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Abstract
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with sub-

arctic populations tolerating experimental freezing to temperatures at least 10-13 degrees

Celsius below the lethal limits for conspecifics frommore temperate locales. We determined

how seasonal responses enhance the cryoprotectant system in these northern frogs, and

also investigated their physiological responses to somatic freezing at extreme temperatures.

Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this

level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that re-

mained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture

regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an

as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pres-

sure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thaw-

ing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser

extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver)

of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as

0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-condi-

tioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea)

to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response

to freezing have been greatly enhanced and contribute to extreme freeze tolerance in north-

ern R. sylvatica.

Introduction
Although freeze tolerance in vertebrates was first reported over 30 years ago [1] and dozens of
papers on the subject have since appeared, relatively little is known about variation in freeze
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tolerance capacity among populations of conspecifics [2–5]. We recently described the extraor-
dinary capacity for freeze tolerance in a subarctic population of the wood frog (Rana sylvatica),
a North American species that ranges from the southern Appalachians to within the Arctic Cir-
cle. Whereas frogs indigenous to the upper Midwestern United States and southern Canada
tolerate freezing only to temperatures as low as -3 to -6°C, frogs from Interior Alaska readily
survived experimental freezing to -16°C [6].

We hypothesize that extreme freeze tolerance in this northern phenotype derives in part
from an enhanced cryoprotectant system that uses urea, which accumulates in autumn and
early winter, before freezing occurs, and glucose, which is quickly mobilized from liver glyco-
gen after freezing begins. Both agents colligatively reduce the amount of ice forming in the
body, but each also serves other functions that enable cells and tissues to withstand myriad
stresses caused by freezing and thawing [7].

Urea accumulation is a universal amphibian response to osmotic challenge, such as dehy-
dration or salt acclimation, which serves to limit the transcutaneous loss of body water [8]. Ab-
sent osmotic stress, uremic levels remain low, typically only 5–10 μmol ml-1 [9]. However,
during physiological preparation for winter, plasma urea accrues to high levels (>100 μmol ml-1)
in Alaskan R. sylvatica kept hydrated under humid conditions [6], raising questions about the
underpinnings of nitrogen metabolism in these frogs. We found that enhanced ureagenesis is
subsidized by muscle protein, but we did not ascertain whether the catabolism is a regulated pro-
cess or simply a manifestation of fasting during winter conditioning. In addition, Alaskan frogs
—but not frogs from a temperate population—co-accumulate with urea a significant quantity
(~73 μmol ml-1 plasma) of an osmolyte(s) whose identity was not determined.

The capacity for freezing survival in R. sylvatica is strongly influenced by the quantity of glu-
cose mobilized during freezing. In Alaskan frogs, glycemia rose to 217 μmol ml-1 during a 48-h
bout of experimental freezing to -2.5°C [6]. However, because they mobilized only a portion of
their hepatic glycogen store, we conjectured that they synthesize even more glucose in liver if
the freezing exposure is protracted or particularly severe. This is an important consideration
because, in Interior Alaska, frogs must survive extended bouts of freezing with hibernaculum
temperatures reaching minima of -9 to -18°C [10]. Furthermore, because these frogs remain
hyperglycemic many days after thawing [6], individuals undergoing multiple freeze/thaw cycles
potentially can accrue higher levels of glucose than can be achieved by frogs experiencing a sin-
gle freezing episode.

This work provides new information about the cryoprotective systems supporting extreme
freeze tolerance in a subarctic population of R. sylvatica. We report that urea accrual in frogs
preparing for hibernation is subsidized by regulated proteolysis in muscle, a response strongly
influenced by water balance. In addition, we demonstrate that glucose mobilization from he-
patic glycogen reserves is responsive to severity of the freezing episode, and that multiple
freeze-thaw cycles, while not essential to high glucose mobilization, improve the distribution of
cryoprotectant to peripheral tissues.

Materials and Methods

Ethics Statement
We collected post-metamorphic R. sylvatica by hand or dip net from publicly-owned wood-
lands in Fairbanks North Star Borough, Alaska, USA (64.8°N, 147.7°W), between 30 July and 5
August, 2012, under approved methods and appropriate permits issued by the Alaskan Depart-
ment of Fish and Game. Protocols for experimentation and euthanasia, which was carried out
by double-pithing without the use of anesthesia, were approved by the Institutional Animal
Care and Use Committee of Miami University (Research Protocol #812).
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Experimental Animals andWinter Conditioning
After their capture, frogs were topically treated with tetracycline HCl, placed in plastic cups
containing a moist sponge, and shipped under refrigeration to our laboratory, where we re-
moved the sponge and added fresh tetracycline solution. They were kept at ~18°C until the
next day, when we transferred each frog to a translucent, polyethylene container (floor area,
56.7 cm2) that was closed with a perforated lid. Each such cage contained a shelter (an inverted,
opaque cup with an opening in its side) that rested on two layers of unbleached paper towel,
which we replaced at 1-week intervals. Except as noted elsewhere, we wetted this substratum
with 2.5 ml dechlorinated water, which thoroughly dampened the fibers and left a thin film of
water on its surface.

Following Costanzo et al. [6], we promptly initiated a winter-conditioning regimen that
gradually induced frogs into dormancy, using a programmable environmental chamber (Perci-
val, model I-35X; Boone, IA, USA) to expose them to dynamic, diel cycles of temperature and
full-spectrum lighting over a 5.5-week period. Thermal and photic conditions were based on
climatological records obtained from the National Oceanic and Atmospheric Administration’s
National Climatic Data Center for an area near the collection site. During the first week, tem-
perature in the chamber varied daily from 17.0 to 8.0°C and the photophase was 16.5 h. We
made decremental adjustments weekly such that, during the final week, in mid-September,
temperature varied daily from 13.0 to 2.5°C and the photophase was 13.3 h. We kept the frogs
under these latter conditions for an additional 3 d before transferring them to a darkened cold
room (4°C) where they were sampled immediately (Water Balance Experiment; see below) or
held until used in November (Freezing Experiment; see below).

During winter conditioning, frogs were fed ad libitum with small (~13 mm) crickets that
had been dusted with a vitamin supplement (ReptoCal, Tetrafauna, Blacksburg, VA, USA). On
three days each week we added as many as five live crickets (actual quantity depending on re-
cent feeding history) and removed any dead crickets from the cages. Some frogs fed more read-
ily than others, but most refused food after the last week in August and so the feedings were
discontinued. A few frogs appeared ill or died and were eliminated from the study; we collected
data only from healthy individuals.

Water Balance Experiment
We investigated the effect of hydration state on various physiological adjustments accompa-
nying physiological preparation for winter. To provide sufficient tissue for the analyses, we
used the larger of the frogs available for study; for this pool, standard body mass (SBM), deter-
mined by weighing frogs after removing any bladder fluid with a cloacal catheter, was 9.3 ± 0.4 g
(mean ± SEM; range, 7–15 g;N = 32). We assigned each individual to one of three groups: late
summer, winter-conditioned/hydrated (HYD), or winter-conditioned/dehydrated (DHYD). As-
signments were made in a manner that standardized the SBMmean and variance among groups,
but without regard to gender, which could be determined only upon dissection; sex ratio for the
pool was 1.5:1.0 (male:female).

Late-summer frogs (N = 8) were euthanized and sampled on the day after their arrival in
our laboratory, whereas HYD frogs (N = 10) and DHYD frogs (N = 14) were first subjected to
the full winter-conditioning regimen, as described above. HYD and DHYD groups were treated
identically except that the latter was exposed to drier conditions. Initially, the substratum in
cages with DHYD frogs received only 1.0 ml water, which dampened the paper and humidified
the air, but did not provide a free-water surface. When replacing the substratum at weekly in-
tervals, we reduced this amount to 0.5 ml (weeks 2–4), and added no water during the final
week. By contrast, HYD frogs were continuously exposed to moist substratum throughout the
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regimen. We totaled the number of crickets consumed by each frog in both groups. Following
winter conditioning, we euthanized all frogs and sampled their tissues as described in the
next section.

Morphometrics and Physiological Assays
Working inside a refrigerated (4°C) room, we determined the SBM of each frog, euthanized it
by double-pithing, measured its snout-ischium length, and dissected it to expose the visceral
organs. Blood was drawn into heparinized microcapillary tubes from an incision in the aortic
trunk and centrifuged (2000 g, ~5 min) to isolate the plasma, which was promptly frozen in liq-
uid N2. We quickly excised the intact liver, which was lightly blotted on laboratory tissue and
weighed on an electronic balance. We also excised two muscles, gastrocnemius and gracilis,
from the right hindlimb.

Portions of the liver and gracilis were immediately frozen in liquid N2; these samples, and
the plasma, were stored at -80°C before metabolite assays were carried out. Additional portions
of the liver and gracilis, plus the intact gastrocnemius, were blotted to remove extraneous mois-
ture, weighed, placed in a 65°C oven, and reweighed when thoroughly dry. We determined ini-
tial water concentration in these samples by dividing the mass lost during drying by the mass
of the dried tissue. From its water concentration, we estimated the mass of the entire, dry liver
and, in turn, used this value to compute the hepatosomatic index (HSI, g dry liver g-1 dry body ×
100). We removed, weighed, and discarded any coelomic fat body. The carcass was then weighed
and thoroughly dried so that its water concentration could be determined and, by extrapolation,
mass of the entire dry body could be estimated. Wemeasured the length of the tibiofibula of the
right hindlimb with dial calipers, this value being used to normalize the mass of the dried gastroc-
nemius to body size.

Dried carcasses (which lacked the fat body and liver, and some muscle tissue) were homoge-
nized in a coffee grinder and then pulverized to fine granules with a mortar and pestle. We esti-
mated organic concentration in these samples by burning a weighed aliquot (~125 mg) at 550°C
for ~18 h in a muffle furnace (Thermolyne 48000, Waltham, MA, USA) and then reweighing the
ash residue. Nitrogen and caloric concentrations were determined via the combustion method
and bomb calorimetry, respectively, which were carried out under contractual agreement with
the University of Arkansas Poultry Science Central Analytical Laboratory (Fayetteville, AR,
USA). Total amounts of organic matter, nitrogen, and energy in carcasses were found by multi-
plying the sample concentrations by the dry body mass. Using the aforementioned procedures,
we determined quantities of water, organic matter, nitrogen, and energy in a homogenized sam-
ple of the vitamin-fortified crickets (N = 50) used to feed frogs during winter conditioning.

We prepared deproteinized extracts of liver and muscle (gracilis) by homogenizing frozen
samples in cold 7% (w/v) perchloric acid and then neutralizing the aqueous portion of the ho-
mogenate with potassium hydroxide. Extracts were assayed for urea, glucose, and lactate using
urease, glucose oxidase, and lactate oxidase procedures (Pointe Scientific, Canton, MI, USA),
respectively; metabolite concentrations were expressed as μmol g-1 dry tissue. Extracts were
also assayed for glycogen in the following manner: a 100-μl aliquot of neutralized extract was
incubated with amyloglucosidase (1 mg ml-1) in a 0.2 M sodium acetate buffer (pH 4.8; 40°C)
and, after 2 h, the reaction was stopped by adding cold 7% (w/v) perchloric acid. Glucose was
determined by glucose oxidase assay and the quantity generated during enzymatic digestion (i.e.,
after subtracting initial free glucose) equated to glycogen concentration, expressed as glucosyl
units (μmol g-1 dry tissue). We computed hepatic glycogen content (μmol) as the product of the
tissue concentration and dry organ mass, and glycogen richness (μmol g-1 dry tissue) by dividing
hepatic glycogen content by dry body mass.

Cryoprotection in Subarctic Wood Frogs
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We analyzed the plasma for the three metabolites mentioned above, as well as total protein,
which was measured using the Bradford method (BioRad; Hercules, CA, USA) with bovine
serum albumin as the standard. Plasma osmolality was measured by freezing point-depression
osmometry (Advanced Instruments, model 3320, Norwood, MA, USA) using appropriate sodi-
um chloride standards.

Analysis of the free amino acid pool in late-summer, HYD, and DHYD frogs was made on
samples prepared by combining similar quantities (55–70 μl) of plasma taken, as available,
from all or most individuals within each group. The resultant plasma pools were thoroughly
mixed, aliquoted into small portions, and frozen (–80°C) prior to further analysis. Amino acid
quantitation was carried out using ion-exchange chromatography under contractual agreement
with Biochemical Genetics Laboratory, Children’s Hospital Colorado (Denver, CO, USA).

Freezing Experiment
In mid-November, we investigated certain physiological responses of hibernating frogs (SBM,
3.51 ± 0.15 g; N = 33; sex ratio, 1.2:1.0 male:female) to experimental freezing using a protocol
that ensured frogs froze slowly, a condition that facilitates cryoprotective responses and im-
proves freezing survival, and is ecologically relevant [11]. Frogs were housed individually inside
a polyethylene container (“cage,” as described previously) on a substratum of moist paper
towel. We covered each frog with an inverted cup (“shelter,” as described previously, but lack-
ing the opening), which limited their movement and facilitated their extraction following freez-
ing, and filled the remaining space with damp moss, which humidified the air and moderated
the rate of cooling. We added ice chips which, upon cooling, served to initiate freezing of the
moss and substratum and, ultimately, the frog. Containers were closed with a perforated lid
and arrayed inside one of several opaque plastic boxes (0.0162 m3), which were covered and
loaded into a programmable incubator (Percival, model I-35X, Boone, IA, USA) set at 0°C.
Temperature was continuously recorded using several microprocessor-based loggers (Tidbit,
Onset Computer Corporation; Pocasset, MA, USA) placed within a sham container (lacking a
frog) inside each box and on shelves inside the incubator.

In one trial, we cooled frogs (N = 7) at a uniform rate (0.05°C h-1) to -8°C, a process requir-
ing 160 h, and held them at that temperature for 6 h before dissecting them. In another, we
cooled frogs (N = 7) at the same rate to -16°C, a process requiring 320 h, and held them at that
temperature for 14 h before dissecting them. We subjected additional frogs (N = 12) to multiple
freeze/thaw cycles. Parameters of this experiment were similar to those of the -8°C freezing
trial, except that we interrupted cooling when the frogs had reached -4°C and raised the incu-
bator temperature to 4°C. After the boxes had remained at 4°C for 12 h, during which time the
frogs had visibly thawed but the ice surrounding them had not completely melted, we reset the
incubator to initiate another cooling bout. After three such cycles, frogs were cooled to and
held at -8°C for 5 h, following which some individuals (N = 7) were immediately euthanized
and dissected; others (N = 5) were thawed at 4°C and monitored for signs of recovery, includ-
ing exhibition of the “righting reflex” within 2 s of being placed on the dorsum. This multiple
freeze/thaw trial lasted 19 d, with frogs experiencing a cumulative 15 d of freezing, assuming
they were frozen whilst temperature was� –0.7°C, the approximate freezing point of their
body fluids.

Frozen frogs destined for physiological analyses, along with a set of reference frogs (N = 7)
taken directly from their cages at 4°C, were quickly euthanized, dissected, and processed as de-
scribed inMorphometrics and Physiological Assays (above), except that blood could not be col-
lected from frozen frogs and no analyses were made on dried carcasses.

Cryoprotection in Subarctic Wood Frogs
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Statistical Inferences
Summary statistics are presented as mean ± 1 SEM. We compared data from two groups using
a Student’s t-test or, if not normally distributed, a Mann-Whitney U-test. We used an Analysis
of Variance (ANOVA), followed by Student-Newman-Keul’s Multiple Comparisons Test, to
compare data from three groups; data were first log transformed, as necessary, to meet assump-
tions of normality and homoscedasticity. In the few cases where transformation was ineffectual
we used the nonparametric Kruskal-Wallis H-test, followed by a Dunn’s test, to compare values
among groups. Significance was judged at P<0.05.

Results

Responses to Winter Conditioning
Late-summer frogs, which were dissected promptly after their arrival in our laboratory, had fed
recently before their capture, as their guts contained arthropods in various stages of digestion.
Frogs subjected to winter conditioning each consumed up to 19 crickets, with much of the
feeding occurring earlier in the regimen, when ambient temperatures were higher. There was
no difference (Mann-Whitney U = 69.5, P>0.99) in the numbers of crickets consumed by
HYD frogs (5.4 ± 1.1) and DHYD frogs (6.0 ± 1.4). On average, each cricket weighed 151.6 mg
(fresh mass) and contained 114.3 mg water, 4.21 mg nitrogen, and 0.837 kJ energy.

Tracking masses of individual frogs showed that all except one weighed slightly less follow-
ing winter conditioning than they did initially. However, the measured reduction in SBM was
greater (Mann-Whitney U = 17.5, P = 0.002) in DHYD frogs (15.3 ± 1.8%) than in HYD frogs
(6.7 ± 1.6%). Accordingly, water concentrations in tissues of DHYD frogs were consistently
lower than those in HYD frogs, although the differences were modest, being only 9% for liver,
16–19% for skeletal muscles, and 14% for carcass (Table 1).

Winter-conditioned HYD and DHYD frogs grossly resembled the late-summer frogs; in-
deed, there were no statistically significant differences among the three groups in snout-ischi-
um length, body mass index, or even SBM (Table 2). Nevertheless, winter conditioning
induced change in certain somatic variables and energy status. Notably, the substantial fat
body of late-summer frogs was virtually absent in HYD and DHYD frogs. In addition, relative
to late-summer frogs, carcasses of winter-conditioned frogs had lower concentrations of organ-
ic matter (4%) and energy (8–11%), albeit higher concentrations of nitrogen (7–14%); however,
absolute amounts of these components did not vary among the groups. Furthermore, mass of
the liver, as represented by HSI, was ~1.3-fold higher in winter-conditioned frogs (Table 2).
This rise stemmed from glycogen storage, as the hepatic glycogen depot of DHYD frogs was
nearly 50% greater than that of late-summer frogs; HYD frogs also had large glycogen depots,

Table 1. Water concentration (g water g-1 dry tissue) in select organs and carcass of R. sylvatica after winter conditioning, with or without
moisture restriction.

Hydrated Dehydrated P

Liver 2.04 ± 0.02 1.86 ± 0.02 <0.0001

Gastrocnemius 4.12 ± 0.08 3.45 ± 0.05 <0.0001

Gracilis 4.40 ± 0.10 3.58 ± 0.05 <0.0001

Carcass 3.57 ± 0.13 3.08 ± 0.07 0.0019

N 10 14

Values are mean ± SEM.

doi:10.1371/journal.pone.0117234.t001
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but the contrast with late-summer frogs was not quite significant. Glucose levels in liver were
modestly, albeit significantly, higher in winter-conditioned frogs as compared to late-
summer frogs.

Winter conditioning also induced changes in skeletal muscles (Table 2). Gastrocnemius
mass was 30–38% less in HYD and DHYD frogs than in late-summer frogs. Gracilis of winter-
conditioned frogs had relatively high glycogen levels, although the concentration in DHYD
frogs was not significantly different from that in late-summer frogs. Glucose concentration in
gracilis did not vary among the three groups.

We examined winter-conditioning effects on plasma levels of select metabolites by compar-
ing values between late-summer frogs and HYD frogs (Table 3). There were no differences
with glucose or lactate, but uremic levels in HYD frogs, which reached 86 μmol ml-1, were ele-
vated 8-fold. Plasma osmolality of late-summer frogs was 225 ± 7 mOsmol kg-1, of which ~15
units derived from the collective activities of glucose, lactate, and urea (Table 3). The substan-
tially higher value for HYD frogs, 374 ± 7 mOsmol kg-1, was only partly due to their markedly
higher uremia, as the increase in urea concentration (75 units) accounted for only half the in-
crement (149 units) in total osmolality. Therefore, HYD frogs apparently co-accumulated with
urea a comparable amount of some unidentified solute(s). Plasma protein concentrations in
late-summer frogs and HYD frogs were indistinguishable.

Comparing values for HYD and DHYD frogs revealed several effects of dehydration during
winter conditioning. Expectedly, DHYD frogs had higher plasma concentrations of all metabo-
lites, but, because the dehydration was rather modest, for most metabolites the difference was
minor or, in the case of glucose, statistically non-significant (Table 3). On the other hand,

Table 2. Somatic variables of R. sylvatica sampled before or after winter conditioning, with or without moisture restriction.

Late summer Hydrated Dehydrated P

Snout-ischium length (cm) 4.6 ± 1.1 4.4 ± 0.1 4.4 ± 0.1 0.570

Body mass (g) 9.7 ± 0.6 8.6 ± 0.7 7.9 ± 0.7 0.187

Body mass index (g cm-1) 0.48 ± 0.03 0.44 ± 0.04 0.44 ± 0.03 0.695

Coelomic fat body (mg) 49.2 ± 17.1a 5.7 ± 2.9b 1.5 ± 0.6b <0.0001

Carcass organic matter concentration (mg g-1) 820 ± 5a 784 ± 6b 789 ± 5b 0.0008

total (mg) 1298 ± 126 1128 ± 135 1171 ± 128 0.409

Carcass nitrogen concentration (mg g-1) 106 ± 1a 111 ± 1a 119 ± 2b <0.0001

total (mg) 168 ± 16 160 ± 20 175 ± 17 0.643

Carcass energy concentration (kJ g-1) 19.2 ± 0.2a 17.6 ± 0.3b 17.1 ± 0.3b 0.0002

total (kJ) 30.4 ± 3.0 25.6 ± 3.4 25.7 ± 3.1 0.275

Carcass energy/nitrogen 181.2 ± 2.6a 159.4 ± 2.7b 145.0 ± 2.9c <0.0001

Liver hepatosomatic index, HSI 14.9 ± 1.0a 19.1 ± 1.4b 20.2 ± 0.9b 0.0081

glycogen (μmol g-1) 2888 ± 95a 3281 ± 77b 3246 ± 120b 0.0309

glycogen content (μmol) 911 ± 55a 1170 ± 103ab 1344 ± 115b 0.0371

glycogen richness (μmol g-1 frog) 426 ± 23a 630 ± 54b 675 ± 41b 0.0005

glucose (μmol g-1) 3.5 ± 0.4a 8.2 ± 1.6b 13.0 ± 3.3b 0.0010

Muscle mass (mg mm-1 tibiofibula) 1.34 ± 0.06a 0.83 ± 0.04b 0.93 ± 0.06b <0.0001

glycogen (μmol g-1) 339 ± 14a 433 ± 26b 366 ± 17ab 0.0278

glucose (μmol g-1) 7.5 ± 1.4 4.9 ± 0.4 6.8 ± 1.3 0.342

N 8 10 14

Values are mean ± SEM. Concentrations of metabolites and energy are expressed per g dry tissue. Glycogen is expressed as glucosyl units. Groups not

sharing a common superscripted letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.t002
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uremia in DHYD frogs, 186.9 ± 12.4 μmol ml-1, was inordinately high, being ~88 units above
the level resulting solely from dehydration (i.e., an increase from 86 to 99 μmol ml-1 was ex-
pected, assuming an overall 14% reduction in water concentration). Thus, during winter condi-
tioning DHYD frogs accrued substantially more urea than HYD frogs primarily by increasing
ureagenesis. Plasma osmolality of DHYD frogs, 526 ± 17 mOsmol kg-1, was 152 units higher
than that of HYD frogs (Table 3). Of this increment, an estimated 61 units were due to water
removal, with the remainder, 91 units, nearly matching the increase in urea, 88 μmol ml-1; this
congruence implies that, during winter conditioning, DHYD frogs accumulated no solute
other than those accruing in HYD frogs.

Analysis of plasma pooled from individuals comprising the late-summer, HYD, and DHYD
groups showed marked differences in amino acid profiles. Although sensitivity, accuracy, and
technical reproducibility with ion-exchange column chromatography is quite good [12], we
used a conservative threshold of 20% to discern differences in group values for the 34 amino-
containing compounds we quantified (Table 4). All but six compounds differed in abundance
between late-summer frogs and HYD frogs, most (75%) of the dynamic ones having increased
during winter conditioning. Increases exceeding 3-fold were seen in six compounds including
threonine, whose concentration was more than 14-fold higher in HYD frogs than in late-sum-
mer frogs. However, HYD frogs also showed marked decreases in certain amino acids, includ-
ing histidine, glycine, and β-alanine, which all fell by at least 50%. Effect of dehydration on the
amino acid pool was assessed by comparing values for HYD and DHYD groups. With dehy-
dration, eighteen compounds increased (by as much as 136%), three decreased, and thirteen
were unchanged. Most of the compounds that became more abundant in DHYD frogs were
also ones that increased in HYD frogs over late-summer frogs, although this group also includ-
ed the three aforementioned amino acids that decreased most profoundly during
winter conditioning.

Responses to Freezing
Frogs experimentally frozen to -8 or -16°C were icy, rigid, and inanimate. We observed gran-
ules and thin plates of ice beneath the skin, along organs within the coelom, and among muscle
fibers of the hind limbs, which appeared desiccated and ruddy. The liver also appeared shrunk-
en and desiccated. Water concentration in organs varied strongly (P<0.0001, all cases) among
groups, attesting that tissues dehydrated with freezing; water loss was up to 66% in liver, 41–
54% in gastrocnemius, and 33–48% in gracilis (Fig. 1). Among the groups of frozen frogs, there
were relatively minor, albeit statistically significant, differences in tissue hydration.

The conspicuous contraction of the liver in frozen frogs also stemmed from reduction in the
organ’s dry mass, as HSI in these frogs was markedly lower (F = 17.9, P<0.0001) than that of

Table 3. Plasma variables of R. sylvatica sampled before or after winter conditioning, with or without moisture restriction.

Late summer Hydrated Dehydrated P

Protein (mg ml-1) 28.4 ± 0.8a 27.8 ± 2.3a 38.9 ± 0.9b <0.0001

Glucose (μmol ml-1) 2.4 ± 0.2a 5.2 ± 2.2ab 6.9 ± 1.7b 0.001

Lactate (μmol ml-1) 2.6 ± 0.2a 2.7 ± 0.3a 4.2 ± 0.3b 0.002

Urea (μmol ml-1) 10.6 ± 1.6a 85.5 ± 2.9b 186.9 ± 12.4c <0.0001

Osmolality (mOsmol kg-1) 225 ± 7a 374 ± 7b 526 ± 17c <0.0001

N 8 10 14

Values are mean ± SEM. Groups not sharing a common superscripted letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.t003
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unfrozen (control) frogs, 16.8 ± 1.7%. HSI values of frogs in the -8 and -16°C groups (9.6 ±
0.9% and 9.7 ± 0.7%, respectively) were indistinguishable, but greater than those of the cyclic-
freeze group, 6.7 ± 0.3%. Frogs frozen to -8 or -16°C had hepatic glycogen levels only ~32% of
those found in unfrozen frogs, 2978 ± 105 μmol g-1 dry tissue (Fig. 2), indicating that much of
the drop in the liver’s dry mass was due to freezing-induced glycogenolysis. Moreover, glyco-
gen concentration in livers of the cyclic-freeze frogs was lower still, being just 6% of the value

Table 4. Concentrations of amino acids in plasma (nmol ml-1) of R. sylvatica sampled before or after winter conditioning, with or without
moisture restriction.

Amino acid Late summer Hydrated Dehydrated

Threonine 113 1605* 1658

Cystathionine 2 18* 23†

3-Aminoisobutyric acid 6 25* 35†

Alanine 334 1348* 1414

Aspartic acid 21 86* 144†

2-Aminoadipic acid 2 6* 11†

2-Aminobutyric acid 10 26* 32†

Serine 92 248* 241

Asparagine 135 354* 496†

Citrulline 29 73* 49†

Valine 107 264* 249

Isoleucine 70 164* 142

Leucine 117 266* 234

3-Methylhistidine 8 18* 28†

Glutamic acid 63 119* 188†

Hydroxyproline 17 30* 40†

Taurine 44 69* 108†

Ornithine 59 91* 96

Phosphoethanolamine 28 37* 23†

Proline 23 30* 39†

Homocystine 1 1 3†

Lysine 135 158 130

Arginine 24 28 22

Methionine 18 18 25†

Cystine 4 4 6†

Tyrosine 44 44 51

4-Aminobutyric acid (GABA) 7 6 5

Glutamine 158 124* 112

1-Methylhistidine 4 3* 4†

Phenylalanine 51 34* 31

Tryptophan 10 6* 1†

Histidine 180 54* 91†

Glycine 286 74* 102†

β-Alanine 151 36* 84†

Total 2355 5466* 5917†

Values were determined for a single pool of plasma derived from N = 8–11 frogs in each group. Values for hydrated frogs marked with an asterisk (*)

differed from corresponding value for late-summer frogs by � 20%. Values for dehydrated frogs marked with a dagger (†) differed from corresponding

value for hydrated frogs by � 20%.

doi:10.1371/journal.pone.0117234.t004
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for unfrozen frogs. Freezing also triggered glycogenolysis in skeletal muscle, the mean glycogen
concentrations in gracilis being 30–50% below the value for unfrozen frogs (Fig. 2).

Difficulty collecting blood from small, frozen specimens prevented us from analyzing plas-
ma metabolite levels for most frogs. However, values obtained for the unfrozen frogs (N = 7)
are useful for establishing baseline metabolite levels in the winter-conditioned frogs used in
this experiment. Plasma levels of glucose (8.8 ± 2.0 μmol ml-1), lactate (1.1 ± 0.2 μmol ml-1),

Fig 1. Water concentration in tissues of R. sylvatica experimentally frozen to −8 or −16°C, or
subjected to multiple cycles of freezing and thawing, relative to that in unfrozen controls. Values
(mean ± SEM; N = 6–7) not sharing a common letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.g001
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and urea (74.4 ± 6.4 μmol ml-1), and plasma osmolality (354 ± 11 mOsmol kg-1), appeared sim-
ilar to values found in HYD frogs at the end of winter conditioning (Table 3).

Concentration of glucose in liver increased dramatically during freezing (F = 784.3,
P<0.0001) with levels in frogs frozen to -8 or -16°C exceeding 1300 μmol g-1 dry tissue (Fig. 3).
Levels in frogs subjected to cyclic freezing were not quite as high, but still 100-fold greater than
those in unfrozen frogs, 8.1 ± 0.8 μmol g-1 dry tissue. Muscle also showed a robust increase (F =
358.7, P<0.0001) in glucose with freezing, but the pattern of variation among groups differed
from that seen with liver: glucose concentration in gracilis of the cyclic-freeze frogs was 2.3-fold
higher than that found in frogs frozen to -8 or -16°C.

Urea concentration in liver increased (F = 7.2, P = 0.0013) with freezing, as the level in every
group of frozen frogs was about two-fold greater than that in unfrozen frogs (Fig. 4). In con-
trast, urea concentration in muscle did not vary (F = 0.3, P = 0.84) among groups.

Lactate concentration in liver was relatively low (1.5 ± 0.04 μmol g-1 dry tissue) in unfrozen
frogs, but markedly higher (F = 158.7, P<0.0001) in frozen frogs. The particular freezing treat-
ment used had no influence on the amount of lactate accumulating in liver, although a signifi-
cant increase in muscle lactate occurred only in frogs frozen to -16°C (F = 20.6, P = 0.0001;
Fig. 5).

Fig 2. Glycogen concentration in tissues of R. sylvatica experimentally frozen to −8 or −16°C, or
subjected to multiple cycles of freezing and thawing, relative to that in unfrozen controls. Values
(mean ± SEM; N = 6–7) not sharing a common letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.g002

Cryoprotection in Subarctic Wood Frogs

PLOS ONE | DOI:10.1371/journal.pone.0117234 February 17, 2015 11 / 23



Survival of Freezing
In our freeze tolerance trial, all five of the frogs subjected to cyclic freeze/thaw episodes and ul-
timately cooled to -8°C exhibited normal behaviors when first examined, ~30 h after thawing
was initiated. They remained healthy during an ensuing 7-week period of monitoring. SBM of
these frogs determined immediately before freezing (2.82 ± 0.17 g) and after thawing (2.73 ±
0.20 g) did not differ (paired t-test: t = 1.85, P = 0.139), indicating that they did not lose body
water or substantially catabolize tissue during the trial.

Discussion
Wood frogs from populations near the northern limit of the species’ range are adapted to sur-
vive corporal freezing at temperatures well below those that can be tolerated by conspecifics
from lower latitudes [6, 10]. Our aim in the present investigation was to further explore the
unique mechanisms by which northern frogs physiologically prepare for the extreme and
lengthy subarctic winter, and to elucidate how their cryoprotectant systems have been en-
hanced to permit survival of freezing at such remarkably low temperatures.

Fig 3. Glucose concentration in tissues of R. sylvatica experimentally frozen to −8 or −16°C, or
subjected to multiple cycles of freezing and thawing, relative to that in unfrozen controls. Values
(mean ± SEM; N = 7) not sharing a common letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.g003
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Preparations for Overwintering

Energetic Transitions
In subarctic populations of R. sylvatica, physiological preparation for winter begets a marked
increase in the hepatic glycogen store (30–50% in the present investigation; 37% in our earlier
study; [6]), which contributes importantly to surviving the ensuing winter. This process is facil-
itated by seasonally high levels of glycogen synthase in hepatocytes [13] and probably draws
heavily on any assimilated nutrients. However, because feeding is limited during this time of
decreasing environmental temperature, frogs attain the massive glycogen depot primarily by
accelerating gluconeogenesis, which potentially explains the uncharacteristically high glucose
levels in liver and plasma of our winter-conditioned frogs.

Gluconeogenesis in the pre-hibernal period apparently is driven by the breakdown of lipids
to suitable precursors. Our frogs, like those examined previously [6], catabolized virtually their
entire coelomic fat body during winter conditioning. The glycerol moiety of triglyceride could
be a major precursor in gluconeogenesis and glycogen synthesis, even more so than preformed
glucose [14]. In addition, fat catabolism could yield ketones, which, by fueling metabolism in
muscle, brain, and (preferentially) heart, would augment glycogen storage by reducing cells’
need to oxidize hexose. Moreover, converting lipids to a fermentable fuel before winter’s onset

Fig 4. Urea concentration in tissues of R. sylvatica experimentally frozen to −8 or −16°C, or subjected
to multiple cycles of freezing and thawing, relative to that in unfrozen controls. Values (mean ± SEM;
N = 7) not sharing a common letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.g004
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seems advantageous given that fatty acids cannot be oxidized in anoxic, frozen tissues. Deple-
tion of coelomic fat body (whose size correlates to overall lipid content; [15, 16]), together with
enzymatic changes curtailing fat catabolism in winter [17], implies that triglyceride is a rela-
tively unimportant energy substrate in hibernating R. sylvatica. This contrasts with the case of
desert anurans, which heavily draw on lipid stores to fuel metabolism during dormancy [16,
18, 19].

We found that protein catabolism plays an important, previously unrecognized, role in the
hibernal preparations of R. sylvatica. Free amino acids in plasma were 130–150% more abun-
dant in winter-conditioned frogs than in late-summer frogs, the multi-fold increases in various
glucogenic amino acids (particularly threonine, alanine, serine, and asparagine) likely aug-
menting glycogen synthesis in the pre-hibernal period and possibly even supporting mainte-
nance metabolism during winter. At the same time, catabolism of these compounds produced
copious urea, which accrues in response to oliguria, reduced rates of glomerular filtration, and
reabsorption in the urinary bladder, and is retained in hibernation for use as metabolic depres-
sant [20] and cryoprotectant [7]. Notably, uremia in fully-hydrated, winter-conditioned frogs,
both in the present study and in Costanzo et al. [6], increased ten-fold over that found in late-
summer frogs. These northern frogs amassed even more urea than accumulates in temperate
counterparts undergoing experimental dehydration [21].

Fig 5. Lactate concentration in tissues of R. sylvatica experimentally frozen to −8 or −16°C, or
subjected to multiple cycles of freezing and thawing, relative to that in unfrozen controls. Values
(mean ± SEM; N = 7) not sharing a common letter were statistically distinguishable (P<0.05).

doi:10.1371/journal.pone.0117234.g005
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We monitored changes in energy balance of frogs during winter conditioning to gain in-
sights into the potential role of starvation in the proteolytic response. Complements of crickets
consumed by hydrated and dehydrated frogs contained considerable energy (4.5 ± 0.9 and 5.0 ±
1.2 kJ, respectively), although, overall, these frogs probably expended more energy than they ac-
quired. Their carcasses exhibited reduced concentrations of energy and organic matter, but an
apparent increase in nitrogen, which became concentrated in the remaining organic component.
However, these changes do not necessarily signify metabolic distress, as some matter and energy
were simply transferred from atrophying muscle to glycogen stores in liver, which was excluded
from the material being analyzed. Our findings that total carcass energy was not significantly
reduced, and that glycogen depots in liver and muscle were enlarged (rather than depleted, a
hallmark of starvation; [22]), argue that these frogs were not starving, but rather underwent an
adaptive metabolic reorganization during winter conditioning.

Muscle Atrophy in the Pre-hibernal Period
Mass of the gastrocnemius decreased by 31–38% during winter conditioning, indicating that
skeletal muscle is a principal source of the protein consumed in the pre-hibernal period. Cost-
anzo et al. [6] observed a comparable change in that muscle, as well as a 40% drop in protein
concentration in gracilis, in frogs from the same population. Atrophy probably also occurs in
other muscles, although proteolytic response to altered physiological state can be highly muscle
specific [23–25]. Future studies should determine the full extent of the atrophy and, since R.
sylvatica engages in strenuous mating activity upon hibernal emergence, its potentially adverse
effect on muscle performance. They should also elucidate mechanisms underlying the differen-
tial responses between R. sylvatica and atrophy-resistant anurans that effectively preserve the
mass and mechanical properties of muscles during prolonged hibernation [26] or estivation
[27]. Extensive catabolism of muscle tissue in pre-hibernal R. sylvatica potentially stems from
changes in endocrine status, as, for example, protein degradation is accelerated by insulin
deficiency [28]. Some ranids exhibit a marked seasonal rhythm in serum insulin, with levels
falling sharply at winter’s advent [29], coincident with reduction in the hormone’s receptor
population [30]; such changes conceivably could explain the hyperglycemia and depleted fat
body in our pre-hibernal frogs. Furthermore, insulin secretion is partly mediated by the neuro-
transmitter, 5-hydroxytryptamine, which also declines in autumn [31], possibly due to the
shortened photoperiod acting on the pineal body. A putative seasonal decline in 5-hydroxy-
tryptamine is consistent with the observed reduction in its precursor, tryptophan, in our win-
ter-conditioned frogs.

Urea Accrual in Hydrated Frogs
The importance of urea in amphibian physiology is best recognized for its role in defending
body water during periods of osmotic stress (see review: [8]). Costanzo and Lee [7] proposed
that this compound, acting as both an osmoprotectant and a cryoprotectant, also confers a sur-
vival advantage to terrestrially hibernating frogs. In their study, uremia in R. sylvatica from a
cool-temperate population (southern Ohio) varied seasonally from 2 to ~50 μmol ml-1, the
higher values coinciding with reductions in environmental water potential and body water con-
tent. However, a recent study revealed that osmotic stimuli are not essential for frogs to accu-
mulate urea for winter use, as urea reached 29 μmol ml-1 in Ohioan R. sylvatica that remained
hydrated during simulated hibernation [6]. Moreover, Alaskan frogs accrue remarkably high
levels of urea (86 μmol ml-1 herein; 106 μmol ml-1 in Costanzo et al. [6]) during winter prepa-
ration despite remaining in water balance. This phenomenon may be unique to terrestrial hi-
bernators, and perhaps some (although not all; see [32]) freeze-tolerant species, since ranids
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that hibernate under water sustain or even reduce initial uremia during cold acclimation [33,
34]. Indeed, even euryhaline and desert-adapted forms commonly maintain a low uremia (e.g.,
5–10 μmol ml-1) when hydrated [9].

In our pre-hibernal R. sylvatica, ureagenesis was enhanced by adjustments at the molecular
level in liver and skeletal muscle. In hydrated frogs, the pattern of change with winter condi-
tioning in the plasma free amino acid pool, notably an increase in glutamate, alanine, and va-
line, and a decrease in glutamine, resembles the change in free amino acids occurring in
skeletal muscle during estivation of the spadefoot toad, Scaphiopus couchii [35]. In our Alaskan
R. sylvatica, an apparent exchange of glutamine for glutamate (via the glutaminase reaction)
and marked rise in compounds (alanine, aspartate) that readily transfer amine groups to gluta-
mate are coupled with a coordinated, 70% rise in glutamate dehydrogenase activity in muscle
[6]. Altogether, these changes yield an abundance of ammonium ions (from glutamate deami-
nation) that would accelerate ureagenesis in liver [36].

Conceivably, R. sylvatica could also accelerate ureagenesis during winter conditioning by
upregulating the ornithine-urea cycle (OUC) by a process similar to that used by some species
of estivating frogs [36–38]. Indeed, hepatic activity of carbamoyl phosphate synthetase 1, a
rate-limiting enzyme associated with the OUC, is on the order of that expressed in saline-
adapted anurans, and is held at high levels from summer through winter [39]. Furthermore,
our present results show that, during winter conditioning, frogs elevated four of the five associ-
ated α-amino acids, including the non-proteinogenic compounds, citrulline and ornithine.
Whether or not rates of ureagenesis materially increase during the pre-hibernal period requires
empirical testing, but, clearly, in these frogs the metabolic infrastructure is well poised to rapid-
ly synthesize urea, even in the face of declining ambient temperatures.

Urea Accrual in Dehydrated Frogs
Consistent with its terrestrial habits, R. sylvatica is well adapted to survive dehydration [40], al-
though, in the extreme, frogs may incur ischemic hypoxia and increased production of lactate
and/or glucose [21, 41]. Our frogs dehydrated only modestly, and the nominal rise in these me-
tabolites simply reflects the concentrating effect of solvent reduction. By contrast, plasma urea
rose disproportionately and dramatically, averaging a remarkable 187 μmol ml-1 and even ex-
ceeding 0.25 M in one individual. Possibly, Alaskan R. sylvatica undergoing profound dehydra-
tion, or smaller, more dehydration-susceptible individuals, could achieve an even higher
uremia. Ability to accumulate urea to high levels varies by taxa and generally correlates with
habitat preference [42, 43], although the case with R. sylvatica, a mesic woodland species, clear-
ly is exceptional. Indeed, the concentrations of urea found in our frogs are comparable to those
reported for euryhaline and xeric-adapted forms undergoing estivation or osmotic stress (see
Table 1 in Withers and Guppy; [9]).

The markedly higher uremia of dehydrated frogs implies that they catabolized more protein
during winter conditioning than did hydrated frogs. This is not apparent from the decrease in
gastrocnemius mass (a relatively coarse metric), but is supported by their relatively low energy:
nitrogen ratio. Given that nitrogen is retained during winter conditioning, but is shifted from a
high-energy molecule (protein) to a low-energy one (urea), protein degradation is manifest in
a drop in energy:nitrogen ratio, which in fact was more pronounced in dehydrated frogs
(Table 2). Enhanced muscle catabolism in dehydrated frogs is also indicated by their markedly
higher plasma levels of two metabolites important to ureagenesis, glutamate and aspartate, as
well as 3-methylhistidine, which, being neither metabolized nor reused in protein synthesis,
signals degradation of myofibrillar protein [28].
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Some xeric-adapted frogs upregulate urea synthesis during osmotic stress in part by catabo-
lizing muscle protein [19, 37], with the attendant deamination releasing carbon skeletons that
substantially increase glycogen deposition in liver [44]. The glycogen store in dehydrated R. syl-
vatica was not significantly larger than that of hydrated frogs; however, they might have syn-
thesized more glycogen had our experimental dehydration been more protracted or severe.
Conceivably, partial dehydration in the pre-hibernal period may benefit these frogs by bolster-
ing both their uremic and glucosic cryoprotectant systems. In temperate regions, dehydration
seems likely because the water potential of soil is particularly low in autumn [7] and drier, up-
land sites are preferred for hibernation [45]. In Interior Alaska, R. sylvatica hibernates closer to
water bodies [10] but nevertheless favors relatively dry microsites for overwintering [46].

Osmolytes in Winter-Conditioned Frogs
Plasma osmolality in winter-conditioned frogs were within the lower range of those achieved
by hyperuremic, estivating anurans [9, 18]. In many amphibians, osmotic activity of the blood
is accounted for chiefly by the concentrations of principal ions and urea; however, a consider-
able osmotic gap (>50 mOsmol kg-1) can occur in some species, including salt-adaptable and
urea-accumulating estivators [9]. Similarly, in our Alaskan R. sylvatica (and those examined by
Costanzo et al. [6]), plasma osmolality was about 75 mOsmol kg-1 higher than expected, indi-
cating that some extraordinary solute(s) co-accumulated with urea during winter conditioning;
in contrast, conspecifics from a more temperate population, which do not accumulate as much
urea, have no osmotic gap [47]. Future studies directed at ascertaining the identity and source
of the unique osmolyte(s) might profitably examine methylamines, a class of compounds
known to counteract the perturbing effects of high urea on macromolecular structure and func-
tion [48]. Anurans do not commonly accrue these compounds to significant levels in salt adap-
tation or estivation [9, 43, 49], although both trimethylamine N-oxide (TMAO) and
glycerophosphorylcholine (GPC) reportedly vary seasonally in R. sylvatica from the Great
Lakes Region of North America, being most abundant in the fall and winter [50]. TMAO pro-
tects macromolecules against high salt concentrations [48, 51, 52] as well as freeze/thaw injury
[53], and thereby may serve a cryoprotective role.

In some organisms, winter conditioning or cold acclimation increases the size of the pool of
free amino acids [54]. In the present study, this response had only a minor impact on total os-
motic activity, but probably nevertheless contributed to winter survival. Some amino acids
serve as fermentable substrates under hypoxic, frozen conditions [54]. Some, including alanine,
proline, and glutamic acid, which increased with winter conditioning in our R. sylvatica, effec-
tively stabilize proteins and improve cell survival under freeze/thaw stress [53, 55, 56].

Freezing Responses

Organ Dehydration
In R. sylvatica, corporal freezing is accompanied by an extensive, reversible dehydration of the
organs. Physicochemical forces governing the process are not fully understood, although it is
clear that organs dehydrate to variable degrees as freezing proceeds, and the translocated water
ultimately freezes within the lymph sacs, subdermal spaces, and coelom [57]. Our present find-
ings indicate that severity of freezing exposure strongly influences the magnitude of the re-
sponse. In Alaskan frogs frozen to −2.5°C, dehydration was a modest 27% in gracilis and 29%
in gastrocnemius [6], whereas, in our frogs frozen to −8 or −16°C, the same muscles dehy-
drated by up to 48% and 54%, respectively. Furthermore, whereas livers of our frogs dehy-
drated extensively (54–66%), frogs frozen to −2.5°C had livers that actually hydrated,
apparently by liberating more water through glycogenolysis than could be removed during
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freezing. Limited dehydration of any organ not only reduces mechanical damage to the tissue’s
architecture but also parlays cryoprotection by concentrating osmolytes in a reduced solvent
volume [57]. The latter effect can be considerable: glucose and urea jointly attained up to 2.1 M
in liver and 0.2 M in muscle due to dehydration alone (Table 5), and these levels would be even
higher when freeze concentration is considered.

Values, expressed as μmol ml-1 tissue fluid, were computed from mean water and solute
concentrations and thus incorporate the effect of organ dehydration during freezing. Actual
cryoprotectant levels in frozen tissues would be considerably higher due to freeze-concentra-
tion of the solution remaining within them.

Glycemic Response
Freezing survival of R. sylvatica critically depends on the capacity to mobilize sufficient
amounts of the cryoprotectant glucose during the early stages of freezing. In liver, glycogen is
rapidly degraded to glucose, which must be distributed to tissues throughout the body before
freezing progresses to the point that circulation ceases. Biochemical control of this glycogeno-
lytic response has been studied extensively in R. sylvatica [54], including the northern pheno-
type here under investigation [58]. Experimental freezing of Alaskan frogs to −2.5°C caused
their hepatic glycogen concentration to fall by 39% and their glycemic level to rise to ~220
μmol ml-1 [6]. Because they can encounter substantially lower temperatures in hibernation (e.g.,
−9 to −18°C; [10]), we hypothesized that these frogs would synthesize additional cryoprotectant
under more extreme conditions. Clearly, this was the case: liver dry mass fell precipitously, and
its glycogen concentration was reduced by two-thirds in frogs directly frozen to −8 or −16°C, and
by nearly 95% in frogs subjected to a cyclic freeze/thaw regimen. That glycogen turnover was in-
dependent of endpoint temperature, −8 or −16°C, implies that glucose synthesis had ceased at
some temperature above −8°C. Thus, the enhanced glycogenolytic response in our frogs (as com-
pared to that in frogs frozen 48 h to −2.5°C; [6]) may be more a consequence of the longer freez-
ing bout than the lower temperatures to which they were exposed.

Consistent with this enhanced response, glucose concentration in livers of our frogs was 80–
85% greater than that found in sympatric frogs frozen to −2.5°C [6]. However, no such increase
occurred in skeletal muscle, indicating that the distribution of cryoprotectant to (and/or uptake
by) peripheral tissues is curtailed at a relatively high body temperature. The question of wheth-
er skeletal muscle and other tissues endogenously synthesize glucose remains open. In R. sylva-
tica, corporal freezing reportedly does [59] or does not [60] reduce glycogen concentration in
skeletal muscle. In the present study, levels of glycogen in gracilis fell by 30–50% with freezing,
but the cryobiological implications of this result are equivocal. Assuming that R. sylvaticamus-
cle has the enzyme, glucose-6-phosphatase, needed to dephosphorylate glucose-6-phosphate
(see [60]), it seems doubtful that the small amount of glucose produced (e.g., up to 3 μmol glu-
cosyl units by a 70-mg gracilis) could contribute substantially to colligative cryoprotection. It
could, however, help fuel glycolysis under the prevailing hypoxic conditions.

Uremic Response
Urea concentration in liver rises in Alaskan (and Ohioan) R. sylvatica frozen to −2.5°C, sug-
gesting that, as with glucose, hepatic synthesis of this agent is further stimulated by somatic
freezing [6]. Accordingly, the concentration nearly doubled during freezing in the present
study. However, the cryoprotective benefit is limited because urea levels do not markedly in-
crease with freezing in skeletal muscle (present study) or other organs [6, 7, 61], nor even in
the blood [6, 61, 62]. Urea’s export from liver potentially is hampered by a loss of transporters,
although in other tissues the transporter population is maintained during freezing [63]. It is
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also possible that urea efflux from hepatocytes is inhibited by glucose, just as high urea compet-
itively inhibits the transport of glucose [64]. Additional research will be needed to determine
why urea synthesized during freezing remains sequestered within the liver.

Urea and Glucose in Frozen Tissues
R. sylvatica accumulates urea primarily in anticipation of freezing and glucose after freezing
has begun. Both agents colligatively limit ice formation and cellular dehydration, but each also
provides benefits such as antioxidation, metabolic regulation, glycolytic fuel supply, ischemic
injury prevention, membrane stabilization, and protein protection and renaturation [47, 54].
Although high levels of urea are well tolerated [43], sustained hyperglycemia potentially could
cause glycation of lipids and proteins, among other problems. The on-demand feature of this
glucosic cryoprotectant system reduces that risk, but the need to rapidly synthesize and distrib-
ute glucose before vascular conduits freeze is never fully met, and, consequently, the glucose
concentrations ultimately realized by peripheral organs are relatively low [54]. By contrast,
urea is more uniformly distributed among tissues, but the amount accrued is influenced by va-
garies of environmental temperature and moisture availability (Table 2; see also [7]). Thus, fro-
zen tissues can vary markedly in the particular mix of the agents they contain. For example, in
frogs directly frozen to −8 or −16°C, glucose predominated in liver, representing 82% of total
cryoprotectant, whereas urea accounted for 53–57% of all cryoprotectant in skeletal muscle
(Table 5). Future study should determine whether the protective efficacy of each agent varies in
accordance with its predominance within organs.

Freezing Stress at Low Temperature
Corporal freezing typically results in cardiac arrest and circulatory failure, and, hence, ischemic
hypoxia. Protracted or severe freezing necessitates an even greater reliance on anaerobic glycol-
ysis [65] and, accordingly, muscle concentrations of lactate were about twice as high in our
frogs than in others frozen to −2.5°C [6]. However, congruence in lactate levels between frogs
frozen to −8 or −16°C suggests that full reliance on glycolysis for energy production occurs at
some temperature above −8°C. Frogs exposed to repeated cycles of freezing apparently did not
accrue additional lactate, probably because some of this metabolite was oxidized or reconverted
to glucose during the brief intervals of thawing.

Responses to Cyclic Freezing
In the present study, Alaskan R. sylvatica readily recovered from being frozen several times
to −4°C before being cooled to −8°C over the course of 19 d. Although freezing adaptations are
conventionally studied in subjects given a single bout of experimental freezing, natural fluctua-
tions in ambient temperature can expose organisms to successive cycles of freezing and thaw-
ing that potentially could alter their freezing responses and susceptibility to freezing injury. For

Table 5. Concentrations of two cryoprotectants within liver and skeletal muscle of R. sylvatica subjected to different experimental freezing
regimes.

Liver Gracilis

Unfrozen –8°C –16°C Cyclic Unfrozen –8°C –16°C Cyclic

Glucose 4 1393 1760 941 1 83 64 146

Urea 75 307 388 305 50 94 86 75

Glucose + urea 79 1700 2148 1245 51 177 150 221

doi:10.1371/journal.pone.0117234.t005
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example, freezing multiple times in quick succession could cause reactive-oxygen species, gen-
erated during re-oxygenation of tissues upon thawing, to accrue to levels that overtax anti-oxi-
dation systems [66]. In insects and frogs, serial freeze-thaw cycles cause energy stress and
tissue damage, and can increase mortality [65, 67–70].

On the other hand, intermittent thawing could be beneficial, as, for example, it enables or-
ganisms to restore homeostatic mechanisms and mitigate or repair damage accruing during
prolonged freezing (e.g., [71]). It apparently enhances the cryoprotectant response in R. sylva-
tica, as frogs subjected to multiple freeze/thaw cycles catabolized nearly their entire glycogen
depot, probably by resuming glycogenolysis during bouts of refreezing. This superproduction
of glucose, coupled with restored circulation during thawing intervals, allowed them to achieve
uncharacteristically high levels of cryoprotectant in leg muscle (Table 5) and probably other
peripheral tissues as well. In Alaskan frogs, accrual of glucose with successive freezing bouts is
enhanced because mobilized sugar persists in tissues long after thawing [6], perhaps owing to
inhibitory effects of high urea on the liver’s re-uptake of glucose [64] and/or glucose’s re-con-
version to glycogen [61]. By contrast, in frogs of temperate populations, tissue glucose levels
are greatly diminished within hours or a few days of thawing [59, 72].

Having found that Interior Alaskan R. sylvatica experience a series of shallow freeze-thaw
cycles in early October, just prior to a deeper, more prolonged freezing exposure, Larson et al.
[10] argued that such cycles explained the exceptionally high glucose levels measured in frozen
frogs sampled from outdoor enclosures in mid-December, and were key to the extreme freeze
tolerance exhibited by subarctic frogs. However, frogs from that region readily survive direct,
experimental freezing to temperatures at least as low as −16°C [6] and, furthermore, our pres-
ent results attest that they can achieve extraordinarily high concentrations of glucose during a
single freezing bout of sufficient duration and severity. Indeed, the mean glucose concentration
in liver of frogs directly frozen to −16°C was 743 μmol g-1 fresh tissue, only slightly less than
that (788 μmol g-1 fresh tissue) determined for frogs experiencing repeated freezes in the field
[10]. Nevertheless, the potentially higher glucose levels—especially in peripheral tissues—
achieved by frogs undergoing a series of shallow freeze/thaw episodes could improve survival
of protracted or severe freezing exposures, including those involving rapid cooling. In early
winter, before an insulating snowpack develops, cooling rates of Alaskan frogs in their natural
hibernacula can be remarkably high (up to 1.60°C h-1; [10]), even exceeding those causing mor-
tality in Ohioan conspecifics [11]. Nevertheless, by incrementally preloading their cells with
cryoprotectant these frogs can overcome the problem that rapid freezing hampers production
and distribution of glucose to non-hepatic tissues.
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