
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year

Design and Implementation of a

Hypertext-based Information Retrieval

System

Yuan Lee
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/48

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Commons @ MiamiOH (Miami University)

https://core.ac.uk/display/235277234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1992-011

Design and Implementation of a Hypertext-based
Information Retrieval System

Yuan Ming Lee

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

Design and Implementation of a

Hypertext-based Information Retrieval System

Yuan Ming Lee
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #92-011

SYSTEMS ANALYSIS DEPARTMENT

MASTER'S PROJECT FINAL REPORT

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Systems Analysis
in the

Graduate School of Miami University

TITLE: Design and Im~lementation of a Hypertext-based

Information Retrieval System

PRESEN'IED BY: Yuan Ming Lee

DATE: August 13. 1992

COMMITTEE MEMBERS:

Fazli Can, Advisor

James D. Kiper

Alton Sanders

Design and Implementation
of

a Hypertext - based Information Retrieval System

Graduate Research

by

Yuan Ming Lee

In Partial Fulfillment
of the Requirements for the Degree

Master in Systems Analysis

Miami University
August, 1992

Abstract
Information Retrieval (IR), which is also known as text or document retrieval, is the

process of locating and retrieving documents that are relevant to the user queries. In
hypertext environments, document databases are organized as a network of nodes which

are interconnected by various types of links. This study introduces a hypertext-based text

retrieval system, HypIR. In HypIR, the semantic relationships among documents are
obtained using a clustering algorithm. A new approach providing the advantages of
system maps and history list is introduced to prevent the user from being lost in the IR
hyperspace. The paper presents the underlying concepts and implementation details.
HypIR is based on the object-oriented paradigm of Hypercard.

Approvals

Student: Date:

Advisor: Date:

Member: Date:

Member: Date:

TABLE OF CONTENTS

.. ABSTRACT
. LIST OF TABLES
... LIST OF FIGURES

1 . INTRODUCTION .

2 . DOCUMENT REPRESENTATION AND QUERY-DOCUMENT
. MATCHING

2.1. Generation of Document Representation
2.2. Query-Document Matching

..................................... 3 . SEARCH STRATEGIES
.. 3.1. Full Search

. 3.2. Cluster-based Search

. 3.3. Clustering Algorithm

3.4. Implementation of Cluster-based Search

........................... 4 . SYSTEM DATABASE AND FILES
. 4.1. System Database

. 4.2 System Files

..................... 5 . USING HYPERTEXT FOR IR AND HYPIR
....................................... 5.1. Links and Nodes

.................................... 5.2. Hypertext Browsing

5.3. Hypercard's Object-Oriented Philosophy
5.4. HypIR System Design and Implementation

6 . CONCLUSION .

. 7 . REFERENCES

8 . APPENDIX .
I . Programming Details for HypIR .
I1 . Summary of Programs and Files Used in HypIR
III . The Maintenance of HypIR .

Page
ii

LIST OF TABLES

TABLE Page

I. Characteristics of the TODSlTOIS Database. 7

LIST OF FIGURES

Figure

1 .
2.A

2.B

3 .
4 .
5 .
6 .
7 .

An example hypertext structure .
. Example D matrix

IID and IC file structures and templates .
Hierarchical and network hypertext models
The hierarchy of objects in Hypercard .
HypIR system design .
Main menu in HypIR .
An example of document list in HypIR
Document card in HypIR .
Query processing card in HypIR
Query modification dialog box .
Term weight dialog box .

. Index windows

An example of Set Project Type ... dialog box
Update card in HypIR

Page

1

8

9

1. INTRODUCTION
Information Retrieval (IR) is the process of locating and retrieving documents that are

relevant to the user queries [SALT89]. In general, IR is accomplished using document

representatives or surrogates. Whatever the representation of the documents, the major

problem in IR is the query formulation. This is why several retrieval techniques are

available in the IR literature [BELK87]. Among these techniques, the hypertext approach,

which allows the user to navigate and inspect the database documents according to his

own wishes, is the most intuitive one [NIEL90].

In hypertext environments, databases are organized as a network of nodes which are

interconnected by various links. Through the links, the user can navigate or browse the

documents in a non-sequential manner. This network browsing process is totally

controlled by the user .
In a hypertext-based IR system, documents have multiple entries and numerous

connections as shown in Figure 1.

-1 ~ p u t s d Link

Figure 1. An example hypertext structure.

As shown in Figure 1, computed links are constructed whenever the user submits a

query. On the other hand, embedded links may be provided by system functions. In such

a system, the browsing of hypertext is triggered by some "optimal" starting nodes, which

are the documents with high similarity to the user query. The user may then navigate

among documents following the original query or, alternatively, the user may utilize

system functions to find documents containing the same keywords or documents written

by the same author, etc. Consequently, the user can become more and more familiar with

the system and his information need. Thus, a query which is more accurate than the initial

query can be formulated and more relevant documents can be found.

The recent IR literature contains various examples of hypertext-based JR systems

sometimes with multimedia support. For example, American Memory is a multimedia

integrated system which provides electronic images of selected collections of the Library

of Congress. The system provides archival material related to American culture and

history on CD-ROM discs and laser videodiscs. The multimedia database covers motion

pictures, photographs, cartoons, speeches, songs and text [LIBC91].

The News Retrieval Tool (NRT), built at University of Glasgow in Scotland, is based

on a probabilistic retrieval model. This system covers a collection of articles from

Financial Times, and is designed to test retrieval improvement for users of the existing

profile retrieval services [HARM92].

CANSEARCH, which is an application of artificial intelligence techniques, provides

intelligent access to on-line information. It is designed to enable doctors to retrieve

cancer-therapy-related documents from the MEDLINE database. To use CANSEARCH,

the user must have sophisticated medical knowledge, but little IR experience [GAUC92].
13R (Intelligent Interface for Information Retrieval) is a knowledge base system

which aIlows the user to find information using various means. To retrieve documents,

both natural language query and Boolean query formulation can be used [CROF87,
THOM891.

HYPERLINE, which has been developed by the Information Retrieval Service of

European Space Agency, is based on a two-level conceptual architecture for the

construction of a hypertext environment for interacting with large textual databases. In
HYPERLINE, the collection of documents of interest is placed in the first level and the

semantically related concepts are placed in the second level. Meanwhile, various

functions such as semantic association, navigation, sequential reading, backtracking and

history list are also provided [AGOS92].

Another example of hypertext-based IR system with hierarchical cluster browsing

capability is implemented by Crouch and his co-workers. This system allows the user to

browse the nodes within a single link clustering structure. When using this system, the

user is not expected to access best-matching documents directly. Instead, the user can

utilize the similarity values and single link structure to decide which clusters should be

visited [CROU89].

An application of the hypertext and IR techniques on a medical handbook is defined

by Frisse. In his system the links are defined by already existing hierarchical relationships

of different sections of the handbook [FRIS88].

In this paper, we introduce a hypertext-based text retrieval system, HypIR. As in any

other information system, efficiency and effectiveness are the main concerns. Efficiency

and effectiveness are, respectively, associated with the time and space required for

searching and with the quality of retrieval. The implementation principles of HypIR are

proven to be both effective and efficient [CAN90, CAN92a, CAN92bl. In HypIR, since

the documents are independently created, the semantic relationships among documents

are obtained using the Cover Coefficient-based Clustering Methodology (C3M). This

algorithm generates statistically valid clusters (i.e. groups of documents that are strongly

associated with each other) which are appropriate for IR [CAN90]. The selection of

documents from the generated clusters is performed using inverted index search

techniques. HypIR is implemented using Hypercard and THINK Pascal. The system has

a dynamic nature and documents can easily be added and deleted.

The paper is organized as follows. Section 2 briefly introduces the concepts of

document representation and query-document matching process. In hypertext browsing,
Full Search (FS) and Cluster-based Search (CS) provide the so-called "optimal" browsing

starting points. Section 3 covers the principles of FS and the details of CS. Section 4 and

5, respectively, provide the data and file structures, and the design principles used for the

implementation of HypIR. In Section 6, a conclusion is provided. Finally, three

appendices are included to aid future graduate students who will work on projects related

to the HypIR system.

2. DOCUMENT REPRESENTATION AND QUERY-DOCUMENT MATCHING
In the design and implementation of IR systems, some decisions should be made for the

techniques of document representation, query-document matching and searching

strategies. Thus, before getting into the details of HypLR, we would like to introduce the

techniques that are adopted in HypIR and the reasons that support the selection of these

techniques. This section considers document representation and query-document

matching, and the next section considers the search strategies.

2.1 Generation of Document Representatives
In IR, two common approaches for document representative generation are document

signatures and the vector space model [SALT89]. The document signature approach uses

a bit map array for each document whose entries are set by a hash function using the

words of documents as its input [FAL085]. In the vector space model, the approach used

in this study, each document is represented by a document vector describing the words, or

terms, which appear in the associated document. This model is simple and appropriate for

hypertext environments [SALT89, CROU891.

According to the vector space model, a document database simply becorns a

document, D, matrix. For a database of m documents defined by n terms, an entry ir, the

D matrix in row i (document i) at column j (term j), dij (1 5. i 5 m, 1 2 j 5 n), represents

the weight, or frequency of term j in document i (i.e. the number of occurrences of term j

in document i).
When constructing the D matrix, a stemming algorithm should be adopted to reduce

the size of the D matrix. For the documents or queries written in natural English, it is
known that terms with a common stem will usually have similar meanings such as the

following.
attract, attracted, attraction and attractive

Thus, if the IR system can recognize the various suffixes (-ed, -ion, -ive, etc.) and remove

them from the stem, "attract," the complexity of the system and the storage requirement

of the database can both be reduced. In HypIR, the stemming program is coded using

Porter's algorithm [PORT80], Porter's algorithm is simple, compared to other stemming
algorithms, but effective [HARM91].

2.2 Query - Document Matching

No single search strategy can satisfy all users' queries. Therefore, it is desirable that an IR
system should have more than one search strategy. Two common search techniques are

Full Search (FS) and Cluster-based Search (CS). FS has the best performance in terms of
retrieval effectiveness and CS facilitates document browsing. For both, a query matching

(similarity) function, also described as a search machine, determines which documents or

clusters potentially relevant (i.e. match the query) and should be returned to the user.

Several matching functions based on term weighting components of document and

query terms have been introduced in the IR literature. Term weighting consists of three

components, the term frequency component (TFC), the collection frequency component

(CFC), and the normalization component (NC). Both the weights of terms in a document

and a query (denoted by Wdj and w ~ , 1 2 j 5. n) can be derived by multiplying the term

weights of these three components. After obtaining the term weights, the similarity

between a document d and a query q can be defined as follows [SALT89].
n

similarity (d, q) = zl W a . wry,

where n is the number of terms.

According to Saltor, and Buckley's research, 1800 different combinations of

document-query term weight assignments (i.e, matching functions) can be derived.

Among these combinations, 287 were found to be distinct and six of them were

recommended [SALT88]. The results of the experiments reported in [CAN901 indicate

that the matching function labeled as TW2 (tfc.nfx in [SALT%]) is the most effective

one. Thus, TW2 is used as the search machine of HypIR.

3. SEARCH STRATEGIES
3.1 Full Search
Full Search (FS) is implemented using inverted index search (11s). In IIS, each distinct

term in the system has a list of documents in which that term appears. Each document is

represented by its document number and associated with the weight of the corresponding

term. By traversing the list of those query terms, the similarity values of a11 database

documents are calculated [SALT89]. The documents with the highest similarity values

are then selected to answer the user's query. It is known that IIS is both effective and

efficient [CAN92b, SALT891.

3.2 Cluster - based Search
In El, there is a hypothesis known as the "clustering hypothesis," which states that

"closely related documents tend to be relevant to the same query" [VANR79]. It is this

hypothesis that supports the Cluster-based Search (CS) strategy. In CS, the documents

are divided into several homogeneous groups (clusters). In a typical CS, the user queries

are first compared with the cluster representatives (centroids). Then, after selecting b a t -

matching clusters, detailed query-by-document comparison is performed within the

selected clusters. (Note that this is a conceptual explanation. The actual implementation

may be different.)

Although the selected clusters may not contain the best-matching documents,

generally speaking, CS and clustering provide several advantages.

(1) In a clustered document environment, the user may choose to browse the cluster of

any retrieved document. This provides some expansion of recall ability, as not all

documents in a cluster are relevant, but they are related in ways not always accessible

through a query. Furthermore, during the process of cluster browsing, the user creates

a better image of his information need and can submit a better query to the system.

(2) In a multi-search IR system, CS constitutes a good alternative to FS.

(3) The results of FS and CS can be combined to increase the system effectiveness. For

instance, the combination of FS and CS may provide a precision improvement of up

to 25 percent [CAN92a] (Precision is defined as the ratio of the number of retrieved

relevant documents to the number of retrieved documents).

(4) In a clustered environment. the documents of a cluster can be put into close physical

proximity in secondary storage to decrease 1/0 time, and therefore, to increase system

efficiency [SALT89].

33 Clustering Algorithm
In HypIR, the semantic relationships among documents is obtained using the Cover-

Coefficient-based Clustering Methodology (C3M). In C3M, some of the documents are

selected as the cluster initiators (seeds). Then the nonseed documents are assigned to one

of the clusters initiated by the seed documents. C3M produces a single-level partitioning
type clustering structure. The number of clusters, nc, is determined using the Cover-

Coefficient (CC) concept. According to CC, for an m document by n term D matrix, the
value range of nc and the average cluster size (dc) is as follows.

1 I. nc 5 min (m, n) , max (1, m/n) 5 dc 5 m
In C3M, an m by n D matrix is first mapped into an m by m C matrix using the

following formula.

where 1 6; i, j I. m and ai and Pk are the reciprocals of the ith row sum and kth column

sum. This asymmetric C matrix shows the relationships among the documents of a
database. The diagonal entries of the C matrix determine the number of clusters, nc, and

is used for the selection of cluster seeds. The relationships between a nonseed document
(di) and a seed document (dj) is determined by calculating cij entry of the C matrix. The

whole clustering process requires the calculation of (m+(m-nc)nc) entries of the total m2

entries of the C matrix. This is a small fraction of m2, since nc is much less than m. A

detailed discussion of C3M and its complexity analysis are available in [CAN9O]. In a

dynamic document environment the clusters of C3M can easily be updated without

initiating a reclustering process [CAN92a]. The CS effectiveness of C3M is reported in

[CAN90]. The mentioned study shows that the effectiveness of C3M is 15.1 to 63.5 (with

an average of 47.5) percent better than four other clustering algorithms in CS.

3.4 Implementation of Cluster - based Search
Cluster-based Search (CS) is conventionally implemented in the following two ways.

CVDV: Match the query vectors with all the centroid vectors (CV) and the document

vectors (DV) of the members of the best-matching clusters.

ICDV Match the query vectors with the inverted indexes of centroids (IC) and the

document vectors (DV) of the members of the best-matching clusters.

In addition to these conventional methods, the following method of implementation

for CS has been introduced in [CAN92b].

ICIIS: Match the query vectors with the inverted indexes of centroids (IC) and the

inverted indexes of all documents.

In ICIIS, the system first retrieves the best-matching clusters by matching the query

vector with the inverted indexes of centroids. After obtaining the best-matching clusters,

the documents of these clusters are selected using the results of 11s performed on the

complete database. In other words, by using the ICIIS algorithm, the IR system can also

provide the results of FS without extra effort. By definition the efficiency of ICIIS is

independent of the number of clusters to be selected and the number of documents to be

displayed to the user for browsing purposes. It is shown that ICIIS is much more efficient

than other conventional CS implementation methods. Its efficiency is due to shortness of

the query vectors, and it is especially suitable to very large databases [CAN92b].

4. SYSTEM DATABASE AND FILES

4.1 System Database
The document database of HypIR is the TODS/TOIS database covering the papers

published in both ACM 17-ansactions on Database Systems and ACM Transactions on
Information Systems* . In HypIR, each document of TODS/TOIS is represented by a

document card consisting of the title, author(s), and the abstract of the corresponding

article. For clustering purposes, the database is defined with a D matrix using an indexing

software. The relevant statistics of the current TODS/TOIS database are listed in Table I.

Table I. Characteristics of the TODS/TOIS Database.
I No. of documents (m) : 524 1 , ,

No. of terms (n) : 3668
No. of clusters (nc) : 65
No. of nonzero entries in the D matrix : 28343
Average No. of terms per document : 54.09

The TODS/TOIS database is currently adopted by a mainframe IR system, ANIRS, and is

available on the Miami, IBM, environment [CAN92c]. The updates of TODSITOIS and

its clustering structure are conducted periodically [CAN92a].

4.2 System Files
Several files are used in the implementation of HypIR. They are described in the

following.

(1) IID file :contains the inverted index representation of the D matrix and is needed for

the selection of the best-matching documents using 11s.

* ~ o r m e r l ~ ACM Transactions on Office Information Systems.

7

(2) DV file :is a direct access file of document vectors of the D matrix and is used for the

creation of IID file and the implementation of "Nearest Neighbors" browsing

technique which returns the documents most similar to a located document.

(3) IC file :contains the inverted index representation of the centroid vectors and is

needed for the selection of the best-matching clusters.

(4) CV file :is a direct access file of centroid vectors and is needed for the update of the

IC file.

For better understanding of the major file structures, IID and IC, let us consider the

example D matrix of Figure 2.A. The application of C3M to this D matrix produces the
cluster C1 = (dl, d2) and C2= {d3, d4, dg} [CAN90]. The centroids and templates of

and IC for the example D matrix are depicted in Figure 2.B. In Figure 2.B, IID shows

that t i appears in two documents: d l and d2; since the D matrix is binary, the term

weights are ones. IC provides the same information for centroids. For example, the

header information for t2 indicates that it appears in two centroids (cl and c2). In cluster

c l both members, d l and d2, contain t2, that is why the weight of t l in c l is two.
Similarly, in c2, two members, dq and dg, contain t2.

Figure 2.A. Example D matrix.

Inverted lndex fur Documents (IID) Inverted Index for Centroids I1C)

Templates of the IID and IC files:
IID : << Term No., No. of Documents Using This Term> --> <Document No., Term weight>+>+
IC : << Term No., No. of Centroids Using This Term> --> <Centroid No., Term weight>+>+
+ : indicates one or more occurrences of the enclosed information.
--> : indicates a pointer.

Figure 2.B. LID and IC file structures and templates.

5. USING HYPERTEXT FOR IR AND HypIR
5.1 Links and Nodes

It is commonly agreed that the major advantage of hypertext model is the non-sequential

organization of the information. In a hypertext-based system, each piece of information

on the screen can provide several links through which the user can browse the entire

database and retrieve increasingly useful information. In general, the structures

containing all the nodes and links in a hypertext system can be divided into two

categories, hierarchical structures and network structures, as shown in Figure 3.

Figure 3. Hierarchical and network hypertext models.

In a hierarchical structure, the information is divided into several levels. Each lower

level of the hierarchy provides more detailed information. Hence, the information can be

searched and presented in a semantically meaningful way. For a bibliography database

adopted in HypIR, the network structure is a better choice, since the hierarchical

relationships are expensive to construct [WILL89]. In a network structured system, nodes

are connected in a non-hierarchical manner. The links between the nodes may be

embedded in the names of authors, the key terms, or an index list in the end of a node.

Thus, the user's navigation is totally free in network environments.

5.2 Hypertext Browsing

Browsing is a heuristic search through a well connected collection of documents in order

to find information relevant to the user's needs [THOM89]. It provides two major

advantages for IR.
(1) By browsing the user's information need can become more and more clear. Hence,

more appropriate queries can be created.

(2) Since the related documents are linked together, a user can evaluate a large database

in a rapid manner.

In a hypertext-based IR system, the user may browse

(1) the documents written by the authors of the located document,

(2) the references of the located document,

(3) the documents in the same publication,

(4) the documents that are very similar to the located document (i.e. the nearest

neighbors),

(5) the documents containing the same key terms.

In HypIR, all of these browsing methods are implemented and future modification or

enhancement will be conducted according to users' feedback.

A major consideration when designing a hypertext-based IR system is to prevent

users from getting lost during browsing. Currently, two major designs, "system map" and

"history list", have been used in some hypertext systems [AGOS92, NIEL901. The

"system map" method, which is usually adopted in the hierarchical hypertext

environment, is implemented by dividing the entire hierarchy of the system into several

maps according to different subjects. Each map is then inserted into the links between the

nodes. Thus, the user can navigate the entire collection according to the system maps. If
the user is lost, he can still find the subjects which he was in. "History list" is usually a

special node in a hypertext system. It keeps a list of all the navigated nodes for the user.

Whenever, the user is lost, he can still find a specific document by checking such a list.

Neither of these designs is not used in HypIR due to the following reasons.

(1) In a system adopting system maps, all the documents must have a kind of semantic

relationship which can be clearly expressed graphically.

(2) System maps can not help the user find a specific document conveniently. In a large

database, finding a navigated document may still consume a lot of time.

(3) History list is a test for the user's memory, since it expects the user to memorize the

titles of the documents without providing any hint.

(4) History list does not provide any browsing ability.

In HypIR, a new approach is used. The detail of this design is provided in section 5.4.

5 3 Hypercard's Object - Oriented Philosophy

HypIR is implemented using the HyperCard graphic programming package, because of

its hypertext nature, object-oriented philosophy, powerful scripting language and the

ability to facilitate general purpose languages such as Pascal and C. The object-oriented

philosophy of HyperCard visualizes the well known "object" in traditional object-oriented

programming languages such as C++ or Smalltalk. In HyperCard, when a user needs a

new object, it is not necessary to use a specific statement provided in the language.

Instead, a graphic tool is provided to actually draw an object on the screen. The objects

provided in Hypercard are stacks, backgrounds, cards, buttons, and fields. Each of these

objects can be associated with a script which enables the object to respond to a

HyperCard message. A system based on hierarchical inheritance and message passing can

be constructed by combining these objects . The inheritance of HyperCard is based on the

relationships between the objects as shown in Figure 4.

/ Home Card 1

+%& Button

Figure 4. The hierarchy of objects in HyperCard.

The "stacks" and "cards" are actually Hypercard terminology to represent Hypercard

files and screens, respectively. As in Figure 4, a stack may have several different

backgrounds. A background can be shared by numbers of cards. Each card has several

buttons and fields which distinguish from the other cards with the same background.

Furthermore, from the bottom level to the top each object inherits all the HyperCard

properties of the higher level object. For example, all the cards with the same background

look similar to each other. All the backgrounds within a stack have the same size on the

screen. Figure 4 also expresses the message passing strategy adopted in Hypercard.

Whenever a message has been generated by an object, it will be either sent to a specific

object if any exists, or it will be passed through the hierarchy until it is interrupted by an

object on a higher level.

5.4 HypIR System Design and Implementation
The architecture of HypIR, is based on Hypercard's object-oriented philosophy. The

whole system is accomplished by using three stacks, the HypIR stack, the help stack and

the index stack as shown in Figure 5.

The HypIR stack is the main body of the entire system which contains a main menu

card, a query processing card, and several title list cards, author list cards and document

cards. After accessing the system, the user is first led to the main menu card (Figure 6).

On this card, the user can make a decision among several searching strategies and start

the navigation in the system. The user may click on

(1) The "Automatic Search" icon to access query processing card,

(2) The "Doc Listtt icon to browse the titles of the entire collection of documents (In this

case, we assume that the user does not have any particular destination to start the

searching.),

(3) The "Authorstt icon and then type in the last name of a particular author in a pop-up

dialog box. Consequently, a list of the author's papers are provided by the system,

(4) One of the "books" and obtain a list of documents in a certain volume of the

collection.

All the previous choices, except (I), provide the user a starting point to begin with his

navigation. For example, after obtaining a list of documents (Figure 7), the user then

browses through the document titles. Whenever an interesting document title is found, the

user can click on the title and access the content of this document (Figure 8).

Que? Terms
~eld

Full Search P Document

I

B m i n g
* BUttom -

Nearest
Nrighbon Icon

Title List
Card

Automatic

Search by

Index Stack

Search by a

Figure 5. HypIR system design.

Figure 6. Main menu in HypIR.

002 ON THE ENCIPHERMENT OF SEARCH TREES AND RANDOM ACCESS FILES $
003 THE DESIGN OF A ROTATING ASSOCIATIVE MEMORY FOR RELATIONAL DATABASE
004 OPTIMAL ALLOCATION OF RESOURCES IN DISTRIBUTED INFORMATION NETWORKS $
005 DATABASE MANAGEMENT FAClUPl FOR AUTOMATlC GENEWON OF DATABASE
006 SYSTEM R RELATIONAL APPROACH TO DATABASE MANAGEMENT S
007 RESTRUCTURING FOR LARGE DATABASES THREE LEVELS OF ABSTRACTION S
MU) DYNAMIC DATABASE REORCbiNIZATION ALGORITHM $

009 HASHING AND TRlE ALGORITHMS FOR PARTIAL MATCH RETRIEVAL $
010 THE DESIGN AND IMPLEMENTATION OF INGRES S
01 1 DECOMPOSmON - A STRATEGY FOR QUERY PROCESSING S
012 AN AUTHORIZATION MECHANISM FOR A RELATIONAL DATABASE SYSTEM S
013 DIFFERENTIAL FILES THEIR APPLICATION TO THE MAINTENANCE OF LARGE
014 BATCHED SEARCHING OF SEQUENTIAL AND TREE STRUCTURED FILES S
015 SYNTHESIZING THIRD NORMAL FORM RELATlONS FROM FUNCTIONAL
016 ALGORITHMS FOR PARSING SEARCH QUERIES IN SYSTEMS WITH INVERTED F I E
017 PERFORMANCE OF A DATABASE MANAGER IN A VIRTUAL MEMORY SYSTEM I
01 8 DATABASE SYSTEM APPROACH TO MANAGEMENT DECISION SUPPORT $
01 9 ON USER CRilERIA FOR DATA MODEL EVALUATION S
020 A MODEL OF STATISTICAL DATABASES AND THEfR SECURllY S
021 PREFIX &TREES 5

Figure 7. An example of document list in HypIR.

COEFFICIENT DECOUPUNG COEFFICIEKT, DOCUMENT RETRIEVAL RETRIEVAL

E COMPLDON OF THE CUfSlERlNQ PROCESS IS

Figure 8. Document card in HypIR.

Figure 9. Query processing card in HypIR.

"Automatic Searchtt icon displays the query processing card (Figure 9). On this card,

the user can first type in his query in natural language, click on the "Send Query" icon

and obtain the corresponding query vector from the "Query Termstt field. If the user

wants to modify the query vector, HypIR provides a simple method. To delete a query

term, the user can click on the term itself. By doing so, the system will pop-up a diaIog

box (Figure 10) to request an action from the user. After the user clicks o n the "Delete

Term" button, the specified term will be erased from the query vector. A similar approach

is also provided for the modification of a term weight. The only difference is that the user

needs to type in the term weight in another dialog box (Figure 11). To add a new term,

the user can click on any spot on the "Query Terms" field. After responding to the same

dialog box shown in Figure 10, the "Index" stack will appear in a new window (Figure

12). By clicking on the letters in the window and using the same approach as checking a

dictionary, the user can easily locate desired term and add it to the query vector.

1) wnat is the type or tne rnoa~ncatton? I1

Figure 10. Query modification dialog box.

Figure 11. Term weight dialog box.

Figure 12. Index windows.

The "FS" and "CS" icons represent the searching techniques, Full Search and Cluster-

based Search, respectively. As defined before, FS and CS provide a list of the best-

matching documents of the query vector in the entire database and the selected clusters,

respectively. Again, the user accesses the content of the documents by clicking on their

titles.

The document card as shown in Figure 8 contains several icons to support different

types of browsing. The "Nearest Neighbors" icon provides the function that sends the

entire document as a query and returns the nearest neighbors of it as the result. The

"Cluster Browsing" icon provides a way that the user reveals all the members of the

cluster in which the located document resides. The "Cited Documents" icon provides all

the titles of the documents cited by the located document. Furthermore, browsing by key

terms is also available in HypIR. The "Document" field contains a script that allows the

user to navigate the entire database by clicking on any word which appears in the located

document.

The field appearing on the bottom left corner of the document card is responsible for

displaying the results of all the previous mentioned functions. It keeps track of the results

of FS (Full Search), CS (Cluster-based Search), NN (Nearest Neighbors), CB (Cluster

Browsing) and CD (Cited Documents). For instance, the user may first locate a document

using the FS function, then traverse the database by using CB function or links of key

terms. After all of these, the user may still want to see other documents found by FS. TO
do so only requires a click on one of the five radio buttons. In this case, "FS" button is the

appropriate choice, of course. By doing so. the user can go back to the original path, once

again. Due to the functionality of this field, it is named as browsing monitor.

The major reason that we adopted browsing monitor is to prevent the user from . '

getting lost in HypIR. This design actually contains both of the advantages of system

maps and history lists. It not only tracks all the navigated documents, but also groups the

documents according to the retrieval function. Since the switching among different

groups is so handy, we believe that browsing monitor provides a more convenient and

practical aid to the user than system maps and history lists.

6. CONCLUSION

Information retrieval (IR), also known as text or document retrieval, is the process of

locating and retrieving documents that are relevant to the user queries. In hypertext

environments, document databases are organized as a network of nodes which are

interlinked by various types of links. Through the links, the documents are navigated or

browsed in a non-sequential manner which is totally controlled by the user. In a

hypertext-based retrieval system, the browsing of documents should be triggered by so-
called "optimal" starting nodes.

In this paper, we introduced HypIR, a hypertext-based IR system which is

implemented in the Hypercard environment of Macintosh. In HypIR, the semantic

relationships among documents are obtained using the C ~ M clustering algorithm which is

known to have good IR performance. For information retrieval, the users are provided

with various search and browsing tools. These include full search (FS), cluster-based

search (CS), nearest neighbors (NN) search, cluster browsing (CB) and others. In HypIR,

the user enters natural language queries and can easily modify them. The paper introduces

the underlying concepts, implementation details and the object-oriented nature of the

HypIR system.

To prevent the user from being lost in the IR hyperspace, a new approach, browsing

monitor, is introduced. Browsing monitor provides the advantages of system maps and

history lists without their difficulties of usage.

In the future, the modification and enhancement of HypIR can be conducted by

utiiizing users' feedback. Two other future research possibilities are the design and

implementation of an on-line thesaurus for better query formulation, and the development

of performance measurement methods that would be appropriate for hypertext-based IR
systems.

REFERENCES

[AGOS92] Agosti, M., Gradenigo, G., Marchetti, P. G. A hypertext environment for
interacting with textual database. Information Processing & Management. 28, 3 (1992),
371-387.

[APPL88] Apple Computer, Inc. Inside Macintosh I-I/I. Addison Wesley, Reading, MA
1988.

[BELK87] Belkin, N. J., Croft, W. B. Retrieval techniques. In Annual Review of
Information Science and Technology, ARIST. Vol. 22, M. E. Williams, Ed. Elsevier
Science, Amsterdam, The Netherlands, 1987, 109-145.

[BOND881 Bond, G. XCMD's for Hypercard, MIS Press, OR, 1988.

[CAN901 Can, F., Ozkarahan, E. A. Concepts and effectiveness of the cover-coefficient-
based clustering methodology for text databases. ACM Ii-ansactions on Database
Systems. 15,4 (Dec. 1990), 483-5 17.

[CAN92a] Can, E Incremental clustering for dynamic information processing ACM
Ikansactions on Information Systems, to appear.

fCAN92bI Can, F. On the efficiency of best-match cluster searches. (Tentatively accepted
by Inforination Processing and Managentent.)

[CAN92c] Can, E, McCarthy. K. J. Implementation of an information retrieval system
(ANIRS) with ranking and browsing capabilities. Working paper 92-001, Dept. of
System .4nalysis, Miami Univ., Oxford. Ohio, April 1992.

[CROFS7] Croft, W B., Thompson, R. H. I ~ R : A new approach to the design of
document retrieval systems. Journal of the American Society for Inforlnation Science. 38,
6 (Nov. 1987), 389-404.

[CROU89] Crouch, D. B., Crouch, C. J., Andreas, G. The use of cluster hierarchies in
hypertext informa tion retrieval. Hypertext '89 Proceedings. (November 1989), 225 -23 7.

[FALO851 Faioutsos, C. Access methods for text. ACM Computing Surveys. 17, 1 (Mar.
1985), 49-74.

[FRIS88] Frisse, M. E. Searching for information in hypertext medical handbook.
Coinrnunications of the ACM. 3 1, 7 (July 1988), 880-886.

[GAUC92] Gauch, S. Intelligent information retrieval: An introduction. Journal of the
American Society for Inforination Science. 43, 2 (March 1992), 175 - 182.

[HARM911 Harman, D. How effective is suffixing? Journal of the Atnerican Society for
Inforination Science. 42, 1 (Jan. 1991), 7- 15.

[HARM921 Harman, D. User-friendly system instead of user-friendly front-ends. Journal
ofthe Ainerican Society for Information Science. 43, 2 (March 1992), 164-174.

[LIBC91] Library of Congress. American Mernory Instruction Manual. Washington D.C.,
October 1991.

[NIEL90] Nielsen, J. Hypertext and Hypermedia. Academic Press, San Diego, C k 1990.

[PORT801 Porter, M. E An algorithm for suffix stripping. Prograrn. 14, 3 (July 1980),
130-137.

[SALT881 Salton, G., Buckley, C. Term-weight approaches in automatic text retrieval.
Information Processing and Management. 24, 5 (May 1988), 5 13-523.

[SALT891 Salton, G. Autoinntic k t Processing. Addison Wesley, Reading, MA, 1989.

[SHAF91] Shafer, D. The Cornplete Book of Hypertalk 2. Addison Wesley, Reading, MA,
1991.

[SYMA90] Symatec Corporation, THINK Pascal User Manual, U.S.A. 1990.

[THOM89] Thompson, R. H,, Croft, W. B. Support for browsing in an intelligent text
retrieval system. Int. J. of Man-Machine Sttidies. 30, (1989) 639-668.

[VANR79] Van Rijsbergen, C. J. Information Retrieval, 2nd ed. Butterworths, London,
1979.

[WILL891 Willett, P. Recent trends in hierarchical document clustering: A critical
review. Inforination Processing and Management. 24, 5 (1989), 577-597.

APPENDIX I: IMPLEMENTATION DETAILS OF HypIR
A. Programming in THINK Pascal
This section provides the necessary information to create Think Pascal projects and

source files. In THINK Pascal, to create an executable program, the user needs to create

a project. The project file should include the source files and two THINK Pascal library

files, runtime.lib and interface.lib, which support the Think Pascal language (i.e. support

the standard VO and other Pascal functions). The project is only compiled at the first time

that the programmer executes the THINK Pascal compiler. Later, the THINK Pascal

compiler will only compile the updated parts of the program (i.e. the source files). By

doing so, a lot of compilation time can be saved.

To create a project, the programmer should

(1) Use the Finder's New Folder command to create a new folder. This folder will

contain the THINK Pascal project and all of the source files.

(2) Double-click on the THINK Pascal icon. Then, a dialog box will pop-up to ask a

working project. Since we are creating a new project, click on the New button.

(THINK Pascal user manual p 24).

(3) Name the project as the following format in another dialog box (THINK Pascal user
manual p 25) [SYMAOO].

fi1ename.n

(4) Then, Think Pascal will create a new project document on the disk and display a
project window which contains the Runtime.lib and 1nterface.lib files. At this step, a
new project has been created successfully.

To create a new source file, the programmer can

(1) Choose the New from the File menu. Then, an empty window will appear on the

screen.

(2) Type in the source code.

After creating the project and source files, the source files must be added to the

project. To add a source file to the project, simply use the Add command in the project

menu. The project window should now contain three files, Runtirne.lib, interface.lib and

the source file.

To execute the program, simply choose Go from the Run menu.

B. Creating a Hypercard XCMD Resource

The creation of a Hypercard XCMD is similar to the creation of a Think Pascal program.

However, after successfully accomplishing step 1 to step 4 in the previous section, the

programmer needs to

(1) Select Set Project Type ... from the Project menu and click the Code Resource icon on

the left side of the dialog box.

(2) Fill in the dialog according to the specification in Fig 13.

Fiie Information 1
/-\

k9 I Type: Creator: [=I Bundle Bit I
AppIicatron I 1

Resource l nformation

Name: YourHCMD

AtlnbUtef: am C] custom Header

:- nrivet- lnfotmation .-

I : 1 Delay: i
.- < j ;
7 :- I M a r k : s i [3 M u $ t i - l e g m e n t /

Figure 13. An example of Set Project Type ... dialog box.

(3) Click OK to save the changes.

(4) Add some files to the project that are necessary for creating stand-alone code

resources that work with Hypercard, First of all, the Runtime.lib file must be

replaced by its code resource counterpart, DRVRRuntim.lib. To do this, click on the

file Runtime.lib in the project window. Remove it from the project by selecting

Reinove from the Project menu. The file Runtime.lib should disappear from the

project window.

(5) Select Add File ... from the Project menu and add the files DRVRRuntime.lib,

HyperXlib.lib, and HyperXCmd.~ to the project. All three files can be found within

the Think Pascal folder. DRURRuntim.lib and HyperXLib.lib are in Libraries

subfolder. HyperXCmd.p is in the Interfaces folder.

(6) Type in your source code according to the following template.

unit Dummyunit;
interface

uses
HyperXCmd;

procedure Main (paramp tr : XCmdPtr);
implementation

procedure Main (paramptr: XCmdPtr);
begin

{ Type in the source code in this block)
end;

end.

(7) Save the file and add it to the project.

(8) Rearrange the order of the files within the Project window as the following order by

using the hand cursor that appears when the mouse is inside the project window. Drag
the files up or down until the order matches the following.

{ This is the XCMD file.)

(9) Build the XCMD resource by selecting Build Code Resource ... from the Project menu.

Save the XCMD.

C. Add the XCMD to Hypercard stack

(1) Execute the ResEdit application by double-clicking the XCMD file.

(2) Choose Copy from Edit menu.

(3) Click on Hypercard's icon. A new window which contains all the resource folders of
Hypercard will appear on the screen.

(4) Click on XCMD folder. Now, the XCMD folder should be highlighted.

(5) Choose Paste from the Edit menu.

(6) SeIect quit from the File menu.

(7) Click on Yes in the new pop-up dialog box.

Now, the new XCMD is usable in the Hypercard. However, the programmer can also

build the XCMD in a normal stack. although this XCMD can be recognized only in the

specified stack. To do so, replace step 3 by step 3.a.

(3.a) Click on the icon which represents the stack in which the XCMD should be built.

D. Use XCMD in HyperTalk
The new XCMD can be used as a standard HyperTalk command. To use it , just use the

name which was typed in the Set Project Type ... dialog box as the actual command of the

XCMD.

E. The HyperCard glue routines
There are 29 glue routines in HyperXcmd.p which are a collection of procedures and

functions that provide access to some of the routines and data inside HyperCard. The glue

routines are the only method by which the user can set and get the contents of a

HyperCard field, set and get the contents of a HyperTalk variable, evaluate a HyperTalk

expression, or send a HyperCard message. (Note that DRVVRtime.lib has been replaced

by Runtime.lib. This makes all of the THINK Pascal standard I/O functions unavailable.)
In this section, we would like to provide a brief description of the routines which are

frequently used in HypIR system programs.

(1) SendCardMessage

SendCardMessage sends a card message (HyperCard command) to the current card. From

there, the message traverses the inheritance path in the normal way. Any command can be

sent as a message (including the user defined command).

Parameters

Procedure SendCardMessage (paramptr: XCmdPtr; msg: Str255);

It takes a string of type Str255, representing the card message as one of its major

arguments. XCmdPtr is a pointer of a record (XCmdBlock). It contains declarations for

the actual communication between HyperCard and the XCMD. It is not needed to

understand this record completely. To write a XCMD, the programmer can just use

paramPtr to be the first parameter in any glue routine. Thus, in the rest of this section, we

will ignore the description of this parameter. To get better understanding of XCmdBlock,

the programmer can reference XCMD's for HyperCard by G. Bond [BOND88].

Examples

SendCardMessage(paramPtr, 'put field 1 into field 2');

SendCardMessage(paramPtr. 'go to card "home"');

(2) PasToZero

This is one of the most frequently used routine in HypIR, since Hypercard utilizes zero-

terminated string which is not compatible with the string type in THINK Pascal language.

Thus, every variable or data that the programmer wants to send to Hypercard must be

converted by this routine first. PasToZero converts the contents of a Pascal string to a

zero-terminated string and returns a handle to the converted string. (A handle is a pointer

which points to another pointer.) The programmer must dispose of the handle before

exiting the XCMD (use the DisposHandle ROM routine; for additional information see

Inside Macintosh [APPL88] .)

Parameters

Function PasToZero(paramPtr: XCmdPtr; str: 255):Handle;

It takes the Pascal string to he the major parameter.

Examples

paramPtrA.returnValue := PasToZero(paramPtr, 'store my error message in field 1');

paramPtrA.returnValue is a field in XCmdBlock record and can be treated as a reserved

variable. The string assigned to this variable can be retrieved in HyperTalk by a

HyperTalk reserved word "The result".

(3) ZeroToPas

For the reason mentioned in (2) PasToZero, this routine is used whenever the XCMD gets

a string from Hypercard.

Parameters

Procedure ZeroToPas (paramptr: XCmdPtr, var zeroStr:Ptr; var passtr: str255);

It contains two major parameters. The first is a pointer to a zero-terminated string, and the

second is a string variable of type str2.55 into which the converted string will be placed.

Examples

see (4) EvalExpr

(4) EvalExpr

EvalExpr evaluates a HyperTalk expression.

parameters

Function EvalExpr (paramptr: XCmdPtr; expre: Str255): Handle;

The EvalExpr function takes a Pascal string of type Str255, representing the expression to

be evaluated in Hypercard, and returns a handle.

Examples

ZeroToPas(paramPtr, EvalExpr (paramptr, 'the first word of field 1 of card l1)",str);
ZeroToPas(paramPtr, EvalExpr (paramptr, 'the number of words in field l')", str);

(5) StrToLong

Since the only data type in HyperTalk is zero-terminated string, data coming from
Hypercard may need this routine to convert itself to long integer.

Parameters

Function StrToLong (paramptr: XCmdPtr; Str: Str31): Longint;

It takes a parameter of type Str3l that contains the value to be converted. It returns an

unsigned long integer.

Examples

myLongInt := StrToLong(paramPtr, mystring);

myLongInt := StrToLong(paramPtr, '3333');

(6) LongToStr

Any long integer that is needed to send back to Hypercard must be converted by using

this routine.

Parameters

Function LongToStr (paramptr: XCmdPtr: posNum: Longlnt): str31;

It takes a longint representing the number to be converted as one of its arguments and

returns a string of type Str31.

Examples

mystring := LongToStr(paramPtr, 2345);

mystring := LongtoStr(paramPtr, myLongInt);

(7) GetGlobal

GetGlobal returns a handle to the content of a HyperTalk global variable. The global

variable must have been declared in a HyperTalk handler prior to calling XCMI) and

must be passed by name.

Parameters

Function GetGlobal (paramptr: XCrndPtr; globalName: Str2.5.5): Handle;

GetGlobal functions takes a string of type Str25.5 (representing the name of the global

variable) as its argument and returns a handle that points to the zero-terminated contents

of that variable.

Example

{ This example assumes a HyperTalk global variable was first declared with the name)
{MyList)

Var

my Handle: handle;

inlist: Str255;

begin

..........................
myHandle := getGlobal (paramPtr, 'MyList');

ZeroToPas(paramPtr, rnyHandleA, inlist);

............................
end;

(8) SetGlobal

SetGlobal sets the contents of a specified HyperTalk global variable to the contents of a

zero-terminated string.

Parameters

Procedure SetGlobal (paramptr: XCrndPtr; globName:Str255; globvalue: Handle);

It contains two major parameters. The first is a string of type Str25.5 that contains the

name of the global to be set. and the second is a handle to a zero-terminated string.

Examples

{This example assumes a HyperTalk global variable was first declared with the name)

{fieldTotaI)

Var

myHandle: handle;

begin

..

......................................
SetGlobal (paramptr, 'fieldTotal', myHandle);

DisposHandle (myHandle); {must dispose of the Handle after setting the global)

(9) GetFieldByName

GetFieldByName returns a handle to a zero-terminated string that points to the contents

of a card or background field. The field is specified by its name.

Parameters

Function GetFieldByName (paramptr: XCmdPtr; cardFieldFlag: Boolean; FieldName:

Str255): Handle;

It contains two major parameters. The first parameter is of type Boolean and determines

what kind of field - card or background - will be accessed; use TRUE for a card field or

FALSE for a background field. The second parameter is of type Str255 and contains the

name of the field whose contents is needed by the XCMD.

Examples

{This example assumes a HyperTalk card field was first declared with the name)

{TestField.}

Var

myHandle: handle;

myCardFie1d: Boolean;

fieldName: Str255;

pasStr: Str255;

begin

.....................
......................

fieldName := 'TestFieldt;

myCardField:=StrToBoolean(paramPtr,'TRUE'); {make it a card field)
{get the contents of card field 'TestFieldt)

myHandle := GetFieldByName(paramPtr, myCardField, fieldName);
ZeroToPas(paramPtr, myHandleA, pasStr);

DisposHandle(myHandle);

(10) SetFieldBy Name

SetFieldByName sets the content of a card or background field to a zero-terminated
string. The field is specified by its name.

Parameters

Procedure SetFieldByName (paramptr: XCmdPtr; cardfieldFlag: Boolean; fieldName:
str255; fieldVal: Handle);

It contains three major parameters. The first parameter contains a Boolean value that

determines what kind of field - card or background - will be set; use TRUE for a card

field or FALSE for a background field. The second parameter is of type Str2.55 and

contains the name of the field to be set, The third parameter contains a handle that points

to a zero-terminated string.

Examples

{This example assume a card field has been created and named 'TestFieldt)

var

myHandle: Handle:

rnyCardField: Boolean;

fieldName: Str255:

begin

.........................

fieldName := 'Test Field';

myCardField := StrToBool (paramptr, 'TRUE');

SetFieldByName := (paramptr, myCardField, fieldName, myHandle);

DisposHandle(myHand1e); {must dispose of the handle before exiting)

end;

E The file manager routines of Macintosh Toolbox
File manager is the part of the Macintosh operating system that controls the exchange of

information between a Macintosh application and files. The file manager allows the

programmer to create and access any number of files containing whatever information.

Compared to the standard I/O routines in Pascal, file manger is on a lower level.

Thus, to use file manager, there is no so-called direct access file or sequential file. The
user can always access any position of a file.

(1) Function GetVInfo (drvNum: integer; volName: StringPtr; var vRefNum: integer;
var: freebytes: integer) : OSErr;

It returns the name, reference number, and available space (in bytes), in volName,

vRefNum, and freeBytes, for the volume in the drive specified by drvNum. OSErr is used

for error detection. If it is equal to 0, it means no error has occured during the execution

of the function. Detailed information of OSErr is available in Inside Macintosh 111
[APPM8].

(2) Function FSOpen (filename: Str255; vRefNum: integer; var refNum: integer) :

OSEn;

It creates an access path to file having the name fiIeName on the volume specified by
vRefNum. A path reference number is returned in refNum. The access path's read/write

permission is set to whatever the file's open permission allows.

(3) Function FSRead (refNum: integer; var count: longint; buffptr: Ptr) : OSErr;

FSRead attempts to read the number of bytes specified by the count parameter from the

open file whose access path is specified by refNum, and transfers them to the data buffer

pointed to by buffl'tr. The read operation begins at the current mark, so the user might

want to precede this with a call to SetPos. If the user try to read past the end-of-file,

FSRead moves the mark to the end-of-file and returns an error message by setting OSErr

to nonzero. After the read is completed, the number of bytes actually read is returned in

the count parameter.

(4) Function SetFPos (remum: integer: posMode: integer; posOff: longint): OSErr;

It sets the mark of the open file whose access path is specified by refnum to the position

specified by posMode and posoff. Posmode indicates how to position the mark; i t must

contain one of the following values:

const fsAtMark = 0; {at current mark)

fsFromStart = 1; (set mark relative to beginning of file)

fsFromLEOF = 2; {set mark relative to End-of-File)

fsFromMark = 3; {set mark relative to current mark)

(5) Function FSClose (refNum: integer): OSErr;

FSClose removes the access path specified by refNum, writes the content of the volume
buffer to the volume, and updates the file's entry in the file directory.

As mentioned before, the programmer actually does not have standard VO Pascal

functions when writing a XCMD. In general, when it is necessary to readlwrite data

from/to the screen, glue routines are used to replace standard VO function (i.e. read, ,

readln, write, writeln, etc.). When it is needed to readlwrite data from/to files, Macintosh

file manager routines are used to replace the standard I/O Pascal functions. For further

description of glue routines and file manager routines, programmers should reference to

XCMD's for Hypercard and Inside Macintosh I\/: respectively [APPI-88, BOND881.

APPENDIX 11. SUMMARY OF PROGRAMS AND FILES USED IN HypIR
XCMDs

(1) FSD0CS.P : the source code of the full search XCMD.

(2) CBSDOCS2.p : the source code of the cluster-based search XCMD.

(3) SEEDD0CS.P : the source code of the nearest neighbors XCMD.

(4) BR0WSECL.P : the source code of the cluster browsing XCMD.

(5) CXl"EDD0C.P : the source code of the cited documents XCMD.

(6) PREPAREQ.P : the source code of the XCMD of the stemming function (i.e. send

query function).

Major Files in HypIR

(1) IID file consists of 1IS.bin and 1ISHead.bin files which are generated by

F1LEMAKE.P Pascal program using the input files.

(2) IC file consists of IC.bin and 1CHead.bin files which are generated by CBSF1LEM.P

Pascal program using the input files.

(3) DV file consists of DV.bin and DVHead.bin files which are generated by

MAKEDVFLP Pascal program using the input files.

(4) CM file consists of CMEMBERHEAD.bin and CMEMBER.bin which are generated
by CBSCMEM.P Pascal program using the input files.

(5) T h e f i le of Cited Documen t s cons is t s o f CITEDDOCS.b in and
CITEDDOCSHEAD.bin which are generated by C I T E W . P PASCAL program using
the input files.

Furthermore, the following data files are used for calculating the similarity values
between "query and documents" and "query and centroids".

(1) LISNC.bin and 1ISTermDistn.bin contain the normalization component and collection
frequency component , respectively, for each document. They are generated by
F1LEMAKE.p Pascal program.

(2) 1CNC.bin and 1CTermDistn.bin contain the normalization component and collection

frequency component , respectively, for each cluster. They a re generated by
CBSF1LEM.p Pascal program.

APPENDIX 111: THE MAINTENANCE OF HypIR
The maintenance of HypIR is supported by a card called "update" in the "HypLR" stack

(Figure 14). On this card, the "Update Lists" button provides a function which will add

the authors and titles of the new documents to the author list and title list. The "Export

Text" button contains a script which can write the entire TODSjTOIS database to a text
file.

UPDATECARD
1

UPDATE STEPS:
1. CREATE NEW DOCUMENTS ON SEPARATE CARDS.
2. ENTER NO. OF CURRENT DOCUMENTS AND

NO. OF DOCUMENTS AFTER UPDATE IN THE FOLLOWING FIELDS.
3. CLICK 'Update Lists'.
4. CLICK 'Export Text" TO CREATE A TEXT FILE

CONTAINING ALL DOCUMENTS.

ENTER NO. OF CURRENT DOCUMENTS: 0 I
ENTER NO. OF DOCUHEKTS AFTER UPDATE: 524

Update Lists 1 Enport Tent m
Figure 14. Update card in HypIR.

