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Abstract

The present investigation addresses the simulation of layer debonding along thick interfaces in dynamic regime by means
of the use of a cohesive interface model accounting for geometrical and material nonlinear e�ects. This novel approach is
performed within the �nite element framework. Numerical examples assess the in�uence of di�erent interface parameters
such as the adhesive thickness and the e�ect of the load line displacement velocity using a 90◦ peeling test. Current
results pinpoint the relevance of the simultaneous consideration of both geometric and material nonlinear e�ects, which
can notably alter the peak-force and the post-peak response evolution of the system in dynamic applications.
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displacements

1. Introduction

The problem of dynamic fracture along interfaces is
particularly relevant in applications involving thin struc-
tural elements subjected to large displacements, such as bi-
ological membranes, thin-�lms and coatings, paper sheets,
elastomers, and viscoelastic materials, among many other
systems. In these cases, the modelling complexity relies on
the fact that, during the simulation, the deformed con�g-
uration cannot be approximated by the undeformed one
any longer due to the development of geometric nonlin-
ear e�ects (which may concomitantly occur with material
nonlinearities). Hence, the relative rotations between the
two �anks of the interface and the simultaneous deforma-
tion of the two bodies separated by the interface should
be tracked throughout the simulations process. Moreover,
in many practical situations, the thickness of the interface
is often not negligible in comparison to that correspond-
ing to the bonded layers. In spite of these considerations,
interfaces can be modelled with zero-thickness interface
elements having a cohesive response, although generalized
to take into account the interface �nite-thickness prop-
erties. In statics, for instance, an equivalence between
the �nite-thickness interface with damage mechanics and a
zero-thickness interface whose mechanical response is ruled
by a novel type of cohesive zone model (CZM) was thor-
oughly investigated in [1, 2]. In dynamics, the mass ef-
fect of thick interfaces on the dynamic characteristics of
laminated composites was investigated in [3]. The possi-
bility to design metamaterials with unusual �ltering char-
acteristics was suggested in [4], with the use of truss-like
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micro-structured interfaces. Recently, the e�ect of the in-
terface mass on nonlinear fracture of laminates in a dy-
namic regime was studied in [5].

With regard to the problem of the combined e�ect of
material and geometrical nonlinearities, a number of al-
ternative formulations for 2D and 3D interface elements
in large displacements has been proposed following di�er-
ent approaches (see updated Lagrangian formulation de-
veloped in [6, 7, 8], the beam-like conception in [9, 10], and
the co-rotational model in [11], to quote a few of them).

In the present study, the consistent interface �nite ele-
ment (FE) formulation for material and geometrical non-
linearities proposed by Reinoso and Paggi [12] is extended
for the simulation of layer debonding along thick interfaces
in dynamic regime. In Section 2.1, the formulation of an
interface element for �nite thickness structural interfaces
undergoing large displacements is outlined. The consti-
tutive relationships for the intrinsic CZM approach are
introduced in Section 2.2, whilst the numerical approach
is applied in Section 3 to the 90◦ peeling test. Conclusions
are drawn in Section 4.

2. Interface model and FE formulation

2.1. Equations of motion and �nite element approxima-

tion

Let us to consider two deformable bodies with volumes
V1,2 and external boundaries ∂V1,2, connected by a cohe-
sive interface S. The dynamic FE formulation account-
ing for combined cohesive and dynamic e�ects can be ex-
pressed through the advocation of the Principle of Virtual

Preprint submitted to Mechanics Research Communications July 23, 2018



Work (PVW):

δΠ(u,η) =

∫
V1,2

(∇η)Tσ dV −
∫
V1,2

ηTρvü dV−∫
∂V1,2

ηTf dS −
∫
S

δgTlocT dS −
∫
S

ηTρtü dS = 0

(1)

where
{
η ∈ [H1(B0)] : η = 0 on ∂V1,2, u

}
is the compat-

ible virtual displacement �eld, with ∂V1,2, u the portion
of the boundary with prescribed displacements. Moreover
in Eq.(1), the �rst term is the internal virtual work of
deformation of the adjoint bulk bodies, the second term
indicates the work done by dynamic forces (ρv is the mass
density of the bodies and ü are the accelerations), the
third term is the virtual work of the tractions f acting
on the boundaries of the bodies ∂V1,2, the fourth term
represents the contribution of the interface cohesive trac-
tions T = (τ, σ)T, acting on S, in which the gap vector
gloc = (gt, gn)T, computed in a local frame de�ned by the
tangential and the normal directions referred to the up-
dated mid-line of the interface element represents the rel-
ative sliding and opening displacements between the two
�anks of the interface. The last term in Eq.(1) is the �nite
thickness contribution to the work by dynamic forces (ρ
and t identify the density mass and the thickness of the
cohesive interface, respectively). The virtual variation of
the contribution of the interface cohesive tractions to the
PVW reads:

δΠintf(gloc,η) = ηT

∫
S

(
∂gloc
∂η

)T

T(gloc) dS (2)

The gap vector in the global Cartesian frame, g, can be
obtained by multiplying a suitable operator L, that pro-
vides the di�erence between the displacements of the upper
and the lower bodies at the interface, with the vector of
the nodal displacements d associated with the underlying
spatial discretization using FEM:

g ∼= ge = NLd (3)

where N is the operator that collects the shape functions.
Advocating a standard isoparametric approach, the partial
derivative in Eq. (2) is approximated by:

∂gloc
∂η

∼=
∂geloc
∂d

= R(d)NL+
∂R(d)

∂d
NLd (4)

where the operator R(d), which is function of the dis-
placement �eld d in the large displacement setting, is the
rotation operator which pre-multiplies the gap vector in
the global frame and yields the gap vector in local frame,
gloc. The expression of R(d) for a 4-node interface ele-
ment is detailed in [12] along with the expressions for L
and N.

Introducing the operator B = NL, Eq. (4) becomes:

∂geloc
∂d

= RB+
∂R

∂d
Bd (5)

Equation (2) can be rewritten by introducing the discretiza-
tion of the interface as:

δΠe
intf = δdT

∫
S

(
RB+

∂R

∂d
Bd

)T

T dS (6)

The solution of the variational equation δΠe
intf = δdTfe,kintf =

0 ∀ δd results in the equations set fe,kintf = 0, where fe,kintf is a
non linear function of the unknown d and it assumes the
role of the residual vector in the Newton-Raphson iterative
scheme:

fe,kintf =

∫
S

(
RB+

∂R

∂d
Bd

)T

T dS (7)

which leads to the following equations set for the compu-
tation of the correction ∆d at each iteration k :

Ke,k∆d = −fe,kintf (8)

Omitting the superscript k in order to alleviate the nota-
tion, the element sti�ness matrix Ke is given by the lin-
earization of the residual. This operator, Ke, is evaluated
by using the displacement �eld solution at the iteration k :

Ke =

∫
S

2BT ∂R
T

∂d
T

+

(
BTRT + dTBT ∂R

T

∂d

)
∂T

∂d
dS

(9)

The derivative of the cohesive traction vector T with
respect to the displacement vector d reads:

∂T

∂d
=

∂T

∂gloc

∂gloc
∂d

= C

(
RB+

∂R

∂d
Bd

)
(10)

After some manipulations, the sti�ness matrix contribu-
tions related to material and geometric nonlinearities ren-
der

Ke = Ke
mat +Ke

geom (11a)

with

Ke
mat =

∫
S

BTRTCRB dS (11b)

Ke
geo =

∫
S

2BT ∂R
T

∂d
T+ dTBT ∂R

T

∂d
C
∂R

∂d
Bd

+

(
BTRTC

∂R

∂d
Bd+ dTBT ∂R

T

∂d
CRB

)
dS

(11c)

Within the FE discretization, the governing equation
(Eq. (1)) in matrix form becomes:

Md̈+ fint = fext (12)
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whereM is a lumped mass matrix, fint is the internal force
vector obtained from the multiplication between the tan-
gent sti�ness matrix, provided by Eq. (11a), and the vector
of nodal displacements d. The external force vector fext is
related to the surface tractions acting on the boundaries
∂V1,2.

Regarding the mass matrix of the interface element,
Mintf , here it is taken into account via a lumped approxi-
mation. The mass of the interfaces is then assembled into
the global mass matrix of the system M.

2.2. Cohesive fracture law

In this investigation, we particularized the interface be-
havior using a cohesive zone model (CZM) that is charac-
terized by a linear ascending branch followed by an expo-
nential softening in order to simulate the phenomenon of
layer debonding. Note that following the previous formu-
lation, the current interface accounts for �nite thickness
properties of the adhesive and the geometrical second or-
der e�ects. In this concern, the initial slope of the linear
branch prior softening, K, can be estimated as the ratio
between the Young's modulus (Eadh) and the thickness of
the adhesive, i.e. K = Eadh/t. A formulation for mixed
mode crack propagation, i.e. with coupling between nor-
mal and tangential cohesive tractions, is used:

σ =



σmax e

−l0 − |gt|
r


gn
l0
, if 0 ≤ gn

r
<
l0
r

σmax e

−gn − |gt|
r


, if

l0
r
≤ gn

r
<
gnc
r

0, if
gn
r
≥ gnc

r

(13)

τ =



τmax e

−l0 − gn
r


gt
l0
, if 0 ≤ |gt|

r
<
l0
r

τmax e

−gn − |gt|
r


sgn(gt), if

l0
r
≤ |gt|

r
<
gtc
r

0, if
|gt|
r
≥ gtc

r
(14)

where gn and gt are the relative opening and sliding dis-
placements of the crack. In the present model, the se-
lection of the initial sti�ness is made by varying the in-
ternal parameter l0, which de�nes the opening and slid-
ing displacements corresponding to the peak CZM trac-
tions before the onset of the exponential softening. The
parameter σmax in Eq. 13 is the maximum tensile cohe-
sive traction, achievable in the limit case of l0 = 0. On
the other hand, the real peak value of the CZM law is
σp = σmaxexp(−l0/R). The same holds for the tangential
component. The other parameters entering the formula-
tion in Eq. 13 and 14 are the critical opening and slid-
ing displacement, gnc and gtc, corresponding to complete

cracking in pure Mode I and Mode II loading, and an in-
ternal characteristic length scale related to the roughness
of the fractured interface, r. In the present formulation,
the ascending branch is treated separately from the soft-
ening one, thus allowing to change the initial sti�ness, the
cohesive fracture energy and the peak stress independently
from each other. In compression, a penalty formulation is
used, with a penalty parameter pn equal to the sti�ness K
in tension.

3. Applications: numerical investigation

In order to illustrate the performance of the proposed
model, a 90° peeling test is analyzed as a case study,
whereby a thin layer is pulled from a rigid substrate by
the action of a vertical displacement imposed to one of
its ends. The horizontal and vertical displacements are re-
strained along the lower and the left edges of the substrate.
The sketch of the current system and its dimensions are
shown in Fig. 1. From the top side to the bottom, the stack
of layers consists of a 0.3 mm thick polymeric lamina, an
adhesive of thickness t and mass density ρ, and a 4 mm
thick glass substrate. The polymeric material, obeying a
Neo-Hookean hyperelastic material law, is characterized
by: Young's modulus Epoly = 2.8 GPa, Poisson's ratio

ν = 0.2, and mass density ρpoly = 2000 kg/m
3
. The glass

has a Young's modulus Eglass = 73 GPa, Poisson's ratio

νglass = 0.22, and a mass density ρglass = 2500 kg/m
3
. It

has a linear elastic constitutive behaviour. The adhesive
layer is modelled as a �nite thickness interface, with the
aforementioned CZM formulation to account for its �nite
thickness. Its mechanical properties are: Young's modulus
Eadh = 6.6 MPa, tensile strength σpeak = 5.80 MPa, criti-
cal opening displacement in Mode I gnc = 2.5 mm, fracture
energy GF = 4850 N/m. The same properties are used for
Mode II.

A plane strain FE model is considered with 4-node
isoparametric quadrangular �nite elements with linear shape
functions for the discretization of the continuum. The
same interpolation order is used for the interface �nite
elements. The glass substrate has a length of 50 mm,
and it is discretized with 200x18 elements (element size
250x220 µm), whereas the lamina is discretized with 200x4
elements (element size 250x75 µm). The cohesive zone
length, function of the material properties according to
the relationship provided in [13], is about 1 mm. There-
fore, at least four interface elements are used within the
cohesive zone in order to properly describe stress transfer
within the process zone size. The numerical simulations
are performed under the assumption of both small and
large displacements for the adhesive layer, by imposing a
load-line displacement at the top right corner of the peeled
layer with a prescribed velocity v. However, instead of
imposing the prescribed constant velocity from the very
beginning of the simulation, a ramp function is considered
to provide a smooth transition from the initial con�gura-
tion to the steady-state velocity, see Fig. 2. The velocity
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Figure 1: Sketch of the peeling test.

ramp extends over 30 µs and is de�ned in order to have a
vanishing acceleration at starting time and at 30 µs. The
steady-state velocity is reached at 30 µs. The introduction
of this ramp function was found to be essential to avoid
spurious vibrations without introducing viscous damping
in the system. At each time step, the solution of the
equilibrium equations is achieved by the Newton�Raphson
method. Integration in time is performed by the Newmark
constant-average-acceleration scheme (β = 0.5, γ = 0.25)
with a time step ∆t = 2 µs.

(a)

Figure 2: Ramp function for the imposed load-line velocity.

3.1. Small vs. large displacement formulation

The �rst set of simulations concerns the comparison
between the small and large displacement formulations for
the interface elements, in both quasi-static and dynamic
loading conditions. To this purpose, the adhesive thick-
ness and mass density are set equal to 0.4 mm and 2000
kg/m

3
, respectively, and a steady-state velocity of 20 m/s

is used for the dynamic simulations. The numerical pre-
dictions relating the peeling force, i.e. the vertical reaction
in the point A (Fig. 1), to the load-line displacement are
shown in Fig. 3. As a general trend, the large displacement
formulation for the interface elements leads to peak loads
higher than those obtained with the small displacement
formulation. Such results are in line with those recently
obtained in statics by Reinoso and Paggi [12], and now

are extended to the dynamic regime. Furthermore, the
dynamic e�ect on the peak load observed by Corrado and
Paggi [5] in layer debonding in laminates with small dis-
placement formulation is herein con�rmed in the presence
of geometrical nonlinearities. For the present case-study,
the combined e�ect of geometrical nonlinearity and dy-
namics leads to an increase of the peak load of about 25%
as compared to the quasi-static simulation in the hypoth-
esis of small displacements.

Figure 3: Peeling force vs. load-line displacement curves for quasi-
static and dynamic loading conditions, and di�erent kinematic for-
mulations for the interface elements (S stands for small displace-
ments; L stands for large displacements).

Besides the peak load, which has the maximum am-
pli�cation among all the cases shown in Fig. 3, the load-
displacement curve for the "dynamic-L" case di�ers from
the rest in the shape of the post-peak branch, character-
ized by a broad oscillation having a period of about 300 µs
(see Fig. 4, where the peeling force is plotted as a function
of time). This oscillation of the external reaction is a di-
rect consequence of the fact that, in the large displacement
formulation, the evolution of the interface deformation is
triggered throughout the simulation and therefore the in-
terface geometry is updated. Thus, due to the progress of
the debonding process, the middle line of the interface ele-
ment rotates from the original horizontal direction toward
the vertical one. Consequently, the vertical peeling force
gives two traction contributions to the cohesive elements: a
normal traction that promotes layer debonding, and a tan-
gential traction (see Fig. 5 for its graphical visualization).
In a dynamic regime, the latter component activates an ax-
ial vibration in the peeled layer, thus producing the global
oscillation in the peeling force evidenced in Figs. 3 and 4.
To con�rm this hypothesis, the frequency of the �rst ax-
ial vibration mode of the lamina has been computed. Its
value is equal to 270 µs , very close to the period of the ob-
tained oscillation (see Fig. 4). Conversely, this oscillation
was not captured in the case of small displacements for-
mulation [5] because the equilibrium is imposed onto the
undeformed state, where the middle line of the cohesive
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elements keeps unmodi�ed during the simulation. There-
fore, the vertical peeling force does not produce traction
components tangent to the interface elements.

Figure 4: Force vs. time curve.

Figure 5: Kinematics of interface elements under large displacements.

3.2. E�ect of the load-line displacement velocity

A second set of numerical simulations are carried out
in oder to analyze the e�ect of the load-line displacement
velocity, v, on the debonding process with and without
geometrical nonlinearity. In this case, the thickness and
the mass density of the adhesive layer are set equal to 0.4
mm and 1200 kg/m3, respectively, whereas three di�er-
ent load-line displacement velocities are examined: 10, 20
and 30 m/s. The load-displacement curves are shown in
Fig. 6(a) for small displacements and in Fig. 6(b) for large
displacements.

By increasing the velocity v, an increase in the peak
load is observed. This is the result of the interplay between

the CZM properties and the inertia forces and it is not re-
lated to rate-dependent parameters. The dynamic increase
factor, DIF, computed as the ratio between the peak load
in dynamic regime and the peak load from the quasi-static
simulation, is computed and depicted in Fig. 6(c), for both
small and large displacements formulations. Such a ratio
is an increasing function of the imposed velocity and it
ranges from 1.0 to 1.21 in the explored velocity range.
Hence, the e�ect of the kinematic formulation on the DIF
is not negligible, since the geometrical nonlinearity leads
to higher values of DIF for the same velocity, as compared
to the small displacement formulation.

3.3. E�ect of the adhesive thickness

The e�ect of the adhesive thickness is illustrated in
Fig. 7 for an adhesive with ρ = 1200 kg/m3. A change of
adhesive thickness results into a modi�cation of the inter-
face element sti�ness K. In particular, since K = Eadh/t,
thicker adhesives are more compliant than thinner ones.
Three thicknesses, equal to 0.4 mm, 0.8 mm and 1.2 mm,
are considered. The change in the initial sti�ness of the
cohesive law does not a�ect the peak cohesive traction and
the fracture energy, which are kept constant in all the sim-
ulations.

According to the obtained results, in both quasi-static
and dynamic analyses the peak load is an increasing func-
tion of t (see Fig. 7(a) for small displacements and Fig. 7(b)
for large displacements). The DIF increases by increasing
the layer thickness for v = 20 m/s with both small and
large displacements formulations, as shown in Fig. 7(c).
However, the dynamic e�ect on the peak load is ampli�ed
by the consideration of geometrical nonlinearities. While
the combined e�ect of the layer thickness on the sti�ness
and the mass of the whole system is examined in Fig. 7, the
pure e�ect of the mass of the adhesive interface is shown
in Fig. 8, where the peeling forces, plotted as a function
of the load-line displacements, are computed for v = 20
m/s, t = 0.4 mm, and di�erent values of adhesive mass
density ρ. The peak load and the post-peak response are
only slightly in�uenced by ρ in the small displacements
formulation (Fig. 8(a)), whereas its e�ect is ampli�ed by
the presence of the geometrical nonlinearity (Fig. 8(b)).
Finally, Fig. 8(c) shows that the DIF increases almost lin-
early by varying the mass density from 0 kg/m3 to 3600
kg/m3, with a slope slightly higher in the case of large
displacements formulation.

4. Conclusions

In the present paper, the nonlinear cohesive interface
model proposed in [12] has been extended for the simula-
tion of dynamic fracture along thick interfaces within the
framework of FEM. The main novelty of the proposed in-
terface model consists in accounting for the combination
of material nonlinearity, geometric nonlinearity and inter-
face inertia, which are included in a compact formulation

5



(a)

(b)

(c)

Figure 6: E�ect of the load-line displacement velocity v on the peel-
ing test for t = 0.4 mm and ρ = 1200 kg/m3: (a) force vs. displace-
ment curves for small displacement formulation for the interface el-
ements; (b) force vs. displacement curves for large displacement
formulation for the interface elements; (c) DIF vs. load-line velocity
(S and L stand for small and large displacements, respectively).

that can be implemented in general purpose FE codes in
a straightforward manner. Compared to the model pro-
posed in [5], which applies to the dynamic debonding in the
framework of small displacements, the current approach
has an improved capability to predict the dynamic debond-

(a)

(b)

(c)

Figure 7: E�ect of the adhesive thickness t on the peeling test in
small and large displacement formulations (S and L stand for small
and large displacements, respectively): (a) statics; (b) dynamics (v
= 20 m/s); (c) DIF vs. adhesive thickness.

ing in laminated composites made of soft hyperelastic lay-
ers and thick adhesive interfaces.

The performance of the proposed formulation has been
assessed by examining the role of di�erent parameters in
a 90◦ peeling test in dynamic regime. First, the evalua-
tion of the role of geometric nonlinearities evidenced that
both the peak-force and the post-peak evolution of the
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(a)

(b)

(c)

Figure 8: E�ect of the adhesive mass density for t = 0.4 mm and v =
20 m/s: (a) small displacement formulation; (b) large displacement
formulation; (c) DIF vs. adhesive mass density (S and L stand for
small and large displacements, respectively).

system are a�ected by geometric e�ects. In particular, the
predicted peak-force of the system for the geometrically
nonlinear formulation is around 25% higher than that cor-
responding to the small displacements formulation. More-
over, the post-peak response corresponding to the former
case showed an oscillatory pattern that is ascribed to the

activation of local mixed-mode fracture conditions at the
adhesive.

In line with these results, the role of load-line displace-
ment velocity of the system and the adhesive thickness was
also examined. Both sets of simulations pinpoint a signi�-
cant role of the consideration of the geometrical nonlinear
e�ects leading to higher dynamic increase factors, which
is a result of notable importance in many practical appli-
cations.
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