
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

HypIR: Hypertext Based Information

Retrieval

Yuan Lee∗ Fazli Can†

∗Miami University, commons-admin@lib.muohio.edu
†Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/52

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-007

HypIR: Hypertext Based Information Retrieval
Yuan Ming Lee and Fazli Can

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

HyplR: Hypertext Based

Information Retrieval

Yuan Ming Lee Fazli Can
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-007 August, 1992

This paper has been submitted for outside publication and will be copyrighted
if accepted. It is being published in technical report form to expedite the
dissemination of its contents. Its distribution should therefore be limited to
peer communication and specific requests.

HypIR: HYPERTEXT BASED INFORMATION RETRIEVAL'

Yuan Ming LEE Fazli CAN+

Department of System Analysis
Miami University
Oxford. OH 45056

August 1, 1992

Abstract
Information Retrieval (IR), which is also known as text or document retrieval, is the

process of locating and retrieving docri)nents that are relevant to the user queries. In
hypertext environments, docuinent databases are organized as a network of nodes which

are interconnected by various types of links. This study introduces a hypertext-based text

retrieval system, HypIR. In HypIR, the sentantic relationships ainong docuinents are

obtained using a clustering algorithm. A new approach providing the advantages of

system maps and history list is introduced to prevent the user fiotn being lost in the IR

hivperspace. The paper presents the underlying concepts and iinplementation details.

HypIR is based on the object-oriented paradigm and its execution platforin is HyperCard

1. INTRODUCTION
Information Retrieval (IR) is the process of locating and retrieving documents that are

relevant to the user queries [SALT89]. In general, IR is accomplished using document

representatives or surrogates. Whatever the representation of the documents, the major

problem in IR is the query formulation. This is why several retrieval techniques are

available in the IR literature [BELK87]. Among these techniques, the hypertext approach,

which allows the user to navigate and inspect the database documents according to his

own wishes, is the most intuitive one [NIELgO].

In hypertext environments, databases are organized as a network of nodes which are

interconnected by various links. Through the links, the user can navigate o r browse the

documents in a non-sequential manner. This network browsing process is totally

controlled by the user .

*
This work was supported in part by MUCFR grant.
(5 13) 529-5950, fc74sanf@miarniu,bitnet

In a hypertext-based IR system, documents have multiple entries and numerous

connections as shown in Figure 1. In Figure 1, computed links are constructed whenever

the user submits a query. On the other hand, embedded links may be provided by system

functions. In such a system, the browsing of hypertext is triggered by some "optimal"

starting nodes, which are the documents with high similarity to the user query. The user

may then navigate among documents following the original query or, aIternatively, the

user may utilize system functions to find documents containing the same keywords or

documents written by the same author, etc. Consequently, the user can become more and

more familiar with the system and his information need. Thus, a query which is more

accurate then the initial query can be formulated and more relevant documents can be

found.

1 - Computed tink

-. - - .) Embedded tink

Figure 1. An example hypertext structure.

The recent IR literature contains various examples of hypertext-based IR systems

sometimes with multimedia support. For example, American Memory is a multimedia

integrated system which provides electronic images of selected collections of the Library

of Congress. The system provides archival material related to the American culture and

history on CD-ROM discs and laser videodiscs. The multimedia database covers motion

pictures, photographs, cartoons, speeches, songs and text [LIBC91].

The News Retrieval Tool (NRT), built at University of Glasgow in Scotland, is based

on a probabilistic retrieval model. This system covers a collection of articles from

Financial Times, and is designed to test retrieval improvement for users of the existing

profile retrieval services [HARM92].

CANSEARCH, which is an application of artificial intelligence techniques, provides

intelligent access to on-line information. It is designed to enable doctors to retrieve

cancer-therapy-related documents from the MEDLINE database. To use CANSEARCH,

the user must have sophisticated medical knowledge, but little IR experience [GAUC92].
I3R (Intelligent Interface for Information Retrieval) is a knowledge base system

which allows the user to find information using various means. To retrieve documents,
both natural language query and Boolean query formulation can be used [CROF87,
THOM891.

HYPERLINE, which has been developed by the Information Retrieval Service of
European Space Agency, is based on a two-level conceptual architecture for the
construction of a hypertext environment for interacting with large textual database. In
H Y P E R L m , the collection of documents of interest is placed in the first level and the
semantically related concepts are placed in the second level. Meanwhile, various
functions such as semantic association, navigation, sequential reading, backtracking and
history list are also provided [AGOS92].

Another example of hypertext-based IR system with hierarchical cluster browsing
capability is implemented by Crouch and his co-workers. This system allows the user to
browse the nodes within a single link clustering structure. When using this system, the
user is not expected to access best-matching documents directly. Instead, the user can
utilize the similarity values and single link structure to decide which clusters should be
visited [CROU89].

An application of the hypertext and IR techniques on a medical handbook is defined
by Frisse. In his system the links are defined by already existing hierarchical relationships
of different sections of the handbook [FRIS88].

In this paper we introduce a hypertext-based text retrieval system, HypIR. As in any
other information system, efficiency and effectiveness are the main concerns. Efficiency
and effectiveness are, respectively, associated with the time and space required for
searching and with the quality of retrieval. The implementation principles of HypIR are
proven to be both effective and efficient [CANgO, CAN92a, CAN92bl. In HypIR, since
the documents are independently created, the semantic relationships among documents
are obtained using the Cover Coefficient-based Clustering Methodology (C3M). This
algorithm generates statistically valid clusters (i.e. groups of documents that are strongly
associated with each other) which are appropriate for IR [C M O] . The selection of

documents from the generated clusters is performed using inverted index search
techniques. HypIR is implemented using Hypercard and THINK Pascal. The system has
a dynamic nature and documents can easily be added and deleted.

The paper is organized as follows. Section 2 briefly introduces the concepts of
document representation and query-document matching process. In hypertext browsing,

Full Search (FS) and Cluster-based Search (CS) provide the so-called "optimal" browsing

starting points. Section 3 covers the principles of FS and the details of CS. Section 4 and
5, respectively, provide the data and file structures, and the design principles used for the
implementation of HypIR. Finally, a conclusion is given in Section 6.

2. DOCUMENT REPRESENTATION AND QUERY-DOCUMENT MATCHING
In the design and implementation of IR systems, some decisions should be made for the
techniques of document representation, query-document matching and searching
strategies. Thus, before getting into the details of HypIR, we would like to introduce the
techniques that are adopted in HypIR and the reasons that support the selection of these
techniques. This section considers document representation and query-document
matching, and the next section considers the search strategies.

2.1 Generation of Document Representatives
In IR, two common approaches for document representative generation are document
signatures and the vector space model [SALT89]. The document signature approach uses

a bit map array for each document whose entries are set by a hash function using the
words of documents as its input [FAL085]. In the vector space model, the approach used
in this study, each document is represented by a document vector describing the words, or

terms, which appear in the associated document. This model is simple and appropriate for
hypertext environments [SALT89, CROU891.

According to the vector space model, a document database simply becomes a
document, D matrix. For a database of m documents defined by n terms, an entry in the D
matrix in row i (document i) at column j (term j), dij (1 2 i m, 1 2 j c n), represents the

weight, or frequency of term j in document i (i.e. the number of occurrences of term j in
document i).

When constructing the D matrix, a stemming algorithm should be adopted to reduce
the size of the D matrix. For the documents or queries written in natural English, it is
known that terms with a common stem will usually have similar meanings such as the
following.

attract, attracted, attraction and attractive

Thus, if the IR system can recognize the various suffixes (-ed, -ion, -be, etc.) and remove
them from the stem, "attract," the complexity of the system and the storage requirement
of the database can both be reduced. In HypIR, the stemming program is coded using
Porter's algorithm [PORTSO]. Porter's algorithm is simple, compared to other stemming
algorithms, but effective [HARM9 I].

2.2 Query - Document Matching
No single search strategy can satisfy all users' queries. Therefore, it is desirable that an IR
system should have more than one search strategy. Two common search techniques are

Full Search (FS) and Cluster-based Search (CS). FS has the best performance in terms of
retrieval effectiveness and CS facilitates document browsing. For both, a query matching

(similarity) function, also described as a search machine, determines which documents or
clusters potentially relevant (i.e. match the query) and should be returned to the user.

Several matching functions based on term weighting components of document and
query terms have been intr~duced in the IR literature. Term weighting consists of three
components, the term frequency component (TFT), the collection frequency component

(CFC), and the normalization component (NC). Both the weights of terms in a document
and a query (denoted by wdj and wg, 1 2 j 5 n) can be derived by multiplying the term
weights of these three components. After obtaining the term weights, the similarity
between a document d and a query q can be defined as follows [SALT89].

11

similarity (d, q) = gl w, . wa

where n is the number of terms.

According to Salton and Buckley's research, 1800 different combinations of
document-query term weight assignments (i.e. matching functions) can be derived.

Among these combinations, 287 were found to be distinct and six of them were
recommended [SKT88]. The results of the experiments reported in [CAN901 indicate
that the matching function labeled as TW2 (tfc.nfx in [SALT88]) is the most effective
one. Thus, TW2 is used as the search machine of HypIR.

3. SEARCH STRATEGIES
3.1 Full Search
Full Search (FS) is implemented using inverted index search (IIS). In IIS, each distinct

term in the system has a list of documents in which that term appears. Each document is

represented by its document number and associated with the weight of the corresponding
term. By traversing the list of those query terms, the similarity values of all database

documents are calculated [SALT89]. The documents with the highest similarity values
are then selected to answer the user's query. It is known that XIS is both effective and
efficient [CAN92b, SKT891.

3.2 Cluster - based Search
In IR, there is a hypothesis known as the "clustering hypothesis," which states that

"closely related documents tend to be relevant to the same query" [VANR79]. It is this

hypo thesis that supports the Cluster-based Search (CS) strategy. In CS, the documents

are divided into several homogeneous groups (clusters). In a typical CS, the user queries

are first compared with the cluster representatives (centroids). Then, after selecting best-

matching clusters, detailed query-by-document comparison is performed within the

selected clusters. (Note that this is a conceptual explanation. The actual implementation

may be different.)

Although the selected clusters may not contain the best-matching documents,

generally speaking, CS and clustering provide several advantages.

(1) In a clustered document environment, the user may choose to browse the cluster of

any retrieved document. This provides some expansion of recall ability, as not all

documents in a cluster are relevant, but they are related in ways not always accessible

through a query. Furthermore, during the process of cluster browsing, the user creates

a better image of his information need and can submit a better query to the system.

(2) In a multi-search IR system, CS constitutes a good alternative to FS.
(3) The results of FS and CS can be combined to increase the system effectiveness. For

instance, the combination of FS and CS may provide a precision improvement of up

to 25 percent [CAN92a] (precision is defined as the ratio of the number of retrieved

relevant documents to the number of retrieved documents).

(4) In a clustered environment, the documents of a cluster can be put into close physical

proximity in secondary storage to decrease I/O time, and therefore, to increase system

efficiency [SALT89].

3 3 Clustering Algorithm
In HypIR, the semantic relationships among documents is obtained using the Cover-

Coefficient-based Clustering Methodology (c~M). In C ~ M , some of the documents are

selected as the cluster initiators (seeds) then the nonseed documents are assigned to one

of the clusters initiated by the seed documents. C ~ M produces a single-level partitioning
type clustering structure. The number of clusters, nc, is determined using the Cover-

Coefficient (CC) concept. According to CC, for an m document by n term D matrix, the
value range of nc and the average cluster size (dc) is as follows.

1 (nc min (m, n) , max (I, mln) 5 dc 5 m

In C3M, an m by n D matrix is first mapped into an m by m C matrix using the

following formula.

where 1 (i, j < m and ai and Pk are the reciprocals of the ith row sum and kth column

sum. This asymmetric C matrix shows the relationships among the documents of a
database. The diagonal entries of the C matrix determine the number of clusters, nc, and

is used for the selection of cluster seeds. The relationships between a nonseed document
(di) and a seed document (dl) is determined by calculating cij entry of the C matrix. The

whole clustering process requires the calculation of (m+(m-nc).nc) entries of the total m2
entries of the C matrix. This is a small fraction of m2, since nc is much less than m. A

detailed discussion of C3M and its complexity analysis are available in [CAN90]. In a

dynamic document environment the clusters of C3M can easily be updated without

initiating a reclustering process [CAN92a]. The CS effectiveness of C3M is reported in

[CAN90]. The mentioned study shows that the effectiveness of C3M is 15.1 to 63.5 (with

an average of 47.5) percent better than four other clustering algorithms in CS.

3.4 Implementation of Cluster- based Search
Cluster-based Search (CS) is conventionaily implemented in the following two ways.

CVDV: Match the query vectors with all the centroid vectors (CV) and the document

vectors @V) of the members of the best-matching clusters.

ICDV: Match the query vectors with the inverted indexes of centroids (IC) and the

document vectors (DV) of the members of the best-matching clusters.

In addition to these conventional methods, the following method of implementation

for CS has been introduced in [CAN92b].

ICIIS: Match the query vectors with the inverted indexes of centroids (IC) and the

inverted indexes of all documents.

In ICIIS, the system first retrieves the best-matching clusters by matching the query

vector with the inverted indexes of centroids. After obtaining the best-matching clusters,

the documents of these clusters are selected using the results of IIS performed on the

complete database. In other words, by using the ICIIS algorithm, the IR system can also

provide the results of FS without extra effort. By definition the efficiency of ICnS is

independent of the number of clusters to be selected and the number of documents to be

displayed to the user for browsing purposes. It is shown that ICDS is much more efficient

than other conventional CS implementation methods. Its efficiency is due to shortness of

the query vectors, and it is especially suitable to very large databases [CAN92b].

4. SYSTEM DATABASE AND FILES
4.1 System Database
The document database of HypIR is the TODS/TOIS database covering the papers

published in both ACM Pansactions on Database Systems and ACM Z-ansactions on

Information Systems* . In HypIR, each document of TODSlTOIS is represented by a

document card consisting of the title, author(s), and the abstract of the corresponding
article. For clustering purposes, the database is defined with a D matrix using an indexing
software. The relevant statistics of the current TODSflOIS database are listed in Table I.

Table I. Characteristics of the TODS/TOIS Database.
I No. of documents (rn) : 524 1 . ,

No. of terms (n) : 3668
No. of clusters (nc) : 65
No. of nonzero entries in the D matrix : 28343
Average No. of terms per document : 54.09

The TODS/TOIS database is currently adopted by a mainframe IR system, ANIRS, and is
available on the Miami, IBM, environment [CAN92c]. The updates of TODSflOIS and
its clustering structure are conducted periodically [CAN92a].

4.2 System Files
Several files are used in the implementation of HypIR. They are described in the
following.

(1) IID file :contains the inverted index representation of the D matrix and is needed for
the selection of the best-matching documents using 11s.

(2) DV file :is a direct access file of document vectors of the D matrix and is used for the
creation of IID file and the implementation of "Nearest Neighbor" browsing

technique which returns the documents most similar to a located document.

(3) IC file :contains the inverted index representation of the centroid vectors and is
needed for the selection of the best-matching clusters.

(4) CV file :is a direct access file of centroid vectors and is needed for the update of the
IC file.

For better understanding of the major file structures, IID and IC, let us consider the

example D matrix of Figure 2.A. The application of C3M to this D matrix produces the

* ~ o r m e r l ~ ACM Transactions on Office Information Systems.

8

cluster C 1 = {dl, d2} and C2= {d3, d4, d5} [CAN90]. The centroids and templates of III)

and IC for the example D matrix are depicted in Figure 2.B. In Figure 2.B. IID shows
that t l appears in two documents: d l and d2; since the D matrix is binary, the term

weights are ones. IC provides the same information for centroids. For example, the
header information for t2 indicates that it appears in two centroids (cl and c2) In cluster

C1 both members, d l and d2, contain t2, that is why the weight of t l in c l is two.

Similarly, in C2, two members, d4 and dg, contain t2.

Figure 2.A. an example of D matrix.

Inverted Index fur Documents (1IDt Inverted Index fur Centroids (IIC)

Templates of the IID and IC files:
IID: cc Term No., No. of Documents Using This Term> --> <Document No., Term weight>+>+
IC : cc Term No., No. of Centroids Using This Term> --> <Centroid No., Term Weight>+>+
+ : indicates one or more occurrences of the enclosed information.
--> : indicates a pointer.

Figure 2.B. IID and IC file structures and templates.

5. USING HYPERTEXT FOR IR AND HypIR
5.1 Links and Nodes
It is commonly agreed that the major advantage of hypertext model is the non-sequential

organization of the information. In a hypertext-based system, each piece of information

on the screen can provide several links through which the user can browse the entire

database and retrieve increasingly useful information. In general, the structures

containing all the nodes and links in a hypertext system can be divided into two

categories, hierarchical structures and network structures, as shown in Figure 3.

Figure 3. Hierarchical and network hypertext models.

In a hierarchical structure, the information is divided into several levels. Each lower

level of the hierarchy provides more detailed information. Hence, the information can be

searched and presented in a semantic way. For a bibliography database adopted in HypIR,

the network structure is a better choice, since the hierarchical relationships are expensive

to construct [WILL89]. In a network structured system, nodes are connected in a non-

hierarchical manner. The links between the nodes may be embedded in the names of

authors, the key terms, or an index list in the end of a node. Thus, the user's navigation is

totally free in network environments.

5.2 Hypertext Browsing
Browsing is a heuristic search through a well connected collection of documents in order

to find information relevant to the user's needs [THOM89]. It provides two major

advantages for IR.
(1) By browsing the user's information need can become more and more clear. Hence,

more appropriate queries can be created.

(2) Since the related documents are linked together, a user can evaluate a large database

in a rapid manner.

In a hypertext-based IR system, the user may browse

(1) the documents written by the authors of the located document,

(2) the references of the located document,

(3) the documents in the same publication,

(4) the documents that are very similar to the located document (i.e. the nearest

neighbors),

(5) the documents containing the same key terms.

In HypIR, all of these browsing methods are implemented and future modification or

enhancement will be conducted according to users' feedback.

A major consideration when designing a hypertext-based IR system is to prevent

users from getting lost during browsing. Currently, two major designs, "system map" and

"history list", have been used in some hypertext systems [AGOS92, NIEL901. The
"system map" method, which is usually adopted in the hierarchical hypertext

environment, is implemented by dividing the entire hierarchy of the system into several

maps according to different subjects. Each map is then inserted into the links between the

nodes. Thus, the user can navigate the entire collection according to the system maps. If

the user is lost, he can still find the subjects which he was in. "History list" is usually a
special node in a hypertext system. It keeps a list of all the navigated nodes for the user.

Whenever, the user is lost, he can still find a specific document by checking such a list.

Both of these designs are not used in HypIR due to the following reasons.

(1) In a system adopting system maps, all the documents must have a kind of semantic

relationship which can be clearly expressed graphically.

(2) System maps can not help the user find a specific document conveniently. In a large

database, finding a navigated document may still consume a lot of time.

(3) History list is a test for the user's memory, since i t expects the user to memorize the

titles of the documents without providing any hint.

(4) History list does not provide any browsing ability.

In HypIR, a new approach is used. The detail of this design is provided in section 5.4.

5 3 Hypercard 's Object - Oriented Philosophy

HypIR is implemented using the Hypercard graphic programming package, because of

its hypertext nature, object-oriented philosophy, powerful scripting language and the

ability to facilitate general purpose languages such as Pascal and C. The object-oriented

philosophy of Hypercard visualizes the well known "object" in traditional object-oriented

programming languages such as C++ or Smalltalk. In Hypercard, when a user needs a
new object, it is not necessary to use a specific statement provided in the language.

Instead, a graphic tool is provided to actually draw an object on the screen. The objects

provided in HyperCard are stacks, backgrounds, cards, buttons, and fields. Each of these

objects can be associated with a script which enables the object to respond to a

HyperCard message. A system based on hierarchical inheritance and message passing can

be constructed by combining these objects . The inheritance of HyperCard is based on the

relationships between the objects as shown in Figure 4.

Background Q
Figure 4. The hierarchy of objects in HyperCard.

The "stacks" and "cards" are actually HyperCard terminology to represent HyperCard

files and screens, respectively. As in Figure 4, a stack may have several different

backgrounds. A background can be shared by numbers of cards. Each card has several

buttons and fields which distinguish itself from the other cards with the same background.

Furthermore, from the bottom level to the top each object inherits all the HyperCard

properties of the higher level object. For example, all the cards with the same background

look similar to each other. All the backgrounds within a stack have the same size on the

screen. Figure 4 also expresses the message passing strategy adopted in HyperCard.

Whenever a message has been generated by an object, it will be either sent to a specific

object if any exists, or it will be passed through the hierarchy until it is interrupted by an

object on a higher level.

5.4 HypIR System Design and Implementation
The architecture of HypIR, is based on Hypercard's object-oriented philosophy. The

whole system is accomplished by using three stacks, the HypIR stack, the help stack and

the index stack as shown in Figure 5.

Q u e ~ Terms
leld

$:;dT 1 - 1 Send imn Query I
Full Search P

Document
Card

Document
Field

Browsing
Monitor Fleld

Full Search Document
Field

Browsing
Monitor Fleld

Browsing
Document Buttons

Card

Title List

Automatic

Main Menu
Carrl

Index
Card

Index Stack .
Term List

Nearest
Neighbors Icon

DINS. Icon L 2 9

Figure 5. HypIR system design.

The HypIR stack is the main body of the entire system which contains a main menu

card, a query processing card, and several title list cards, author list cards and document

cards. After accessing the system, the user is first led to the main menu card (Figure 6).

On this card, the user can make a decision among several searching strategies and start

the navigation in the system. The user may click on

(1) The "Automatic Search" icon to access query processing card,

(2) The "Doc List" icon to browse the titles of the entire collection of documents (In this

case, we assume that the user does not have any particular destination to start the

searching.),

(3) The "Authors" icon and then type in the last name of a particular author in a pop-up

dialog box. consequently, a list of the author's papers are provided by the system,

(4) One of the "books" and obtain a list of documents in a certain volume of the
collection.

All the previous choices, except (I), provide the user a starting point to begin with his

navigation. For example, after obtaining a list of documents (Figure 7), the user then

browses through the document titles. Whenever an interesting document title is found, the

user can click on the title and access the content of this document (Figure 8).

Figure 6. Main menu in HypIR.

002 ON THE ENCIPHERMENT OF SEARCH TREES AND RANDOM ACCESS FILES S
003 THE DESIGN OF A ROTATING ASSOCIATIVE MEMORY FOR RELATIONAL DATABASE
009 OPTIMAL ALLOCATION OF RESOURCES IN DISTRIBUTED INFORMATION NEPNORKS a
005 DATABASE MANAGEMENT FACIUTY FOR AUTOMATIC GENERATION OF DATABASE
006 SYSTEM R REWONAL APPROACH TO DATABASE MANAGEMENT 5
007 RESTRUCTURING FOR LARGE DATABASES THREE LEVELS OF ABSTRACTON S
008 DYNAMIC DATABASE REORGANIZATION ALGORITHM S
009 HASHING AND TRlE ALGORITHMS FOR PARnAL MATCH RETRIEVAL S
010 M E DESIGN AND IMPLEMENTATION OF INGRES S
01 1 DECOMPOSmON - A STRATEGY FOR QUERY PROCESSING S
012 AN AUTHORIZATION MECHANISM FOR A REU\TIONAL DATABASE SYSTEM S
013 DIFFERENTIAL FILES THEIR APPUCATION TO THE MAlMENANCE OF LARGE
014 BATCHED SEARCHING OF SEQUENTlAL AND TREE STRUCTURED FILES 5
075 SYMHESlZlNG THIRD NORMAL FORM RELATIONS FROM FUNCTONAL
016 ALGORmtMS FOR PARSING SEARCH QUERIES IN SYSTEMS WITH INVERTED FILE
017 PERFORMANCE OF A DATABASE MANAGER IN A VIRTUAL MEMORY SYSTEM S
018 DATABASE SYSTEM APPROACH TO MANAGEMENT DECISION SUPPORT S
019 ON USER CRilERlA FOR DATA MODEL EVALUATION S
0 A MODEL OF STATISTICAL DATABASES AND THEIR SECURfW S
021 PREFIX 8-TREES S

Figure 7. An example of document list in HypIR.

'A F CAN. E. A OZKARAHAN S
' 8 CONCEPTS AND EFFECTNENESS OF THE COVERCOEFFICIENT-BASED CLUSTERING
MRHODOLOGY FOR TEXT DATABASES S
'C CLUSTERING-INDEXING RELATIONSHIPS. CLUSTER VMlDllY COVER
COEFFICIENT. DECOUPUNCi COEFFICIENT DOCUMENT REFRIEVAL RRF)IEVAL
EFFECTIVENESS S
1) A NEW ALGORITHM FOR DOCUMENT CLUSTERINO IS INTRODUCED I THE BASE
CONCEPT OF THE ALGORITHM. THE COVER COEFFlClEM (CC) CONCEPT. PROVIDES
A MEANS OF ESTIMATING THE NUMBER OF CLUSTERS WITHIN A DOCUMENT DATABASE
AND RELATES INDEXING AND CUlSTERlNG ANALWCALLYI THE CC CONCEPT IS
USED ALSO TO IDENTIFY THE CLUSTER SEEDS AN0 TO FORM CLUSTERS WITH MESE
SEEDS.# tT IS SHOWN THAT THE COMPLEXITY OF THE CLUSiEAlNG PROCESS IS
VERY LOW ITHE RETRINAL EXPERIMENTS SHOW THAT THE INFORMATION-FlETRlEVAL
EFFECTNENESS OF THE ALGORITHM IS COMPATIBLE WITH A VERY DEMANDING

i:::::.:.: :.:..I:.. :..:.I I
,?;. .:;*fi:3:>::;::i ... ;..%.. , , , :.....I

DOC347 A P A W L ALGORITHM FOR RECORD C
WC232 ADAPTNE RECORD CLUSTERING S

Figure 8. Document content in HypIR.
"Automatic Search" icon displays the query processing card (Figure 9). On this card,

the user can first type in his query in natural language, click on the "Send Query" icon
and obtain the corresponding query vector from the "Query Terms" field. If the user
wants to modify the query vector, HypIR provides a simple method. To delete a query

term, the user can click on the term itself. By doing so, the system will pop-up a dialog

box (Figure 10) to request an action from the user. After the user clicks on the "Delete

Term" button, the specified term will be erased from the query vector. A similar approach

is also provided for the modification of a term weight. The only difference is that the user

needs to type in the term weight in another dialog box (Figure 11). To add a new term,

the user can click on any spot on the "Query terms" field. After responding to the same

dialog box shown in Figure 10, the "Index" stack will appear in a new window (Figure

12). By clicking on the letters in the window and using the same approach as checking a

dictionary, the user can easily locate desired term and add it to the query vector.

Figure 9. Query processing card in H y p R

wnat is the type of tne modlncatlon?

Figure 10. Query modification dialog box.

- --

-

Figure 11. Term weight dialog box.

Figure 12. Index windows

The "FS" and "CS" icons represent the searching techniques, Full Search and Cluster-

based Search, respectively. As defined before, FS and CS provide a list of the best-

matching documents of the query vector in the entire database and the selected clusters,

respectively. Again, the user accesses the content of the documents by clicking on their
titles.

The document card as shown in Figure 8 contains several icons to support different

types of browsing. The "Nearest Neighbors" icon provides the function that sends the

entire document as a query and returns the nearest neighbors of it as the result. The

"Cluster Browsing" icon provides a way that the user reveals all the members of the

cluster in which the located document resides. The "Cited Documents" icon provides all

the titles of the documents cited by the located document. Furthermore, browsing by key

terms is also available in HypIR. The "Document" field contains a script that allows the

user to navigate the entire database by clicking on any word which appears in the located

document.

The field appearing on the bottom left corner of the document card is responsible for

displaying the results of all the previous mentioned functions. It keeps track of the results

of FS (Full Search), CS (Cluster-based Search), NN (Nearest Neighbors), CB (Cluster

Browsing) and CD (Cited Documents). For instance, the user may first locate a document

using the FS function, then traverse the database by using CB function or links of key

terms. After all of these, the user may still want to see other documents found by FS. TO
do so only requires a click on one of the five radio buttons. In this case, "FS" button is the

appropriate choice, of course. By doing so, the user can go back to the original path, once

again. Due to the functionality of this field, it is named as browsing monitor.

The major reason that we adopted browsing monitor is to prevent the user from

getting lost in HypIR. This design actually contains both of the advantages of system

maps and history lists. It not only tracks all the navigated documents, but also groups the

documents according to the retrieval function. Since the switching among different

groups is so handy, we believe that browsing monitor provides a more convenient and

practical aid to the user than system maps and history lists.

6. CONCLUSION
Information retrieval (IR), also known as text or document retrieval, is the process of

locating and retrieving documents that are relevant to the user queries. In hypertext

environments, document databases are organized as a network of nodes which are

interlinked by various types of links. Through the links, the documents are navigated or

browsed in a non-sequential manner which is totally controlled by the user. In a

hypertext-based retrieval system, the browsing of documents should be triggered by so-
called "optimal" starting nodes.

In this paper, we introduced HypIR, a hypertext-based IR system which is

implemented in the Hypercard environment of Macintosh. In HypIR, the semantic

relationships among documents are obtained using the C3M clustering algorithm which is

known to have good IR performance. For information retrieval, the users are provided

with various search and browsing tools. These include full search (FS), cluster-based

search (CS), nearest neighbors (NN) search, cluster browsing (CB) and others. In HypIR,

the user enters natural language queries and can easily modify them. The paper introduces

the underlying concepts, implementation details and the object-oriented nature of the

HypIR system.

To prevent the user from being lost in the IR hyperspace, a new approach, browsing

monitor, is introduced. Browsing monitor provides the advantages of system maps and

history lists without their difficulties of usage.

In future research, we are planning to modify and enhance the system utilizing users'

feedback. Two other future research possibilities are the design and implementation of an

on-line thesaurus for better query formulation, and the development of performance

measurement methods that would be appropriate for hypertext-based IR systems.

REFERENCES

[AGOS92] Agosti, M., Gradenigo, G., Marchetti, P. G. A hypertext environment for
interacting with textual database. Information Processing & Management. 28, 3 (1992),
371-387.

[APPL88] Apple Computer, Inc. Inside Macintosh I-VI; Addison Wesley, Reading, MA
1988.

[BELK87] Belkin, N. J., Croft, W. B. Retrieval techniques. In Annual Review of
Information Science and Technology, ARIS?: Vol. 22, M. E. Williams, Ed. Elsevier
Science, Amsterdam, The Netherlands, 1987, 109-145.

[CAN901 Can, F., Ozkarahan, E. A. Concepts and effectiveness of the cover-coefficient-
based clustering methodology for text databases. ACM Zkansactions on Database
Systeins. 15,4 (Dec. 1990), 483-5 17.

[CAN92a] Can, ' Incremental clustering for dynamic information processing ACM
fiansactions on Inforination Systeins, to appear.

[CAN92b] Can, F. On the efficiency of best-match cluster searches. (Tentatively accepted
by Inforination Processing and Management.)

[CAN92c] Can, E, McCarthy, K. J. Implementation of an information retrieval system
(ANIRS) with ranking and browsing capabilities. Working paper 92-001, Dept. of
System Analysis, Miami Univ., Oxford. Ohio, April 1992.

[CROF87] Croft, W B., Thompson, R. H. I ~ R : A new approach to the design of
document retrieval systems. Journal of the Ainerican Society for Infortnation Science. 38,
6 (Nov. 1987), 389-404.

[CROU89] Crouch, D. B., Crouch, C, J., Andreas, G. The use of cluster hierarchies in
hypertext information retrieval. Hypertext '89 Proceedings. (November 1989), 225 -237.

[Fa0851 Faloutsos, C. Access methods for text. ACM Computing Surveys. 17, 1 (Mar.
1985), 49-74.

[FRIS88] Frisse, M. E. Searching for information in hypertext medical handbook.
Coininunications of the ACM. 3 1, 7 (July 1988), 880-886.

[GAUC92] Gauch, S. Intelligent information retrieval: An introduction. Journal of the
American Society for Information Science. 43, 2 (March 1992), 175-182.

[HARM911 Harman, D. How effective is suffixing? Journal of the American Sociey for
Information Science. 42, 1 (Jan. 1991), 7-15.

[HARM921 Harman, D. User-friendly system instead of user-friendly front-ends. Journal
of the Atnerican Society for Inforination Science. 43, 2 (March 1992), 164-174.

[LU3C91] Library of Congress. Ainerican Mernory Instruction Manual. Washington D.C.,
October 1991.

[NIEL90] Nielsen, J. Hypertext and Hypernredia. Academic Press, San Diego, CA, 1990.

[POKI'80] Porter, M. F. An algorithm for suffix stripping. Program. 14, 3 (July 1980),
130-137.

[SKT88] Salton, G., Buckley, C. Term-weight approaches in automatic text retrieval.
Inforination Processing and Manageinent. 24, 5 (May 1988), 5 13-523.

[SALT891 Salton, G. Autoinatic Tex-t Processing. Addison Wesley, Reading, MA, 1989.

[SHAF91] Shafer, D. The Coinplete Book of Hypertalk 2. Addison Wesley, Reading, MA,
1991.

[THOM89] Thompson, R. H., Croft, W. B. Support for browsing in an intelligent text
retrieval system. Int. J. of Man-Machine Studies. 30, (1989) 639-668.

[VANR79] Van Rijsbergen, C. J. Information Retrieval, 2nd ed. Butterworths, London,
1979.

[WILL891 Willett, P. Recent trends in hierarchical document clustering: A critical
review. Information Processing and Management. 24,5 (1989), 577-597.

