital music datasets that, respec-
tively, collect purchases of musical instruments and CDs or
vinyls (the latter had to be further sampled due to its high
dimensions). The data about smartphones and related products
has instead been downloaded from Ref. [40]. For all of
them, the possible numerical ratings for each purchase are
B e€{l1,2,3,4,5}. As in the previous case, we consider as
positive all reviews that receive a score greater than or equal
to B = 3.

(3) Anvur is the acronym for “Associazione Nazionale di
Valutazione del sistema Universitario e della Ricerca,” an
Italian agency that evaluates the quality of the Universities
and research systems and determines which journals are con-
sidered top journals (and so the most influent) in any scientific
area. For this application we have downloaded the free dataset
[41] regarding the journals’ classification in the scientific area
of economics and statistics (Area 13). We then constructed the

bipartite network of journals and scientific areas, in which a
link exists if the journal is considered a top journal related
to the scientific area of interest. The two different scores
are indicated in the original table as 8 € {green, red}. The
first one indicates that the journal is currently considered a
“class A” journal, the second one instead indicates that the
journal was considered “class A until December 2017”; all
later publications will not receive the same classification.

A more detailed description of the datasets is provided in
Table I, where p denotes the connectance of the networks,
while the symbols 4 and — indicate the percentage of positive
and negative edges in each dataset (when available).

IV. RESULTS

For each dataset we employ the procedure described in
Sec. II to construct the benchmark model. So we obtain a
set of Bax probability matrices (one for every rating level),
collecting the probability to observe the different ratings for
each pair of nodes in the network.

Once the Lagrangian multipliers’ values (xX*, ¥*) are ob-
tained from the maximization of the likelihood function in
Eq. (7), the expected quantities (k/”), (k"), (k;”), (k!"), and
(c;) across the ensemble can be analytically computed starting
from their formulation in Eqs. (8) and (9). However, for the
following analysis, instead of the exact computation of these
topological quantities, we have considered the approxima-
tion obtained simply replacing the terms m;fa and m;, in
Eqgs. (8) and (9) with their expectation values (ml.*'a) and (m; ).
The same procedure has been followed by Refs. [20,24].
Moreover, again following the instructions in [20], we have
identified a confident region of two standard deviations around
the average values. The comparison of observed and expected
quantities indicates whether these higher order network prop-
erties can be directly explained by lower order topological
structures, i.e., the constraints imposed on nodes’ degrees, or
require further investigation since they represent an indication
of some correlation patterns in the observed network.

Figures 4 and 5 show the results of this comparative
analysis on the MovieLens dataset. All the expectations have
been computed averaging the values of k7, k™, k", k!, and
¢; over the number of nodes having the same degree in the
network. To provide a reliable analysis of the proposed model,
we compare the BiSCM performance with some alternative
ones: weighted configuration model (WCM), partial bipartite
score configuration model (PCM), and Erdos-Rényi random
graph (RG). The main difference among their construction
relies in the specification of the imposed constraints. However,
we refer to the Appendix for a full description of these
alternative models. Red lines show the average connectivity
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FIG. 4. Application of the method to the ML network. The panels report ¢; versus k;". The red line (a) shows the expectation values
computed with our method. Instead magenta, blue and green lines (b, ¢, d) are the expectations under WCM, PCM and Erdos-Rényi RG
respectively. The area of £2 standard deviations around the average value has been reproduced with dashed linestyle.

and number of checkerboards in the ensemble estimated by
BiSCM. Magenta, blue, and green lines represent instead the
same quantities estimated by WCM, PCM, and RG, respec-
tively. In most cases, the overall data trend is well captured
by our ensemble. For the case of ki” 7 some observations
remain outside the two standard deviations range, suggesting
the possibility of extra correlations that cannot be directly
traced back to the degree sequence alone, despite the full
specification of scores’ distribution. The analysis of the other
null models would lead to completely unreliable conclusions,
since in most of the cases, the induced ANND baseline is not
able to capture the data overall trend. This is true especially for
the cases of WCM and RG. The best performing alternative
null model is the partial BISCM, which relies on the same type
of constraints upon which the BiSCM is based, but imposed
on a reduced set of nodes.

Due to the evident difference on the percentage of positive
and negative observed reviews, a different type of analysis
has been performed on the remaining datasets, taking into
consideration positive reviews only: The BiSCM outperforms
even in this case, as shown in Fig. 10 of the Appendix.

V. MONOPARTITE COMMUNITIES

For three of our datasets we have reported the results of
the projection analysis. The ML and DM networks have been
binarized and then projected on the products layer, i.e., the
movies and musical products layers, respectively. The AN
dataset has instead been projected onto both layers, consid-
ering separately the two sets of edges representing “green”
and “red.” All projection algorithms require to connect a pair
of nodes in the monopartite network, whenever they share
at least a common neighbor in the bipartite graph. However,
our projected edges have been further validated using the
procedure presented in Ref. [22] and explained in Sec. IIB.
To discuss the structure of the validated networks, we apply
the Louvain modularity-based community detection algorithm
[42]. However, this method is known to be order-dependent
[43]. Therefore, to overcome this limitation, we consider the
outcome of several runs, obtained by reshuffling the initial
order of the nodes, following the recipe of Ref. [22]. Interest-
ingly enough, this approach greatly increases the performance
of the original algorithm and performs similarly to the Combo

algorithm [44]. In the following we will consider the partition
in communities detected by the better performing algorithm
between the reshuffled Louvain and the Combo.

A. MovieLens

The partition in communities (obtained with the reshuf-
fled Louvain algorithm, with a modularity of 0.451, ~0.2%
higher than the analogous Combo value) does not follow any
genre-based division, as previously observed in Ref. [22] but
rather identifies some characteristics shared by the movies
audience. The result of the community detection procedure
is shown in Fig. 6 (top panel). Our method is able to detect
movies released in 1996’97 the year before the survey (in
orange), such as “Mission Impossible,” “Independence Day,”
and “Donnie Brasco.” So this group of movies is characterized
by the curiosity of users toward new releases. A second group
collects family movies (as they were called in Ref. [22]),
including “Cinderella,” “101 Dalmatians,” “Home Alone,” or
“Mrs. Doubtfire” (in green). In the blue community we find
more “adult” movies, such as the “Alien” saga, the episodes
of “Die Hard,” “Escape from New York,” “Judge Dredd,”
“Conan the Barbarian,” as well as “Terminator” episodes, and
some westerns like “The Good, the Bad, and the Ugly” and
“Young Guns.” In this block we have also cult movies, such
as “Blade Runner,” “Star Wars,” and “Back to the Future.”
In the lime community we can find horror titles, like “Tales
From the Crypt” episodes, “A Nightmare on Elm Street,”
and “Bram Stoker’s Dracula.” The red community groups
together European production movies (“Cinema Paradiso,”
“Mediterraneo,” “Four Weddings and a Funeral,” “Jean de
Florette,” “Como agua para chocolate”), but also U.S. Inde-
pendent production (such as “Raising Arizona,” “Clerks,” or
“Night on Earth”). Movies inspired by books or theatrical
plays (“Emma,” “Richard III,” “Sense and Sensibility,” and
“Othello”) can be found in the pink community. In the last
relevant block we can find classical Hollywood movies (in
yellow) such as “Casablanca,” “Ben Hur,” “Once Upon a Time
in America,” and “Taxi Driver.” Interestingly, in this group
we can find Hitchcock’s filmography (‘“Vertigo,” ‘“Psycho,”
“Rebecca,” and “Rear Window”).

Our results are in substantial agreement with those of
Ref. [22] but for the different connectance values of the
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FIG. 5. Application of the method to the ML network. In all panels we show ANND versus ;. The first column shows k! versus ;.
Proceeding on the right we find k" vs. k", k7 vs. k7, and k™ vs. k; . Red lines (a, b, c¢,d) show the expectation values computed with our
method. Magenta (e, f, g, h), blue (i, j, k, 1), and green lines (m, n, o, p) are instead the expectations under WCM, PCM, and Erdds-Rényi RG,
respectively. The area of £2 standard deviations around the average value is reproduced in dashed-line style.

BiCM- and the BiSCM-induced projection networks. Such
behavior is not surprising, due to the different constraints
imposed by the two null models. Indeed the BiSCM is
more restrictive, fixing the degree sequence of each rating
in the bipartite network, while the BiCM fixes the degree

sequence of positive ratings only (i.e., merging the cases of
B =3,4,5), thus allowing for greater fluctuations. This effect
can be observed in the connectance of the validated projection,
which is 0.87% for BiSCM against a value of 1.17% for the
BiCM.
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O Hollywood movies

@ Sagas and cult movies

@ Independent and European movies
@ Family movies

O Released in 1996/1997

© Horror

@® American popular movies

© Inspired by literature

O Mixed Rap

@ Folk/pop (mainly female)

@ R&B (mainly female)

© Soul/Funk

O East Coast Rap %
@ Indie Rock and Blues

@ English band rock, with classic
@ West Coast Rap

@ Hard Rock/Heavy Metal
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O R&B/Pop

@ Modern Pop/Rock
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O Indie Rock

O Rock Blues

@ Progressive Rock/Metal

@ Gangsta Rap

@ Progressive Rock

@ Jazz

@ James Brown

FIG. 6. Graphical representation of the most numerous communities for ML and DM networks. After the validation procedure, a standard
modularity-based community detection algorithm is performed and the communities are here represented.

B. Digital music

With respect to the previous ML case, we obtain smaller
and more precise groups of artists. In this case, the com-
munities were found via the Combo community detection
algorithm. The final configuration has a modularity of 0.874,
~0.001% higher than the reshuffled Louvain best partition
value. For the DM network, each community reveals a specific
genre or combination of genres. A pictorial representation of

the most numerous communities of the validated network is
provided in Fig. 6 (bottom panel).

We have the small light-green community with two classic
rock English bands, both of them characterized by a fu-
sion with classical arrangements (Moody Blues and Electric
Light Orchestra). Different groups collect different shades
of rock: the hard rock and heavy metal community is in
blue (Loverboy, Alice Cooper, Van Halen, Scorpions, Deep
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Purple, Lynyrd Skynyrd) while the progressive rock is in green
(Premiata Forneria Marconi, Soft Machine), and experimental
rock in magenta. In dark violet we can find the grunge rock
and related tendencies: Alice in Chains, Pearl Jam, Soundgar-
den, as well as Red Hot Chilli Peppers, Iggy and the Stooges,
and the MCS5. In indian red there is a community including
Elton John, Billy Joel, Genesis, as well as Phil Collins and
Peter Gabriel in their solo careers. The sea green and indigo
groups represent, respectively, female R&B singers (Whitney
Houston, Aretha Franklin, Alicia Keys, Nelly Furtado) and
female folk/pop singers (Alanis Morisette, Anastacia, Vanessa
Carlton, Dido). The rap genre is divided between East Coast
and West Coast hip-hop, gangsta rap, and a mixed commu-
nity with the most famous artists (Eminem, Jay Z, 2 Pac,
50 Cent, D12), depicted in light blue, dark magenta, lime,
and yellow, respectively. The isolated community in violet
collects, respectively, jazz (Thelonious Monk, Miles Davis,
Cannonball Adderley, Charles Mingus, Sonny Rollins), while
the red one contains almost exclusively James Brown albums.
A folk/country community (almost exclusively composed by
John Denver and Gordon Lightfoot albums) is represented in
gold. We finally have the gray and white groups with indie
rock artists (Radiohead, Bon Iver, Of Monsters and Men), the
R&B singers and songwriters in pink (Marvin Gaye, Johnny
Gill, Luther Vandross). In orange we find the community
of folk/rock/blues, including Bob Dylan, Jimi Hendrix, Eric
Clapton, the Who, Paul Simon but also the subsequent Elvis
Costello, Bruce Springsteen. It is interesting to find here
even Robert Johnson, the legendary bluesman, who was a
source of inspiration for the artists in this community. The
community of soul-funk (the Jackson 5, Barry White, Stevie
Wonder, the Commodores, the Parliament, Sly and the Family
Stone, Prince, the Isley Brothers) is in cyan. It is interesting
to note that some Jamiroquai albums can be found in this
latter community: Indeed, several experts compared the first
production of this artist to Stevie Wonder [45]. Some smaller
communities have not been included in the plot due to their
low number of participants. However, their interpretation is
still clear, since they generally collect single artists (Leonard
Cohen) or identify a very specific music genre (such as the
group of white rappers Insane Clown Posse and Anybody
Killa of the horrorcore genre).

C. The case of categorical scores

As previously highlighted, in this section we present one of
the possible extensions of the methodology. More specifically,
we show an application to the case in which distinct scores
represent different realizations of a nominal variable. In this
case, we use the Anvur dataset presented in Sec. III, where
the categorical scores represent the classification of journals
in the considered scientific areas, i.e., currently “class A” or
“class A only until December 2017.”

First of all, we construct the benchmark model following
the procedure explained in Sec. II. By doing so, we obtain
two probability matrices, one for each S, representing the
probability that each journal is currently considered a top
journal in each scientific sector, or it is considered a top
journal only until December 2017. Then, the analysis pro-
ceeds differently with respect to the previous cases. Indeed,

13/7Al 13/A4 13/C1

FIG. 7. Graphical representation of the communities identified in
the Anvur dataset. The validation procedure has been performed on
the scientific sectors layer.

due to the impossibility to fix a threshold beta given the
nature of the analyzed scores, we validate the projected net-
works using the two probability matrices as separate bench-
marks. Through the validation on the scientific sectors layer
we are able to understand which groups of subjects share
a significant number of common neighbors; i.e., they both
consider the same journals as relevant for the topic of interest.
The validation on the other layer instead identifies the groups
of journals that are considered top journals (or not) for the
same scientific area in the economics and statistics field.

Figure 7 shows the communities identified after the val-
idation on the scientific sectors layer, using the benchmark
model obtained with 8 = green. However, we got the same
result with the other benchmark model, with 8 = red. Clearly
the three disconnected communities represent the division in
different research topics: the sea green community identifies
the two macro areas 13/A and 13/C, respectively, correspond-
ing to economics and economic history; the other two pink
and orange groups instead represent the sectors 13/B and
13/D, respectively, corresponding to the research fields of
business administration and statistics. Conversely, the vali-
dation on the other layer does not recognize any significant
link between pairs of journals, with both the considered
benchmarks. This result is not so surprising, since a similar
behavior was previously observed in the projection of the
World Trade Web dataset [22,34]: When the rectangularity of
the bipartite network, i.e., the ratio between the dimension of
the layers, is particularly high, the longest layer has a lower
variability due to the smaller dimension of the support of the
Poisson-binomial distribution. Moreover, since the effective
significance threshold of FDR is even reduced by the total
number of nodes’ pairs on the layer, the possibility of finding
a significant p value is further reduced.

VI. CONCLUSIONS

In everyday web experience, it is possible to encounter
many different examples of online review platforms: from
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Amazon customer ratings, to Tripadvisor and Anobii, just to
mention the most famous ones. All these services provide an
incredible source of information: Indeed, they are currently
used to train recommendation systems, to focus possible ad-
vertisements about items that resemble the customers’ tastes
[23,46-50]. Nevertheless, to the best of our knowledge, a
proper randomization of this kind of system is not available
in the literature.

To fill this gap, we follow the research line of entropy-
based null models [18-20], which provides an unbiased
framework. In the case of score networks, the main difficulty
resides in considering mutually exclusive outputs for each
entry of the biadjacency matrix, i.e., having different possible
scores with different probabilities. Our approach resembles
the one presented in Ref. [51] for the reciprocal configuration
model. In that case, four mutually exclusive possibilities were
observable for every pair of nodes: no link, an exclusively
outgoing link, an exclusively ingoing link, or a reciprocal link.
Following this track, we were able to extend the configuration
model framework to rating networks. We have shown that our
method can be applied to many other types of networks, such
as signed networks as well as categorical bipartite network.

Once the randomization procedure is complete, many types
of analysis are possible. We first show that the obtained bench-
mark ensemble is able to capture some nontrivial network
information, like the abundance of topological patterns such
as the extensions of the ANND and bipartite motifs to rating
networks. Then, another application was proposed: The model
was employed as benchmark for the validation procedure pre-
sented in Ref. [22], to filter the information contained in one
of the two layers. Otherwise stated, if co-occurrences cannot
be explained by the model only, i.e., cannot be explained by
the score degree sequence, they are validated. In this sense,
we compare the real network with the expected value of
our BiSCM randomization: The disagreements are signals of
nontrivial similarities among nodes on the same layer. The
result of such a procedure is a monopartite undirected network
describing nodes belonging to the same layer performing
similarly in the bipartite system. To have a clear understanding
of the structure of the projected network, we run the Louvain
community detection on it. Analyzing the Amazon Digital
Music dataset [38], we were able to uncover communities
of music based on customers taste. Analyzing the dataset of
Ref. [26] it was instead possible to refine the community
detection of Ref. [22]: Indeed, our model is more constrained
than the one proposed there and filters more than the simple
BiCM, after the binarization. Finally, we provide an example
of possible application to the case of categorical networks.
In this case, the standard division of research areas has been
recovered just observing the number of top journals they
share. Indeed, the knowledge of the success probability, for
every score level, for every pair of nodes in the system, may
provide significant insights regarding customers’ purchase
habits and preferences. Moreover, our methodology recovers
these values unbiasedly and with no a priori information about
the involved users, but simply observing the topology of the
network itself and therefore, it may be suitable for different
future applications. As an example, in the past year entropy-
based configuration models [18-20] were successfully used
for link prediction [52]. Indeed, a similar approach can be

addressed to tackle the problem of predicting link in a review
context using BiSCM, taking advantage of the general proper-
ties of configuration models. We leave this analysis for future
developments of the research.
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APPENDIX

1. Entropy maximization in BiSCM

Let us maximize the entropy Eq. (3) under the constraints
on the degrees for each possible rating. The Hamiltonian reads
as

HG) =) (Z Kip - mip+ ) kep - 9a,,3>
B i "
=D sl +bup),
B i

meaning that the expectation value of the degree per rating is
conserved. As in this class of systems, the solution is quite
straightforward:

—H(G)

V4

P(Gliig, 65) = : (A1)

where Z is a normalizing factor called partition function. The
computation of the partition function returns instead

2= 1T T s

Geg B ia

= [TT T @ipyap)e®
B

i,a Geg
= 1_[ (1 + in,,s ya,ﬁ>,
i, B

where x; g = e "#, y, 5 = e % and the last step is justified
by the fact that all m;, g are mutually exclusive, so the
presence of an edge with rating ,’liexcludes all the others (i.e.,
m;,5=1=mgqp =0, VB # p). Implementing Eqs. (A2)
into Eq. (A1) we get Eq. (4).

(A2)

2. Entropy maximization in truncated WCM

In this case the entropy Eq. (3) is maximized under the
constraints on the observed strengths. The Hamiltonian of the
problem is

H(G) = Zsini + Zsaea

i

=Y mia(ni+64),
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meaning that we preserve the expectation value of nodes’
strengths. Again, the solution is straightforward and given by

—H(G)
Z

However, taking into account that m; , can only vary into the
range 1, ..., Bmax, the partition function Z returns

Z = Z 1_[ (X; Y )mi,a(G) — 1_[ Z (Xi Vo )ln,'_(,(G)

Geg i,a i,a Geg

o= e
P(G|7,0) =

(A3)

— Bmax+1
_ 1—[ L= Gyt A
1 - Xi Yo

where x; = ¢ and y, = e %. As in the previous case, the
last passage is justified by the fact that edges are mutually
exclusive and the presence of a score § excludes all the others.
With the implementation of Eqs. (A3) and (A4) it is possible
to get the following probability distribution on the graphs
ensemble:

(1 = X; yo ) (X; Yo )™
1 _— (xl' ya )ﬂlnax+l

PGIZ.7) =]

The probability to observe a link with rating g between nodes
i and o reads as follows:

(l — X ya)(-xi yoz)ﬂ

T= (g ya)Pot T (A

DPiap =

Note that the previous Eq. (AS5) identifies a truncated geomet-
ric distribution with parameter x;y, and 8 € {1, ..., Bmax}-

3. Entropy maximization in PCM

The entropy maximization procedure in the PCM frame-
work follows exactly the same steps presented in the BiISCM
section but with a reduced number of imposed constraints.
Indeed, in this framework we just preserve the expectation
value of the degrees per rating on one single predefined layer.
The solution of this problem is

—H(G)
P(G|7) = , A6
(Gl7) Z (A6)
where the Hamiltonian reads as follows:
H(G) = (A7)

Z kignip = Z Z Mo p Nip>
B B i«
while the partition function Z becomes

2= LI = [T St

Geg B i« i,a Geg
=TT (1+ Xw)
i,o B

where x; g = e "#. Combining Egs. (A7) and (AS8) into
Eq. (A6) we obtain the following probability distribution over
the graphs ensemble:

- [1pCxip)"er
P(G'-x) = 1_[ l + Zﬂxhﬂ = 1—[

(A8)

Hﬂ (xi,ﬁ)ki'ﬁ
(1+3, xi,ﬂ)Nr ’

i,a

where the single term inside the product,

Yip _kip
1+ Z 8 Xi.p Nr ’
simply identifies the probability to observe a link with score 8
incident to node i and coincides with the empirical observed
frequency for score . Notice that the previous model has
been defined considering the degrees k; g fori € {1, ..., N}
as constraints. However, the analogous counterpart can be

implemented imposing the degrees of nodes on the other layer
ky,fora € {1,...,Nr}.

pip = (A9)

4. Entropy maximization in random graph

In the last considered null model, the entropy is maximized
under the constraint on the observed number of edges per
score only, denoted as Eg. The solution to the problem is given
by

L eHO)
P(G|O) = Z7 (A10)
where the Hamiltonian of the problem is
H(G) = (A11)

> 65 Ep(G) =
B

Z Op Z Miq g,
B i,a

meaning that, for each score, we want to preserve the observed
number of edges, while the partition function Z reads as
follows:

NLNr

7= To=T1(+u) = (1+Zw)
GeGiap B B

(A12)

where xz = e %. Implementing Egs. (A11) and (A12) into
Eq. (A10) we obtain the following probability distribution:

Eg
[1s %

P(G|X) = ——+~>
(1 + Zﬁ xﬁ)NLNr

where the term
Xﬂ _ E,g
1+ Z;S Xg Ny Nr

denotes the probability to observe a link of score 8 between
any pair of nodes. Notice that the previous probability is in-
variant for all pairs of nodes and coincides with the empirical
frequency of observed edges for the considered rating.

(A13)

Pp =

5. Chung-Lu approximation
As in the standard model presented in Ref. [27], we define

the fitness variables associated to each node to be proportional
to nodes’ degrees as follows:

x¢L ki’ﬁ and x¢L = Kap
1 ;3 o,f .
VEs VEs
Then, to relax the constraints required, the connection proba-

bility between each pair of nodes in the network are obtained
as

(A14)

cr cr _ kipkep

= AlS5
Xip Xa,p Eﬁ ( )

pta,B
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FIG. 8. Graphical comparison of the two definitions of probabilities in the ML network. All panels show p; , 4 on the x axis and plcé p on
the y axis. The plots reproduce the scores in decreasing order, starting from 8 = Sin (a) to § = 1 in (e).

for all i, «, and B. The term Eg = Y, , m; o p in Egs. (A14)
and (A15), identifies the total number of observed links for
each score present in the data. Figure 8 provides a graphical
comparison of the two definitions of probability for the ML
network. It is evident that Eq. (A15) systematically overesti-
mates the BiSCM values, especially for high probabilities.

6. Degree sequence recovery

As an additional safety check, in this section we show that
our method numerically converges to the maximum likelihood

(a) (b)

solution, i.e., the vector of Lagrangian multipliers (X*, y*)
ensuring that the expected degree of each node over the
ensemble, computed under the conditional probability distri-
bution P(M|X*, j*) in Eq. (4), is equal to the observed value
for each score level. We graphically represent this result in
Fig. 9. Figures 9(a) and 9(b) compare the observed degree
sequence obtained for each score 8 with the expected values
of the degrees obtained with the BiSCM ensemble, for the
ML and DM datasets, respectively. Instead, Figs. 9(c) and 9(d)
show a comparison of the observed degree sequence for each
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FIG. 9. Each plot provides a comparison of observed degrees on the x axis and expected values of the degrees in the ensemble on the y
axis. Each value is computed for every available score. The expected degrees are recovered for the ensemble constructed with the BiSCM
model (a), (b) and for its Chung-Lu approximation (c), (d). Panels (a) and (c) show the results for the ML dataset, while (b) and (d) provide

the results for the DM dataset.
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score and the expected values of the degrees obtained with the
Chung-Lu approximation, again for the datasets ML and DM,
respectively. All dots are almost aligned along the diagonal.
This means that BiSCM is perfectly able to reproduce the
observed degrees for each vertex and for each available score.
On the contrary, the Chung-Lu model is almost able to repro-
duce the observed degrees. Indeed, in the case of connections
between hubs, the probability per link saturates (as shown in
Fig. 8) and therefore the degree is not perfectly replicated.

7. Further analyses of higher topological quantities:
Positive reviews only

To check the capability of reproducing just positive ratings,
a binarized version of the original matrix has been computed:
The matrix M° has entries m{, =1 whenever a positive
review is registered and m? , = 0 otherwise. The associated

entries of the probability matrix are indicated as (m; ) for all
i, and B. These terms represent the probability to observe
a positive score (i.e., with § = 3,4, 5) from user « to node
i. In this setting, the degree of a node is defined as usual as
ki =, m;, and the correlation between neighbors’ degrees
can be studied with the standard definition of ANND,

Za Zj mgam?,a
Za mga

The results are presented in Fig. 10. In all cases our method
is perfectly able to identify the data’s overall trend. Despite
the fact that few observations still lie outside the confidence
region, we can state that the correlation between neighbors’
degrees may be interpreted as a consequence of the network
topology, whenever the full distribution of received scores is
specified in the null model construction, that is the case of the
BiSCM. However, the other null models do not provide

nn __
K =
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satisfactory  results: the RG model significantly
underestimates the observed average traces [as shown in
Figs. 10(d), 10(h) and 10(1)], while the WCM provides huge
confidence intervals for the estimates [see Figs. 10(b), 10(f)

and 10(j)]. Also in this case, the best performing alternative
is the PCM null model [see Figs. 10(c), 10(g) and 10(k)] that
uses the same constraints as the BiSCM but enforced on a
reduced set of nodes.
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