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Abstract 

The Cell Programming Language (CPL) is a simple programming language which allows the 

students and faculty to easily program a workcell on a personal computer as the workcell 

controller. However, the original version of CPL lacks programming flexibility and power since 

it does not support subroutines, flow control, error recovery and operator interface to the 

execution of a CPL program. The objective of the project is to design and implement a new 

version of CPL to overcome the shortcomings of the original CPL by extending the language to 

include flow control, error recovery and operator interface to the execution of a CPL program. 

In this report CPL is introduced. The problems in the original CPL are addressed, the 

extensions to the original CPL are de$ned, and the implementation of the extensions is 

described. Some future development tasks are also discussed. 



............................................................................................................................................................ Abstract 2 
................................................................................................................................................. 1 . Introduction 4 

2 . Workcell Languages .................................................................................................................................... 5 
............................................................................................................................................... 2.1 Workcells 5 

2.2 Overview of Existing Workcell Programming Languages .................................................................... 5 
.............................................................................................................................. 3 . History of CPL System 7 

................................................................................................. 3.1 Description of Original CPL Language 8 
.............................................................................................................................. 3.1.1 Port Declaration 9 

3.1.2 Device Declaration ......................................................................................................................... 9 
.................................................................................................................. 3.1.3 Procedure Declaration 10 

3.1.4 Example of the Original CPL Program ........................................................................................ 11 
3.2 Implementation of the Original CPL Language .................................................................................. 1 
3.3 Weakness of the Original CPL System ................................................................................................ 12 

............................................................................................................................................ 4 . Extended CPL 13 
............................................................................................ 4.1 Flow Control and Conditional Execution 13 

.................................................................................................................................... 4.2 Error Recovery 14 
..................................................................................................... 4.3 Operator Interface to CPL Program 14 

..................................................................................................................... 4.4 Subroutines and Program 15 
............................................................................................................................. 4.5 Other Modifications 16 

......................................................................................................... 4.6 Grammar of the Extended CPL 1 6  
.................................................................................................................. 5 . Verification of Extended CPL 1 7  

.............................................................................................................. 5.1 Overview of Implementation 1 8  
................................................................................. 5.2 Compiler Construction (written in BorlandC++) 18 

................................................................................................... 5.3 Example of Extended CPL Program 20 
....................................................................................................................... 5.4 Interpreter Construction 22 

.......................................................................................................................................... 5.5 Verification 23 
...................................................................................... 6 . Strengths and Weaknesses of the Extended CPL 23 

7 . Conclusion and Future Development ........................................................................................................ 24 
Appendix A ................................................................................................................................................... 25 

....................................................................................................................................................... Reference 29 



1. Introduction 

Today's manufacturing industries are growing rapidly. The competition within each 

industry marketplace has resulted in an increased demand for higher quality and lower priced 

products. The way to maintain the competitive edge is by implementing state of the art 

computing technology within the manufacturing systems [Riggins9 I]. 

A flexible manufacturing system (FMS) is a reprogrammable manufacturing system 

capable of producing a variety of products automatically [Chang87] . It can be considered to 

be a set of workcells that operate and are scheduled independently of each other [Benhabib89]. 

Each individual workcell is composed of one or more machine tools linked by a common 

material handling system and under the control of a centralized workcell controller for the 

purpose of producing the given requirements of a family of parts [Martin89]. The workcell 

controller is programmed to coordinate the interoperation of the various devices in the 

workcell. 

Flexible manufacturing systems can be applied to provide a number of benefits and 

advantages over alternative methods of production: (1) Higher machine utilization; (2) 

Reduced work-in-progress; (3) Lower manufacturing lead time; (4) Greater flexibility in 

production scheduling; (5) Higher labor productivity [GrooverSO]. 

This research is an investigation of a programming language, generically called a 

"workcell programming language" designed specially for programming an individual workcell 

controller by students. The goal of this research is to provide an easy-to-use programming 

language for writing software for individual manufacturing workcells by developing a special 

purpose high-level language, called the Cell Programming Language (CPL). 

Individual workcell components and their operations can be integrated by 

programming the workcell as a single unit. This can be performed by writing a program in a 

high-level language such as BASIC or C, but it requires the user to know how to perform low- 

level interfacing to the workcell's devices. For example, the user needs to know how to set a 

particular bit on a particular port to turn a particular device on or off. Instead, CPL allows the 

user to program the workcell by referring to devices as objects and using commands such as 

On/Off to turn a device onfoff, and the CPL system takes care of the low-level programming 

details. 



2. Workcell Languages 

2.1 Workcells 

A typical FMS workcell may consist of robots, conveyors, CNC machines, pallet 

stops, pallet lifts, sensors, and other devices. Devices are connected to the workcell controller 

computer (PCs or programmable logic controllers) through some interfacing electronics and 

data acquisition boards. The interfacing electronics convert signals from the PC to appropriate 

signals for these devices. Some devices such as robots and CNC machines are controlled by 

programs written in the host command languages of these machines. 

An example of a workcell is in the Manufacturing Engineering Department's CIM lab 

at Miami University shown in Figure 1. The inputs and outputs of the workcell devices, such 

as the conveyor and pallet lifts, are wired through external relay interfacing to a data 

acquisition board in a PC which is used as the workcell controller. The robot controller is 

connected to either the PC's serial or parallel communication port. The CNC machine is 

connected to the PC's serial communication port. 

2.2 Overview of Existing Workcell Programming Languages 

A survey of recent literature on workcell management reveals that most research and 

development efforts center on specific topics such as data base applications in workcell 

control, knowledge-based system/software for workcell monitoring and coordination purposes, 

and workcell communications. There are very few research projects that address the 

development of workcell programming languages [Benhabib89]. They are briefly discussed in 

this section. 

An Integrated Manufacturing Work Cell Management System [BenhabibS9] represents 

an approach to develop "a work cell management system that functions both as an interpreter 

to a task-level work cell programming language, and as a work cell supervisory capable of 

coordinating work cell activities and implementing error recovery." Its design is based on the 

expert system approach that makes the process of reprogramming and system upgrading more 

efficient and easier. 
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Figure 1. Diagram of the Flexible Manufacturing Cell in CIM Lab 



The assembly and information management system (AIM) (Shiman0881 represents an 

approach to robot programming which "simplifies the integration and operation of robotic 

assembly cells." Its design is based on the modular structure that permits customization, by 

modifying or enhancing the set of task-level statements, to meet different work cell functional 

requirements. Its decision-making capability is limited and its error recovery mechanism 

simple, since the system does not seek to acquire knowledge about work cell status in real 

time. Therefore, it cannot deal with error events without operator intervention. 

The task description language (TDL) [Alder881 system follows an approach similar to 

that of AIM. It is developed to "enable accurate simulation of robotic work cells and the 

generation of programming codes to be loaded directly to equipment controllers on the factory 

floor." Compared with AIM, TDL is more versatile in the sense that it allows work cell 

programming rather than solely robot programming. TDL, as AIM, lacks the sophistication to 

handle error events in real time without operator assistance. 

In [Benhabib89], the researchers concluded that a major weakness of existing workcell 

languages was a lack of error recovery. Most approaches deal with specific issues concerning 

workcell management, but do not encompass all three aspects of programming, coordination, 

and error recovery. 

The Cell Programming Language (CPL) is an object-based workcell programming 

language developed at Miami University for use by students in the Manufacturing Engineering 

Department. This language is described in the next section. 

3. History of CPL System 

CPL was developed as a simple programming language that would allow a student to 

program a workcell by using a personal computer as the controller. Devices in the cell were 

connected to the PC using appropriate relays and a data acquisition board in the PC. To turn a 

device in the workcell on, software in the PC simply needs to set the appropriate bit in one of 

the data acquisition board's registers. To examine the state of a device, the software simply 

reads a register from the board and examines the state of the appropriate bit. Thus, each digital 

device in the FMS cell is assigned a unique bit in a register on the data acquisition board. 



To control other devices, such as robots or CNC machines, the user writes a program 

in the language of the particular device and uploads that program, using the PC's serial or 

parallel port, to the device. 

Before CPL was developed, students wrote BASIC programs or assembly language 

programs to control the workcell. Only a few students could learn the necessary low-level 

details needed for this kind of programming. 

The first version of CPL system consisted of three parts: the CPL language, the 

compiler and the interpreter. The CPL language allows the user to describe the sequence of 

steps required to manufacture a part in a FMS workcell. The compiler translates the CPL 

source code into intermediate code which is called p-code. The interpreter takes p-code as 

input and executes it to control the operation of the devices in a FMS workcell by writing and 

reading binary data tolfrom a data acquisition board and the serial and parallel communication 

port in the PC. The CPL software architecture is shown in Figure 2 [Troy92]. The CPL 

language, the compiler, and the interpreter are described below. 

CPL Program, 
Robot and CNC Command Files 

Compiler + 
p-code 

Interpreter + 
data acquisition board and serial or parallel ports 

Figure 2. CPL Software Architecture 

3.1 Description of Original CPL Language 



In the original CPL, which is designed and implemented by Meghamala 

[Meghamala92] and Farooq [Farooq92], a program consists of three sections: port declaration, 

device declaration, and procedure declaration. 

3.1.1 Port Declaration 

The port declaration section is used to assign physical I10 port addresses to registers 

on the data acquisition board in the PC and to define data flow direction (input/output) of each 

register. In CPL these addresses are given port names for later reference. Ports could also be 

assigned to serial (COM) ports or parallel (LPT) ports. The declaration of ports are made 

within a Ports ... End block. 

The syntax for port declaration is as follows: 

The port-identifier can be any user defined name consisting of alphabetic characters, digits 

and underscores up to a maximum of 30 characters. The port-address should be a physical 

port address in the data acquisition board and the data-flow-direction is either Input or Output 

depending on whether the port is used to send or receive signals. The parameters are used with 

COM ports. The syntax is <baud rate> <data bits> <stop bits> <parity>. An example of a port 

declaration section is as follows: 

Ports 
PortA 640 Input; 
PortB 641 Output; 
PortC 642 Output; 
Com lPort COMl 300 7 2 0; 

End 

3.1.2 Device Declaration 

The device declaration section is used to declare device objects and associate a port 

and a bit number with each device object. The device types are predefined in the language. 

The device declarations are made within the Devices ... End block. The following is the syntax 

for a device declaration: 

<device-identifier> <device-type [<port-identifier> <bit-number>]I[~programmablegort>] 



The device-identifier is a user defined name and the device-type is a keyword in the CPL 

language. The device types are shown in the Table 1. A coil is a device type that can be turned 

on or off to control things like motors. A sensor is a device that capture signals and send 

signals to the controller, for example a limit switch or photocell. A pulse device type can be 

sent a short onloff signal to start it. A programmable device type is a device which can be 

programmed in its host language, such as robot and CNC machine. The port-identifier should 

be defined in the port declaration section as discussed previously, and the bit-number is a 

constant between 0 and 7 and corresponds to a bit on the data acquisition board. For the 

programmable device type, the port name LPTl or the port identifier defined in the port 

declaration section for COMl or COM2, would be specified depending on the communication 

port to which it is connected. Port identifiers are used for devices that interface through the 

data acquisition board, whereas programmable ports use the serial or parallel ports. 

DEVICE TYPES VALID FUNCTIONS 

Coil On / Off 
Sensor WaitOn / WaitOff 
Pulse Strobe 
Program ma ble Send / Do 
Wait Milliseconds 

Table 1 

3.1.3 Procedure Declaration 

The last section in CPL is the procedure section. A procedure section consists of 

control statements. Each statement represents one device operation and directly corresponds to 

an actual operation of the real device in the FMS workcell. There is only one procedure 

section in the original CPL program and all statements are executed in sequence. There are no 

control constructs such as loops or conditions and no subroutines. The syntax of a procedure 

statement is as follows: 

<device-identifier>. {<function>[(parameter)]}l<delay-time> 

The device-identifier is an identifier previously declared in the device section. The 

device-function is a key word, shown in Table 1, and predefined in the language. 



The procedure section is enclosed in the keywords Procedure ... End block. An example 

of a procedure section is given below. 

Procedure 
Conveyor.On; 
Robot. Send("NT"); 
PhotoCell.WaitOn; 
ChuckOpen.Strobe; 
Delay. 1000; 
Conveyor.Off; 

End 

3.1.4 Example of the Original CPL Program 

An example of the original CPL program is as follows: 

Ports 
Comport COMl 300 7 2 0; 
P o r t .  64256 Input; 
PortB 64257 Output; 
PortC 64259 Output; 

End 

Devices 
Conveyor Coil PortC 5; 
Photocell Sensor PortA 7; 
Robot Programmable .LPTl; 
Lathe Programmable Comport; 
Delay Wait; 

End 

Procedure 
Lathe.Do(loadlath) 
Robot.Send("NT"); 
Robot.Do(1oadpart); 
Conveyor.On; 
Delay.500; 
Conveyor.Off; 

End 

3.2 Implementation of the Original CPL Language 

The CPL system consists of two programs: a compiler and an interpreter. The 

compiler parses the source code, analyzes it and generates intermediate code (p-code) which is 



the input to the interpreter. The interpreter executes the p-code and performs low-level 110 

interface to the data acquisition board and PC's serial and parailel communication ports. 

The CPL system is based on the object-oriented design and implemented in Borland 

C++. The ports, the devices and procedure statements are considered as objects in the 

implementation. 

In the CPL system, the PC's serial communication ports and their configurations as 

discussed previously are defined in the port declaration section by the user. This requires that 

the user know the PC's serial communication port configuration parameters, such as 

transmission speed, parity, etc. 

3.3 Weakness of the Original CPL System 

CPL can not handle error events since it does not incorporate any error detection or 

recovery strategies. When a device operation fails, the execution of the program could result 

in a unpredictable state. For example, to examine the state of sensor type devices, the software 

waits to read appropriate data from the data acquisition board. If a given device is never 

turned odoff, the program will be put on hold and wait forever. Thus, there is no timeout 

function in CPL language. 

In CPL, there are no flow control features such as looping and conditional execution. 

All statements in the procedure section are executed in sequence. This limits the use of the 

language for student projects. 

Also, there is no provision for an operator (user) interface to a CPL program. For 

example, the user can not control the execution of the program from the PC (once it is started), 

nor can the user enter data to a running CPL program or display output messages to the 

operator. Additionally, there is no support for variables in which data can be stored. 

Another weakness is that there are no subroutines, so CPL programs can not be written 

in modular fashion. There is only one procedure in a CPL program. All statements (i.e. device 

operations) are carried out sequentially. Therefore, to repeat a certain set of device operations 

more than once, one has to duplicate the same code as many times as needed in the program. 

This is very inconvenient and makes it impossible to write a sophisticated CPL program. 

Finally, the user is required to know the serial communication parameters because 

these are included in every CPL program that uses serial communication ports. 



4. Extended CPL 

Without flow control, error recovery, the operator interface to a CPL program, and 

subroutines, the original CPL lacks flexibility and power to write complex and sophisticated 

programs. A new version of the CPL language is developed to overcome the shortcomings of 

the original CPL by extending the language to include flow control, conditional execution, 

error recovery, an operator interface, string variables, subroutines, and a main program section. 

Also, a serial communication configuration file is added so that these parameters need only to 

be configured one time, instead of coded in every CPL program. 

4.1 Flow Control and Conditional Execution 

Extended CPL provides several ways for conditional branching and looping by adding 

the following control constructs: If, While, Until, and For. 

The If control construct executes a procedure if a condition is true. An example of IF 

statement is: 

ProcA.Run(If PartType.EQ("Aw)); 

Where ProcA is a name of procedure which is defined earlier in the procedure section and 

PartType is a string variable defined in the devices section. The procedure ProcA will be 

executed once if the condition (PartType is equal to "A") is true. 

The While loop executes a procedure repeatedly while a condition is true. The 

Following is an example of While statement: 

ProcA.Run(While PartType.EQ("AW)); 

 hi^ statement will execute the procedure ProcA repeatedly while the condition (PartType is 

equal to "A") is true. 

The Until loop executes a procedure repeatedly until the specified condition becomes 

true. The procedure will be executed at least once. An example of Until statement is shown 

as follow: 

ProcA.Run(Unti1 PartType.NE("A")); 

This statement executes the procedure ProcA repeatedly until the condition (PartType is not 

equal to "A") becomes true. 



The For loop executes a procedure as many times as specified. An example of For 

loop is: 

Where 10 is the specified execution times. 

4.2 Error Recovery 

Extended CPL supports error recovery strategies. One error recovery strategy is to 

have timeout checking for operations of sensor devices. When a sensor type device is not 

being switched onloff in the specified time period, the program is terminated and the error 

message is displayed to the operator. Another error recovery strategy is to associate an error 

handler procedure to an operation statement or a procedure. Once the execution of an 

operation or procedure fails, the error handler procedure associated with it is called to carry out 

some actions to handle error. The following is an example of error recovery statement: 

This statement waits for the device Photocell to be switched on for a maximum of 1000 

milliseconds. If waiting time expired and Photocell is still not switched on, the procedure 

ErrHdl, which is defined in the procedure section earlier, is executed to handle error event. 

4.3 Operator Interface to CPL Program 

In the extended CPL language, there is provision for an operator to interface to a CPL 

program. Two new device types are added to the CPL language: String and 10. 

The String type allows the operator to define string variables. Operations on strings 

are assignment and comparison. String variables can be used to hold the strings entered by the 

operator. The additional implementation of relational operators makes conditional execution 

and flow control possible. 

The other type is called 10. 1 0  devices are used to get user input from the keyboard 

and to display output messages on the screen. There are three kinds of operations for the I 0  

device. The Get operation will wait for an operator to enter data from keyboard, then assign 

the data to a specified string variable. The Poll operation is used to wait for a key stroke. The 

Put operation displays a message on the screen. I 0  devices types do not require a port name. 



The following are examples of String and 1 0  device declaration statements and 
operation statements: 

Devices 
PartType String; 
Console 10; 

End 

Program 
Console.Put("Please enter part type(A/B): "); 
Console.Get(PartType); 
ProcA.Run(If PartType.EQ("A")); 
Console.Put("Press any key to stop ProcB"); 
ProcB.Run(Unti1 Console.Poll()); 

End 

The first statement will put the message enclosed within quotes on the screen. The second 

statement will wait for the operator to input data from keyboard and then put it into the string 

variable PartType. The last statement executes procedure ProcB repeatedly until the operator 

presses a key. 

4.4 Subroutines and Program 

In the extended CPL, it is possible for a program to include any number of subroutines 

(i.e. procedures in CPL), each of which consists of device control statements as well as a 

"main" program. A procedure must be defined before it can be called in another procedure or 

in the program section. Each procedure should have a user defined procedure name for later 

reference. Procedures can not be nested, nor can they have their own port or device 

declarations, i.e., all ports and devices defined in the port declaration section and device 

declaration section are global in the CPL program. A new section, the program section, is 

added to the extended CPL language. The program section consists of device control 

statements and/or calls to procedures defined in an earlier procedure section. The main 

program is coded in the program section. The following is an example of procedures 

declaration and program declaration in the extended CPL: 

Procedure ProcA 
Robot.Do(ldPartA); 
Lathe.Do(mkPartA); 
Robot.Do(mvPartA); 

End 

Procedure ProcB 



Robot.Do(ldPartB); 
Lathe.Do(mkPartB); 
Robot.Do(mvPartB); 

End 

Procedure Init 
Conveyor.Off; 
Robot.Send("RS"); 

End 

Program 
1nit.Run; 
Conveyor.On; 
PhotoCell.WaitOn(l000); 
Conveyor.Off; 
Console.Put("Enter part type(A1B): "); 
Console.Get(PartType); 
ProcA.Run(If PartType.EQ("A")); 
ProcB .Run(For 1 0); 

End 

4.5 Other Modifications 

In the extended CPL language, serial communication port configuration parameters are 

defined in a separate file, called COMSETUP.ICN1 which is a DOS text file used to specify the 

serial communication ports configuration parameters. The format of a configuration file is as 

following: 

Comport = COMl 
BaudRate = 300 
Parity = NONE 
DataBit = 7 
StopBit = 1 

The statements can be written in any order. This provides an easy-to-understand way for users 

to setup serial communication ports configuration parameters once instead of in every CPL 

program as was required in the original CPL language. Another advantage of having separate 

serial ports configuration file is the ports configurations can be changed without changing the 

CPL program. 

4.6 Grammar of the Extended CPL 

The grammar for the extended CPL language is shown below. 



<ports-declarations> <device-declaration* [<procedure-section>...] 
<program-section, 

Ports <port-stmtlisu End 

Devices <device-stmtlisu End 

Procedure <procedure-name> <procedure-stmtlist, End 

Program <procedure-stmtlist, End 

<integer> 

Input / Output 

<device-stmu [device-stmtlist] 

<device-name> <device-type> [{<port-name> <bit-number>)l 
{<predefinedqort>) J; 

<identifier> 

Coil / Sensor / Pulse I Programmable I Wait / I 0  / String 

0 1 1 1 2 1 3 1 4 1 ~ / 6 1 7  

LPTI / COMl COM2 

<identifier> 

~coil~fun~/<sensor~func>/<pulse~func>/~wait~time>~~progrmable~func~~ 
-40-fun0 

On 1 Off 

WaitOn I WaitOff 

Strobe 

<integer> 

Do I Send(<pararneter>) 

<string>l<file-name> 

<identifier> 

Get(<var-name>) 1 Put(<string>) / Poll 

<identifier> 

For <integer>/{ If, While, Until} <condition> 

<s&ing-name>.<string-operation>(<shing>) 

E Q l N E / G T / L T l G E / L E  

<letter>[<letter>(<digit>.. .j 

"<ascii-character>" 

5. Verification of Extended CPL 



To verify the design of extended CPL, the new language constructs were implemented 

and tested in the compiler and interpreter. The implementation is described below. 

5.1 Overview of Implementation 

The Cell Programming Language (CPL) is designed and implemented using object- 

oriented techniques, written in Borland C++. It consists of a compiler and an interpreter. The 

compiler parses the CPL source code, analyzes it and generates intermediate code (called p- 

code). The interpreter takes p-code as input and executes the CPL program. The details about 

implementing the compiler and the interpreter are described in next sections. 

5.2 Compiler Construction (written in BorlandC*) 

In the design of the compiler, the entire compilation process is considered to be an 

object. Objects at the top level of abstraction include port objects, device objects, procedure 

objects and program object. At the next level of abstraction, a generic statement class serves 

to define the common properties of all statements in procedures and the program. Derived 

from the generic statement class are a variety of device statement classes for each different 

type of device. A token class is used to define the attributes and methods of tokens. The class 

hierarchy is shown in Figure 3. 

Compiler Port 

Device 

Statement SensorCoil 

Programmable 

Wait 

CIO 

Cstring - String 

CplSrcCode 

ProcRun 

Figure 3. Class Hierarchy 



The compiler is invoked with a CPL program which is instantiated as a compilation 

object starting the translation process. The compilation flow is shown in Figure 4. 

The compilation starts with the Ports definition section. A new port object is created 

for every port variable declaration. Control is passed to a newly created port object to parse 

the port declaration itself. After the parsing, the compilation object regains control and adds 

the pointer, pointing to the newly created port object, to a linked list. Duplicate port names are 

not permitted and are flagged as an error. This linked list of port objects is used in device 

parsing to make sure a device is not assigned to an undefined port. The control is being passed 

back and forth between the compilation and a port object until all port declarations have been 

parsed. 

The compilation next parses the Devices definition section in a similar way as with the 

Ports section. A linked list of pointers to all device objects is also created. Duplicate device 

names are not allowed. References to port names are looked up in the list of ports. The list of 

devices is used in parsing procedures and the program to ensure that statements reference valid 

device. 

The compiling object now parses the procedure sections. A new procedure object is 

created for each procedure definition in the CPL program. Control is passed to the newly 

created procedure object to parse all statements in it. For each statement, a new statement 

object is created and the statement is parsed. Device names are looked up in the list of devices 

to ensure that they have been declared. As a result, a double linked list of pointers to ail the 

statements in the procedure is created. Control is then returned to the compilation object and 

the newly created procedure object is added to a linked list. When all the procedure definition 

sections are parsed, the compilation continues to parse the Program section. It creates a 

program object and then passes the control to the program object. The program object parses 

every statement in it. A new statement object is created for each statement and the control is 

passed to the statement object. After the statement has parsed itself, control is returned to the 

program object and a pointer to the statement object is added to a double linked list. Control is 

being passed between the program object and a statement object until all statements in the 

program have been parsed as shown in Figure 4. 

Finally, if the entire CPL program has been parsed successfully, the compilation object 

begins to generate the p-code for each procedure and then the program. Annotated p-code is 

shown in appendix A. 



Start Compilation 7 + 
Parse Port I 

Parse Device 7 
Parse Procedure b 

+ 
Parse Program 

Generate p-code A 
Figure 4. Compilation Flow Chart 

5.3 Example of Extended CPL Program 

An example of an Extended CPL source program is given in this section. The p-code 

for the following example is given in appendix A. 

Ports 
PortC 642 Output; 
PortA 640 Input; 
PortB 641 Output; 

End 

Devices 
PalletLiftUp 
Conveyor 
Photocell 
PalletArrived 
Chuckopen 
LatheG66inp 
Robot 
Lathe 
Lathestart 

Pulse PortC 4; 
Coil PortC 5; 
Sensor PortA 7; 
Sensor PortA 6; 
Pulse PortC 1; 
Pulse PortB 1; 
Programmable COM2; 
Programmable COM 1 ; 
Pulse PortC 2; 



Lathestop Sensor PortA 4; 
PalletLifted Sensor PortA 5; 
Palletstops Coil PortC 0; 
ChuckClose Pulse PortC 3; 
PalletLiftDown Pulse PortC 6; 
LatheRunning Sensor PortA 2; 
LatheHandShk Pulse PortB 0; 
Delay Wait; 
Console 10; 
PartType String; 
Var String; 

End 

Procedure Init 
LatheHandShkStrobe; 
LatheG66inp.Strobe; 
PalletStops.On; 
Robot.Send("NT"); 

End 

Procedure Test 1 
Lathe.Do(ldLatheA); 
Robot.Do(ldParL4); 
PalletStops.On; 

End 

Procedure Test2 
Lathe.Do(1dLatheB); 
Robot.Do(ldPartB); 
Pal1etStops.On; 

End 

Procedure Test3 
Console.Put("Please enter part type(Ah3)"); 
Console.Get(PartType); 
Test1 .Run(If PartType.EQ("A")); 
Test2 .Run(If PartType.EQ("B ")); 

End 

Procedure ErrHdl 
Console.Put("Run time error, Please check the program."); 
Conveyor.Off, 
Robot.Send("NT"); 

End 

Procedure Test4 
1nit.Run; 
Test3 .Run; 
Conveyor.On; 
PhotoCell.WaitOn(5000); 



PalletStops.Off; 
PalletArrived. WaitOn(5000):ErrHdl; 
Delay. 1000; 
PalletLiftUp.Strobe; 
PalletLifted. WaitOn(5500); 
Conveyor.Off; 
ChuckOpen.Strobe; 
Delay. 1000; 
ChuckClose. Strobe; 
Delay.2000; 
Robot.Do(moveaway); 
Delay.2000; 
Lathestart. Strobe; 
LatheStop.WaitOn(5000):ErrHdl; 
Robot.Do(moveback); 
Delay.2000; 
ChuckOpen.Strobe; 
Delay.2000; 
Robot.Do(getpart); 
PalletStops.On; 
Pal1etLiftDown.Strobe; 
Conveyor.On; 
Delay.500; 
Conveyor.Off; 
PalletStops.Off; 
LatheStart.Strobe; 
LatheHandShkStrobe; 

End 

Program 
Test4.RuntFor 2); 
Console.Put("Press any key to stop..."); 
Test4.Run(Until Console.Poll()); 
Console.Get(Var); 
Test1 .Run(While Var.NE("Nn)); 

End 

5.4 Interpreter Construction 

The interpreter creates a procedure table to hold the information about the procedures. 

It now starts to read and analyze the p-code of each procedure. Every time a new procedure is 

encountered, the interpreter saves the procedure name and executes a loop to read each line of 

p-code. By checking the opcode of each line of p-code the interpreter knows if each line is 

source code or instruction. (Note: the source code is included in the p-code for trace debug 

output.) Accordingly it creates a new source code object or instruction object and attaches the 



pointer, pointing to the newly created object, to the list of pointers to the source code objects 

or the list of pointers to the instruction objects for the procedure. When the interpreter finishes 

reading and analyzing the p-code of all the procedures, it continues to read and analyze the p- 

code of the program in a similar way. After all the p-code of procedures and the program 

have been read and analyzed, the interpreter begins to execute each instruction by calling a 

member function execute() of each instruction object. 

5.5 Verification 

The new statements in the Extended CPL have been successfully implemented and 

tested. Variations of each statement were tested, as well as complete programs. The example 

program given in the section 5.3 is tested by executing it on the FMS cell in the CIM lab 

successfully. 

6. Strengths and Weaknesses of the Extended CPL 

In this section, we briefly review strengths and weaknesses of the extended CPL. In 

the next section, future development for implementing a complete CPL language will be 

discussed. 

The extended CPL has many enhancements and improvements over the original CPL. 

It incorporates flow control features such as conditional procedure execution and looping and 

allows subroutines. It also supports error recovery strategies and provides for operator 

interface to CPL programs. It separates the setup of serial communication ports from CPL 

programs that use serial ports by defining the port configuration parameters in a text file. All 

these not only make the extended CPL much simpler and more useful, but it also provides 

additional programming flexibility and power. 

Currently, the CPL compiler does not generate compiling reports. Thus, it lacks good 

diagnostic reports of syntax errors and cross reference reports. Also, there is some limitation 

on the flexibility of conditional branching and flow control. The extended CPL neither has 

logical operators such as NOT, AND and OR nor has mathematical operators to be used as 

counters, for example. Another important functionality which is not implemented in the 

extended CPL is parallel execution in procedures. 



7. Conclusion and Future Development 

The extensions to CPL have made the language more powerful and supports 

development of more complicated control programs. The addition of procedures support 

module programming. Also, error recovery is now incorporated into CPL using the timeout 

mechanism and procedures. Conditional execution of procedures is supported. Lastly, a 

simple operator interface has been added. 

To implement a complete CPL language, future development could include the 
following: 

1. Generating compilation reports such as cross references and robusting diagnostics of 

syntax errors; 

2. Implementing logical operators such as NOT, OR, AND, numeric data type 

variables, and mathematical operators like counters to enhance the flexibility of 

conditional branching and conditional flow control; 

3. Implementing the functionality of parallel execution of statements in procedures and 

the program to enable the integration of another part of FMS cell in the CIM lab.; 

4. Constructing a better user interface. Ideally, a graphic user interface should be 

implemented to provide an integrated user interface. An editor and a full-fledged 

debugger could be provided with the compiler. Also, an integrated programming 

environment to different machine programming languages which are needed in a 

complete CPL project, such as RWARE for robot programming and SmartCAM for 

CNC machine programming, should be provided to enhance the consistency 

[Marcelo94]; 

5. Providing ability to create the Port Declaration section and the Device Declaration 

section in a separate file so that it can be reused. This will eliminate the need for 

the CPL programmer to memorize port address and bit number for each individual 

device. This would reduce the hardware dependency of CPL. 



APPENDIX A: P-code for the CPL program shown in section 5.3 

6 
4444 Init 
10 LatheHandShk.Strobe; 
7 641 0 
10 LatheG66inp.Strobe; 
7 641 1 
10 PalletStops.On; 
1 642 0 
10 Robot.Send("NT"); 
821  NT 
5555 
4444 Test 1 
10 Lathe.Do(ldLatheA); 
8 20 % 
820N'G '  X '  Z '  F' H 
8 20 00M03 
82001  00 00-7100 
8 2 0 0 2 0 1 -  100 00 80 
8200301  - 50 50 25 
8200401  00 500 25 
8200501  50 50 25 
8200600  100 00 
8200700  00 6500 
8 20 08M05 
8 20 09M00 
8 20 10M30 
8 20 " 
10 Robot.Do(ldPartA); 
8 2 1 MI -2400,- 1600,800,1570,1390,O 
8 21 MI 0,-240,-540,225,-225,O 
821  GC 
8 2 1 MI 0,1020,-240,-55,55,O 
8 2 1 MI -7200,200,l OOO,O,O,O 
8 2 1 MI 250,- 1800,1700,0,0,0 
8 21 MI 20,-530,175,0,0,0 
8 21 MI -130,0,0,0,0,0 
10 PalletStops.On; 
1 642 0 
5555 
4444 Test2 
10 Lathe.Do(ldLatheB); 
8 20 % 
820N1G'  X '  Z '  F' H 
8 20 00M03 
82001  00 00-7100 
8 2 0 0 2 0 1 -  100 00 80 
8 2 0 0 3 0 1 -  50 50 25 
8200401  00 500 25 

/number of procedures 
/start of procedure Init 
/source code 
/strobe bit 0 on port 64 1 (PortB) 

/strobe bit 1 on port 64 1 

/set bit 0 on on port 642 (PortC) 

/send string "NT" to port COM2 
/end of procedure Init 
/start of procedure Test 1 

/send lathe program "1dLatheA to port COMl 

/source code 
/send robot program "1dPartA" to port COM2 

/set bit 0 on on port 642 
/end of procedure Test 1 
/start of procedure Test2 



8 20 05 01 50 50 25 
8200600  100 00 
8 20 07 00 00 6500 
8 20 08M05 
8 20 09M00 
8 20 10M30 
8 20 " 
10 Robot.Do(ldPartB); 
8 2 1 MI -2400,-1600,800,1570,1390,O 
8 21 MI 0,-240,-540,225,-225,O 
821  GC 
8 21 MI 0,1020,-240,-55,55,0 
8 2 1 MI -7200,200,l OOO,O,O,O 
8 2 1 MI 250,- 1800,1700,0,0,0 
8 21 MI 20,-530,175,0,0,0 
8 21 MI - 130,0,0,0,0,0 
10 PalletStops.On; 
1 642 0 
5555 
4444 Test3 /start of procedure Test3 
10 Console.Put("P1ease enter part type(AA3)"); 
5 26 22 0 "Please enter part type(AA3)" /display string on the screen 
10 Console.Get(PartType); 
5 25 22 1 PartType /get string from the keyboard and assign , 

/it to variable PartType 
10 Test 1 .Run(If PartType.EQ("A")); 
2222 Test 1 35 /conditionally call procedure Test 1 

/condition type is If clause 
9 28 PartType 0 "A" /condition: PartType equals "A" 
3333 /end of condition 
1 0 Test2.Run(If PartType.EQ("BW)); 
2222 Test2 35 
9 28 PartType 0 "B" 
3333 
5555 /end of procedure Test3 
4444 ErrHdl /start of procedure ErrHdl 
10 Console.Put("Run time error, Please check the program."); 
5 26 22 0 "Run time error, Please check the program." 
10 Conveyor.OP, 
2 642 5 /set bit 5 off on port 642 
1 0 Robot.Send("NTW); 
821NT /send string "NT" to port COM2 
5555 /end of procedure ErrHdl 
4444 Test4 
10 1nit.Run; 
1 11 1 Init /call procedure Init 
10 Test3.Run; 
1111 Test3 /call procedure Test3 
10 Conveyor.On; 
1 642 5 



10 PalletStops.Off; 
2 642 0 
10 PalletArrived. WaitOn(5000):ErrHdl; 
3 640 6 5000 1 ErrHdl 

ErrHdl 
10 Delay. 1000; 
6 1000 
10 PalletLiftUp.Strobe; 
7 642 4 
10 PalletLifted.WaitOn(5500); 
3640555000 
10 Conveyor.Off; 
2 642 5 
10 ChuckOpen.Strobe; 
7 642 1 
10 Delay. 1000; 
6 1000 
1 0 ChuckClose.Strobe; 
7 642 3 
10 Delay.2000; 
6 2000 
10 Robot.Do(moveaway); 
821 GO 
8 21 MI 130,0,0,0,0,0 
8 21 MI -20,530,-175,0,0,0 
8 2 1 MI 0,2360,-2660,- 1680,- 1 160,O 
10 Delay.2000; 
6 2000 
10 Lathestartestrobe; 
7 642 2 
10 Lathestop. WaitOn(5000):ErrHdl; 
3 640 4 5000 1 ErrHdl 
10 Robot.Do(moveback); 
8 2 1 MI -250,-560,960,1680,1160,O 
8 2 1 MI 250,- 1800,1700,0,0,0 
8 2 1 MI 20,-530,175,0,0,0 
8 21 MI - 130,0,0,0,0,0 
8 21 GC 
10 Delay.2000; 
6 2000 
10 ChuckOpen.Strobe; 
7 642 1 
10 Delay.2000; 
6 2000 
10 Robot.Do(getpart); 

/wait bit 7 switched to on on port 640(PortA) for 
15000 milliseconds 

/set bit 0 off on port 642 

/wait bit 6 switched on on port 640 for 5000 
/milliseconds, if timeout the bit is still not 

/switched on, then call procedure 

/delay for 1000 milliseconds 

/strobe bit 4 on port 642 



8 21 MI 130,0,0,0,0,0 
8 21 MI -20,530,-175,0,0,0 
8 2 1 MI -250,1800,- 1700,0,0,0 
8 21 MI 7200,0,0,0,0,0 
8 2 1 MI 0,- 1 180,-760,55,-55,O 
821 GO 
8 2 1 MI 2300,1700,- 160,-1695,-1265,O 
821NT 
10 PalletStops.On; 
1 642 0 
10 PalletLiftDown.Strobe; 
7 642 6 
10 Conveyor.On; 
1 642 5 
10 Delay.500; 
6 500 
10 Conveyor.Off; 
2 642 5 
10 PalletStops.Off; 
2 642 0 
10 LatheStart.Strobe; 
7 642 2 
10 LatheHandShk.Strobe; 
7 641 0 
5555 /end of procedure Test4 
6666 /start of program 
10 Test4.Run(For 2); 
2222 Test4 36 /conditionally call procedure Test4, 

/condition type is For loop 
2 /repeat twice 
3333 /end of condition 
10 Console.Put("Press any key to stop..."); 
5 26 22 0 "Press any key to stop running procedure Test4 ..." 
10 Testlt.Run(Unti1 Console.Poll()); 
2222 Test4 38 /run Test4 repeatedly until a key is pressed 
5 27 22 
3333 
10 Console.Get(Var); 
5 25 22 1 Var 
10 Test 1 .Run(While Var.NE("N")); 
2222 Test1 37 
9 29 Var 0 "N" 
3333 
7777 /end of program 



REFERENCES: 

Alder, A(1988), "TDL: A task description language for programming automated robotic 
workcells, Control and Programming in Advanced Manufacturing," International Trends in 
Manufacturing Technology, K Rathmill, Ed. Springer-Verlag, Berlin, pp. 321-327. 

Benhabib, B., Chen, C.Y., Johnson, W.R., "An Integrated Manufacturing Work Cell 
Management System," Manufacturing Review vol2, no 4, December 1989. 

Chang, Tien-Chien, Wysk, Richard A,, Wang, Hsu-Pin, Computer-Aided Manufacturing, 
Prentice-Hall, Inc. Englewood Cliffs, N.J., 1987. 

Farooq, Shabi, Sofiare Development for Manufacturing Systems - Language and Networking 
Issues, Working Paper #92-0 13, Systems Analysis Dept., Miami Univ., Oct., 1992. 

Groover, Mike11 P., Automation, Production Systems, and Computer Integrated Manufacturing, 
Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980. 

Higgins, B. M., Prater, J. B., Object Orientation in the CIMEnvironment, Working Paper Csc- 
9 1-3, Department of Computer Science, University of Missouri - Rolla. 

Marcelo, L., Investigation and Critique of the Sofiare Development Environment for the 
Manufacturing Engineering CIM Lab, Working Paper #94-003, Systems Analysis Dept., 
Miami Univ., Aug, 1994. 

Martin, J.M.(1989), "Cells Drive Manufacturing Strategy," Manufacturing Engineering, 
January, pp. 49-54. 

Meghamala, N., Development of an Object-Oriented High-Level Language and Construction 
of an Associated Object-Oriented Compiler, Working Paper #92-015, Systems Analysis 
Dept., Miami Univ., Dec, 1992. 

Shimano, B. E, Geschke, C. C., Spalding 111, C. H., Goldman, R., Scarborough, D. W.(1988), 
"AIM: A task-level control system for assembly, Control and Programming in Advanced 
Manufacturing," International Trends in Manufacturing Technology, K Rathmill, Ed. 
Springer-Verlag, Berlin, pp. 305-3 19. 

Troy, A. D., Nugehally, M., Farooq., S., Hergert., D., "Object-Oriented Flexible 
Manufacturing Systems at Miami University," Proceedings of ICOOUS' 92, May 1992. 


