
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Cell Programming Language

Investigation of Extensions For Flow

Control and Error Recovery in the

Language

Zhuming Wang
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/29

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1994-005

Cell Programming Language Investigation of Extensions
For Flow Control and Error Recovery in the Language

Zhuming Wang

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Cell Programming Language

Investigation of extensions for flow control

and error recovery in the language

Zhuming Wang
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #94-005 Nov. 1994

Cell Programming Language

Investigation of extensions for flow control
and error recovery in the language

by
Zhuming Wang

Systems Analysis Department
Miami University

Oxford, Ohio

November, 1994

Abstract

The Cell Programming Language (CPL) is a simple programming language which allows the

students and faculty to easily program a workcell on a personal computer as the workcell

controller. However, the original version of CPL lacks programming flexibility and power since

it does not support subroutines, flow control, error recovery and operator interface to the

execution of a CPL program. The objective of the project is to design and implement a new

version of CPL to overcome the shortcomings of the original CPL by extending the language to

include flow control, error recovery and operator interface to the execution of a CPL program.

In this report CPL is introduced. The problems in the original CPL are addressed, the

extensions to the original CPL are de$ned, and the implementation of the extensions is

described. Some future development tasks are also discussed.

.. Abstract 2
... 1 . Introduction 4

2 . Workcell Languages .. 5
... 2.1 Workcells 5

2.2 Overview of Existing Workcell Programming Languages .. 5
.. 3 . History of CPL System 7

... 3.1 Description of Original CPL Language 8
.. 3.1.1 Port Declaration 9

3.1.2 Device Declaration ... 9
.. 3.1.3 Procedure Declaration 10

3.1.4 Example of the Original CPL Program .. 11
3.2 Implementation of the Original CPL Language .. 1
3.3 Weakness of the Original CPL System .. 12

.. 4 . Extended CPL 13
.. 4.1 Flow Control and Conditional Execution 13

.. 4.2 Error Recovery 14
... 4.3 Operator Interface to CPL Program 14

... 4.4 Subroutines and Program 15
... 4.5 Other Modifications 16

... 4.6 Grammar of the Extended CPL 1 6
.. 5 . Verification of Extended CPL 1 7

.. 5.1 Overview of Implementation 1 8
... 5.2 Compiler Construction (written in BorlandC++) 18

... 5.3 Example of Extended CPL Program 20
... 5.4 Interpreter Construction 22

.. 5.5 Verification 23
.. 6 . Strengths and Weaknesses of the Extended CPL 23

7 . Conclusion and Future Development .. 24
Appendix A ... 25

... Reference 29

1. Introduction

Today's manufacturing industries are growing rapidly. The competition within each

industry marketplace has resulted in an increased demand for higher quality and lower priced

products. The way to maintain the competitive edge is by implementing state of the art

computing technology within the manufacturing systems [Riggins9 I].

A flexible manufacturing system (FMS) is a reprogrammable manufacturing system

capable of producing a variety of products automatically [Chang87] . It can be considered to

be a set of workcells that operate and are scheduled independently of each other [Benhabib89].

Each individual workcell is composed of one or more machine tools linked by a common

material handling system and under the control of a centralized workcell controller for the

purpose of producing the given requirements of a family of parts [Martin89]. The workcell

controller is programmed to coordinate the interoperation of the various devices in the

workcell.

Flexible manufacturing systems can be applied to provide a number of benefits and

advantages over alternative methods of production: (1) Higher machine utilization; (2)

Reduced work-in-progress; (3) Lower manufacturing lead time; (4) Greater flexibility in

production scheduling; (5) Higher labor productivity [GrooverSO].

This research is an investigation of a programming language, generically called a

"workcell programming language" designed specially for programming an individual workcell

controller by students. The goal of this research is to provide an easy-to-use programming

language for writing software for individual manufacturing workcells by developing a special

purpose high-level language, called the Cell Programming Language (CPL).

Individual workcell components and their operations can be integrated by

programming the workcell as a single unit. This can be performed by writing a program in a

high-level language such as BASIC or C, but it requires the user to know how to perform low-

level interfacing to the workcell's devices. For example, the user needs to know how to set a

particular bit on a particular port to turn a particular device on or off. Instead, CPL allows the

user to program the workcell by referring to devices as objects and using commands such as

On/Off to turn a device onfoff, and the CPL system takes care of the low-level programming

details.

2. Workcell Languages

2.1 Workcells

A typical FMS workcell may consist of robots, conveyors, CNC machines, pallet

stops, pallet lifts, sensors, and other devices. Devices are connected to the workcell controller

computer (PCs or programmable logic controllers) through some interfacing electronics and

data acquisition boards. The interfacing electronics convert signals from the PC to appropriate

signals for these devices. Some devices such as robots and CNC machines are controlled by

programs written in the host command languages of these machines.

An example of a workcell is in the Manufacturing Engineering Department's CIM lab

at Miami University shown in Figure 1. The inputs and outputs of the workcell devices, such

as the conveyor and pallet lifts, are wired through external relay interfacing to a data

acquisition board in a PC which is used as the workcell controller. The robot controller is

connected to either the PC's serial or parallel communication port. The CNC machine is

connected to the PC's serial communication port.

2.2 Overview of Existing Workcell Programming Languages

A survey of recent literature on workcell management reveals that most research and

development efforts center on specific topics such as data base applications in workcell

control, knowledge-based system/software for workcell monitoring and coordination purposes,

and workcell communications. There are very few research projects that address the

development of workcell programming languages [Benhabib89]. They are briefly discussed in

this section.

An Integrated Manufacturing Work Cell Management System [BenhabibS9] represents

an approach to develop "a work cell management system that functions both as an interpreter

to a task-level work cell programming language, and as a work cell supervisory capable of

coordinating work cell activities and implementing error recovery." Its design is based on the

expert system approach that makes the process of reprogramming and system upgrading more

efficient and easier.

, I Opto Isolated I

Inputs from sensors (limit switchs, etc.),

Station u
Conveyor Belt

Figure 1. Diagram of the Flexible Manufacturing Cell in CIM Lab

The assembly and information management system (AIM) (Shiman0881 represents an

approach to robot programming which "simplifies the integration and operation of robotic

assembly cells." Its design is based on the modular structure that permits customization, by

modifying or enhancing the set of task-level statements, to meet different work cell functional

requirements. Its decision-making capability is limited and its error recovery mechanism

simple, since the system does not seek to acquire knowledge about work cell status in real

time. Therefore, it cannot deal with error events without operator intervention.

The task description language (TDL) [Alder881 system follows an approach similar to

that of AIM. It is developed to "enable accurate simulation of robotic work cells and the

generation of programming codes to be loaded directly to equipment controllers on the factory

floor." Compared with AIM, TDL is more versatile in the sense that it allows work cell

programming rather than solely robot programming. TDL, as AIM, lacks the sophistication to

handle error events in real time without operator assistance.

In [Benhabib89], the researchers concluded that a major weakness of existing workcell

languages was a lack of error recovery. Most approaches deal with specific issues concerning

workcell management, but do not encompass all three aspects of programming, coordination,

and error recovery.

The Cell Programming Language (CPL) is an object-based workcell programming

language developed at Miami University for use by students in the Manufacturing Engineering

Department. This language is described in the next section.

3. History of CPL System

CPL was developed as a simple programming language that would allow a student to

program a workcell by using a personal computer as the controller. Devices in the cell were

connected to the PC using appropriate relays and a data acquisition board in the PC. To turn a

device in the workcell on, software in the PC simply needs to set the appropriate bit in one of

the data acquisition board's registers. To examine the state of a device, the software simply

reads a register from the board and examines the state of the appropriate bit. Thus, each digital

device in the FMS cell is assigned a unique bit in a register on the data acquisition board.

To control other devices, such as robots or CNC machines, the user writes a program

in the language of the particular device and uploads that program, using the PC's serial or

parallel port, to the device.

Before CPL was developed, students wrote BASIC programs or assembly language

programs to control the workcell. Only a few students could learn the necessary low-level

details needed for this kind of programming.

The first version of CPL system consisted of three parts: the CPL language, the

compiler and the interpreter. The CPL language allows the user to describe the sequence of

steps required to manufacture a part in a FMS workcell. The compiler translates the CPL

source code into intermediate code which is called p-code. The interpreter takes p-code as

input and executes it to control the operation of the devices in a FMS workcell by writing and

reading binary data tolfrom a data acquisition board and the serial and parallel communication

port in the PC. The CPL software architecture is shown in Figure 2 [Troy92]. The CPL

language, the compiler, and the interpreter are described below.

CPL Program,
Robot and CNC Command Files

Compiler +
p-code

Interpreter +
data acquisition board and serial or parallel ports

Figure 2. CPL Software Architecture

3.1 Description of Original CPL Language

In the original CPL, which is designed and implemented by Meghamala

[Meghamala92] and Farooq [Farooq92], a program consists of three sections: port declaration,

device declaration, and procedure declaration.

3.1.1 Port Declaration

The port declaration section is used to assign physical I10 port addresses to registers

on the data acquisition board in the PC and to define data flow direction (input/output) of each

register. In CPL these addresses are given port names for later reference. Ports could also be

assigned to serial (COM) ports or parallel (LPT) ports. The declaration of ports are made

within a Ports ... End block.

The syntax for port declaration is as follows:

The port-identifier can be any user defined name consisting of alphabetic characters, digits

and underscores up to a maximum of 30 characters. The port-address should be a physical

port address in the data acquisition board and the data-flow-direction is either Input or Output

depending on whether the port is used to send or receive signals. The parameters are used with

COM ports. The syntax is <baud rate> <data bits> <stop bits> <parity>. An example of a port

declaration section is as follows:

Ports
PortA 640 Input;
PortB 641 Output;
PortC 642 Output;
Com lPort COMl 300 7 2 0;

End

3.1.2 Device Declaration

The device declaration section is used to declare device objects and associate a port

and a bit number with each device object. The device types are predefined in the language.

The device declarations are made within the Devices ... End block. The following is the syntax

for a device declaration:

<device-identifier> <device-type [<port-identifier> <bit-number>]I[~programmablegort>]

The device-identifier is a user defined name and the device-type is a keyword in the CPL

language. The device types are shown in the Table 1. A coil is a device type that can be turned

on or off to control things like motors. A sensor is a device that capture signals and send

signals to the controller, for example a limit switch or photocell. A pulse device type can be

sent a short onloff signal to start it. A programmable device type is a device which can be

programmed in its host language, such as robot and CNC machine. The port-identifier should

be defined in the port declaration section as discussed previously, and the bit-number is a

constant between 0 and 7 and corresponds to a bit on the data acquisition board. For the

programmable device type, the port name LPTl or the port identifier defined in the port

declaration section for COMl or COM2, would be specified depending on the communication

port to which it is connected. Port identifiers are used for devices that interface through the

data acquisition board, whereas programmable ports use the serial or parallel ports.

DEVICE TYPES VALID FUNCTIONS

Coil On / Off
Sensor WaitOn / WaitOff
Pulse Strobe
Program ma ble Send / Do
Wait Milliseconds

Table 1

3.1.3 Procedure Declaration

The last section in CPL is the procedure section. A procedure section consists of

control statements. Each statement represents one device operation and directly corresponds to

an actual operation of the real device in the FMS workcell. There is only one procedure

section in the original CPL program and all statements are executed in sequence. There are no

control constructs such as loops or conditions and no subroutines. The syntax of a procedure

statement is as follows:

<device-identifier>. {<function>[(parameter)]}l<delay-time>

The device-identifier is an identifier previously declared in the device section. The

device-function is a key word, shown in Table 1, and predefined in the language.

The procedure section is enclosed in the keywords Procedure ... End block. An example

of a procedure section is given below.

Procedure
Conveyor.On;
Robot. Send("NT");
PhotoCell.WaitOn;
ChuckOpen.Strobe;
Delay. 1000;
Conveyor.Off;

End

3.1.4 Example of the Original CPL Program

An example of the original CPL program is as follows:

Ports
Comport COMl 300 7 2 0;
P o r t . 64256 Input;
PortB 64257 Output;
PortC 64259 Output;

End

Devices
Conveyor Coil PortC 5;
Photocell Sensor PortA 7;
Robot Programmable .LPTl;
Lathe Programmable Comport;
Delay Wait;

End

Procedure
Lathe.Do(loadlath)
Robot.Send("NT");
Robot.Do(1oadpart);
Conveyor.On;
Delay.500;
Conveyor.Off;

End

3.2 Implementation of the Original CPL Language

The CPL system consists of two programs: a compiler and an interpreter. The

compiler parses the source code, analyzes it and generates intermediate code (p-code) which is

the input to the interpreter. The interpreter executes the p-code and performs low-level 110

interface to the data acquisition board and PC's serial and parailel communication ports.

The CPL system is based on the object-oriented design and implemented in Borland

C++. The ports, the devices and procedure statements are considered as objects in the

implementation.

In the CPL system, the PC's serial communication ports and their configurations as

discussed previously are defined in the port declaration section by the user. This requires that

the user know the PC's serial communication port configuration parameters, such as

transmission speed, parity, etc.

3.3 Weakness of the Original CPL System

CPL can not handle error events since it does not incorporate any error detection or

recovery strategies. When a device operation fails, the execution of the program could result

in a unpredictable state. For example, to examine the state of sensor type devices, the software

waits to read appropriate data from the data acquisition board. If a given device is never

turned odoff, the program will be put on hold and wait forever. Thus, there is no timeout

function in CPL language.

In CPL, there are no flow control features such as looping and conditional execution.

All statements in the procedure section are executed in sequence. This limits the use of the

language for student projects.

Also, there is no provision for an operator (user) interface to a CPL program. For

example, the user can not control the execution of the program from the PC (once it is started),

nor can the user enter data to a running CPL program or display output messages to the

operator. Additionally, there is no support for variables in which data can be stored.

Another weakness is that there are no subroutines, so CPL programs can not be written

in modular fashion. There is only one procedure in a CPL program. All statements (i.e. device

operations) are carried out sequentially. Therefore, to repeat a certain set of device operations

more than once, one has to duplicate the same code as many times as needed in the program.

This is very inconvenient and makes it impossible to write a sophisticated CPL program.

Finally, the user is required to know the serial communication parameters because

these are included in every CPL program that uses serial communication ports.

4. Extended CPL

Without flow control, error recovery, the operator interface to a CPL program, and

subroutines, the original CPL lacks flexibility and power to write complex and sophisticated

programs. A new version of the CPL language is developed to overcome the shortcomings of

the original CPL by extending the language to include flow control, conditional execution,

error recovery, an operator interface, string variables, subroutines, and a main program section.

Also, a serial communication configuration file is added so that these parameters need only to

be configured one time, instead of coded in every CPL program.

4.1 Flow Control and Conditional Execution

Extended CPL provides several ways for conditional branching and looping by adding

the following control constructs: If, While, Until, and For.

The If control construct executes a procedure if a condition is true. An example of IF

statement is:

ProcA.Run(If PartType.EQ("Aw));

Where ProcA is a name of procedure which is defined earlier in the procedure section and

PartType is a string variable defined in the devices section. The procedure ProcA will be

executed once if the condition (PartType is equal to "A") is true.

The While loop executes a procedure repeatedly while a condition is true. The

Following is an example of While statement:

ProcA.Run(While PartType.EQ("AW));

 hi^ statement will execute the procedure ProcA repeatedly while the condition (PartType is

equal to "A") is true.

The Until loop executes a procedure repeatedly until the specified condition becomes

true. The procedure will be executed at least once. An example of Until statement is shown

as follow:

ProcA.Run(Unti1 PartType.NE("A"));

This statement executes the procedure ProcA repeatedly until the condition (PartType is not

equal to "A") becomes true.

The For loop executes a procedure as many times as specified. An example of For

loop is:

Where 10 is the specified execution times.

4.2 Error Recovery

Extended CPL supports error recovery strategies. One error recovery strategy is to

have timeout checking for operations of sensor devices. When a sensor type device is not

being switched onloff in the specified time period, the program is terminated and the error

message is displayed to the operator. Another error recovery strategy is to associate an error

handler procedure to an operation statement or a procedure. Once the execution of an

operation or procedure fails, the error handler procedure associated with it is called to carry out

some actions to handle error. The following is an example of error recovery statement:

This statement waits for the device Photocell to be switched on for a maximum of 1000

milliseconds. If waiting time expired and Photocell is still not switched on, the procedure

ErrHdl, which is defined in the procedure section earlier, is executed to handle error event.

4.3 Operator Interface to CPL Program

In the extended CPL language, there is provision for an operator to interface to a CPL

program. Two new device types are added to the CPL language: String and 10.

The String type allows the operator to define string variables. Operations on strings

are assignment and comparison. String variables can be used to hold the strings entered by the

operator. The additional implementation of relational operators makes conditional execution

and flow control possible.

The other type is called 10. 1 0 devices are used to get user input from the keyboard

and to display output messages on the screen. There are three kinds of operations for the I 0

device. The Get operation will wait for an operator to enter data from keyboard, then assign

the data to a specified string variable. The Poll operation is used to wait for a key stroke. The

Put operation displays a message on the screen. I 0 devices types do not require a port name.

The following are examples of String and 1 0 device declaration statements and
operation statements:

Devices
PartType String;
Console 10;

End

Program
Console.Put("Please enter part type(A/B): ");
Console.Get(PartType);
ProcA.Run(If PartType.EQ("A"));
Console.Put("Press any key to stop ProcB");
ProcB.Run(Unti1 Console.Poll());

End

The first statement will put the message enclosed within quotes on the screen. The second

statement will wait for the operator to input data from keyboard and then put it into the string

variable PartType. The last statement executes procedure ProcB repeatedly until the operator

presses a key.

4.4 Subroutines and Program

In the extended CPL, it is possible for a program to include any number of subroutines

(i.e. procedures in CPL), each of which consists of device control statements as well as a

"main" program. A procedure must be defined before it can be called in another procedure or

in the program section. Each procedure should have a user defined procedure name for later

reference. Procedures can not be nested, nor can they have their own port or device

declarations, i.e., all ports and devices defined in the port declaration section and device

declaration section are global in the CPL program. A new section, the program section, is

added to the extended CPL language. The program section consists of device control

statements and/or calls to procedures defined in an earlier procedure section. The main

program is coded in the program section. The following is an example of procedures

declaration and program declaration in the extended CPL:

Procedure ProcA
Robot.Do(ldPartA);
Lathe.Do(mkPartA);
Robot.Do(mvPartA);

End

Procedure ProcB

Robot.Do(ldPartB);
Lathe.Do(mkPartB);
Robot.Do(mvPartB);

End

Procedure Init
Conveyor.Off;
Robot.Send("RS");

End

Program
1nit.Run;
Conveyor.On;
PhotoCell.WaitOn(l000);
Conveyor.Off;
Console.Put("Enter part type(A1B): ");
Console.Get(PartType);
ProcA.Run(If PartType.EQ("A"));
ProcB .Run(For 1 0);

End

4.5 Other Modifications

In the extended CPL language, serial communication port configuration parameters are

defined in a separate file, called COMSETUP.ICN1 which is a DOS text file used to specify the

serial communication ports configuration parameters. The format of a configuration file is as

following:

Comport = COMl
BaudRate = 300
Parity = NONE
DataBit = 7
StopBit = 1

The statements can be written in any order. This provides an easy-to-understand way for users

to setup serial communication ports configuration parameters once instead of in every CPL

program as was required in the original CPL language. Another advantage of having separate

serial ports configuration file is the ports configurations can be changed without changing the

CPL program.

4.6 Grammar of the Extended CPL

The grammar for the extended CPL language is shown below.

<ports-declarations> <device-declaration* [<procedure-section>...]
<program-section,

Ports <port-stmtlisu End

Devices <device-stmtlisu End

Procedure <procedure-name> <procedure-stmtlist, End

Program <procedure-stmtlist, End

<integer>

Input / Output

<device-stmu [device-stmtlist]

<device-name> <device-type> [{<port-name> <bit-number>)l
{<predefinedqort>) J;

<identifier>

Coil / Sensor / Pulse I Programmable I Wait / I 0 / String

0 1 1 1 2 1 3 1 4 1 ~ / 6 1 7

LPTI / COMl COM2

<identifier>

~coil~fun~/<sensor~func>/<pulse~func>/~wait~time>~~progrmable~func~~
-40-fun0

On 1 Off

WaitOn I WaitOff

Strobe

<integer>

Do I Send(<pararneter>)

<string>l<file-name>

<identifier>

Get(<var-name>) 1 Put(<string>) / Poll

<identifier>

For <integer>/{ If, While, Until} <condition>

<s&ing-name>.<string-operation>(<shing>)

E Q l N E / G T / L T l G E / L E

<letter>[<letter>(<digit>.. .j

"<ascii-character>"

5. Verification of Extended CPL

To verify the design of extended CPL, the new language constructs were implemented

and tested in the compiler and interpreter. The implementation is described below.

5.1 Overview of Implementation

The Cell Programming Language (CPL) is designed and implemented using object-

oriented techniques, written in Borland C++. It consists of a compiler and an interpreter. The

compiler parses the CPL source code, analyzes it and generates intermediate code (called p-

code). The interpreter takes p-code as input and executes the CPL program. The details about

implementing the compiler and the interpreter are described in next sections.

5.2 Compiler Construction (written in BorlandC*)

In the design of the compiler, the entire compilation process is considered to be an

object. Objects at the top level of abstraction include port objects, device objects, procedure

objects and program object. At the next level of abstraction, a generic statement class serves

to define the common properties of all statements in procedures and the program. Derived

from the generic statement class are a variety of device statement classes for each different

type of device. A token class is used to define the attributes and methods of tokens. The class

hierarchy is shown in Figure 3.

Compiler Port

Device

Statement SensorCoil

Programmable

Wait

CIO

Cstring - String

CplSrcCode

ProcRun

Figure 3. Class Hierarchy

The compiler is invoked with a CPL program which is instantiated as a compilation

object starting the translation process. The compilation flow is shown in Figure 4.

The compilation starts with the Ports definition section. A new port object is created

for every port variable declaration. Control is passed to a newly created port object to parse

the port declaration itself. After the parsing, the compilation object regains control and adds

the pointer, pointing to the newly created port object, to a linked list. Duplicate port names are

not permitted and are flagged as an error. This linked list of port objects is used in device

parsing to make sure a device is not assigned to an undefined port. The control is being passed

back and forth between the compilation and a port object until all port declarations have been

parsed.

The compilation next parses the Devices definition section in a similar way as with the

Ports section. A linked list of pointers to all device objects is also created. Duplicate device

names are not allowed. References to port names are looked up in the list of ports. The list of

devices is used in parsing procedures and the program to ensure that statements reference valid

device.

The compiling object now parses the procedure sections. A new procedure object is

created for each procedure definition in the CPL program. Control is passed to the newly

created procedure object to parse all statements in it. For each statement, a new statement

object is created and the statement is parsed. Device names are looked up in the list of devices

to ensure that they have been declared. As a result, a double linked list of pointers to ail the

statements in the procedure is created. Control is then returned to the compilation object and

the newly created procedure object is added to a linked list. When all the procedure definition

sections are parsed, the compilation continues to parse the Program section. It creates a

program object and then passes the control to the program object. The program object parses

every statement in it. A new statement object is created for each statement and the control is

passed to the statement object. After the statement has parsed itself, control is returned to the

program object and a pointer to the statement object is added to a double linked list. Control is

being passed between the program object and a statement object until all statements in the

program have been parsed as shown in Figure 4.

Finally, if the entire CPL program has been parsed successfully, the compilation object

begins to generate the p-code for each procedure and then the program. Annotated p-code is

shown in appendix A.

Start Compilation 7 +
Parse Port I

Parse Device 7
Parse Procedure b

+
Parse Program

Generate p-code A
Figure 4. Compilation Flow Chart

5.3 Example of Extended CPL Program

An example of an Extended CPL source program is given in this section. The p-code

for the following example is given in appendix A.

Ports
PortC 642 Output;
PortA 640 Input;
PortB 641 Output;

End

Devices
PalletLiftUp
Conveyor
Photocell
PalletArrived
Chuckopen
LatheG66inp
Robot
Lathe
Lathestart

Pulse PortC 4;
Coil PortC 5;
Sensor PortA 7;
Sensor PortA 6;
Pulse PortC 1;
Pulse PortB 1;
Programmable COM2;
Programmable COM 1 ;
Pulse PortC 2;

Lathestop Sensor PortA 4;
PalletLifted Sensor PortA 5;
Palletstops Coil PortC 0;
ChuckClose Pulse PortC 3;
PalletLiftDown Pulse PortC 6;
LatheRunning Sensor PortA 2;
LatheHandShk Pulse PortB 0;
Delay Wait;
Console 10;
PartType String;
Var String;

End

Procedure Init
LatheHandShkStrobe;
LatheG66inp.Strobe;
PalletStops.On;
Robot.Send("NT");

End

Procedure Test 1
Lathe.Do(ldLatheA);
Robot.Do(ldParL4);
PalletStops.On;

End

Procedure Test2
Lathe.Do(1dLatheB);
Robot.Do(ldPartB);
Pal1etStops.On;

End

Procedure Test3
Console.Put("Please enter part type(Ah3)");
Console.Get(PartType);
Test1 .Run(If PartType.EQ("A"));
Test2 .Run(If PartType.EQ("B "));

End

Procedure ErrHdl
Console.Put("Run time error, Please check the program.");
Conveyor.Off,
Robot.Send("NT");

End

Procedure Test4
1nit.Run;
Test3 .Run;
Conveyor.On;
PhotoCell.WaitOn(5000);

PalletStops.Off;
PalletArrived. WaitOn(5000):ErrHdl;
Delay. 1000;
PalletLiftUp.Strobe;
PalletLifted. WaitOn(5500);
Conveyor.Off;
ChuckOpen.Strobe;
Delay. 1000;
ChuckClose. Strobe;
Delay.2000;
Robot.Do(moveaway);
Delay.2000;
Lathestart. Strobe;
LatheStop.WaitOn(5000):ErrHdl;
Robot.Do(moveback);
Delay.2000;
ChuckOpen.Strobe;
Delay.2000;
Robot.Do(getpart);
PalletStops.On;
Pal1etLiftDown.Strobe;
Conveyor.On;
Delay.500;
Conveyor.Off;
PalletStops.Off;
LatheStart.Strobe;
LatheHandShkStrobe;

End

Program
Test4.RuntFor 2);
Console.Put("Press any key to stop...");
Test4.Run(Until Console.Poll());
Console.Get(Var);
Test1 .Run(While Var.NE("Nn));

End

5.4 Interpreter Construction

The interpreter creates a procedure table to hold the information about the procedures.

It now starts to read and analyze the p-code of each procedure. Every time a new procedure is

encountered, the interpreter saves the procedure name and executes a loop to read each line of

p-code. By checking the opcode of each line of p-code the interpreter knows if each line is

source code or instruction. (Note: the source code is included in the p-code for trace debug

output.) Accordingly it creates a new source code object or instruction object and attaches the

pointer, pointing to the newly created object, to the list of pointers to the source code objects

or the list of pointers to the instruction objects for the procedure. When the interpreter finishes

reading and analyzing the p-code of all the procedures, it continues to read and analyze the p-

code of the program in a similar way. After all the p-code of procedures and the program

have been read and analyzed, the interpreter begins to execute each instruction by calling a

member function execute() of each instruction object.

5.5 Verification

The new statements in the Extended CPL have been successfully implemented and

tested. Variations of each statement were tested, as well as complete programs. The example

program given in the section 5.3 is tested by executing it on the FMS cell in the CIM lab

successfully.

6. Strengths and Weaknesses of the Extended CPL

In this section, we briefly review strengths and weaknesses of the extended CPL. In

the next section, future development for implementing a complete CPL language will be

discussed.

The extended CPL has many enhancements and improvements over the original CPL.

It incorporates flow control features such as conditional procedure execution and looping and

allows subroutines. It also supports error recovery strategies and provides for operator

interface to CPL programs. It separates the setup of serial communication ports from CPL

programs that use serial ports by defining the port configuration parameters in a text file. All

these not only make the extended CPL much simpler and more useful, but it also provides

additional programming flexibility and power.

Currently, the CPL compiler does not generate compiling reports. Thus, it lacks good

diagnostic reports of syntax errors and cross reference reports. Also, there is some limitation

on the flexibility of conditional branching and flow control. The extended CPL neither has

logical operators such as NOT, AND and OR nor has mathematical operators to be used as

counters, for example. Another important functionality which is not implemented in the

extended CPL is parallel execution in procedures.

7. Conclusion and Future Development

The extensions to CPL have made the language more powerful and supports

development of more complicated control programs. The addition of procedures support

module programming. Also, error recovery is now incorporated into CPL using the timeout

mechanism and procedures. Conditional execution of procedures is supported. Lastly, a

simple operator interface has been added.

To implement a complete CPL language, future development could include the
following:

1. Generating compilation reports such as cross references and robusting diagnostics of

syntax errors;

2. Implementing logical operators such as NOT, OR, AND, numeric data type

variables, and mathematical operators like counters to enhance the flexibility of

conditional branching and conditional flow control;

3. Implementing the functionality of parallel execution of statements in procedures and

the program to enable the integration of another part of FMS cell in the CIM lab.;

4. Constructing a better user interface. Ideally, a graphic user interface should be

implemented to provide an integrated user interface. An editor and a full-fledged

debugger could be provided with the compiler. Also, an integrated programming

environment to different machine programming languages which are needed in a

complete CPL project, such as RWARE for robot programming and SmartCAM for

CNC machine programming, should be provided to enhance the consistency

[Marcelo94];

5. Providing ability to create the Port Declaration section and the Device Declaration

section in a separate file so that it can be reused. This will eliminate the need for

the CPL programmer to memorize port address and bit number for each individual

device. This would reduce the hardware dependency of CPL.

APPENDIX A: P-code for the CPL program shown in section 5.3

6
4444 Init
10 LatheHandShk.Strobe;
7 641 0
10 LatheG66inp.Strobe;
7 641 1
10 PalletStops.On;
1 642 0
10 Robot.Send("NT");
821 NT
5555
4444 Test 1
10 Lathe.Do(ldLatheA);
8 20 %
820N'G ' X ' Z ' F' H
8 20 00M03
82001 00 00-7100
8 2 0 0 2 0 1 - 100 00 80
8200301 - 50 50 25
8200401 00 500 25
8200501 50 50 25
8200600 100 00
8200700 00 6500
8 20 08M05
8 20 09M00
8 20 10M30
8 20 "
10 Robot.Do(ldPartA);
8 2 1 MI -2400,- 1600,800,1570,1390,O
8 21 MI 0,-240,-540,225,-225,O
821 GC
8 2 1 MI 0,1020,-240,-55,55,O
8 2 1 MI -7200,200,l OOO,O,O,O
8 2 1 MI 250,- 1800,1700,0,0,0
8 21 MI 20,-530,175,0,0,0
8 21 MI -130,0,0,0,0,0
10 PalletStops.On;
1 642 0
5555
4444 Test2
10 Lathe.Do(ldLatheB);
8 20 %
820N1G' X ' Z ' F' H
8 20 00M03
82001 00 00-7100
8 2 0 0 2 0 1 - 100 00 80
8 2 0 0 3 0 1 - 50 50 25
8200401 00 500 25

/number of procedures
/start of procedure Init
/source code
/strobe bit 0 on port 64 1 (PortB)

/strobe bit 1 on port 64 1

/set bit 0 on on port 642 (PortC)

/send string "NT" to port COM2
/end of procedure Init
/start of procedure Test 1

/send lathe program "1dLatheA to port COMl

/source code
/send robot program "1dPartA" to port COM2

/set bit 0 on on port 642
/end of procedure Test 1
/start of procedure Test2

8 20 05 01 50 50 25
8200600 100 00
8 20 07 00 00 6500
8 20 08M05
8 20 09M00
8 20 10M30
8 20 "
10 Robot.Do(ldPartB);
8 2 1 MI -2400,-1600,800,1570,1390,O
8 21 MI 0,-240,-540,225,-225,O
821 GC
8 21 MI 0,1020,-240,-55,55,0
8 2 1 MI -7200,200,l OOO,O,O,O
8 2 1 MI 250,- 1800,1700,0,0,0
8 21 MI 20,-530,175,0,0,0
8 21 MI - 130,0,0,0,0,0
10 PalletStops.On;
1 642 0
5555
4444 Test3 /start of procedure Test3
10 Console.Put("P1ease enter part type(AA3)");
5 26 22 0 "Please enter part type(AA3)" /display string on the screen
10 Console.Get(PartType);
5 25 22 1 PartType /get string from the keyboard and assign ,

/it to variable PartType
10 Test 1 .Run(If PartType.EQ("A"));
2222 Test 1 35 /conditionally call procedure Test 1

/condition type is If clause
9 28 PartType 0 "A" /condition: PartType equals "A"
3333 /end of condition
1 0 Test2.Run(If PartType.EQ("BW));
2222 Test2 35
9 28 PartType 0 "B"
3333
5555 /end of procedure Test3
4444 ErrHdl /start of procedure ErrHdl
10 Console.Put("Run time error, Please check the program.");
5 26 22 0 "Run time error, Please check the program."
10 Conveyor.OP,
2 642 5 /set bit 5 off on port 642
1 0 Robot.Send("NTW);
821NT /send string "NT" to port COM2
5555 /end of procedure ErrHdl
4444 Test4
10 1nit.Run;
1 11 1 Init /call procedure Init
10 Test3.Run;
1111 Test3 /call procedure Test3
10 Conveyor.On;
1 642 5

10 PalletStops.Off;
2 642 0
10 PalletArrived. WaitOn(5000):ErrHdl;
3 640 6 5000 1 ErrHdl

ErrHdl
10 Delay. 1000;
6 1000
10 PalletLiftUp.Strobe;
7 642 4
10 PalletLifted.WaitOn(5500);
3640555000
10 Conveyor.Off;
2 642 5
10 ChuckOpen.Strobe;
7 642 1
10 Delay. 1000;
6 1000
1 0 ChuckClose.Strobe;
7 642 3
10 Delay.2000;
6 2000
10 Robot.Do(moveaway);
821 GO
8 21 MI 130,0,0,0,0,0
8 21 MI -20,530,-175,0,0,0
8 2 1 MI 0,2360,-2660,- 1680,- 1 160,O
10 Delay.2000;
6 2000
10 Lathestartestrobe;
7 642 2
10 Lathestop. WaitOn(5000):ErrHdl;
3 640 4 5000 1 ErrHdl
10 Robot.Do(moveback);
8 2 1 MI -250,-560,960,1680,1160,O
8 2 1 MI 250,- 1800,1700,0,0,0
8 2 1 MI 20,-530,175,0,0,0
8 21 MI - 130,0,0,0,0,0
8 21 GC
10 Delay.2000;
6 2000
10 ChuckOpen.Strobe;
7 642 1
10 Delay.2000;
6 2000
10 Robot.Do(getpart);

/wait bit 7 switched to on on port 640(PortA) for
15000 milliseconds

/set bit 0 off on port 642

/wait bit 6 switched on on port 640 for 5000
/milliseconds, if timeout the bit is still not

/switched on, then call procedure

/delay for 1000 milliseconds

/strobe bit 4 on port 642

8 21 MI 130,0,0,0,0,0
8 21 MI -20,530,-175,0,0,0
8 2 1 MI -250,1800,- 1700,0,0,0
8 21 MI 7200,0,0,0,0,0
8 2 1 MI 0,- 1 180,-760,55,-55,O
821 GO
8 2 1 MI 2300,1700,- 160,-1695,-1265,O
821NT
10 PalletStops.On;
1 642 0
10 PalletLiftDown.Strobe;
7 642 6
10 Conveyor.On;
1 642 5
10 Delay.500;
6 500
10 Conveyor.Off;
2 642 5
10 PalletStops.Off;
2 642 0
10 LatheStart.Strobe;
7 642 2
10 LatheHandShk.Strobe;
7 641 0
5555 /end of procedure Test4
6666 /start of program
10 Test4.Run(For 2);
2222 Test4 36 /conditionally call procedure Test4,

/condition type is For loop
2 /repeat twice
3333 /end of condition
10 Console.Put("Press any key to stop...");
5 26 22 0 "Press any key to stop running procedure Test4 ..."
10 Testlt.Run(Unti1 Console.Poll());
2222 Test4 38 /run Test4 repeatedly until a key is pressed
5 27 22
3333
10 Console.Get(Var);
5 25 22 1 Var
10 Test 1 .Run(While Var.NE("N"));
2222 Test1 37
9 29 Var 0 "N"
3333
7777 /end of program

REFERENCES:

Alder, A(1988), "TDL: A task description language for programming automated robotic
workcells, Control and Programming in Advanced Manufacturing," International Trends in
Manufacturing Technology, K Rathmill, Ed. Springer-Verlag, Berlin, pp. 321-327.

Benhabib, B., Chen, C.Y., Johnson, W.R., "An Integrated Manufacturing Work Cell
Management System," Manufacturing Review vol2, no 4, December 1989.

Chang, Tien-Chien, Wysk, Richard A,, Wang, Hsu-Pin, Computer-Aided Manufacturing,
Prentice-Hall, Inc. Englewood Cliffs, N.J., 1987.

Farooq, Shabi, Sofiare Development for Manufacturing Systems - Language and Networking
Issues, Working Paper #92-0 13, Systems Analysis Dept., Miami Univ., Oct., 1992.

Groover, Mike11 P., Automation, Production Systems, and Computer Integrated Manufacturing,
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

Higgins, B. M., Prater, J. B., Object Orientation in the CIMEnvironment, Working Paper Csc-
9 1-3, Department of Computer Science, University of Missouri - Rolla.

Marcelo, L., Investigation and Critique of the Sofiare Development Environment for the
Manufacturing Engineering CIM Lab, Working Paper #94-003, Systems Analysis Dept.,
Miami Univ., Aug, 1994.

Martin, J.M.(1989), "Cells Drive Manufacturing Strategy," Manufacturing Engineering,
January, pp. 49-54.

Meghamala, N., Development of an Object-Oriented High-Level Language and Construction
of an Associated Object-Oriented Compiler, Working Paper #92-015, Systems Analysis
Dept., Miami Univ., Dec, 1992.

Shimano, B. E, Geschke, C. C., Spalding 111, C. H., Goldman, R., Scarborough, D. W.(1988),
"AIM: A task-level control system for assembly, Control and Programming in Advanced
Manufacturing," International Trends in Manufacturing Technology, K Rathmill, Ed.
Springer-Verlag, Berlin, pp. 305-3 19.

Troy, A. D., Nugehally, M., Farooq., S., Hergert., D., "Object-Oriented Flexible
Manufacturing Systems at Miami University," Proceedings of ICOOUS' 92, May 1992.

