
Modeling veterans’ health benefit grants using the

expectation maximization algorithm

Tatjana Miljkovic∗

Department of Statistics
North Dakota State University
Fargo, North Dakota 58108-6050

USA

Nikita Barbanov †

Department of Mathematics
North Dakota State University
Fargo, North Dakota 58108-6050

USA

Abstract

A novel application of the Expectation Maximization (EM) algorithm is pro-
posed for modeling right censored multiple regression. Parameter estimates, vari-
ability assessment, and model selection are summarized in a multiple regression
settings assuming a normal model. The performance of this method is assessed
through a simulation study. New formulas for measuring model utility and di-
agnostics are derived based on the EM algorithm. They include reconstructed
coefficient of determination and influence diagnostics based on one-step deletion
method. A real data set, provided by North Dakota Department of Veterans Af-
fairs (ND DVA) is modeled using the proposed methodology. Empirical findings
should be of benefit to government policy makers.
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1 Background

According to the U.S. Census Bureau [4], there were 22.5 million living veterans in
the United States as of 2010, representing 7.3% of the total population. Veterans are
eligible for a number of federal and state benefit programs and services offered by the
Department of Veterans Affairs (DVA)[29]. The uninsured rate of veterans decreased
from 7.6% in 2000 to 7.2% in 2009 [4]. As federal and state medical health benefits
are available to eligible veterans, the number of veterans 18 years and older using
these programs increased from 50% in 2000 to 60% in 2009. The availability of these
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programs is critical for veterans who live below poverty level. Poverty rate among
veterans, defined as income below 100% of poverty threshold [5], has increased over the
past decade, and it was reported at 6.3% in 2009 compared to 5% in 2000 [26]. The
Bureau of Labor Statistics reported that in 2007, 11.8% of North Dakota’s population
was living below the poverty level. The national average for the same period was 13%
[27].

State benefit programs for veterans vary from state to state. In the state of North
Dakota, ND DVA [19], working under the supervision of the Administrative Committee
of Veterans Affairs (ACOVA), administers various state benefit programs available to
low income veterans and their families. The Hardship Grants Program provides aid to
veterans for unmet medical needs and encompasses medical benefits for the following
categories: dental, denture, hearing, optical, and special. The cost of this program is
underwritten by the Veterans Post War Trust Fund (VPWTF). The State Treasurer is
the trustee of this fund, as provided for in the state constitution. This fund relies on
its investments in the financial market in order to grow and generate annual income
for use in grant programs that will benefit veterans. The ND DVA is responsible for
the administration of these programs. The policy and guidelines of these programs are
set by the ACOVA whose board is made up of veterans. In order to prudently manage
the fund and budget Hardship Grants Program, it is important to evaluate the medical
benefit needs of veterans in North Dakota so that appropriate decisions are made at
the state level to generate sufficient funds to pay eligible veterans and their families in
future years. This study provides statistical models and tools which can be applied in
the financial assessment of the medical benefit needs for veterans in North Dakota and
may be used in any other U.S. state where similar programs exist. Government and
policy makers may also be interested in this study as they want to make decisions and
provide sound investments for future public policies.

2 Introduction

Censoring has been extensively discussed as a part of survival analysis and a large
volume of literature is generated in this area. Good information on these topics can be
found in books by Klein and Moeschberger [11] and Lee [12]. An observation is right
censored at a censoring point if when it is above the censoring point, it is recorded
as being equal to the censoring point, but when it is below the censoring point, it
is recorded as its observed value. In medical statistics, right censoring is analyzed
from the data of patients who are still alive at the end of the study and those who
terminated the study due to surrender as stated by Miller [16]. Right censoring in
insurance industry was discussed by Guiahi [9]. Some policies are structured in such a
way that the policy limits serve as a restricted amount of payment on a given loss. For
a loss below or equal to the policy limit, payment is made in the amount equal to the
loss. If the loss exceeds the policy limit, payment is imputed at the policy limit.

Linear regression models are commonly used in many applications to analyze the
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functional relationship between a response variable and other explanatory variables that
are perceived to be related to the response variable. Typically, a normal distribution is
assumed for the underlying assumption of the error structure. However, these models
have limitations when the response variable is right censored since they may yield fitted
values of the variable of interest to exceed its upper or lower bound when the censoring
is ignored.

Tobit models [22] were popular for some time since they allowed for the response
variable to be latent (i.e. unobservable) in the regression settings (e.g., [6], [21], [23],
[8]). The observable response variable is equal to the latent variable whenever the latent
variable is above zero and zero otherwise. The interpretation of the coefficient is not
the same as that used in the ordinary regression. For example, the interpretation may
look at the change of the response variable of those above the limit weighted by the
corresponding probability of being above the limit [14]. Also basic Tobit model uses
one censoring level (threshold) that is constant across all observations. Some critiques
of the use of Tobit model were raised by Maddala [13]. He suggested that this method
is appropriate only when the bunching of the y values in a regression occurs because
of some exogenous mechanism (e.g., the way in which data were collected or recorded)
and not in other situations.

Censored, Sample Selected, or Truncated Data were nicely summarized in a book
by Breen [3]. The book includes many examples of censored regressions which apply
the concepts and relate a reader to the applications in non-experimental social sciences.
The book also emphasizes the advantage of using the maximum likelihood approach
in parameter estimation. Breen [3] makes a note of caution that large sample size is
important for the desirable properties of the estimators. However, none of the methods
presented in the book are based on the EM algorithm.

Early studies on parametric methods for right censored regression were dated in the
1970s. An iterative procedure known as the EM Algorithm was proposed by Dempster
et al. [7]. The EM algorithm has been extensively used for missing data or data con-
taining missing values. Good information on the EM methodology and the applications
can be found in the book published by McLachlan and Krishnan [15]. More recent sig-
nificant developments in using EM algorithm in right censored modeling problem are
presented in papers by Wei and Tanner [24] and Ng et al. [18].

Aitkin [1] analyzed data on electrical insulation in 40 motorettes tested at four
different temperature settings. The time until failure in hours of each motorette is
recorded. Observations were right censored if the motorettes were still on test without
failure at the indicated time. Aitkin used a simple linear regression model and showed
that the parameter estimates for the same data (40 motorettes) can be obtained by
maximum likelihood using the EM algorithm. In the E-step, censored observations
were replaced with their conditional expectations given the observed data and the
current parameter estimates. Then in the M -step, the new parameter estimates were
computed by the maximum likelihood method based on the complete data.

This article extends the Aitkin’s idea and offers another application of the EM algo-
rithm in right censored multiple regression settings by providing parameter estimates,
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variability assessment, model selection, and measures of model utility and influence.
A novel application of this methodology is demonstrated on financial benefit data set
provided by ND DVA.

The organization of this paper is as follows. Section 3 defines problem settings, pa-
rameter estimates, variability assessment, and normality assumptions based on the EM
algorithm. Section 4 introduces new formulas for measuring model utility and diagnos-
tics based on one-step deletion. Simulation study is provided with parameter estimates
and model validation in Section 5. Section 6 includes the analysis and discussion of
the ND DVA data incorporating methodology presented in this article. Concluding
remarks are given in Section 7.

3 Right Censored Regression

3.1 Problem Setting

Consider the traditional form of the multiple regression model:

y = Xβ + ε,

where ε ∼ N(0, σ2I) and β = (β0, β1, . . . , βp)
′

is a vector of unknown parameters.
The matrix, referred to as the design matrix, X is of size n × (p + 1) and is assumed
to have rank equal to p + 1 (full column rank). The goal of traditional multiple re-
gression is to estimate the parameter vector ψ = (β0,β1, . . . , βp, σ

2)
′

. This can be
accomplished through minimization of a suitable cost functional, for example, by Least-
Squares method, which minimizes the sum of squares of deviations for the n observed
responses, yi , from their fitted values,(ŷi).

Now, consider the linear regression model with censored observations. Assume y
and z are n1 - and n2-vectors of uncensored and censored observations respectively;
n = n1 + n2.

Denote by z̃ the vector of unknown values which are censored to vector z. Denote

by y∗ =

(
y
z̃

)
. The linear regression model has a form

y∗ = X∗β + ε,

where ε ∼ N(0, Iσ2), and X∗ is a design matrix. Then X∗ may be partitioned into

two parts: X∗ =

(
X1

X2

)
corresponding to the uncensored and censored observations.

As above the goal is to get values of the set of parameters ψ = (β0,β1, . . . , βp, σ
2)
′
.

3.2 Expectation Maximization Method

We can use the EM method when we have two sets of unknown quantities: parameters
of model (like coefficients of regression model and variation of additive noise) and data
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which provide an incomplete information about some of observations (for example,
censored observations).

Every iteration of EM algorithm consists of two steps, which are usually called
E-step and M -step. On E-step we try to restore the values of incomplete observa-
tions having the parameters of model fixed. In many cases these restored values are
taken equal to corresponding conditional expectations of these values given available
information about these observations and parameters of the model.

On the next M -step the parameters of model are recomputed based on new values
of observations found on the E-step. To this end the method of maximization of the
likelihood function may be used.

On each iteration both sets of unknown quantities are changed. In many cases (and
in the case considered in this article) it is proved that the iterations converge to certain
limits. The stopping criterion is based on when the relative increase in the likelihood
function is no bigger than some small pre-specified tolerance value.

3.3 Parameter Estimates

The complete likelihood function, based on the complete information for censored re-
gression, is defined as follows:

Lc(ψ,y, z̃) = (2π)−n/2(σ2)−n/2 exp

{
− [(y −X1β)′(y −X1β) + (z̃ −X2β)′(z̃ −X2β)]

2σ2

}
The logarithm of function Lc, known as the complete-data loglikelihood function lc is
given by

lc(ψ,y, z̃) = −n
2

log(2π)− n

2
log(σ2)

− [y
′
y − 2β

′
X
′
1y + β

′
X
′
1X1β + z̃

′
z̃− 2β

′
X
′
2z̃ + β

′
X
′
2X2β]

2σ2

The conditional expectation of lc given the observed data (y, z) and ψ is defined
as Q-function, given by

Q(ψ,y, z) = −n
2

log(2π)− n

2
log(σ2)

− [y
′
y − 2β

′
X
′
1y + β

′
X
′
1X1β +B − 2β

′
X
′
2A+ β

′
X
′
2X2β]

2σ2
(3.1)

Here, n2-vector A and a number B are calculated in the E-step as the first and second
moments of the conditional expectation for censored observations, given that their
values are above the censoring point. It is straightforward to show that

A = E(z̃ | z̃ > z ,β, σ2) = X2β + σf(
z −X2β

σ
),
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B = E(z̃
′
z̃ | z̃ > z,β, σ2) = ‖X2β‖2 + σ(X2β + z )′f(

z −X2β

σ
) + n2σ

2,

where f(x) = ϕ(x)
Φ(−x) , ϕ(x) = 1√

2π
e−

x2

2 , Φ(−x) =
∫ −x
−∞ ϕ(s) ds, and ‖ · ‖ is the Euclidean

norm of vectors.

The E-step consists of computing A and B. During the next step, the M -step, we
maximize the Q-function with respect to parameters β and σ using the valuesA and B.
The maximized value of the Q-function will lead to the maximum likelihood estimates
(MLEs) for the model. Finding the maximum amounts to finding the solutions to the
following equations:

∂Q

∂β
= 0 and

∂Q

∂σ2
= 0.

From this, we have

∂Q(ψ,y, z)

∂β
=
X
′
1y −X ′1X1β +X

′
2AX

′
2X2β

σ2

and therefore
β̂ = (X

′
X)−1(X

′
1y +X

′
2A).

Similarly,

∂Q(ψ,y, z)

∂σ2
=

[y
′
y − 2β

′
X1y + β

′
X
′
1X1β +B − 2β

′
X
′
2A+ β

′
X
′
2X2β]− nσ2

2(σ2)2

and

σ̂2 =
y
′
y +B + β

′
(X
′
1X1 + X

′
2X2)β − 2β

′
(X
′
1y + X

′
2A)

n

Here β̂ and σ̂2 are MLEs of parameters β and σ2, respectively. Using norms notation,
the equation above can be expressed as

σ̂2 =
‖y −X1β̂‖2 + ‖X2β̂ −A‖2 +B − ‖A‖2

n
.

Calculation of parameter estimates β̂(k+1) and (σ̂2)(k+1) in each (k + 1) step can be
obtained as follows:

β̂(k+1) = (X
′
X)−1(X

′
1y +X

′
2X2β̂

(k) + σ(k)X
′
2f(

z −X2β
(k)

σ(k)
))

(σ̂2)(k+1) =
(‖y −X1β̂

(k)‖2 + σ(k)(z −X2β̂
(k))′f(z−X2β(k)

σ(k) ) + n2(σ2)(k))

n
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3.4 Variability Assessment

McLachlan and Peel [17] defined an approach that can be employed for the variability
assessment of all parameter estimates. The empirical observed information matrix
serves as an estimate of the corresponding observed information matrix and is obtained
by

Ie(ψ̂) =

n∑
i=1

5qi(ψ̂)5 qi(ψ̂)
′

,
where ψ̂ = (β̂, σ̂2) represents the vector of parameter estimates, or MLEs, and 5qi(ψ̂)
is the gradient vector of the conditional expectation of the complete data log likelihood
function constructed on the ith observation and evaluated at ψ̂. Note that: Q(ψ̂) =∑n

i=1 qi(ψ̂). For each i, 5qi(ψ̂) is a vector of length (p + 2) defined by

5qi(ψ̂) = ((
∂qi(ψ)

∂β
)
′
, (
∂qi(ψ)

∂σ
))
′

.
Consider a vector d = (d1, . . . , dn) of length n, where dj = 1 if jth observation is
censored and dj = 0 if jth observation is uncensored, j = 1, . . . , n. Denote by x1i, x2i

the ith rows of matricesX1,X2 respectively, which have been introduced in Section 3.1.
Denote by y∗i the ith component of vector y∗ of uncensored and censored observations.
It follows that

∂qi(ψ)

∂β
=
x
′
1iy
∗
i (1− di)− x

′
1ix1i(1− di)β + x

′
2idiE(y∗i )− x

′
2ix2idiβ

σ2
,

and

∂qi(ψ)

∂σ
= − 1

σ
+

(y∗i )
2(1− di)− 2β

′
x
′
1iy
∗
i (1− di) + β

′
x
′
1ix1iβ(1− di)

σ3

+
E((y∗i )

2)di − 2− 2β
′
x
′
2iE(y∗i )di + β

′
x
′
2ix2iβdi

σ3

.
These partial derivatives will be used to assemble the covariance matrix. This covari-
ance matrix of the MLEs, which is obtained by taking the inverse of Ie(ψ̂) can be
directly employed for testing various hypotheses and finding confidence intervals for
the parameters of the model.

3.5 Model Selection

The Akaike Information Criterion (AIC) is a popular model selection procedure pro-
posed by Akaike [2]. The AIC considers the negative log-likelihood plus a penalty term
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that reflects the number of free parameters (M) in the model. The form of the AIC is
given by

AIC = −2l(ψ̂) + 2M,

where l(ψ̂) is defined as follows:

l(ψ̂) = −(n−m)

2
log(2π)− (n−m)

2
log(σ2)− 1

2σ2
(y −X1β)

′
(y −X1β)

+
n∑

i=n−m+1

logP (y∗i > zi),

l(ψ̂) = −(n−m)

2
log(2π)− (n−m)

2
log(σ2)− 1

2σ2
(y −X1β)

′
(y −X1β)

+
n∑

i=n−m+1

log[1− Φ(
zi − x2iβ

σ
)].

The model with the minimum AIC is selected as the best model to fit the data.
Another commonly used method in model selection was proposed by Schwarz [20]

and is known as Bayesian Information Criterion (BIC). Similar to AIC, the BIC ap-
proach adjusts the log-likelihood l(ψ̂) by a penalty term which considers the number of
observations (n) in the sample in addition to the number of parameters in the model:

BIC = −2l(ψ̂) +M log(n)

.
The model with the minimum BIC is chosen as the best model to fit the data.

3.6 Normality assumption

In our model the term ε in the linear regression model is supposed to have normal
distribution. This assumption is certainly important in deriving the iteration formulas
for parameters (β, σ2) of this distribution. If the error term ε has different distribution,
then the whole approach remains valid, but the formulas on each step of the EM
algorithm take different form. In many cases the M -step requires solution of implicit
equations which is an additional computational burden. For such cases it is necessary
to derive efficient methods to find maximum with respect to parameters of distribution
of the conditional expectation of the complete-data loglikelihood function lc. This can
be a subject of future investigations.

8



4 Model Validation and Diagnostics

4.1 Measuring Model Utility

It is a standard approach for modeling multiple regression to consider the coefficient
of determination R2 as a useful measure of how well the model fits the data. The R2

is defined as the proportion of total response variation that is explained by the model.
Higher R2 indicating better model fit. However, R2 alone does not indicate whether
the model is appropriate. The R2 for ordinary regression is defined as

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

= 1− SSE

TSS
,

where SSE represents the sum of squares for error and TSS is the total sum of squares.
The TSS measures the variability in the model relative to the horizontal line ȳ. The
SSE measures the variability in the response y from the fitted line ŷ. For ordinary
regression, the best fitted model is defined based on the principle of least squares
which minimizes the sum of squares of errors SSE.

For right-censored regression using the EM algorithm, there is no comparable mea-
sure developed by researchers. The least squares method cannot be applied due to the
presence of censored data. The following proposed R2 calculation is based on the idea
of maximizing the Q-function (3.1) given optimal values of the parameters relative to
the maximization of the same function assuming the intercept term only.

Assume p is the number of independent variables in the model. Define the following
objective function based on the Q-function

J(β0, β1, . . . βp) = ‖y −X1β‖2 + ‖y −X1β‖2 +B − ‖A‖2

Next, define

Jlin(p) = minβ0,β1,...,βpJ(β0, β1, . . . , βp),

Jconst = minβ0J(β0, 0, . . . , 0) = Jlin(0, . . . , 0).

Jlin is the optimal value of the objective function J if we use the whole design partition
matrix X. Jconst is the optimal value of the same function if we use only the first
column of X.

The proposed R-squared is defined as the reconstructed coefficient of determination:

R2
c = 1− Jlin(p)/Jconst. (4.1)

The R2
c(p) does not have a closed form solution compared to an ordinary coefficient of

determination.

Theorem 4.1. The following statements about R2
c(p) are true:

(i) 0 ≤ R2
c(p) ≤ 1

(ii) Function R2
c(p) is non-decreasing with respect to p.
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Proof. (i) By definition of Jlin and Jconst, we have 0 ≤ Jlin ≤ Jconst. Therefore
0 ≤ R2

c(p) ≤ 1. (ii) By definition, Jlin(p) is nonincreasing in p. Therefore R2
c(p) is

nondecreasing with respect to p.

4.2 Measuring the Influence by One-step Deletion Method

For assessing the influence of a single observation on the parameter estimates in cen-
sored regression, one of the popular methods is one-step deletion method. The one-step
deletion method measures the change in parameter estimates when the ith data point
is deleted from the sample. Weissfeld and Schneider [25] studied this method but our
formula for one-step deletion based on the EM algorithm is differently developed and
produces different results.

Consider the following model

β̂ = (X
′
X)−1X

′
ŷ∗

where ŷ∗ =

(
y
A

)
is a vector of uncensored and reconstructed censored observations.

Now, assume that the ith observation is omitted. Then, instead of using matrix X we
have to use matrix X(i), which is the matrix X with the ith row omitted. For this
problem, the optimal model has optimal parameters which can be found using a similar
formula:

β̂(i) = (X
′

(i)X(i))
−1X

′

(i)ỹ
∗
(i),

where ỹ∗(i) is the vector of uncensored and reconstructed censored observations based
on all available observations except for the ith observation.

Denote by ŷ∗i the ith component of the vector of observations ŷ∗, based on all
available observations including the ith. Denote by ŷ∗(i) the vector ŷ∗ with the ith
observation ŷ∗i omitted. Notice that vectors ỹ∗(i) and ŷ∗(i) have the same number of
components; the former vector is based on all observations except the ith one while the
latter vector is based on all observations including this ith observation.

Denote by xi the ith row of the matrix X which is omitted in X(i). Then, X
′
X =

X
′

(i)X(i) + x
′
i xi and X

′
ŷ∗ = X

′

(i)ŷ
∗
(i) + x

′
i ŷ
∗
i . Thus,

(X
′
X)−1(X

′

(i)X(i) + x
′
i xi) = I.

Multiplying this equation by (X
′

(i)X(i))
−1 we obtain:

(X
′
X)−1(I + x

′
i x i(X

′

(i)X(i))
−1) = (X

′

(i)X(i))
−1.

Next, if we multiply each side of equation by xi from the left and regroup the terms,
we have

xi(X
′
X)−1 + xi(X

′
X)−1x

′
i xi(X

′

(i)X(i))
−1 = xi(X

′

(i)X(i))
−1
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xi(X
′
X)−1 = (1− x i(X

′
X)−1x

′
i )xi(X

′
iXi)

−1

xi(X
′

(i)X(i))
−1 = (1− xi(X

′
X)−1x

′
i )
−1xi(X

′
X)−1.

Substituting into the appropriate part of we get

(X
′
X)−1(I +

x
′
i xi(X

′
X)−1

1− xi(X
′X)−1x

′
i

) = (X(i)X(i))
−1.

Then, we have

4βEM = β̂ − β̂(i) = (X
′
X)−1X

′
ŷ∗ − (Xi

(i)X(i))
−1X

′

(i)ỹ
∗
(i)

= (X
′
X)−1[X

′

(i)ŷ
∗
(i) + x

′
i ŷ
∗
i − (I +

x
′
i xi(X

′
X)−1

1− xi(X
′X)−1x

′
i

)X
′

(i)ỹ
∗
(i)]

=
(X

′
X)−1

1− xi(X
′X)−1x

′
i

[(1− xi(X
′
X)−1x

′
i )X

′

(i)(ŷ∗(i) − ỹ∗(i))

+x
′
i ŷ
∗
i (1− xi(X

′
X)−1x

′
i )− x

′
i xi(X

′
X)−1X

′

(i)ỹ
∗
(i)].

Finally, we obtain 4βEM as

4βEM =

(X
′
X)−1

1− xi(X
′X)−1x

′
i

[[(1− xi(X
′
X)−1x

′
i )I+ x

′
i xi(X

′
X)−1]X

′

(i)(ŷ∗(i)− ỹ∗(i)) + x
′
i (ŷ∗i − xiβ̂)].

By comparing this formula to that developed by Weissfeld and Schneider we observe
that they are different and coincide if ŷ∗(i) − ỹ∗(i) = 0. However, if the difference ŷ∗(i) −
ỹ∗(i) = 0 is not equal to zero, then in general, the formulas produce different results.

In order to eliminate the influence of an observation due to its position on the
interval of x values, the vector 4βEM in the formula can be divided by the vector
(X

′
X)−1xi component-vise providing a valuable measure of sensitivity of parameters

with respect to the coefficients of the linear model. Thus the normalized version of the
formula is defined as

[4βEMNOR]j =
[4βEM ]j

[(X′X)−1xi]j
, j = 1, 2, . . . , p.

Relatively large values of this statistic indicate the most influential observations on
the coefficient estimates of the model. This issue was not addressed by Weissfeld and
Schneider for the one-step deletion based on the EM algorithm.
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Figure 1: Simulation results for β1 for sample size (300, 60) with 10%, 30%, and 50%
censored data.

5 Simulation Study

A simulation study was conducted to assess the performance of the proposed method
for different sample size and amount of censoring. The data were simulated from the
model

y = 2 +X1 +X2 + ε

where X1 is designed such that xi = i/n, i = 1, 2, ..., n where n is the sample size,
X2 ∼ Binomial(n, 0.5), and ε ∼ N(0, 0.2). For this model β0 = 2, β1 = 1, and β2 = 1.
Different simulation settings were created by manipulating the sample size (300, 60) and
the percentage of points censored (10%, 30%, 50%) in order to validate performance of
the algorithm. Once the data were generated, censored points were selected at random
on the entire interval. Their values were compared to a censoring level randomly drawn
from U(1, 4). If a value of a selected data point was above the censoring level, it was
trimmed at the censoring level, otherwise it remained uncensored. This procedure was
repeated until the desired censoring amount was achieved.

The results of the 1000 runs for each setting of simulation are summarized in Table
1, which shows the average parameter estimates and their corresponding mean square
errors (MSE). For visual illustration, a box plot summary of estimated β1 for sample
size (300, 60) with 10%, 30% and 50% censoring is shown in Figure 1.

The results show that the proposed parameter estimators have very small bias and
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Table 1: Simulation Results

Parameter Sample Size Censoring (%) β̂ (MSE)
β0 60 10 1.9992 (0.0035)

30 1.9982 (0.0044)
50 2.0051 (0.0056)

300 10 1.9993 (0.0007)
30 2.0011 (0.0008)
50 2.0010 (0.0011)

β1 60 10 1.0008 (0.0088)
30 1.0055 (0.0118)
50 0.9993 (0.0147)

300 10 1.0014 (0.0018)
30 0.9997 (0.0022)
50 1.0030 (0.0031)

β2 60 10 1.0021 (0.0028)
30 1.0021 (0.0039)
50 1.0023 (0.0053)

300 10 1.0004 (0.0005)
30 1.0002 (0.0007)
50 1.0043 (0.0010)

σ 60 10 0.1932 (0.0004)
30 0.1921 (0.0005)
50 0.1905 (0.0007)

300 10 0.1987 (0.0001)
30 0.1984 (0.0001)
50 0.1979 (0.0001)

the mean square error. Therefore, the proposed EM method works very well in a
multiple regression setting assuming a normal model. Sample size and the amount of
censoring have impact on the parameter estimates and their corresponding MSEs. It
can be noticed from Table 1 that an increase in MSE is observable for an increase in
sample size and amount of censoring.

6 Application to North Dakota DVA Data

6.1 Data

Data used in this study were provided by ND DVA. Typically, categories of health
benefits available to veterans are capped (right censored) or limited at certain level.
The censoring points change over time, as they are subject to review and state approval,
and they may vary across different categories. For any claim, if the expense exceeds
the amount granted, it will be reimbursed at the value of granted amount.

Medical grants are subject to a limit and the annual amount of benefits is capped
(right censored). The data provided consist of payment amounts granted to each ap-
plicant for years 2000 through 2010. Table 2 shows the variables provided and their
descriptions.

About half of the variables listed in Table 2 were of interest to our project. The
difference between application year and birth year was used to determine the applicant’s
age. Year when the application was approved was extracted from the approved date.

13



Table 2: The ND DVA Data Summary

Variable Description

VaucherDate Day/Month/Year when the benefit payment is made
Gender Male(0) or Female (1)
ApplicationDate Day/Month/Year when the application was filed
ApprovedDate Day/Month/Year when the application was approved
BirthDate Birth date of each applicant
AmountGranted Amount granted by the grant program
Category Category of benefits (dental, denture,hearing, optical, and special)
ApplicantTB Applicant’s unique non-identifiable ID
Status Status of a person receiving benefits

(v-primary beneficiary(veteran),
vs-spouse of a living veteran,

and w-widow/widower).
NoIndependents Family size including applicant(seven levels:1,2,3,4,5,6,7)
AmountPaid Benefit amount paid
ZipCode 5-digit postal code of the applicant address
County County code of the applicant address
CountyName County name of the applicant address

An applicant is given only 90 days to use the grant. In this case approved date and
voucher date are only three months apart, and the data are available only for those
applicants who actually used the grants. Dates for others who have not managed to use
the grant were provided as cancelations and were ignored in this study. The amount of
money granted as well as the amount of money given from 2000 to 2010 by ND DVA
is adjusted for inflation using the Consumer Price Index (CPI) published by Bureau of
Labor Statistics, U.S. Department of Labor [4].

Historically, benefit categories carry different benefit caps (limits) on an annual
basis. Dental benefits started with a $500 cap as of 12/2004, then increased to $750 as
of 1/2006, and finally reached $1000 as of 11/2007. Dental services sometime require
more than one appointment; in this case applicants receive several payments during the
year. Therefore, the data for dental category were aggregated by year and applicant.
The data for dentures, hearing, optical, and special categories of benefits were excluded
since they contained significantly lower number of records and as such they may not
be reliable.

The ND DVA uses monthly income level and family size to determine if an applicant
meets benefit eligibility criteria. Each income level corresponds to a certain family size.
For example, a family of two earning less than $1400 per month, or a family of eight
earning less than $2600 per month, would be eligible for benefits. Many records were
missing family size but had income level provided. For this reason, we used income
level only and ignored family size as these two variables seem to be correlated.
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Table 3: Department of Human Services-Poverty Guidelines

Variable Description

Household Size 1 2 3 4 5 6 7
Annual Income $10,400 $14,000 $17,600 $21,200 $24,800 $28,400 $32,000

Table 4: Eligibility Requirements Set by ACOVA

Variable Description

Household Size 1 2 3 4 5 6 7
Annual Income $14,400 $16,800 $19,200 $21,600 $25,200 $28,800 $31,200

Dental records show that the applicant’ age varies from 24 to 94 with 84% of the
individuals being older than 50. Men represent 287 applicants compared to 81 women.
Based on status, 26 applicants are spouses of living veterans and 33 applicants are
widows or widowers. Living veterans represent 309 individuals or 84% of the sample.
It is observed that 34 individuals or 9.2% of the sample reported zero income. The
highest income reported is $2600 per month for a large family. Thus, most of these
people live below the poverty level. The poverty guidelines are issued each year in the
Federal Register by the Department of Health and Human Services (HHS)[28]. The
2008 income threshold by family size, reported by HHS, for the 48 contiguous states is
summarized in Table 3.

North Dakota had 11.8% of its total population living below the poverty level in
2007 compared to the national average of 13% reported for the same period. Poverty
guidelines determined by ACOVA on the basis of national statistics are reported in
Table 4. These poverty tables are analyzed periodically by ACOVA and they are used
to adjust eligibility criteria for benefits as well as to modify limits on benefits.

There were 575 annual aggregate applications for dental benefits used by 368 dif-
ferent individuals for years 2000-2010. We identified 274 (48%) applications with a
paid amount in benefits equal to or higher than the amount granted. These policies
represent right censored data. For uncensored data records, paid amount in benefits
was greater than zero and less that the defined limit (cap or censoring point).

Finally, the following variables were selected for inclusion in the modeling of den-
tal benefits: year, age, gender, amount granted, censored amount, income level, and
applicant’s status. Application year, age, gender, income level, and applicant’s status
represented explanatory variables while the amount paid (adjusted for inflation) was
used as a response variable in the model.

6.2 Analysis

The EM algorithm was applied to illustrate the modeling of veterans’ health benefits
with a special focus at dental benefit category. Statistical computing was performed
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Table 5: Parameter Estimates for the Full EM Model.

Parameters Estimates 95% CI p-value

Intercept 329.60 (116.36, 542.83) 0.0024
Application Year 58.37 (42.66, 74.07) 0.0000
Age -0.31 (-3.30, 2.68) 0.8391
Gender 88.19 (-34.30, 210.69) 0.1582
Income Level 0.05 (-0.03, 0.14) 0.2422
Spouse -54.12 (-223.15, 114.91) 0.5303
Widow/er −157.45 (-328.90, 13.99) 0.0718

in R software version 3.01. First, the right censored regression model was considered
with all explanatory variables. That is:

E(BenefitPaid) = β0 + β1(Applicationyear) + β2(Age) + β3(Gender)+

β4(IncomeLevel) + β5(Spouse) + β6(Widow/er). (6.1)

The EM algorithm, employed in modeling parameter estimates and variability assess-
ments, indicated that gender, age, income level, and spouse were not significant pre-
dictors of the paid benefits. Application year and widow /er were significant predictors
with the possibility of application year entering the model as a quadratic term. The
parameter estimates (and their significance) of this model are shown in Table 5.
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Table 6: Summary of Different Criteria Used in the Model Selection

Model Log-likelihood AIC BIC

Model-1 -2126.44 4266.88 4272.19
Model-2 -2129.39 4262.78 4264.29
Model-3 -2128.37 4262.74 4265.19
Model-4 -2129.14 4262.28 4263.79
Model-5 -2128.12 4262.23 4264.50
Model-6 -2120.93 4249.86 4252.89

Model-1: Full model per (6.1)
Model-2:E(Benefit Paid)= β0 + β1(Application year)
Model-3:E(Benefit Paid)= β0 + β1(Application year) + β6(Widow/er)
Model-4:E(Benefit Paid)= β0 + β1(Application year)2

Model-5:E(Benefit Paid)= β0 + β1(Application year)2 + β6(Widow/er)
Model-6:E(Benefit Paid)= β0 + β1(Application year)2 + β3(Gender) + β6(Widow/er)

Table 7: Parameter Estimates for the EM Model-6

Parameters OLS Estimates EM Estimates EM 95% CI p-value

Intercept 375.76 522.45 (457.54, 587.36) 0.0000
(Application year)2 4.93 4.41 (3.25, 5.58) 0.0000
Gender 34.39 71.00 (-23.25, 165.26) 0.1300
Widow/er -86.38 -143.42 (-286.90, 0.05) 0.0500

In subsequent model selections, five additional models were examined. Additionally,
we also considered models with the interaction terms but none of the interaction terms
were significant. Summary of results for six selected models includes the log likelihood
value, AIC, and BIC and it is shown in Table 6. The minimum values of AIC and BIC
are reported for Model-6, which is proposed to be the best model.

Parameter estimates for Model-6 with their confidence intervals and corresponding
p-values are summarized in Table 7. If we consider the same portfolio of applicants, the
total dental benefit needs of ND veterans for the period 2003-2009, calculated based on
the EM algorithm, was $407,562 compared to the amount of $333,472 actually spent.
The difference of $74,090 can be used to help ACOVA increase the cap on benefits in
the future and suggest to the State Treasurer that additional investments were needed
in funding this grant program.

Model-6 is the best model based on AIC and BIC criteria even though the gender
is not significant variable. According to this model, widowers generate $143.42 less
in benefit payments on average compared to a living veteran or a spouse of a living
veteran. On average, female applicants require $71 more in benefits compared to a
male applicant. While there is a larger proportion of a male veterans compared to
female veterans or dependents, it seems that females are using benefits more than
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males. Benefits are also a function of money that is available in the state budget for
that purpose. When more money is available in state budgets more needy veterans will
potentially benefit.

The data show that in more recent years, a higher amount of money was available
for spending even when the benefits are adjusted for inflation. The intercept coefficient
provides us with a fixed cost per person for running this program. In other words,
the veterans spent, based on Model-6, an amount of about $522.45 per applicant/ per
year irrespective of the number of applicants and their characteristics. We observe
that income level is an insignificant predictor of benefits used. If the overall veteran
population was considered in the analysis, one might expect that the lower income
veterans are the most likely to use the benefits. However, most veterans eligible for
benefits have income below the 100% poverty threshold. Hence the income level is very
low and it does not segregate people further into subgroups. Age is another insignificant
variable in Model-6 suggesting that benefits are used across all age groups 23-94.

The results of Model-6 are compared to those generated by ordinary least square
when censoring is ignored and an improvement is observed. The ordinary least square
produces a lower mean and the intercept of the model compared to the EM method.
By employing the EM method, not only that we are able to estimate parameters more
accurately in presence of censored data, but we are also able to find the conditional
execrated values of those censored observations (the value above censoring level). Using
the ordinary least square would results in an underestimation [3] and under-prediction
of future benefit needs. For example, the ordinary least square generates fixed cost of
dental expenses of $375.76 for running this program compared to $522.45 estimated
by the EM method. The latter one is more reasonable considering the cost of dental
services for the time period considered in the analysis.

The results of the EM method are more informative to the policy holders who make
decisions about ND DVA program.This analysis helps our understanding of what are
the determinants of the distribution of the available benefit funds. It also helps us
determine the total benefit need of the veteran population in ND.

The reconstructed coefficient of determination for Model-6 is 10.75%, lower than the
coefficient of determination of 25.74% for the same model when censoring is ignored.
The overall fit is relatively low but this is due to the large variability observed in the
data set and the large proportion of censored points.

In addition, the reconstructed values for the censored observations can be used to
validate the reasonability of the existing benefit caps. Based on the selected model,
one can obtain more information about the average amount of expenses in excess of
the existing cap.

Six uncensored outliers (1% of the total number of observations) were found in the
data. These outliers had t-values above the critical value of 1.96 used for their detection.
After careful inspection of the data, it was found that these observations reported
extremely low amounts of benefits in the range of $31 to $75. Without additional
knowledge as to whether these observations are results of errors or true benefit values,
it was decided that they should not be removed.
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Figure 2: The influence based on one-step deletion of β0, β1, β2, and β3.

Influence diagnostics based on the one-step deletion method were applied to the ND
DVA dental data. Formula (4.1), proposed in Section 4.2, was used in these calculations.
The results for the four parameters from Model-6, based on all 575 data points, are
plotted in Figure 2.

The biggest spikes correspond to the most influential points. By careful inspection,
it was found that these influential points correspond to most of the censored data
reported for years 2006 and 2007 as well as uncensored outliers from these years. If
we recall that the cap on dental benefits increased from $500 to $750 as of 1/2006 and
further increased from $750 to $1000 as of 11/2007, these results are expected. The
jumps in the censoring levels as well as several uncensored outliers explain the high
influence of the corresponding observations on parameter estimates.

6.3 Discussion

Data shows that majority of widows and widowers veterans in North Dakota have age
range 49 to 91 with a half of them being older than 75. They are scattered around the
state of North Dakota far from Cass County where ND DVA office is located. These
counties includes: Morton, Emmons, Grant, McIntosh, McKenzie, Stark, Tower, Ward,
Wells, and Renville. In our analysis, we found that widows acquire fewer benefits, on
average, compared to living veterans. This could be due to their age and immobility
considering the distance from the main ND DVA office in Cass County. The DVA
agency may consider different ways of reaching out to this veteran’s population segment.
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The amount of money granted seems to vary by year. In most recent years, more
money was available for benefits. The trend in number of veterans is increasing. Even
though caps by category of benefits have been evaluated periodically, the latest caps
are still low compared to their expected level generated by the EM algorithm.

The veterans who reported zero income should be evaluated for other benefit op-
portunities.

7 Conclusion

This paper provides a novel application of the EM algorithm for modeling the right cen-
sored multiple regression. The right censored, response variable represents the amount
of benefits received by the low-income veterans population in ND as a function of in-
dividual characteristics such as gender, age, income, application year, marital status,
family size, etc. The EM algorithm was employed for finding the parameter estimates
of the censored multiple regression model. Simulation study showed that the pro-
posed method performers well under different simulation settings. New formulas for
reconstructed coefficient of determination and influence diagnostics based on one-step
deletion were derived using the objective functions of the EM algorithm. Application
of this model to North Dakota veterans’ data set showed that significant predictors of
veterans benefits are: application year, marital status, and gender. On average, widow-
ers acquire significantly less benefits than a living veteran. Application year is another
significant predictor of benefits as the money available from the state may vary from
year to year. Female veterans spend more money then male veterans although number
of female veterans is significantly lower than male veterans. The influence diagnostics
formula based on one-step deletion allowed us to easily detect those observations that
have great influence on the parameter estimates such as changes made in the censoring
level from year to year. This model can also be used to asses appropriates of benefit
caps. The reconstructed value of the censored observations can be easily obtain from
the EM model and used when decisions are made to increase the benefit caps. These
results and findings should be beneficial to both North Dakota policy makers and policy
makers in other states with similar programs.
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