
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

The Integration of Software Development

Tools

James Kiper
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/74

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Commons @ MiamiOH (Miami University)

https://core.ac.uk/display/235277241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1987-001

The Integration of Software Development Tools
James D. Kiper

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

The Integrat ion of Software Development Tool s

by

James D. Kiper, Ph.D.
Systems Analy si s Departnrent

M i ami Uni versi ty
Oxford, Ohio 45056

Worki ng Paper #87-001

--Software tools, integration, software env

incremental tools, integration categorization, project inf

interface.

The htegratiioa of Software Deve

0. Absteract

m e effectiveness of software development tools can be dr

creased by their integration (i.e. their cooperation). This paper discusses

the problems to be overcome in integration of tools, and a categorization of

the degree of tool integration. The continuum from loose to tight integration

is parameterized. An informal method is described to apply these parameters

to tools in order to determine some nxeasure of their ability to be integrated.

1. fn~oducaon ant3 ProBlem Defdaon

Software tools of Illany types have proven their usefulness and even their

indispensability to software development over the past thirty years. A tool,

in the context of software development, is a software coqonent which aids the

user in the performance of tasks of software construction. mis assistance

varies from actually accomplishing those tasks that can be automated, to giv-

ing advice or providing data. These tools enable more effective and efficient

use of conrputer and human resources pemi-tting the user to concentrate on the

more creative aspects of project development while allocating the more mndane

tasks to the tool. These tool-automated tasks are often perfomed with great-

er accuracy, reliability, and speed than is possible by human effort alone.

Consequently, the effective work acconrplished by the confluent efforts of a

user and software tools is several orders of magnitude greater than that of

the user in isolation. (The comparison of automated cornpilation versus con-

pilation by hand or the use of =chine language is an obvious illustration of

this gain.) This paper will examine the tool integration problem, the bene-

fits of integration, and some parameters for the characterization of lsvels of

tool integration. It will conclude by presenting an informal method for

evaluating the extent to which existing software tools can be integrated.

2. Brid>heGw

Software tools have been continually developed and improved as additional

portions of the software development task are automated. The progress has not

kept pace with the rate of increase in the complexity and size of software

projects. The resulting "software crisis" has been well documented. This

continual need for more powerful tools can be met in two ways. The most

obvious method is the development of new, more powerful, more usable tools

with increased functionality. The other solution is the improvement of the

power and usability of existing tools through their integration. The second

method is the topic of this paper.

The development of new, iwroved tools ultimately represents the ideal

solution to the software crisis. However, the technological transfer time

necessary to incorporate a major conceptual improvement into a comercially

available and accepted tool can take as long as twenty years and the

of the problem mndates a swifter solution [P41. The integratgon of exis.ting

tools can provide an acceptable alternative in reducing this technological

transfer time. If integration can be accomplished in a cost-effective manner,

it has the added benefit of iwrove8 stewardship of an organization" sdtware

investment.

2.1 The Tool Integratian Problem

One of the primary conceptual limitations of most existing software devel-

opment tools is a lack of cooperation with other tools. (See figure I.) This

lack of cooperation often effectuates a duplication of effort since tools per-

forming different but related tasks, share the need and, therefore, duplicate

Figure 1: Un-Irztftgratd Tools Lack C ation

some of the same steps. For example, an accounting package may produce a file

of records. Another tool is to subsequently sort this output by record nmber

This sort tool will have to reparse the file to recover the fields of which

the first tool had full knowledge. This duplication can also occur within a

single tool, from one application of the tool to the next application. For

example, a compiler is used repeatedly in the development of a source progrm

which slowly chmges. Host existing cowilers completely retranslate the

progrm despite the fact that m n y synibol table entries, tokens parsed, and

even sections of code produced are identical from one invocation of the co-

piler to the next.

This lack of cooperation and c nication is frequently a result of the

preoecupation of many tool designers with the optimization of each tool's input

and output f o m t solely to facilitate iks own task. The input to one tool

wbich arises from the output of another tool requires a translator to produce

cowatibility. Conversely, if tools were developed with the optimization of

the entire software development process as a goal, the user would ultbiately

be better served. This inevitably would require some tools to perforin added

processing to conform to the standards of the system. One such standard that

has often proven pragmatic is a comon information representation for use by

all tools in their input and output. One simple standard for tool c

Tx
tion, the character stream, has been used by the Unix system to achieve a

certain level of tool cooperation.

Another aspect of this lack of cooperation among tools is the absence of a

n user interface. Each tool has its own syntax, conventions, and modes of

operation. Consequently, the user, particularly the novice, is faced with a

plethora of incongruent interfaces. For example, in order to write a prograro,

a user may have to learn three languages: an operating system c

guage, an editor and a progrming language. The error and diagnostic messages

produced are often inconsistent even among the tools of a single mnufacturer.

Although the tasks of various tools diverge sufficiently so that some variation

in interfaces is necessary, more uniformity could be achieved, especially for

a set of tools that is to be used in a particular enviroment.

Hore specifically, the (interrelated) problerns with a lack of tool cooper-

nication are as follows:

O The dissonance in the information (software-related project infsmlion),

that is used and produced by various tools, allows valuable data to be

irretrievably lost rather than c nicated between the tools. The loss

results because tools do not share a standard organized method of storing

Unix is a registered trademark of Bell Laboratories.

icating infomtion to other tools that could profitably use

use such data. For example, even though a typical compiler produces a

parse tree data structure from the source file, a "pretty printer" tool

t the output probably will reconstruct the structure of the pro-

gram from the source file. This reconstruction leads to redundancy in

data, problems in maintaining consistency between the different data

structures, and duplication of processing. Conversion packages between

the different data structures may be written. However, this involves

writing a conversion package for each pair of tools, and the associated

ing effort is considerable. (See figure 2 .1 GonsewentLy,

tools that should c nieate via shared info tion, often never do.

O The level of granularity, that is, the size of the pieces, of the infor-

mation which the tools raanipulate is often inappropriate for effectively

nicating results to the human user. In most existing systems, tools

work either at the file directory level or the text level. Consequently,

tools trpically process the cofnpfete file before they provide any feed-

back to the user.

O Even if the granularity of the information is very flexible, the lack of

structure among the grains of project information can obviate any advan-

tages of the fine granularity. For exwle, a standard text-editor tool

uses information at the character level of granularity, but when those

characters represent a coquter program, the editor has no knowledge of

the syntactic structure of that information. The individual or tool

that produced the information was aware of the syntactic structure but

had no standard method of recording the structure and c

to a subsequent tool requiring the infomtion. Editing of characters

to correct one error may inadvertently introduce mother error. Syntax-

directed editors have solved this probla in one domain by giving the

editor a knowledge of the structure of the language f1,8,15].

Therefore, a set of software development tools is made more effective and

%

potent by cooperating and co nicating. (See figure 3 .) This implies a

level of tool integration. Tootintegration is defined here to mean the

cooperative operation of several tools to advance the overall goals of the

project. This integration can be characterized by

O cooperation - sharing of control,

nication - sharing of information, and

O comonality - sharing of interface.

Cooperation is epitomized by incremental tool cooperation f2,13]. A tool

wZlich operates incrementally is able to use results from previous applications

of the tool to avoid replicating work. Cooperation among such tools can easily

occur as control flows among the tools and the user in a eo-routine IRanner.

nication among tools implies, as mentioned previously, the use of a

t for the information. Such a standardization may require either

a change to a tool's design or a translator to convert to the standard form.

Either solution produces tools with the potential for c nication by means

n information representation.

A set of tools should have a comon user interface in order to facilitate

effective use. 'Phis again imposes the need either to redesign the tools or to

develop an outside agent capable of producing this uniform syntax for the user.

tion, tool integration can conquer the co nication and coopera-

tion vacuiky inherent in most tool sets. In addition to these negative

motivations for the integration of tools, sone contpelling advantages of a more

positive nature can be recounted.

Tool 2

Project
Inf osmation

cation and Cc~operatim Tool fntegradm

2.2 Benefits of Tool Integration

The conceptual benefits of tool integration are dual. First, cooperating

tools have a synergistic effect which is often greater t h n any single tool

could achieve alone. By evading m c h of the duplication of effort (as in

repeated parsing and unparsing of data), caoperative tools are able to achieve

a greater efficiency. (In the contenrporary time of relatively inexpensive

hardware, efficiency would seem to be unimportant, except as it influences the

response time to the user. The optimization of the user's time is a worthy

goal.) In addition to the added efficiency, cornonly used sequences of

comands to multiple tools can be combined to form a more powerful c

The second conceptual advantage of integrated tools is an increased level

of user friendliness. This is notably demonstrated in the comon user inter-

face. By presenting a uniform syntax, comon diagnostic and help messages to

the user for all tools, and a consistent interface within a tool, idiosyncratic

differences among tools and pernicious modes within a tool can be avoided. me

denouement is the user's concentrated attention on the project information.

Ultimately, the user no longer is aware of the tools, but can focus on the pro-

ject information.

3. The Parameters for, am3 a Categorization of, the Degree of Tool fntegratim

3.1. Comporrmts of the System

Any software development enviroment and, in particular, an environment

that supports tool integration, consists of the following logical components:

O user interface or monitor

O software development tools

O project infomtion base

An analysis of existing systems reveals the presence of these components al-

though they may not appear as distinct units but are distributed across the

system 153. (Object-oriented architectures tend to distribute the infor-

n~ation base across m y objects in the form of private stores, although an

infornration repository object is possible f41 .1

3-2. Paranmetem of Tml Integration

me complex interactions of sophisticated tools that often arise when the

tools, the information base, and the monitor are integrated can be character-

ized by the following three parameters:

O granularity

cohesion

O harmony

The granularity of an object (e.g., a tool or an information base) refers to

the size of the components of that entity. It ranges in a continuurn from

coarse, meaning large chunks, to fine, or small, chunks (examples follow in

the next section).

Cohesion is synonymous with structure. The greater the cohesion of an ob-

ject or concept, the more substantive is the structure relating the coqonents

of the entity. An apt analogy can be made with the purpose of "g1ue"in the

construction of a child's plastic model car. This glue maintains the correct

relationships among the parts. Without it the parts fall into an morphous

mass. Cohesion describes the degree to which the structural glue is present

to mold the components into a synergistic whole. In a progr ing enviroment ,

this cohesion generally takes the form of info tion relating the various

elements of the system.

Harmony reflects agreement between two elements of the programing envi-

roment, (The lack of agreement is temed dissonance.) Thus, two system

cowonents which have the same granularity of interaction are hamonious with

respect to that granularity. Conversely, if the info ticrn base and a tool

operate with different levels of cohesion of the information they use, they

are dissonant regarding that cohesion. A high level of tool integration is

easier to attain amcrng eomonents which are kamonious.

3.3. Categebrizati.on of Tools for btegratim

The precise meanings of the previously described parmeters or attributes

are determined by their application. These three parameters will be applied

to each of the three system conrponents--monitor, infornlation base, and tools.

Some of these cases, i.e. a specific parameter applied to a particular system

component, will be more apropos to the categorization of tool integration than

others. .All will be mentioned with special emphasis an those that especially

pertain to categorizing tool integration.

3.3.1. Gr tY

The describes the size of the logical

pieces of project information which compose the totality of the information.

The granularity is fine if the user and/or tools can access small chunks of

information. An example is the contrast between the granularity of information

in a database and the information in a file system. The database information

generally has a finer granularity since the groupings of information to which

the database has access are records which are relatively small chunks of infor-

mation that may be spread across several files. Conversely, the file system

has access to larger groupings of inforntation in the f o w of files. The file

server has a more coarse granularity of infomtion. A coarse granularity for

the infomtion base does not imply that a user or a tool cannot find the logi-

cal piere of information needed, but that the search for it will be broader

and have less automted help.

Tool ~ranularity has several valid interpretations. The first interpre-

tation relates to granularity of the info tion used or produced by the tool,

This complements the previous concept--granularity of the info

Host traditional compilers, for instance, use a file, nmely the source file,

as input and produce another file as output. If a valid symbol table or parse

tree were available (perhaps as the result of another tool), a traditional

compiler could make no use of it since its granularity of input infomation is

too coarse.

Another view of granularity is that of the granularity of tool interaction

with the user. Granularity could be considered a continurn from batch to

interactive. A batch-oriented tool has the coarsest granularity possible,

i.e. no user interaction after the initial c d. A highly interactive tool

like a screen editor is typical of the other end of the continuum. This view

of granularity, while valid, adds little to the categorization of tools for

integration. The appropriateness of the level of granularity of interaction

depends on the purpose of the tool and has little direct effect on its ability

to be integrated into a software environment. The granularity of interaction

will be discussed in the context of the user interface where it is more

significant.

An iqortant aspect of tool granularity is incrementality, i.e. the degree

to which the tool operates incrementally. An incremental tool is one that

accomplishes its task in small steps or increments. By recording its internal

state, it is able to avoid duplicating work begun on a previous invocation.

An incremental tool most often consmes and produces info tion with a fine

granularity. However, the crucial factor is the granularity of control of the

tool. The control algorithra for an incremental tool is organized to operate

in small increments rather than requiring complete execution at each invoca-

tion. In the context of an interactive tool, this incrmentality requires

more than the ability to execute a single c nd par tool invocation. The

control algorith must be designed to partially execute that single c

then store its internal state in order to finish the execution later. A fine

granularity of control, i.e. a high degree of incrementality, is generally

useful in achieving tool integration. The advantages of a fine granularity of

control are denionstrated by the incremental compilers [2,131 as compared to

either traditional compilers, or to interpreters. Incremental compilers have

flexibility in development of interpreters while generating the object code of

a compiler.

granular it^ of the interface has one chief interpretation--the granular-

ity of interaction with the user. Upon initial examination, this would seem

to be a characteristic of each tool. However, the primary factor is the gran-

ularity of interaction provided by the user interface. The monitor can adjust

this granularity as it controls the operation of the tool by

providing some input to the tool. This input may be acquired from various

sources--default values indicated by the user, info tion retrieved from the

information base, or data produced by other tools. Thus, the mount of user

interaction with the system is largely a function of the monitor and not of

each tool. A coarse granularity of the interface, in which the mnitor sup-

plies a portion of the input, results in a more n-engineered enuiroment.

It is optimal to achieve some middle ground in which the user has adequate

control over the development and manipulation of project information but is

not overcome by the necessity for an extensive quantity of input.

3-33. C&esion

Cohesion of the infornration base pertains to the mount of stmctural

infomtion present to relate various pieces of the project info

coarse granularity in the information base leaves few possibilities for this

type of relational data. Conversely, fine grains of project info

pose the exigency of an increased amount of this structural glue. A strong

analogy can be nade with the nonaalization of the relation in a relational

database. lomlization of relations tends to diminish the number of eompo-

nents or fields in an entity (finer granularity) while increasing the number

of relations (higher cohesion). Tools are more easily integrated into an

enviromnt whose inforxnation base has both fine granularity and high cohesion.

As a result, tools have access to a greater aggregation of more useful infor-

mation.

Cohesion of a tool has a dual meaning. The first meaning is a concept

parallel to that of infomtion base cohesion: the cohesion of the information

produced by the tool. A tool that produces small, logical chunks of inforxna-

tion (fine granularity) can more readily be integrated into the environment

than a tool with a coarse information granularity. The most iwortant feature

of the "pipe" mechanism of Unix 163 is that it has a fine granularity (the

character level). The result is a set of tools that can easily work together.

This level of integration can be increased if the infomtion produced also

embodies structural info tion to relate the grains of project information.

This increased level could be classified as a "high-level pipe" through which

information is exchanged in two fonns, project information and relational

inf onnation.

A second application of cohesion with respect to a tool is the cohesion of

control. As discussed earlier, a fine granularity of control is necessary for

incremental tool operation. A cohesive control for an incremental tool shares

much of the control info tion from one invocation of the tool to the next.

This sharing of internal status is requisite if the tool is to avoid duplicat-

ing work. Fine granularity of control means that the tool's control algoritfun

is organized to function in I1 steps. Cohesion of this control implies

that infomtion from one tool application is recorded in some manner (e.g. in

the inionnation base) until the next incremental application. To be truly

incremental the tool's control algorithm must possess both qualities.

Cabsion of the user interface models the degree of info tion retention

and sharing among the us ds. The monitor is the proper component to

store the context of a c ds can be simplified if default

values or previously entered values are inserted where appropriate. Carried

to its logical conclusion, this would result in a sophisticated WIN-like 1161

mechanisnt that not only searches a list of known c ds to find the closest

match for a user command, but also examines the user's dynamic context. (WIH

is an acronm for the "Do What I Wean" mechanism of the Interlisp Progr

gnvironment.)This examination would include such item as the last tool used,

the parameters passed to this tool last, etc.

3.3.3.

Harmony or dissonance is a property of a pair of system components. Thus,

we will examine hamonyfdissonan@e of three types: hamony or dissonance

between the tools and the information base, between the monitor and the tools,

and between the monitor and the infontlation base. The first of these pairings

has the greatest affect on tool integration and will be described in detail.

A more cursory examination of the raining two pairings will be presented for

conrpleteness. The amount of agreement between the tools and the info

base also explains the amount of interaction between tools since that tool-to-

tool interaction generally occurs through the info

has two components, a syntactic and a

semantic one. Syntactic hamony refers to agreement in the info

sentation of these two components . In particular, this agreement shouf d occur

in both granularity and cohesion. The information representations of two tools

are said to be syntactically hamonious if each is hamonious with the infor-

mation base. Close harmony of this type leads to an easier integration of the

tools into the software environment since fewer conversions are needed from

one form to another.

Syntactic dissonance must be overcome in order to integrate a tool into a

set of tools. A mismatch in either granularity or cohesion of information

results in the loss of critical information.

Semantic hamony describes the agreement in meaning between the informa-

tion used by the tool and that used in the infomtion base. Semantic disso-

nance is more probl tic in that this type of dissonance ntust be overcome to

integrate tools and yet general techniques for solving this problem are not

easily specified. Semantic harmony or dissonance can be observed in at least

three applications. In order of increasing hportance fi.e. increasing

difficulty of surmounting), these applications are as follows:

1. semantics of the information representation

2, semantics of the level of abstraction

ntics of the project info

The same project information can be represented in a descriptive or trans-

tional manner. The semantics of the infomtion is identical, however

the meaning of the representation is quite divergent. Ltanagement info

most often is recorded descriptively in details delineating estimated time to

completion, resources budgeted, etc. Conversely, some version control systems

[I71 represent versions by recording changes made to the previous version.

This often results in a more efficient use of the storage capacity of the

system than in the recording of a description of all versions. Although

conversion from one form to the other is more than a change in syntax, the

saxe meaning can be represented in either method. (This dichotomy has been

discussed by others in term of procedural and descriptive rnethods of

tion representation 191.1

The harmony or dissonance of abstraction of information produced or used

by a tool, and information stored in the information base, affects the inte-

gration of that tool. This level of abstraction can vary from detailed to

s u m r y in nature. Project information may have resulted front analysis or

synthesis. Each level has some utility for certain situations. If there is

dissonance between a tool's level of abstraction and the info

correction may be quite difficult. Although it is possible to convert from a

low level of abstraction, in which much detail is present, to a high level of

abstraction, conversion in the opposite direction is virtually impossible.

The most difficult type of dissonance to overcome is the actual semantics

of the project information base. If a common ground does not exist between

two tools or between a tool and the information in the repository, significant

integration cannot be achieved, i.e. cooperation between the tools. Often the

problern is not a complete lack of connnonality, but rather, that the junction

tics is not apparent. An apt analogy can be drawn to the papable

of blind men describing an elephant. These descriptions range from "shaped

like a tree trunk" to '"feels like a snake"' depending upon which portion of the

pachyderm's anatomy is nearest to each man. These descriptions seem entirely

incongruous only if one is unaware of their comonality. As our understanding

of a particular field deepens, concepts that previously seemed unrelated are

often discovered to share a factor of commonality, a unanimity of purpose, or

a unity of causation. (Science, in general, is the search for these comon

causes.) Integration of tools whose comonality has not been identified is

impossible to any significant extent.

Qvercming semantic dissonance of any of the three types mentioned above

is quite difficult and often impossible. Even considering the integration of

tools whose infomtion is swaantically dissonant is pr

understanding of the comonality of purpose is achieved.

The user interface and the tool are harmonious if the view of the tool

presented to the user is harmonious with the tool's actual operation. For

instance, in Smalltalk f 3 . 41 , the user sees a tool as an object that receives

and responds to messages. This object-based paradigm precisely models the

operation of tools in this system. Bore specifically, the tool is represented

visually to the user as a descriptive icon.

namnony is achieved between the user interface and the profeet info--

tion base when the way in which infomation is presented to the user or is

collected from the user is reflected in the structure of the information base

[53. For example, the information base of the TRIAD software environment is

stsuctured as a tree of forms [7 1 . This tree models the underlying develop-

ment method which reflects the general order in which this inforraation is

presented to, and requested from, the user.

of Integration - Loose ve

The confluence of the parameters--granularity, cohesion, and hamony--with

their various applications at different levels to a collection of tools col-

laborate to produce a continuum of degrees of tool integration for a system.

The terms "tight" and "loose" integration actually refer to the extremes of

the continuum. These term can be applied to an entire system, in which case,

it refers to all the tools of the system or to a single tool. A system is

categorized as tightly integrated if it utilizes the following features: 1)

fine granularity and high cohesion of the information base and the tools, and

2) syntactic and s tic harmony of the tools to achieve a high degree of

inter-tool c nication and cooperation. Poe [I], Pecan 1121 and the Cornell

Program Synthesizer I153 are examples of tightly integrated systems.

The advantages resulting from a tightly integrated system are numerous.

First, tools are more efficient since there is less duplication of effort.

The tool does not have to reparse input to recover the structural information

since tools store their results in, and take their input from, the info

base.

Secondly, the tool's response time to the user tends to be short for

incremental tools since the tool is taking a small step each time it is

invoked. This enables the user's attention to be focused on the project

information and the task at hand rather than being distracted by long waits

for service. As pointed out in the Magpie system 1131, the power of todaySs

cmuter systems is sufficient enough that servicing users often leaves

cquter time (i.e. CPU cycles) available between user keystrokes and user

thinking. This time can be used effectively to incraentally apply tools; as

a consequence, the user has access to more up-to-date data.

Hot only are tool results available more quickly, particularly in the ease

of incremental tools, they are also more accessible since they are stored in

tion base. Other tools can be applied as necessary to analyze,

rize, and report these results. Furthermore, the status of each tool is

more accessible to the user if it also is stored in the infomation repository.

These advantages are somewhat counterbalanced by a few problems with the

19

tight integration of tools. The economics of such an integration may make it

infeasible. d tight integration involves writing new tools or extensively

rewriting existing ones. The marginal advantage gained in achieving a close

cooperation of the tools may, in some situations, argue for a looser level of

cooperation. The inflexibility of this tight degree of integration (i.e. the

user cannot adjust the increment size for incremental tools) and the volume of

information available from frequent interactions with the tool may create an

environment in which the user, although surrounded by powerful tools, feels

uncomfortable and manipulated and, hence, is less productive.

At the other end of the tool integration spect is loose integration.

Loose integration is a degree of cooperation between tools in which the

granularity is more coarse and/or the cohesion is lower, and the tools have

some degree of dissonance. Although this level of integration initially seems

less beneficial, many existing systems use it to great advantage. The

Toolpack/IST programing environment 110,111 provides a framework in which

tools with an inbred knowledge of Fortran can c nicate through an organized

file systern. The granularity of the inforraation base (i.e. the file system)

and the info tion produced by the tools is quite coarse. The tools produce

inionnation in a similar coarse granularity. The amount of cohesion present

in the tools and the info tion base is minLml. Yet, Toolpack is able to

provide a certain level of tool cooperation which eases the user's task.

For tools whose purpose requires little user interaction, e.g. many batch-

oriented tools, loose integration is most appropriate. For any set of tools,

a loose integration is often more economic. That is, tools that have a lesser

degree of cooperation and sharing are less expensive to construct (because the

amount of interaction with other tools is limited) and require fewer computer

resources to operate,

There are situations in which the tight integration of a system like the

Cornell Program Synthesizer provides more automated control and feedback to

the user than is desired. n i s is especially true when the user is in the

prototyping mode. A loose integration may provide the ideal framework for

non-rigorous, exploratory project development.

These examples have been at the extremes of the tight-loose continua.

There is a whole range of intermediate levels with various combinations of

parameter values.

3.5 A Me

The evaluation of a specific tool to determine its capability to be

integrated is a subjective exercise. Some general comparative statements can

often be made and substantiated by a close examination of tools. However, a

precise, quantitative measure of the integration potential of a tool is beyond

the current state-of-the-art. Figures 5, 6, and 7 provide a set of questions

(foming a simple method) to help deternine this capability for a tool. The

greater the nuniber of questions answered in the affirmative, the greater

potential for integration. (Note that these questions are always applied to a

given context Mhich includes some form of info tion repository and a user

interface or monitor.) A tool which has negative answers to one entire set of

questions (e-g. to all the tool granularity and cohesion questions) and

affirmative for the remaining questions has less potential than a tool whose

negative evaluations are dispursed throughout all the questions.

INFO TlON REPOSITORY

1.1 Is the information accessible in 11 logically related chunks?
1.2 Can a particular item of information be retrieved without

searching through a large mount of project information?

Cohesion

2.1 Is there information which designates the relationship of one
piece of project information to another?

2.2 Is there a model which underlies the project information?

TOOLS

3.1 Is the tool interactive?
3.2 If so, does this interaction occur throughout the operation of the

tool (or just to initiate the tool)?
3.3 Does the tool operate incrmentally?

Cohesion

4.1 Does the infomtion consumed and produced by the tool contain
structural data to relate the information (e.g. a parse tree
rather than a textual representation of a program)?

4.2 Does the tool share control infomtion front one invocation to the
next (e.g. data about which chunk of project information was last
processed) ?

Figuse 5: lin Znfonnal Method for E g a Tool fm its
ty and Gohesh of the

MamatLon Repository and the Tools

5.1 Does the user interface permit frequent interactions with the
user (as opposed to furnishing more monolithic c

6.1 Does the monitor remember context from c nd to comnd?
6.2 Can the user easily re-use values entered on a previous

invocation?

An for Evduting a Tool for its
Integration Potential - Gr and Cohesion of the
Monitor

TOOL - INFOWATION BASE

Syntactic Hannotry

7.1 Is the size of the chunks of information produced by the tool the
same as that used in the information base?

7.2 Does the structural information produced by the tool reflect a
portion of that present in the information repository?

8.1 Is the meaning of the info tion produced by the tool contained

8.2 Does the tool use data at the same level of abstraction as the
information base?

8.3 Is the information produced and eonsumed by the tool represented
in the same general manner as stored in the information base?

MOMTOR - TOOL

9.1 Does the interfacepresent theuserwit haview ofthe toolwhich
is similar to the tool's actual operation?

MOMTOR - INFOMAT1ON BASE

10.1 Is the information presented to the user in a manner which
reflects the structure of the information base?

10.2 Does the interface request information from the user in an order
that models the information repository?

Figuse 7: An Infonnal Me for Evalutitlg a Tool for its
fntegration Potential - H

4. Conclusioa

The integration of existing software tools is a technique which can

multiply the functionality of a set of tools (i.e. the synergistic effect) and

can increase their usability by permitting the user to mintain a focus of

attention on the problem infomtion rather than the tools. The level of

integration has been parameterized by the terms granularity, cohesion, and

harmony. These parameters have various meanings when applied to specific

components of the software development environment. An informal method has

been given to characterize the integration potential of a given tool.

lo one level of integration can be said to be optimal for all classes of

tools and software environments. Moreover, no one level is optimal for one

given environment at all times or for all tools within that enviroment.

Factors affecting the choice of degree of integration include economic consid-

erations, the purpose of the tool, and even the user's mental state with

respect to use of a tool. The best solution is a compromise in which the user

has sone influence or control over the degree of integration of a tool.

REFERENCES

[I] C. I. Fischer, 6. F. Johnson, J. Hauney, A. Pal, and D. L. Stock, "The
Poe Language-Based Editor Project," Proceedings of the ACM SIGSOFTl
SIGPLAB Software Engineering Smosium on Practical Software Development
Environments, ACH, Pittsburgh, Pennsylvania, pp. 21-29, April 1984.

[21 P. Fritzson, "Preliminary Experience from the DICE System a Distributed
Incremental Compiling Enviroment," Proceedings of the ACH SIGSOFT/
SIGPLAB Software Engineering Symposium on Practical Software Development
Environments, ACH, Pittsburgh, Pennsylvania, pp. 113-123, April 1984.

(33 A. Goldberg, malltalk-80 The Interactive program in^ Enviromnt,
Addison-Wesley Publishing Company, 1984.

141 A. Goldberg, "The Influence of an Object-oriented Language on the
Progrming Enviromnt," Proceedings of the ACH Computer Science
Conference, A M , pp. 35-54, February 1983.

[5] S. M. Kaplan, El. T. Harandi, S. H. Ibmia, R. H. Cambell, R. E. Johnson, 3.
Liu, and J. Purtilo, "An Architecture for Tool Integration," Proceedings
of the Workshop on Advanced Progr ing Enviroments, Trondhiern, June 1986.

161 B. Kernighan and R. Pike, The Unix Progrgnnnin~ Environment, Prentice-
Hall, Inc., Englewood Cliffs, PJ, 1984.

171 J. C. Kuo, C. Li, and J. Ramanathan, "A Form-Based Approach to Human
Engineering Methodologies," Proceedings of the 6th International
Conference on Software Engineering, IEEE Computer Society, Toyko, Japan,
pp. 254-263, September 1982.

[81 R. Medina-Hora and D. S. Motkin, ALOE UsersQnd Imlementors' Guide,
Department of Computer Science, Carnegie-Mellon University, Pittsburgh,
Pennsylvania, Hoveniber 1981.

191 H. L. Hinsky, "A Framework for Representing Knowledge," In Patriek Henry
Winston, Ed., The Psychology of Coarputer Vision, HeGraw Hill Book Co.,
1975.

1103 L. J. Osterweil and U. R. Cowell, "The Toolpack/IST Programing
Environment," Proceedings of a Conference on Software Development Tools,
Techniques, and Alternatives, TEEE Comp-rlter Society, Washington, D, C.,
pp. 326-333, July 1983.

I111 L. J. Osterweil, "'Toolpack - An Experimental Software Development
Research Project," IKEE Transactions on Software Engineering 9, 6
pp. 673-685, November 1983.

f123 S. P. Reiss, "Graphical Program Development with P E C N Program
Development Systems," Proceedings of the ACM SIGSQFTISIGPW Software
Engineering Synrposiurn on Practical Software Development Environments,
ACH, Pittsburgh, Pennsylvania, pp. 30-41, April 1984.

f131 H. D. Sch*rartt, 1. W. hlisle, and V. S. Begwani, "Incr tal
Coqilation in Hagpie," Proceedings of the A m S I G P M '04 S m o s i m on
Compiler Construction, A m , Uontreal, Canada, pp. 122-131, June 1984.

1143 U. Sfiaw, "Beyond Progr-ing-in-the-Large: The Next challenges for
Software Engineering," Technical Hemorandm SEI-86-TU-6, Software
Engineering Institute, Carnegie-Uellon University, May 1986.

I151 T. Teitelbaum, T. W. Reps, and S. Hortwitz, ' m e lJhy and Wherefore of
the Cornell Program Synthesizer," SIGPLAM Notices 16, 5 , pp. 8-16, June
1981.

1161 W. Teitelman and L. Masinter, "The Interlisp Programming Environment,"
Computer 14, 4 , pp. 25-33, April 1981.

[17] R. M. Thall, "Large-Scale Development with the Ada Language System,"
Proceedings of the Computer Science Conference, Association of Computing
Uachinery, Orlando, Florida, pp. 55-67, February 1983.

Figure 1: U*htegratcxl Took Lack C atim

Figure 2: Conversions bemeen Each Pair of Tools in an Un-lntegrated System

Figure 3: C Tool hntegratim

Figure 5: An Informal Method for Evaluating a Tool for its Integration Potential
- Granularity and Cohesion of the Infomation Repository and the Tools

for its Integation PotenW

Figure 7: An al Method for Ev g a Tool for its Integatim Potmtial
-

J. D. Kiper is with the Department of Systems Analysis, H i d University,

Oxford, Ohio 45056.

Unix is a registered trademark of Bell Laboratories.

For correspondence, contact the author at the following address:

James D. Kiper
Assistant Professor
Systems Analysis Department
Miami University
Oxford, Ohio 45056

The Integration of Software Development Tools

James D. Kiper, PL'1.D.

A m 1987

tent

Oxford, Ohio 45056

