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Abstract
The mesoscopic organization of complex systems, from financial markets to the brain, is an

intermediate between the microscopic dynamics of individual units (stocks or neurons, in

the mentioned cases), and the macroscopic dynamics of the system as a whole. The orga-

nization is determined by “communities” of units whose dynamics, represented by time

series of activity, is more strongly correlated internally than with the rest of the system.

Recent studies have shown that the binary projections of various financial and neural time

series exhibit nontrivial dynamical features that resemble those of the original data. This

implies that a significant piece of information is encoded into the binary projection (i.e. the

sign) of such increments. Here, we explore whether the binary signatures of multiple time

series can replicate the same complex community organization of the financial market, as

the original weighted time series. We adopt a method that has been specifically designed to

detect communities from cross-correlation matrices of time series data. Our analysis shows

that the simpler binary representation leads to a community structure that is almost identical

with that obtained using the full weighted representation. These results confirm that binary

projections of financial time series contain significant structural information.

Introduction
One of the most important properties of complex systems is community structure. Real-world
complex systems are organized in a modular way, with clusters of units sharing similar dynam-
ics or functionality. However, while the clusters are internally cohesive, they can maintain con-
trasting dynamics. The problem of resolving and identifying these mesoscopic structures,
without any prior information, is extremely challenging. In financial markets, the mesoscopic
scale corresponds to sets of stocks that share similar price dynamics. The knowledge of the
market structure is highly valuable, and can assist in hedging risks and for better understanding
of the market. Consequently, over the past years, scientists have deployed and developed many
time series techniques to retrieve qualitative information regarding the hierarchy and structure
of financial markets [1–4].
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A promising approach is that of employing community detection techniques, developed in
network theory [5, 6], on empirical correlation matrices (resulted from multiple time series).
However, the methods are originally constructed to detect dense clusters of nodes within
graphs (networks), and are not adapted to deal with correlation matrices. Recently, a novel
method was proposed, which has been specifically designed to detect communities from corre-
lation matrices of multiple time series [7]. When applied to financial time series, the method
was able to capture the dynamical modularity of real markets. Remarkably, the method identi-
fied clusters of stocks which are correlated internally, but are anti-correlated with each other.

Traditionally, the main object of time series analysis is the characterization of patterns in
the amplitude of the increments of the quantities of interest (stock price in our case). The anal-
ysis requires a weighted description of the system, i.e. both the amplitude and the sign of the
activity. Indeed, a time series of increments enclose complete information about the amplitude
of the fluctuations of the original signal. However, a significant part of this information is
encoded in the purely ‘binary’ projection of the time series, i.e. its sign. Recent studies have
shown various forms of statistical dependency between the sign and the absolute value of fluc-
tuations [8–10]. Recently, a study has shown a robust empirical relationship between binary
and non-binary properties of real financial time series [11]. The research shows that binary sig-
natures, which retain only the sign of fluctuations, encode significant information regarding
the full behaviour of the stock (both amplitude and direction). Motivated by these recent
results, here we further explore the higher-order relations between financial time series and
their corresponding binary signatures, in a more complex setting. Here we study whether the
binary signatures of assets can reproduce the same complex community organization of finan-
cial markets, as the weighted information.

To this end, we use the daily closing prices of the stocks of three indexes (S&P500, FTSE100
and NIKKEI225) over the period 2001–2011. For each index, we restrict our sample to the
maximal group of stocks that are traded continuously throughout the selected period. This
results in 445 stocks for the S&P500, 78 stocks for the FTSE100 and 193 stocks for the NIK-
KEI225. Given a stock price Pi(t) where i denotes one of the N stocks in the index, and t denotes
one of the T observed temporal snapshots (days), the log-return is defined as

riðtÞ � log
Piðt þ 1Þ
PiðtÞ

� �
: ð1Þ

For each stock in the system we use the time series of it’s log-returns for our analysis. This is
the construct we refer to as the “weighted time series” throughout the rest of the paper. In con-
trast, the “binary signatures” only reveal the direction of the fluctuation (sign) in the price and
are defined as

xiðtÞ � sign½riðtÞ� ¼

þ1 riðtÞ > 0

0 riðtÞ ¼ 0

�1 riðtÞ < 0

: ð2Þ

8>>><
>>>:

In Fig 1 we show a simple example of a weighted time series, along with the corresponding
binary projection.

The two types of information are in fact different descriptions of the same system, and are
used to construct cross-correlation matrices. In turn, we deploy three popular community-
detection algorithms [12–15] specifically adapted, where necessary, for the correct use of cross-
correlation matrices [7]. We examine and quantify similarities and variations in the organiza-
tion of the markets for these two representations. This approach reveals some interesting
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results. First, we can quantify the level of information encoded within the binary signatures,
with respect to the full weighted time series. Secondly, we observe that both the binary and
weighted representations yield very similar structures, which indicates that most of the infor-
mation regarding the structure of financial communities is already encoded within the sign of a
stock.

Results and Discussion

Spectral Analysis
In this section we analyse the eigenvalue density distribution of the cross-correlation matrices
for the two representations of the data (binary and weighted). When plotting the density distri-
bution one can identify specific spectral properties that have structural implications. In other
words, it is possible to identify distinct eigenvalues in the spectrum, which correspond to corre-
lated clusters of stocks, and typically indicate a non-trivial structure.

To begin, we first need to discuss a filtering technique, based on RandomMatrix Theory
(RMT) [16–18], which is used to identify non-random properties of empirical correlation
matrices. The majority of the eigenvalues present in the spectrum of an empirical correlation
matrix result from randomly induced correlations between the time series. In the generic case,
where one measures the correlation between N independent random time series for T time
steps (the observed period), then the resulting correlation matrix would be an N by NWishart
matrix, whose statistical properties are well known [19, 21]. In the limits where N, T!1 and
T/N� 1 the eigenvalues of the Wishart matrix are distributed according to a Marchenko-
Pastur distribution

PðlÞ ¼ T
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ � lÞðl� l�Þ
p

2pl
if l� � l � lþ ð3Þ

and P(λ) = 0 otherwise. The boundaries λ+ and λ− are dependent on the data size and given by

l� ¼ 1�
ffiffiffiffi
N
T

r" # 2

: ð4Þ

This analytic curve represents the boundaries of the bulk eigenvalues, which predominantly
represent noise, and so have little meaning assigned to them. The eigenvalues outside this
range however have structural implications, and correspond to groups of correlated stocks

Fig 1. ‘Weighted’ (left) versus ‘Binary’ (right) time series of log-returns of the Apple stock over a period of 40 days starting from 7/5/2011.

doi:10.1371/journal.pone.0133679.g001
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[21]. As a result, any empirical correlation matrix C can be identified as a sum of of two matri-
ces:

C ¼ CðrÞ þ CðsÞ; ð5Þ

where C(r) is the random part aggregated from the eigenvalues in the random spectrum (λ− � λ
� λ+)

CðrÞ �
X

i:l��li�lþ

lijviihvij: ð6Þ

We refer to C(s) as the “structured” component, which is composed from those eigenvalues
above the boundary of the bulk eigenvalues. λ> λ+.

Moving forward, in financial markets it well established that stocks typically move up or
down together, an effect known as the market mode. This effect is indicated by the presence of
a very large eigenvalue λm, orders of magnitude larger than the rest. Since this eigenvalue repre-
sents a common factor influencing all the stocks in a given market, from a structural perspec-
tive, the market mode eigenvalue signifies the presence of one single super-community,
containing all the stocks in the market.

Thus, the other eigenvalues (not including the market mode), which deviate from the bulk,
λ+ < λi < λm are the ones corresponding to mesoscopic clusters, i.e. groups of stocks with simi-
lar dynamics. This observation results in a further decomposition of the empirical correlation
matrix

C ¼ CðrÞ þ CðgÞ þ CðmÞ; ð7Þ

where

CðmÞ � lmjvmihvmj ð8Þ

represents the market mode, and

CðgÞ �
X

i:lþ<li<lm

lijviihvij ð9Þ

represents the remaining correlated groups. These sub-groups of correlated stocks comprise
the mesoscopic structure of the market. They are also referred as “group modes” in some of the
literature [1, 21].

Our focus here is to detect these eigenvalues in the spectrum of both the binary and
weighted data. Moreover, we want to explore the similarities and differences between the two
spectra to inform us about the corresponding structures yielded by each type of data.

In Fig 2 we plot the eigenvalue density distribution for the three different indices. The top
row corresponds to the weighted representation (log-returns), and the bottom row corresponds
to the binary representation (binary signatures). We can observe the known structure of the
financial markets in the weighted data, however this complex structure also exists in the binary
data. This result is non trivial. We can observe a market mode, and several deviating eigenval-
ues also in the “simpler” binary data (with the same order of magnitude).

We also want to inspect whether both descriptions of the system function the same under
randomization. The returns of each stock were separately permuted randomly, therefore pre-
serving the total return of the stocks and destroying the daily correlation between the returns.
Once the time series entries are shuffled, both binary and weighted correlation matrices end up
as elementary random matrices. As discussed before, the eigenvalues of such matrices will be
distributed with a Marchenko-Pastur distribution.

Mesoscopic Community Structure: Binary vsWeighted Information
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In Fig 3 we plot the density distribution of the shuffled data for the three different indices.
The top row corresponds to the weighted representation (log-returns), and the bottom row
corresponds to the binary representation (binary signatures). As expected, in both cases we
observed the known characteristics of a random matrix. The spectra of both representations
collapsed to the known analytic curve.

To sum up this section, we identified a sub-group structure both in the weighted and the
binary representation of the three indices. Each of the binary spectra we studied retain all the
known properties of a “regular” (weighted) spectrum (random bulk, market mode and group
modes). This result propels us to do a more refined analysis, and to further explore (and com-
pare) the sub-group structure of the different indices. In the next section we will apply commu-
nity detection algorithms to extract a more detailed structure for both representations, so that
we can better quantify the similarities and the variations.

Community Structure
In network theory, a community structure is the partition of the network into relatively dense
sets of nodes, with respect to the rest of the network. More specifically, it is the organization

Fig 2. The eigenvalue density distribution (of the cross-correlation matrix) for the different indexes, where the upper panels are for the weighted
series and the lower panels are for the binary series. The red curve is the empirical eigenvalue distribution and the blue curve the Marchenko-Pastur
distribution. The largest empirical eigenvalue λm is not shown in the plots, but the its value is reported in each panel.

doi:10.1371/journal.pone.0133679.g002
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into clusters of nodes with dense connections internally, while the connections between the
clusters are sparser. Community detection is the identification of such clusters of agents
(nodes) in the system (network). In the last decade there has been a burst of research concern-
ing this topic, across a myriad of different fields [5].

This promising approach has also been applied to analyse time series data [22–25] where
the goal is to identify clusters of components with a similar dynamics. The attempts made so
far have basically replaced network data with cross-correlation matrices as the input. However,
this procedure suffers from a significant limitation. The null hypotheses used in the network-
based algorithms are inconsistent with the properties of correlation matrices. As a result, these
approaches can introduce an undesired bias when applied to the detection of communities in
time series based networks.[7]. Here we adopt a new method [7], which is specifically shaped
to deal with correlation matrices, based on the spectral properties we presented in the previous
section. The method presents an improved and consistent way to cluster multiple time series,
by leveraging a set of null models, specifically designed for use with correlation matrices.

Applying the new approach, we use three popular community detection algorithms, cus-
tomizing where necessary to be effective with correlation matrices. The three algorithms we
use in this paper are known as the Potts (or spin glass) method [12, 13], the Louvain method

Fig 3. The eigenvalue density distribution of the Pearson correlationmatrices where the upper panels are for the weighted series and the lower
panels are for the binary series. The red curve is the empirical eigenvalue distribution and the blue curve the Marchenko-Pastur distribution.

doi:10.1371/journal.pone.0133679.g003
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[14] and the spectral method [15], and are modified in [7] to correctly deal with correlation
matrices. The algorithms use a modularity optimization process, where modularity is a mea-
sure for how “optimal” your partition is. The algorithms attempt to choose a specific partition-
ing of the network into groups such that the corresponding value of the modularity is
maximized (see Methods). The modularity implements a new null hypothesis, which is fitted
to time series (correlation matrices). More specifically, the hypothesis considers the empirical
correlation matrix as a superposition of modes (Eq 7), and decomposes it accordingly. Both the
random mode and market mode are filtered out, and we are left with only the informative
group mode, which is then used to extract the market structure.

Thus, we end up with three community detection algorithms that are consistent with time
series data and represent the counterparts of the most popular techniques used in network
analysis. The method allows us to explore the mesoscopic structure of different financial indi-
ces, and more specifically compare the different community structures resulting from the dif-
ferent representations (binary and weighted).

First, we perform community detection on both the binary and the weighted time series,
using all three community detection methods, for the full time period of the data (2001–2011).
We pick the division that maximizes the modularity (for a specific representation and algo-
rithm), and compare the results for the two types of information. In the case where several divi-
sions maximize the modularity (different runs result in different divisions), we take the
division with the most occurrences over 1000 runs (the highest probability). Here, we want to
identify groups with similar dynamics over the ten year period, with the rationale that such a
long period will reduce the noise.

To help further explore the communities resulting from the different passes, we label each
of the stocks according to its industry sector from the Global Industry Classification Standard
(GICS). This classification represents a more “traditional” frame of mind where the different
sectors are comprised of stocks conforming to a particular, qualitative description of the indus-
try they represent. Recent results show that real markets have a more complex structure [2, 16,
26, 27], where different sectors are mixed in different sub-groups, i.e. the communities are
assembled out of stocks from different sectors. Furthermore, the classification helps us to com-
pare the results of the two representations in a very clear and visual way.

In Figs 4 and 5 we plot the community structure of the S&P 500 and Nikkei 225 (daily clos-
ing prices from 2001 to 2011) generated using the modified Louvain algorithm. Each commu-
nity is labelled with the number of stocks and the pie chart represents the relative composition
of each community based on the industry sectors of the constituent stocks (color legend in
Table 1). The links between the communities represent “residual” (i.e filtered) anti-correlation
relations [7]. We can see that the binary partition is very similar to the weighted one. For both
indexes about 7–8 percent of the stocks switch community. In the next section we will give a
more quantitative measure for the dissimilarities of the different partitions.

In Fig 6 we observe a more complex result. Again, we plot the community structure of the
FTSE100 (daily closing prices from 2001 to 2011) generated using the modified Louvain algo-
rithm. Now, the binary representation consistently identifies one more community than the
weighted representation (for all the algorithms). Later, we further explore these differences in
community structure. Most notably, the binary information results in a cluster configuration
where the Financials sector (green) was partitioned into two communities, whereas the
weighted representation created only one sole Financials community, spreading the rest of the
stocks among other clusters.

We should note that, purely from a community detection perspective, there is no “correct”
partition. Each partition is generated from different data and so maximizing modularity should
not be expected to yield the same partitions. We are comparing the end results of these

Mesoscopic Community Structure: Binary vsWeighted Information
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processes, and in this setting (this paper) we treat the weighted partition as the “truth” since it
is using a priori more information to establish the partition. Thus, our aim is merely to exam-
ine the degree to which the “binary” community structure matches the “weighted” community
structure, despite having less information for the algorithms to work with. That said, it would
be interesting to determine if the binary information can yield different points of view, or

Fig 5. Communities of the Nikkei 225 (daily closing prices from 2001 to 2011) generated using the modified Louvain algorithm [7]. Each community
is labelled with the number of stocks, and the pie chart represents the relative composition of each community based on the industry sectors of the
constituent stocks (colour legend in Table 1). The link weights are negative, indicating that the communities are all residually anti-correlated.

doi:10.1371/journal.pone.0133679.g005

Fig 4. Communities of the S&P 500 (daily closing prices from 2001 to 2011) generated using the modified Louvain algorithm [7]. Each community is
labelled with the number of stocks and the pie chart represents the relative composition of each community based on the industry sectors of the constituent
stocks (color legend in Table 1). The inter-community link weights are negative, indicating that the communities are all residually anti-correlated.

doi:10.1371/journal.pone.0133679.g004

Mesoscopic Community Structure: Binary vsWeighted Information

PLOS ONE | DOI:10.1371/journal.pone.0133679 July 30, 2015 8 / 16



added structural information with respect to its weighted counterpart. This would be useful in
particular because binary time series are more robust to noise and errors in the data. Such a
line of exploration is however beyond the scope of this paper.

In this section we showed that the binary description leads us to a very similar market struc-
ture to the weighted description. This results suggest that the information regarding the com-
munity partition is mainly encoded in the binary signature of the fluctuations, i.e. just from the
knowledge of the direction of movement, one can practically reproduce the “correct” structure.
In the next section we will quantify the similarities and deviations of the different partitions for
the different algorithms. Furthermore, we will explore the evolution in time of the variations
between the two representations.

Variation of Information Analysis
Once we obtain the community structure using the different algorithms, our goal is to quantify
the dissimilarities (or similarities) between the different partitions (binary and weighted). For
this task we apply the Variation of Information (VI) measurement [28, 29]. The variation of
information is an information-theoretic measure of the distance between two partitions. The

Table 1. The 10 industry sectors in the Global Industry Classification Standard (GICS), with the color representation used to highlight the sectors
in the following Figures.

Consumer Discretionary: Purple Consumer Staples: Light Blue

Energy: Grey Financials: Green

Health Care: Red Industrials: Orange

Information Technology: Blue Materials: Yellow

Telecom. Services: Pink Utilities: Brown

doi:10.1371/journal.pone.0133679.t001

Fig 6. Communities of the FTSE 100 (daily closing prices from 2001 to 2011) generated using the modified Louvain algorithm [7]. Each community is
labelled with the number of stocks, and the pie chart represents the relative composition of each community based on the industry sectors of the constituent
stocks (color legend in Table 1). The inter-community link weights are negative, indicating that the communities are all residually anti-correlated.

doi:10.1371/journal.pone.0133679.g006
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different partitions ~s1 and ~s2 represent N-dimensional vectors where the i-th component σi
denotes the set in which node i is placed by that particular partition.

The variation of information involves the mutual information Ið~s1 : ~s2Þ which is defined as

Ið~s1 : ~s2Þ ¼
XN
i¼1

XN
j¼1

pðs1
i ; s

2
j Þlog

pðs1
i ; s

2
j Þ

pðs1
i Þpðs2

j Þ

 !
; ð10Þ

where pðs1
i ; s

2
i Þ is the joint probability distribution, and pðs1

i Þ the marginal distribution of s1
i .

The mutual information measures the overlap between the two partitions, however it is not a
metric (does not obeys the triangle inequality) nor is it normalized. Thus, for this study we use
the (normalized) variation of information which is defined as

VIð~s1 : ~s2Þ ¼ 1� Ið~s1 : ~s2Þ
Hð~s1 : ~s2Þ

ð11Þ

whereHð~s1 : ~s2Þ is the joint entropy and is defined as

Hð~s1 : ~s2Þ ¼
XN
i¼1

XN
j¼1

pðs1
i ; s

2
j Þ logðpðs1

i ; s
2
j ÞÞ: ð12Þ

The variation of information ranges from 0 to 1, where 0 indicates two identical partitions,
and 1 a complete dissimilarity between the partitions.

First, we measure the variation of information between two partition vectors, generated by
the weighted and binary time series. Respectively, this approach enables us to quantify the dif-
ference in group structure (for 2001–2011), and compare the performances of the different
algorithms.

In Table 2 we plot the measured VI between the different partitions, which resulted from
the binary and weighted data. These measurements are for the community structures resulting
from 10 years (2500 time steps) of data, for each of the three different indices. We run the algo-
rithms 1000 times (for Louvain and Potts, while the spectral is deterministic) and extract the
partitions that maximize the modularity. We measure the VI between two different partitions:
the most frequent one, and the one that minimizes the VI (the most similar ones). One can
consider this to be the best result (subject to the best partition). Again we should note that all
the partitions maximize the modularity, and therefore are optimal. Since the VI is not linear

Table 2. The Variation of Informationmeasured between the binary and weighted partitions, with the maximal modularity Q, for the period 2001–
2011. “Frequent VI” is the variation of information between the most common partitions (that maximize the modularity), and “Minimal VI” is the variation of
information between the most similar (that maximize the modularity). The “Switching stocks” is the percentage of stocks that moved to different communities.

Index Method Q weighted Q binary Frequent VI Switching stocks (%) Minimal VI Switching stocks (%)

S&P Potts 0.4035 0.4134 0.3543 8.81% 0.3198 6.74%

Louvain 0.4070 0.4134 0.3477 8.09% 0.3192 7.64%

Spectral 0.4006 0.3932 0.6955 61.57% 0.6955 61.57%

NIKKEI Potts 0.4551 0.4525 0.3689 6.78% 0.2598 4.66%

Louvain 0.4551 0.4525 0.3711 7.25% 0.2604 4.15%

Spectral 0.4481 0.4424 0.4521 8.29% 0.4521 8.29%

FTSE Potts 0.4641 0.4988 0.5031 28.42% 0.4026 26.14%

Louvain 0.4635 0.4988 0.4995 21.79% 0.3981 17.95%

Spectral 0.4597 0.4903 0.6919 69.23% 0.6919 69.23%

doi:10.1371/journal.pone.0133679.t002
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(and not intuitive), we also included a simpler measurement of the percentage of stocks that
are not occupying the same community in the different partitions.

We can observe that both the Potts and Louvain algorithms consistently perform better
then the spectral method, i.e. they yield partitions with higher modularity. We should note
that, one can only compare the value of the modularity for the same representation (binary or
weighted), while there is no meaning in comparing modularity between the different represen-
tations. Generally, we can observe that the binary information and the weighted information
result in very similar structures, as we showed in the previous section. The exception to this is
the FTSE index, where the binary information consistently yields a greater number of commu-
nities. It is interesting to note that the binary information always results in either the same or a
greater number of communities over the weighted time series.

Next, we will explore the evolution in time of the VI between the different types of informa-
tion. We considered a sub-period of 600 time steps (about two and a half years), and apply the
same procedure as before. However, here we use a sliding window technique, where in each
step we input a new day and ignore the previous information. This results in 1900 time steps
(from the original 2500), where each point is the frequent VI calculated from the correlation
matrix using the given 600 time step. In Fig 7 we plot the different measurements for the differ-
ent algorithms. The Potts and the Louvain methods present a more stable dynamics, while the
Spectral method yield higher VI. Furthermore, there is no systematic effects of the financial cri-
sis on the similarity between the binary and the weighted representations.

Discussion
Over the last few years community detection methods have revealed themselves as useful tools
to study the structure of complex systems. In this context, we have introduced a new approach
aiming at analysing structural dependencies, which result form different descriptions (weighted
and binary activity) of a complex system. Our approach enables us to quantify the level of
“structural information” encoded within the binary projection of weighted time series, and
measure variations and similarities between the different partitions.

The analysis reveals that in financial markets both the binary and weighted information
yield very similar structures, which also manifest themselves in similar spectral properties. The
algorithms find complex mesoscopic structure of internally correlated clusters, which are resid-
ually anti-correlated with each other [7]. Moreover, the clusters are populated by stocks from
various sectors. Remarkably, we show that the simple knowledge of the direction of increments
of each stock can reproduce this complex structure very successfully.

Our findings suggest that the binary signatures of financial time series carry significant
structural information. These results are far from trivial, as one might expect that the full
knowledge of the amplitudes of price fluctuations is a key component in clustering the markets
into correlated groups. However, here we explicitly showed that purely binary information can
replicate the main features obtained from complete information. Thus, we conclude that the
key features of the market structure are induced by the binary dynamics of the stocks. Even
when the two representations differ by some extent, the binary description provides very sensi-
ble information (as exemplified by the Financials sector in the FTSE).

Typically, the binary signature of a time series is obtained as a projection from the full
weighted information, and is therefore known only if the latter is also known. This means that
there are not many practical situations in which the full weighted information is unknown,
while the binary projection is known. However, what can occur quite often (and indeed typi-
cally occurs) is that the weighted amplitudes of time series increments, much more than their
signs, are affected by noise or errors. For instance, in many financial institutions (e.g. hedge
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funds or investment banks) there are specific departments in charge of cleaning the data and
verifying their reliability. Generally, errors in the data are detected in the form of increments
with anomalously large or small absolute value. By contrast, the sign of the increment itself is
very robust to errors. Therefore our results indicate that analyses based on binary projections

Fig 7. The variation of information between the binary and weighted partitions for a sliding window of 600 trading days (approximately 28 moths)
starting at Q3 2001. The VI is measured between the frequent partitions for the different algorithms: Potts (blue), Louvain(red) and Spectral (green).

doi:10.1371/journal.pone.0133679.g007
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are likely to be much more robust to noise than analyses based on the full original data. Since
the extraction of the binary signatures is an extremely simple procedure, while the verification
of the quality of weighted data can be very demanding and time consuming, our findings sug-
gest that, at least for the purpose of identifying non-trivially correlated groups of stocks, the
simpler procedure can be safely adopted.

The challenge of identifying higher-order patterns that are robust to the presence of local
noise, or even systematic distortions, in the data is highly relevant in other settings as well. In
many other complex systems, e.g. social and biological systems, the amplitude of a signal is typ-
ically measured by approximation or indirectly, and as a result in some cases the signal-to-
noise ratio is very low. For example, when measuring brain activity in the form of neural time
series, researchers typically use indirect techniques such as Blood Oxygen Level Dependent
(BOLD) contrast imaging, Electroencephalography (EEG), or Bioluminescence (BL) [30–32].
These techniques proxy the activity of small portions of the brain, or even individual neurons,
via related signals such as blood pressure, oxygenation levels, electric potential, or luminosity.
However, the methods are indirect and are highly dependent on the experimental set up. This
implies that they may proxy the amplitude of the underlying neural signal in a noisy or nonli-
nearly distorted way. However, as in the case of financial markets, we expect that the signs of
the increments of experimental time series data are much more robust to errors than the ampli-
tudes. We therefore believe that our approach can serve as a motivation for future analyses of
structural robustness of other systems as well.

Methods

Community detection
We adopt modularity-based community detection methods, which are adapted to correlation
matrices. Respectively, this restrict us to undirected networks, as a result of sharing by defini-
tion the same symmetry property as correlation matrices. Let us consider a network with N
nodes, one can introduce a number of partitions of the N nodes into non-overlapping sets. The
different partitions will be represented by an N-dimensional vector~s where the i-th compo-
nent σi denotes the set in which node i is placed by that particular partition. Now, we introduce
the modularity measure Qð~sÞ which indicates the quality of a specific choice of partition~s
measured by high degree of inter community connectivity and a low degree of intra commu-
nity connectivity. The modularity optimization algorithms look for the specific partition that
maximizes the value of Qð~sÞ, the objective function. It is defined as

Qð~sÞ ¼ 1

Atot

X
i;j

Aij � hAiji
h i

dðsi; sjÞ ð13Þ

where δ(σi, σj) is a delta function ensuring that only when σi = σj (nodes within the same com-
munity) does it contribute to the sum, and Aij is the adjacency matrix that indicates whether a
link exists between the nodes, Aij = 1 or not, Aij = 0 (in the binary representation). The pre-
factor Atot serves to normalize the value of Qð~sÞ between −1 and 1, where Atot � ∑i, j Aij = 2L is
twice the number of total links in the network. The term hAiji is vital to the outcome of the
community detection process. It represents the expectation of whether a link exists or not,
according to the specific null model that you consider. So far the majority of the methods use
null models (hypotheses), which are suited only for networks. For example the configuration
model, that preserves the degree sequence (or strength sequence) of the network. It has been
shown that such null models can introduce biases when applied to correlation matrices [7].
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Instead, a recent method proposed a redefinition of the modularity, which takes into account
the existence of known spectral properties in correlation matrices (see Spectral Analysis).

Now, instead of the previous adjacency matrix Aij, we input the empirical correlation matrix
Cij. The first is the global mode C(m)(market mode in a financial setting), which represents the
common movement of the market. In other words, in order to clearly differentiate between the
mesoscopic groups, one must subtract out the main drift of the market. The second is the ran-
dom bulk C(r)

CðrÞ ¼
X

i:li�lþ
lijviihvij ð14Þ

which corresponds to random correlation between the different time series. In order to filter
this noise, one must use random matrix theory (RMT) [26], to identify the random properties
of empirical correlation matrices. The method define the modularity as

Qð~sÞ ¼ 1

Cnorm

X
i;j

ðCij � CðrÞ
ij � CðmÞ

ij Þdðsi; sjÞ ¼
1

Cnorm

X
i;j

CðgÞ
ij dðsi; sjÞ ð15Þ

constituted from the eigenvalues {λi} less than or equal to λ+ (usually, the eigenvalues smaller
than λ− are included as well) and their corresponding eigenvectors vi. The new method modi-
fied three popular community detection algorithms, customizing where necessary to be effec-
tive with correlation matrices [7]. The three algorithms we use in this paper are known as the
Potts (or spin glass) method [12, 13], the Louvain method [14] and the spectral method [15].

For replicating the analysis one can use various types of financial times series. In this paper,
we analyzed daily closing prices of stocks from three different indexes. The data was retrieved
from a number of sites [33–35], which allow extraction of historical price data per ticker (stock
identifier). Very practically, the data (multiple stock quotes) can be directly imported into a
single file (for example [36]). Additionally, a code implementing all the methods discussed in
this section (with the adaptations discussed in the Appendix) is available here [37, 38].
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