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Abstract: We build a probabilistic solution generator using the learning automata theory,
which can generate a small set of “good enough” designs with a predetermined high
probability. The main goal of our work is to reduce a large design population to a much
smaller subset of good designs that can be analyzed thoroughly in a subsequent simulation
study to identify the best design among them. In the process of building the solution
generator, a rough-cut design evaluation method with a high noise error is employed in order
to screen designs very rapidly may it be an approximate method, a heuristic approach, or
short simulation runs. The solution generator has been applied successfully to several serious
test problems with noisy objectives.

Keywords: Simulation, Stochastic Optimization, Ordinal Optimization, Learning Automata
Theory

1. Introduction

The main purpose of a simulation study is usually to analyze and improve the
performance of a system under different scenarios defined by various operational and
design decisions. In this paper, when we use the term “design” or “solution”, we imply a
feasible combination of decisions under study without distinguishing the type of
decisions in question. But, the decisions that we consider here are discrete in nature. If we

are willing to discretize continuous decisions however, they can also be handled within
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the context of this paper. In general, even for a simple system, the decision scenarios are
too numerous to evaluate individually. A simulation model that represents all the
important aspects of a real system is different from an optimization approach that guides
the search for a better solution using a powerful optimization algorithm. Usually in a
simulation study, the analyst starts cutting down the number of alternative designs to a
handful promising ones using heuristic procedures, approximate analytical methods, or
most likely than not, a pure human judgment. The analyst then estimates the performance
of those designs by the simulation model in order to determine the best with a statistical
analysis. One point that needs to be emphasized is that each simulation run is usually a
slow, computationally intensive process if one is after a good estimate of the performance
in the long run and needs to be repeated several times for each alternative design in order
to produce a precise enough, overall average statistics.

In this paper, our goal is to produce “good enough” (or in short, “good”) solutions
rather than an optimal one quickly for a subsequent, more sophisticated simulation
analysis. Solutions are considered to be good designs if they perform better than a
predefined threshold value of the objective function. In formal mathematical terms, the
problem is stated as follows:

min e J(0), where W
J@) = E[LO,w)], YVOeb,
and @ is a large discrete solution set of a finite size, L is a real-valued response function,

which depends on the design § € ® and a random variable @. Typically, the nature of

J(8) is not known explicitly by the problem solver. We can evaluate the function L(6,®)

for a given design by running a simulation model. Then, an estimate of J(6) is computed
from several independent replications of the simulation runs. We do not assume anything
about the form of the objective function or the discrete solution set. Therefore, in general
the problem (1) is extremely difficult to solve except for very small design sets.

When the design set is defined by continuous variables only, approximation methods
and direct search techniques using calculus and gradient have been proposed for the
solution of these problems. But in the discrete design domain, only a handful of global
stochastic optimization methods have been proposed in the literature, for example,
[Andradottir, 1996; Gutjahr and Pflug, 1996; Yan and Mukai, 1992; and Narendra and



Thathachar, 1989]. These methods guarantee the optimality of the searched solution only
in an infinite number of steps and therefore, they usually require a long simulation run for
convergence. Recently, we have seen marriage of the global optimization heuristics, such
as Genetic Algorithms (Michalewicz, 1994), Simulation Annealing (Haddock and
Mittenthal, 1992) , and Tabu Search (Glover et al. 1996) with the commercial simulation
programs. These methods have basically been designed for hard-to-solve combinatorial
problems and they handle the randomness in the response function by running a full
simulation program for a given design several times. In practice, these approaches are
more appropriate only for a small-scale problem. The ordinal optimization [Ho,
Sreenivas, and Vakili, 1992; Ho, 1999], on the other hand, approaches the problem by
relaxing the requirement of optimality with the “good enough” solutions and achieves
such solutions with a crude performance evaluator at an exponential convergence rate
through an ordinal comparison of designs [Dai 1996; and Lee, Lau, and Ho 1999].

In this paper, our preprocessing method borrows the concept “good enough” solutions
from the ordinal optimization and uses an adaptive learning method of the learning
automata theory to build a probability distribution concentrated over a small set of good
designs within the entire population. In the following sections, after covering the
background methods, we will describe the nature of the generator and then éhow
theoretically how the probability of good designs increases in successive iterations.
Then, on the basis of this theory, we will develop the formulas to determine the number
of iterations required to achieve a predefined probability for the good designs.

Capabilities of the generator will be demonstrated through some hard test problems.

2. Two Stochastic Optimization Methods

In this section, we will introduce two stochastic optimization approaches, which form the
important ingredients of our method. We will first describe briefly the general approach
and philosophy of the ordinal optimization. Then, we will delineate the adaptive learning
procedure of the learning automata theory, which is used to build our probabilistic

generator.

(V3]



2.1 The Ordinal Optimization

As alluded before, the difficulty of problem (1) stems from two determinants.
Optimization over a large set of discrete designs is typically a combinatorial type of
problem, where each design is constructed as a feasible combination of many decisions.
Furthermore, the random nature of the problem requires multiple evaluations through
some form of experimentation for each design, which undermine the optimization
algorithm to a greater extent.

The Ordinal Optimization approach confronts the first problem in two fronts. First, it
softens the requirement of a global optimization with a subset of “good enough”
solutions, which are defined as the top n% solutions. Thereby, it enlarges the target of
optimization from a single point to a set of points. In practice, most people would be
content with a better solution than the current practice if the system is already in
existence, or with a design that falls anywhere in the top 1 or 5% of the solution
population for a difficult design problem. Secondly, instead of searching the entire design
population, it reduces design choices to a much smaller subset of representative ones by
uniformly sampling the population. Once we settle for the top n% designs, this
representative subset would also have the good enough designs at the same
proportionality as in the original design population on the average.

The Ordinal Optimization approach confronts the second difficulty by ordering the
alternative designs through a rough-cut performance evaluation procedure rather than
determining the cardinal performance value for each and every design. It is a well known
fact in the Statistics that if we are after constructing an interval on a mean performance
value, the width of the confidence interval shrinks only at the rate of 1 /t 05 where t is
the number of average observations. However, if we are after ordering the alternative
designs, it has been shown that the relative order of two designs can be determined at an
exponential rate of samples, [Dai 1996].

Suppose that we designate a set of good designs with S and the reduced set of the
selected designs from the population with Sg after a crude ordinal comparison of the
alternative designs possibly in a high noise. Ho, et al. 1992 showed that the alignment

probability of these two sets, defined as P{| Sg M Ss | > k }, can be made several orders of



magnitude larger than if we use only a random selection in forming Ss. In addition, the
alignment probability can be quantified for different shapes of cost functions and it
increases exponentially with respect to the size of Sg, [Lau and Ho, 1997; Lee, Lau, and

Ho, 1999]. The general approach of the Ordinal Optimization can be summarized as in

Figure 1.

Phase 1: Reduce the entire design population ® toa
small g number of designs by uniform sampling

Phase 2: Using a rough performance evaluation method
(model), order all g selected designs.

Phase 3: Using some estimates about the shape of the objective function and the variance of the rough
evaluation method, calculate if the desired target value has been reached for the alignment probability. If
not, revisit and modify Phase 1 or/and Phase 2 as appropriate; otherwise produce top designs.

Figure 1: Phases of the Ordinal Optimization approach.

2.2 The Learning Automata Theory

The mathematical treatment of the famous “carrot and stick” learning paradigm in the
control theory goes back to the early work by Tsetlin, 1962. The developments in
learning automata theory over the intervening three decades is explained thoroughly in a
book by Narendra and Thathacher, 1989.

Many different types of learning automata have been developed based on this
principle of adaptive learning with different norms of behavior (convergence). Among
these, the two most sought after ones are the “absolutely expedient” and “epsilon
expedient” behavior. In common terms, the absolutely expedient automata achieve a
strict improvement in its expected cost in any two successive iterations whereas the
epsilon expedient one comes within an arbitrarily small distance of the global optimum
w.p.1 in the long run. In all research related to this type of learning, the goal of the
automata is to obtain the global optimum. The theory supports the convergence only in
infinite steps. The speed of learning, adjusted by a constant, posses a serious challenge.
Unfortunately, the dilemma exists between achieving the optimum expeditiously with

greater chance of getting stuck in the local optima and going gradually toward the




optimum at the expense of a long computation time. The first author of this paper

incorporated the learning automata as a general optimizer in a simulation environment in
an earlier work, [Ozden, 1994].

More formally, a variable structure automaton is defined with the triple {0, B, A} for
designs 0, (normalized) performance evaluations B, and a learning algorithm A, as shown

in Figure 2. When the automaton selects a design 0; and applies it in a random
environment in which the automaton works, it receives a performance evaluation (or, a
feed-back) B; from the environment. On the basis of this evaluation, the automaton

modifies its design selection process according to its learning algorithm.

— Random Environment

Automaton ¢

Figure 2. A learning automaton and its interaction with its random environment.

The design selection process is directed with the action distribution p defined on the
design set 8 and the adaptive learning takes place in this distribution. Initially, the
distribution is constructed uniformly giving equal probability to every design. In the case
of an automaton using the specific learning algorithm known as the “reward and
inaction” (Lg. automaton), which we are going to integrate in our work, the probability
associated with the current design is increased in a small amount if the performance
evaluation received from the environment turns out to be positive (reward) while the
probabilities of the other designs are reduced proportionally. No change takes place in the
distribution in the case that the evaluation turns out to be negative (inaction). The next
design is again selected by sampling the updated distribution for the next iteration. The
iteration continues until one of the designs accumulates a very high probability close to 1.

Hence, at iteration #, the learning process is a mapping defined as

p(n+1) =T1(6, B, p(r) )



If we assume that the performance values received from the random environment come
only in two flavors, as “positive” (or 1) and “negative” (or 0) and assume a small positive
so-called learning constant a, the mapping (2) for the Lr.; automaton can be viewed in

more explicit terms as

If © is 6; at the iteration 7, then _ 3)
pi(n+1) =pim)+a [I-pi(n)] if Biis ]
pi(n+1) = (1 —a)p;(n) v/ except i

and pj(ntl) =pin), otherwise V.

Given this probability vector P(n) whose i™ component is p; (1), the process {P(n) : n 20}
describes a Markov process. The long-term convergence properties of the learning
algorithm can be derived using this Markov property. The Lr.1 automaton using (3) as the
learning algorithm has been proven to be absolutely expedient, (Narendra and

Thathacher, 1989).

3. The Probabilistic Generator for Good Designs

In the Phase 1 of the original ordinal optimization of Figure 1, we reduce the entire
design population into a small set of g number of designs through the uniform sampling.
For a large problem, the entire design population is extremely large, in the order of
billions or more while the size g of the reduced set of designs is usually in the order of
10° After uniform sampling, the top n% of the design population would be found at the
same percentage level in the reduced set on the average. Hence in the entire population of
say, 10° designs, if we want to select the top 1% of the designs, this means we will have
107 good designs to select from. After uniform 1000 sampling, we will have only10 such
designs, on the average, in the reduced set of designs. We would like to increase this

proportion of the good designs considerably in the reduced set if it all is possible.



In this paper, we will define the good designs on the basis of a threshold cost value of
the objective function that the good designs must pass instead of a top percentage
number. An advantage of this change is that in the practice, it is more meaningful for the
managers to set a threshold cost value for the acceptable designs than specifying a
percentage number. In this way, we know exactly what least performance we expect from
the good designs. Hence,

S,={6:J@O)<T, Vie0} 4

_where 7T'is a predefined threshold value. The Figure 2 shows good designs in an example

of a linear cost function with the proportional error terms.

A
- rd
Costs, J(6,0) _- -
and J(0) Pt
'
” -
” L
L - -
T — 2 - -
- -
- - - -
|
Good deSigns, Sg Ordered designs, 0

Figure 3. The set of the good designs for a linear cost function with
proportional noisy error.

Now, let us construct a linear automaton of type Lg. to extract a subset of good
designs from the entire design population. We designate the performance evaluation 3 as
an indicator function that gives only two possible values for a design 6, , selected from
the design distribution randomly by the automaton. If the observed cost value for the
design 6} is less than the threshold value 7, the value Bis setto / (a good design) and
otherwise, to 0 (a bad design). At every iteration », the automaton selects a design
randomly using its current distribution P(n) and then gets this design evaluated by the
environment. With the feedback from the environment, the automaton then updates the

distribution according to the equations (3) and generates another design for the next



jteration n+1. After a predefined finite number of iterations, the final design distribution
of the automaton becomes our design generator and can be used to generate any number

of good designs. The formal steps of the learning process are as follows:

Algorithm:
Step 0: Set
a. The current stage value » to 1;
b. The final stage number as N;
c. The pi(n) = 1/r for all r number of possible designs;
d. The learning constant a to a small positive constant;
e. The threshold value as 7.
Step 1: Generate a design 6, using the design distribution P(n) for the current
stage n.
Step 2: Using a rough method, observe the performance measure for the
selected design, 6. Say, the observed performance value (cost) is L(6).
Then,
if L(6) <T,setfi=1;
otherwise, set ;= 0.
Step 3: Update the design distribution P(#) according to (3). That is,

pi(nt1) =pi(m+a [l-pi(n)] if fiis 1
pi(mtl) = (1-a)p;(n) Vj except i
and p;(n+l) =p;n, otherwise V/j.

Step 4: If n is equal to N value, then stop; the generator is P(n).
Otherwise, increment » by 1 and go to Step 1.

In the following section, we prove that the distribution of the automaton Lg.1 modified
according to the above algorithm will increase the probability for the good designs
strictly at every iteration. We will also determine how many iterations on the average it
will take to obtain a generator with a capability of producing the good designs at a

specified probability level.

4. Convergence of the Method in Finite Steps

The learning scheme described in the previous section is known to be absolutely
expedient. Now, what we would like to know is how the expected total probability of the

good designs changes from iteration to iteration. And how many iteration in total will it



take to get to a predefined probability for the good designs. We will show these results in

terms of a theorem and a corollary that follows it.

Theorem: The learning algorithm described in the above algorithm increases the

expected probability of the good designs strictly in any two successive iterations.

Proof: Suppose that the probability of a good design ; failing to pass the threshold
value T is ¢; and the probability of a bad design 0; failing to pass the threshold value T is

¢;. Then, by definition, ¢; <¢; for every pair ie S and j€Sg. In general terms, define

ck =P{J(O)<T} foreach bk

The expected change in the probability of the good design Gi is
Ap;(n) = E[p;(n+ D p(m]-p; ()
For theautomata L considered here, as Narendra and Thathachar (1989) shows, for any good

design 6, among total r number of designs, the change of expected probabiltiy will be
r
Ap; (n) =ap; (m 2 p j (m)(c i~ ¢;) (Appendix A)
J#i
We separate the summation into two parts _ one over bad designs and the other over the good ones.

Ap;(m)= ap; (n)[je%B pjme;—c)+ jE%G pj(mie; —¢;l

=ap;(n) ¥ p.(mc —c)+ap;(n) T p(n)c; -c.)
jes J J jes J J 1
B G
Then, by adding up Ap; 's for the good designs, we can write the total probability change
for the entire good design set as
b= 3 apin) X p(;—c)+ T api() T p e, —c)
ieS jeSg J J 1 ieSs jGSG J J 1

Note that the second term is zero since the last double sum will have exactly two terms for each pair

of good designs, say k and / as
apy (”)pl (”)(Cl - Ck) +ap,; (”)pk (”)(Ck _cl) =0.

Hence, Ap~(m)= > ap;(n) 2 (n)(c.:—c;)>0,
G P> p; ( & pj(me;—¢;)
G B
since (Cj_ci)>0 VieSGandeeSB ®

10



Assumption 1: Assume that all good designs have the same failure probability, i.e.,
cg=P{J(6;, ®) <T:weQ} forall 6; €S and the threshold value T. And all bad
designs also have the same failure probability, cg= P{J(0;, ®) <T:weQ} forall 6

€Sg and the threshold value T.

Corollary: Under the assumption I, suppose that we have the total probability of the
good designs as Py in the design population. After n number of iterations the probability
of the good designs will be

pe(n+1)=a(c, —cg)ps M- ps (W] €y

For a given target probability P for the good designs, the average number of the
iterations required in the above learning scheme is approximately

_ In(Pg/Py)

- here ¢ = cp- CG .
n(l+ ac) where ¢ = ¢cg-Cg &)

n

Proof:

Fromthe theorem, we know that the total probability change for the good designs

Ap-(m)= 2% ap;(n) pi(m)c;—¢;)
G zeSG ! jes B J Jot
Substituting ¢, for ¢; Vj € S, andc, for ¢, Vi € S, we obtain

A = — . .
P (n) a(cB G )ie%:G Pj (”)J_E%B P (n)
Hence, ApG(n)=a(cB —-cG)pG(l—pG). ®

If we ignore the second order terms, then
ApG (n) = aEpG (n), where c =(cB - cG)
and pG(n+1) =pG(n)+aEpG(n) = (1+aEpG(n)
P =(+ad)py pg@=+ac) py..
Hence, ingeneral, p G (m=>0+ aZ)" Py

If p,,a,and care known, then
1
n = n(PG /po) B ®
In(1+ac)

11



As we will see in the test problems, the approximation in the corollary is fairly
accurate for the final target probabilities pg < 0.20. It becomes more significant for larger
probability values. Nevertheless, one can always use the recursive formula (4) to find out

how many steps it will take to raise the probability to a target ps(n) starting from ps(0) =

Po-

5.  Application of the Solution Generator

We set up four different problems whose natures are known to us completely so that we
can track the performance of our procedure. However, in the real world problems, we
hardly know the complete nature of the environment that responds to designs generated
by the automata. In all of these applications, we have used a spread-sheet programming
that required very little computation time to solve.

The first three problems involve a population of 1000 feasible designs. In the first
problem, the expected cost of designs is a linear function. But each observation of the
design performance has a significant noise, which has a constant amplitude. In the second
problem, we will assume a negative exponential expected cost with significant
proportional noise values. This problem has a very few good designs relative to the
design population. The third problem is a harder version of the second problem in that it
has many deep local minima superimposed by a Sin-function on the exponential objective
function of the problem 2. The fourth problem has a high polynomial expected cost
function with proportional noise and much larger design population (about 4 million).

None of these examples comply with Assumption 1 strictly. But knowing the
nature of the cost functions of the first three test problems, we still want to use the
Corollary with the average failure rates to see how it predicts the total number of
iterations approximately. As we will see, it turned out that the results of these predictions
are very good. We used the areas above and below the threshold value between the
maximum and minimum cost errors to estimate the failure probabilities of the good and
bad designs. For the final probabilities of the good designs less than 0.25, the
approximate formula (5) was sufficient, but for larger values closer to 0.50, the recursive

formula (4) was much reliable

12



5.1 Linear Expected Cost Function with Constant Error

Here, we consider a design problem of 1000 alternative designs. As shown in Figure 4,
the cost function for a design j is given by

L(ngv)=gi+100r,j:=L2r“1000

,where r is a random number in the interval [0,1).

For the treatment of this problem with our learning scheme, we assume a
threshold value T=150. The failure probabilities of the good designs are not constant in
this problem, but we will still use the average value in the formulas of the Corollary in
order to estimate the required number of iterations. Since we know exactly the behavior
of the cost function and the noise, we can calculate the failure probability of the good
designs approximately. Among the good designs, 100 of them may fail with the
probabilities changing linearly between 0 and 1. Hence, on the average, the failure
probability cg= (100(1 .0+0.0)/2+50(0.0)/150= 0.33. The failure probability of the bad
designs for this threshold is 1. The initial probability of the 150 good designs has the
value of 0.15. Using the approximate formula (5) and the recursive formula (4) of the
Corollary, we can estimate the number of iterations that will take to increase this
probability to various levels. Figure 5 shows the results. Note that for the target
probabilities less than 0.25, the approximate and recursive results are fairly close and
they separate dramatically for the large probabilities. Of course, the recursive formula is

the more accurate one between the two and is not much harder to evaluate.

A
Costs, L(6.@) ’,,"V
and J(6) -

T=150 ="

v v R
Oso B150 Designs, 6

Figure 4. Cost function and threshold value for the test problem 1.
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Figure 5. The required number of iterations for various target probabilities
through the approximate and recursive formulas of the corollary.

We have performed two sets of 10 independent runs as follows: to increase the
initial probability 0.15 of the good designs to the target probability of 0.50; and to
increase the initial probability 0.15 of the good designs to 0.90. The number of iterations
are calculated from formula (4) were 250 and 600, respectively. In all these cases, the
Jearning constant a is set to 0.01. The results in terms of the cumulative probability

values of the generator for the top 50 and 150 designs are shown in Table 1 and 2.

Experiment | 1 2 3 4 5 6 7 8 9 10 | Mean | Std. D
F(150) 046105610.50]062|058]0.57]0.58]0.5310.430.58) 054 | 0.06
F(50) 0261043 ]027]029]0.36]0.32(043]0.24|0.19]037| 032 | 0.08

Table 1. The final cumulative probabilities of good designs for 10 independent
runs where the target probability pg of the good designs is 0.50 and the number of
iterations is 250.

Experiment | 1 2 3 4 5 6 7 8 9 10 | Mean | Std. D

F(150) 098 1097096 |0.96]0.98]0.97{0.98|0.95]0.96|0.95| 0.96 | 0.011

F(50) 068 10.6910.70]0.7310.770.76 | 0.79 | 0.33 | 0.73 | 0.20 | 0.64 | 0.20

Table 2. The final cumulative probabilities of good designs for 10 independent
runs where the target probability pg of the good designs is 0.90 and the number of
iterations is 600.

14



In this relatively simple problem, we observe that we do well for the solution generator
with very little effort. Even though the evaluations of the cost values received for every
selected design from the environment are in a huge error (a very rough model at best), it
took a small number of iterations to increase the probability of the good designs
considerably.

Figure 6 shows a path that the probabilities of the good designs follow through the

iteration of the learning in a typical case.

Probabilities(n) |—e—F(150)

—_

0.8
oy
= 06
e
3
° 0.4
o

o
N

o

0 100 200 300 400 500 600

Iterations

Figure 6. A typical path of the probabilities of good designs.

5.2 Exponential Cost with Proportional Errors

In this test problem, we have 1000 alternative designs with the cost functions defined as
follows:
L8 ) =100-405¢ 0.1/ +D),
L(Hj ,0) = L(Hj) +0.25r L(Hj), where r is a random number and j =1,2,...1000
These functions are shown in Figure 7. We define the good designs as the any design that

passes the threshold value T=70 in 50% of the time. They correspond to the first 13
designs with initial probability of P¢=0.013. Note that the first 9 designs pass the

15



threshold 100% of the time and the first 29 designs pass the threshold with some positive

probability. The remaining 971 designs fail the threshold value all the time.

Cost
Functions
T=70

013

We used the formulas of the Corollary to determine the number of iterations

Designs, 0
Figure 7. Exponential cost functions of the test problem 2.

required to increase the probability of the first 13 designs to 0.15 in the generator. Using

the average, minimum and maximum cost curves for the good and bad designs, we

estimated the failure probabilities as cg= 0.08 and ¢

s = 0.99. Using a learning coefficient

value a =0.01, the number of iterations required turned out to be 300 and 475 for the

target probabilities 0.15 and 0.5, respectively. In order to reduce the standard deviations

of the probabilities, we then reduced the learning coefficient by a half (a=0.005). The

number of iterations required has increased to 570 and 950 for the target probabilities

0.15 and 0.5, respectively. Table 3 summarizes the results of both cases.

Experiment 1 2 3 4 5 6 7 8 9 10 | Mean | Std.Dv.
2=0.01,n=300 |0.010.05]0.31 |0.04 | 0.20 0.13]0.11]0.18]0.020.20 | 0.15 |0.10
a=0.01,n=474 [0.08]0.10]0.23 |0.71 | 0.68 02210.19[045]0.37]0.18]0.32 |0.23
a=0.005,n=570 [ 0.30 [ 0.20 | 0.21 | 0.16 | 0.07 02210.13]0.08{0.130.20 | 0.17 |0.07
=0.005,n=950 | 0.61 | 0.63 | 0.42 | 0.19 | 0.26 0.54 | 0.65]0.730.51{0.18| 047 {0.20

Table 3. The probabilities of the good designs after n iterations for Problem 2.
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Due to the nature of the cost function and the threshold value selected in this
problem, we had very small set of good designs (only 13 designs) and 4 of these good
designs had a positive probability to fail the threshold due to an error in the estimation.
On the other hand, relatively small percentage of the bad designs (15) had a chance to
pass the threshold value. Because of this unusual nature of the problem, the target
probability of our learning scheme has a large variation around the mean value identified
by the Corollary, especially for the learning constant 0.01. We see that this variation can
be reduced at the expense of a larger number of iterations by decreasing the learning

constant’s value.

5.3 Superimposed Exponential and Sin Cost Function with
Proportional Errors

In this test problem, we have 1000 alternative designs whose expected and actual cost
functions are defined as follows:

y=100-405 ¢ (0.1 +1)

L(HJ.) =v[1+0.5 Sin(v/5)]

L(HJ. ,0) = L(QJ.) +0.25r L(G’j ), wherer is a random number and j = 1,2,...1000

These functions are shown in Figure 8. Again, we define the good designs as the any
design that passes the threshold value T=70 in 50% of the time. This corresponds to two
mutually exclusive sets: the first set being the first 11 designs with initial probability of
0.011 and second set being the 9 designs starting at the index number 17 with the initial
probability 0.009.

In this problem, our main is to investigate how the local optima will affect the
overall performance of the algorithm in terms of speed and accuracy. The proportion of
the good to the bad designs is more or less the same as in the previous problem. In order
to be able to compare the results of experiments to ones obtained form the previous test
problem, we used exactly the same threshold value 70 and the same number of iterations
with two different values of the learning constant. Table 4 displays the results of the

experiment.
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Figure 8. Expected cost function and error bands for the first 50 designs of
the problem 3.

Experiment 1 2 3 4 5 6 7 8 9 10 | Mean | Std.Dv.
a=0.01,n=300 [0.1310.30 005 10.10]0.30 030|047 021 02110.171022 10.13
a=0.01,n=474 |0.62 | 0.81 054 101710.62]0.53]0.27|0.61[0.18 0471048 |0.21
a=0.005,n=570 | 0.23 | 0.32 018 1021102210.16 {0.10 | 0.21 0.24 1 0.30]0.22 |0.06
=0.005,0=950 | 0.48 | 0.75 064 ]0.591]0.58]0.70 | 0.46 | 0.57 0.44 10431056 |0.11

Table 4. Probabilities of the good designs after n iterations for Problem 3.

By comparing the summary statistics in the last two co

that the average performance has suffered som

lumns of Table 3 and 4, we find

ewhat due to the undulations embedded in

the cost function of the problem 3. But the target probabilities for the good designs are

reduced learning coefficient results in less variation in the good probabilities at the

still within the one standard deviation from the average values. Again, we observe that a

expense of increased number of iterations. The good news is that the local optima do not

cause any serious degradation in the performance of the algorithm. We will investigate

this point further in the next problem.
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54  Nonlinear Cost Function of Multiple Decisions with Proportional
Errors

Here, we used a modified version of a test problem, which was also employed in the
genetic algorithms, Michalewicz, 1994. The expected cost function is defined over
designs 0, each of which is a feasible combination of five decision variables. Hence, there
are 4,084,101 alternative designs and maximum F(X) value is 2,316,082 and the optimal
solution F(X)=0 is reached when all variables are assigned the value 1. The cost functions

are as follows:
F(X)= 100(x2 — .2 + (1 - x1)* + 90(x4 — x32)* +
(1 —xs)> +10.1[ (x2 — 1)* + (x4 — 121+
19.8(xz — 1)(x4 — 1) + 30(x; — x5)*

st: -10<x;<10, fori=12,...,5

And
J(0,0)= F(X)(1£0.751), wherer is a random number.

The statistics about the expected cost function for some good designs are displayed in

Table 4.

FX)<Y 1,000 2,000 5,000 10,000
Design number 6,056 21,587 91,889 223,150
Percentage 0.0015 0.0053 0.0225 0.0546

Table 4. Distributions of some good designs with respect to values of the expected
cost function.

This problem is quite different from the previous two test problems in that each design
has five components as the decision variables resulting in a huge feasible design space.
Here, we use a separate automaton for each component of the design. Each automaton

starts with a uniform distribution defined over 21 different values of each decision

variable. When a feedback value is received from the environment, every automaton
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updates its own distribution using the same feedback value in the learning algorithm. Our
goal is to obtain the probability 0.50 for the good designs identified by the threshold
value of 5000 in the generator. Using similar parameters (a=0.01, cg=1, and cg=0.8) as
in the previous problem, we estimated the iteration number as 1500. After completing
the experiments, we calculated the cumulative probabilities for several top designs values
by exhaustively enumerating all alternatives for the entire design population with the
final distributions of the automata. We have performed five independent runs. Table 5

summarizes the results for these runs.

P(Cost<Y) | 1,000 | 2,000 5,000 | 10,000 | O(optimal)
0.102 | 0.229 | 0.508 | 0.710 | 0.000033
0.09 | 0.235 | 0.567 | 0.778 | 0.000008
0.09 | 0.243 | 0.579 | 0.789 0.00002

0.08 | 0220 | 0.570 | 0.771 | 0.000006
0.127 | 0306 | 0.713 | 0.901 | 0.000036

oResBa-B-givs]

-

bWty |—

Table 5. The final cumulative probabilities of designs whose costs are
below some Y values for five independent experiments.

The results of this last problem have surprised us pleasantly because this is a problem
with the largest design population, and a nonlinear noisy cost function with decisions in a
high interaction. But still we were able to increase the probability of good designs whose
average cost values are less than 5000 about 25 folds in short 1500 iterations. We believe
that the reason behind this performance is that the five different automata were able to
capture the structure of the problem better than it would have been possible with a single
automaton built for the entire design space. In this way, any combination of decision
values that have worked well together in a solution and therefore got awarded, stood a
good chance of being selected together again and to work well or even better in some
other combination of the decisions. In other words, these smaller combinations of
decisions form the building blocks for the larger, better solutions. And the multiple
automata used in this problem were able to capture the inner workings of the decisions in

the objective function well.
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6. Conclusion

In this paper, we developed a probabilistic generator, which is capable of producing the
good enough solutions with a desired probability in an uncertain environment. The good
solutions are defined as the subset of solutions whose average objective values are better

than a predefined threshold value. We built our method on the basis of a theory that

guarantees that the expected probabilities of the good enough solutions will be improved
strictly even with a very noisy estimation of the objective function values in every
iteration. Using this theory, we determine how many iterations it will take to increase the
probabilities of the good designs to a desired level on the average.

We applied our approach to four challenging test problems. The results have
conformed perfectly to the theory and performed beyond our expectations. All
calculations have been executed with an insignificant computation time on a laptop
computer.

Our approach confirms the insights of many researchers who believe in
probabilistic learning, goal softening, and ordinal evaluation of the alternative solutions
in lieu of searching for a good (not necessarily optimal) solution in a noisy environment.
In conclusion, our approach holds a great promise as an integrated stochastic “optimizer”
in simulation models. In the future, we will investigate how the short simulation runs can

serve as a rough-cut performance evaluator for building the solution generator.
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APPENDIX A

The change in the probability of a good design 6, in iteration » can be visualized as in the
following figure:

(i)

a[1-pin)] 0 - a pi(n) 0

By definition, the change in the probability of the design 6} in iteration 7 is

Ap;(n) = E[p,(n+1) | P(m]~ p;(n)
Ap;(n) = p; (M —c¢;)all - p; (m)]+ ij (m)(1- -cj N-ap;(n)]

Ap,(n) = an-(n){(l—c,.)[l—p,.(n)]igp,(n)a-—c,-)}

Ap,(n) = api(n)[(l—ci)épj(n) —Z:;p,-(n)(l—cj)]
Api(n)=api(n)[§p,-(ldj) —};pj(nj)ci -;p,-(nwgpj(n)cj]
Ap,»(n)=ap,-(n)[i§p,-(n)cj,- +§pj(n);j] i
Ap;(n)=a P,-(H)Z;?j(ﬂ)(c ;6 )J ®

J#i
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