Computer Science and Systems Analysis
Computer Science and Systems Analysis

Technical Reports

Miami University Year 1988

Experiments on Tunable Indexing

Fazli Can* Esen Ozkarahan'

*Miami University, commons-admin@lib.muohio.edu
fMiami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa_techreports/68



MIAMI UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1988-004

Experiments on Tunable Indexing
Fazli Can and Esen Ozkarahan

School of

Engineering &
Applied Scienee

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928




Experiments on Tunable Indexing

by
Fazli Can Esen Ozkarahan
Systems Analysis Department Computer Science
Miami University Arizona State University
Oxford, Ohio 45056 Tempe, Arizona 85287
Working Paper #88-004 April 1988




EXPERIMENTS ON TUNABLE INDEXING

Fazli CAN Esen A. OZKARAHAN

Dept. of Systems Analysis Dept. of Computer Science

Miami  University Arizona State University

Oxford, OH 45056 Tempe, AZ 85287
ABSTRACT

The effectiveness and efficiency of an Information Retrieval (IR) system
depends on the quality of its indexing system. Indexing can be wused in
inverted file systems or in cluster-based retrieval. In this article, a Bnew
concept called tunable indexing is introduced. With tunable indexing the

number of clusters of a document clustering system can be varied so any
desired value. Also covered are the compuiation of Term Discrimination Velue
(TDV) with the cover coefficient (CC) concept and its use in tunable indexing.
A set of experimenis has shown the consistency between the CC based IDVs and
the TDVs determined with the known methods. The main use of itunable
indexing has been observed in determining the parameters of a clustering
system.

1. INTRODUCTION

Indexing can roughly be described as a process which determines descriptors
of documents in & database. Although the definition of indexing is simple, the
task of indexing is not. Document descriptors or index terms, or terms for
short, cannot be selected arbitrarily since the performance of an IR system is
critically dependent on them [LANC75, p. 138]. Once we form an indexing
system we can then (a) define the contents of documents, (b) determine the
topics of a document database, and (c) find the relatedness of user request
(query) and individual documenis of a database.

Indexing is used both in cluster- and inverted file-based IR systems [OZKABS86a,
SALT83, VANRT79]. In cluster-based retrieval sysiems, clustering (i.e., the
process of puiting similar documents into the same group) enables efficient
operation of text retrieval systems inclusive of full text search sysiems
[OZKA84, OZKAB86a]. The partitioning (clustering) of document space also helps
increase the effectiveness of IR systems [SALT83].

IR systems use the two generally accepied measures of effectiveness which
are recall and precision. Recall is the proportion of retrieved relevant
documents with respect 1o the total npumber of relevant documents in the
database. Precision is the proportion of reirieved relevant documents with
respect to the total number of retrieved documents. The users of an IR system
can be sensitive to either recall or precision or both. Therefore, apn indexing
subsytem in en IR system should be tuned according 1o the peeds of iis users.
Consequently, in a recall-sensitive wuser environment we pick terms with

broad coverage (i.e., terms which appear in many documents). In  the
precision-sensitive case we pick specific terms (i.€., terms which appear in
small number of documenis) for the description of documents. In the mixed

mode of expeciations the indexing sysiem must find a good combination of
general and specific ierms.



Indexing can be performed sutomatically and manually. Meanual indexing
depends on experts [LANC75, SALT83]. In this article we are based on automatic
indexing, i.c., index terms are extracted from the documents by means of
computer  programs.

Various contributions to the ongoing research on the theory of indexing can
be found in sources such as Journal of the American Society for Information
Science, Information Processing &nd Managemen:, Journal of Documentation,
and ACM SIGIR conferences. The survey in [BORK77] provides a brief
overview of the indexing theories of Jonker, Heilprin, Landry, &and Salton and
his co-workers. A detailed illustration of the theory of Salton and his co-
workers can be found in [SALT75a, SALT75b]. Various probabilistic approaches
for indexing are proposed in [YU76, SALT81, COOP78]. The term relevance
measure (work of Robertson, Spark Jones, Van Rijsbergen, Harper, etc.),
which is sapother probabilistic approach, can be found in [VANR79]. An
artificial intelligence approach to the indexing problem is discussed in
[KOLS83]. For self-adapting document approaches, where indexing is
determined by inquirers’ relevance assessments, the reader can refer to
[GORD85, BOOKS86]. A new, yet computationally expensive, approach is the
generalized vector space model [WONGS87]. It expresses the single terms of
indexing in terms of atomic concepts.

In Section 2 we will introduce the TDV concept. The computation of TDVs with
the CC concept and the tunable indexing concept will be introduced in Section
3. We then introduce a new methodology called tunable indexing. It involves
selection of proper index terms that will yield the desired number of clusters
within a database. The utility of tunable indexing will also be discussed.

Previously we have shown [CAN87a] that CC approach for TDV calculation
yields results compatible with an approximation technique [SALT75a] which is
implemented in [CRAW75]. In that study the compatibility experiments of the
two approaches were done using only one document description, D, matrix. In
Section 4, we will present the results of the compatibility experiments
performed with sixteen larger D matrices. The experiments show that our
approach  produces compatible results not only with respect to the
approximation technique but also with the exact technique [WILLS8S].
Furthermore, the experiments show that the degree of compatibility between
the CC approach and the exact approach is higher than that of the
approximation approach with the exact approach. The various experiments
will show that the tunable indexing concept works, i.e., it produces the desired
number of clusters.

2. THE TDV CONCEPT

The TDV concept is introduced in [SALT75a, SALT83]. In the TDV concept the
significance of an index term is measured by iis effect on distinguishability of
documents.

To illustrate the concept and its computation let us first introduce our

notation. Let D be an m by n document datzbase description matrix. m
indicates the cardinglity of the database: {dl, yy « v s dm}, and n is the
cardinality of the indexing vocabulary T= {11, Loy oovy 1p }. Accordingly, an

entry, di}' (1< i <« m 1 <j<n of D matrix indicates the importance of tj in d}..

Indexing can either be binary or weighted. In the case of binary indexing dij

9



can be either 1 or O indicating the existence of ‘j in @, or pon-existence of ‘3’ in
d;, respectively. In weighted indexing d;. represcnts weight of the term such
as the frequency of ‘j in di' Obviously in @ D matrix, a8 row with all zeros (i.e.,
an undefined document) or & column with all zeros (i.e., an wunused ierm)
cannot exist,

In calculating TDV the average similarity of documents, Q' can be used. It is

Q=2/[mx(m-1)]x E Ss(d,, d) (0sQs1,0sss1) (2.1)
1=lj=i+l v
Q' is also referred to as "average document space density.” In Eq. (2.1), s(d;, dj)
indicates the similarity between d; and dj' For the similarity measure we may

use the cosine similarity coefficient
1

2
s(d, d)= E‘p d sz S;z (2.2)
s U, . X U x .. X . .
i ik jk o ik s jk

k=1

To reduce the computational cost of Q' we may use the database centroid, G,
instead of individual documents where the individual entries of G, gj (<jgsn

can be defined as (dlj +de +... +d2m) / m, i.e., the average weight of ‘j in the

database. We can then define approximate document space density as follows
[SALT75a, SALT83]:

-1
Q= Es(d‘,G)xm (0<Qs1l for O0<s=s1) (2.3)
]
i=l
Document databases with greater separation of document description vectors
will have lower Q (density) values. The reverse is true for document

description vectors with less separation, i.e., document databases with similar
documents would lead to higher Q wvalues.

Let us consider a term tj; if we delete tj’ this will change the indexing

vocabulary, T, the document space density, Q, and the database centroid, G. The
new G, Gj’ would be (g;, g5 - - - %-1, gj+1, <o B ) The new document space

density Qj will be calculated using Eq. (2.3) and replacing G by Gj'

The difference (Qj - Q) reflecis the change due to deietion of term tj. if the
assignment  of Ij separates the documenis from ezch other, then 1t will
decrease the document space density (Q). Consequently, the removal of 1.

]
makes the documents closer to each other by increasing the document space

density, Qj and causing Q). > Q. This will make (Qi - Q) greater than zero. The
difference (Q., - Q) is referred to as the discriminztion wvalue of lj’ TDV}.,
[SALT75a, SALT83].
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A TDV bas the following properties: (a) TDVJ. > 0 for a good discriminator ‘j
(i.e., the assignment of ‘j makes the documents more distinguishable from
each other); (b) TDVj =~ 0 for an indifferent term ‘j (i.c., the sssignment of ‘j
does not contribute to the distinguishability of documents); (¢) 'I'DVj < 0 for a
poor  discriminator t. (i.c.,, @& term which nmakes the documents less

distinguishable from each ‘other).

The use of Eq. (2.1) yields exact TDVs; hence, it will be called "exact similarity
method” and abbreviated as ESM. Eqg. (2.3) leads to approximate TDVs;
therefore, it wiill be called “approximate, centroid method™ &and will be
abbreviated as ACM.

Willett [WILL8S] and Crawford [CRAW7S] defined efficient algorithms for the
implementation, respectively, of ESM and ACM using Eq. (2.2). The
experiments discussed in Section 4 will show that the TDVs computed by the CC
concept and ESM have better consistency than that of ACM with ESM. This is
significant since ACM tries to approximate ESM.

In the IR literature TDVs have been used for various purposes [SALT7S5a,
SALT83, SALT86]: some of which are: (a) to construct & document weighting

function cli’.—-’I'DVj xfi" where fi' is the pumber of occurrences of ‘j in d;; (b)
to construct “term phrases” and "thesaurus  classes® which increase

effectiveness of an IR system.

Our specific purposes for using the TDV concept are (a) to construct a

document weighting function dif DSV, x ‘I'DVj X fij where DSV is a concept

similar to TDV indicating the document significance value of di; {(b) to
implement tupable indexing in connection with the number of clusters
indicated by the CC concept. Our experience to date have indicated that the DSV
approach is helpful in improving the effectiveness of an IR system [URALSS,
CANS8T7Db].

3. CALCULATION OF TDVs BY THE CC CONCEPT AND TUNABLE INDEXING

The CC concept has been described in various publications [CAN83, CANB84,
CANS85a, CAN8Sb]. For readers who are unfamiliar with this concept we have
provided an introduction in the appendix.

3.1 TDV Celculation by CC
We can use CC related variables in the compuiation of TDVs. Consider the

notion of document decoupling. It is easy to realize that the concepts of
document space density (Q) and average decoupling of documenis (b or pumber
of clusters, n.) are inverse to each other. Table 1 shows the interpretation of

the related quantities with respect to TDV (where & and éh are the average
decoupling of documents before and afier the deletion of s similarly L and

n are the number of clusters in the database).

ch
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Table 1. Effects of the type of index term(i, ) op
the values of Q, b and (nc ).

Quantity
Type of 1, QwQ, 6 vs b, D, Vs D,y
Good discriminator (TDV, >0) 0<Q, 6>8, D, >0y
Indif. discriminator (TDV, ~0) 0=Q, b=~5, D, ~0.y
Poor discriminator ('l'D‘v’h <0) Q>Qh 6<ﬁh D, <Dy

According to the CC concept, a TDV is defined as (nc - nch)’ i.e., the change in
the number of clusters afier the deletion of term t [CAN85a). In [CANS87a] it is

shown that an exact TDV can be compuied according to the CC concept as
follows:

f
b
i 2
b T
TDV = 2 o -ofx) "G, B, (3.1
1= i

where f, is the cardinality of D, and Dy = {4,/ €D AL, = 0}, ic, D, is the set

of document containing the term 1. As we have defined in the appendix, a,

and §, indicate the reciprocal of row-i and column-b sums of the D matrix

b 1 h

respectively. And a, =(ai' - dih)'l, ie., o, 1is the reciprocal of row-i sum

excluding d,, .

For a binary D matrix dihz =d,, and ai'l - (uih)'1= 1ifd =1, forlcigmlcg
h < n. Hence, for a binary D matrix, Eq. (3.1) will take the following form:

f
TDV = Sa%(ﬁ -8) (3.2)
b 4 i h i
i=1
It should be mentioned that the TDV wvalues obtained with the CC concept are
exact values. This is because their calculation does mnot involve any
approximation. In this paper, the CC metbod for TDV calculation will be
2

referred to as C"DVM.

In [CAN872] we have shown that computational complexity of CZDVM is O(6)=
O(1) where 1t is number of mnonzero entries in D matrix. This compares
favorably with the computational cost of ESM and ACM [CRAW7S, WILLS&5],
which are O(mt) and O(91), respectively. Even though the order of magnitude
scales are the same 6 is less than 9 and much less than m.
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3.2 Tunable Indexing: Concept and Implementation

In designing 2nd implementing an IR system we may wanlt to vary various
parameters. If we are using clustering we may npeed to tume average cluster
size due 10 external constraints. In the CC based clustering we can predict the
cluster size sanalytically [CAN8Sb]. However, for better precision or recall the
IR sysiem administrator may want to decrease Or increase cluster size.  Also,
for efficiency of the underlying computer system we may wanl to optimize
cluster(partition) size with respect to paging and memory constraints. In
hierarchical clusiering, we may also want to control the number of clusters at
each level of the hierarchy.

In the tunable indexing scheme, the administrator can specify the pumber of
clusters that he(she) wants to have within a database. Assume that Nc is the

pumber of clusters that the administrator wants to have within a database.
(Note that the number of clusters, n,, computed by the CC concept must be

within the range: 1 < n < min(m, n); this property must alsc de observed by Nc'
Apother restriction on N_. will be stated later when we define the tunable

indexing  algorithm.) According to the analytical relationships observed
[CAN87a) between indexing and clustering once we fix N, them we must vary

indexing 10 obtain the desired partition pattern.

TDVs, N, Term ty| Classifier| RefinedD
7K Selector >
n
Stopping <h
Criterion
(Nc: nch )

Figure 1. Tunable indexing concept

The system view of our tunable indexing concept is illustrated ip Figure 1.
The tunable indexing process will be activated whenever Nc is different from

o which is the pumber of clusters implied by the original D matrix. By

applying tunazble indexing we will obtain a refined D matrix that will yield the
desired number of clusters: N_. In the figure, term selector is responsible

from the choice of index terms. tassifier is the CC based clustering subsysiem.
The tuning procedure takes the following forms depending upon the

relationship Dbetween Nc and 1, (i.e., required and theoretical).

a) N =n_: the current description of the D matrix satisfies the administrator's

requirement. This means no tuning, hence changing of D, is required.

b) }\‘c>ncz the current number of clusiers resulting from the original D matrix

is smalier than the administrator’s requirement. In this case the terms which
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reduce the pumber of clusters should be deleted from the index vocsbulary T
These terms have negative TDVs. Therefore, term selector will add, one by one,
the terms with positive TDVs. In the figure these newly added terms are
indicated by . The document vectors extended by 1y will be passed to

Cilassifier. The number of clusters, Dy implied by the resulting T= {tl, t2, e
‘h} will be passed to the decision maker, which implements the stopping
criterion by comparing N, 'and n.,. The result is to stop or continue the term
selection process. In other words, the system modifies itself, or learns, so that

it reaches the desired number, Nc’ of clusters.

c) N¢<nc: the current pumber of clusters resulting from the original D matrix

is greater than the administrator's requirement. In this case, the terms which
increase the number of clusters should be deleted from T. These terms have
positive TDVs.

Let us start with a solution for case {¢):

Algorithm for index tuning for the case N < m.:

¢
[a] Compute TDVh (I<hcnm
Sort terms in ascending order according to their TDVs

k=0

IT= ¢ /* null set %/
[b] repeat

h=h+1

I= TU{th} /* where L is the h'th term of the sorted list */

until all documents are defined by at least one term
- Compute n_p, /* g is the number of clusiers in the D, matrix of size m
byh */
Nyin="ch
[c] while n . <Nc gnd h<nm
h=h+1
T=TU{y

compuwe n
endwhile

The tunable indexing algorithm assumes an initial D matrix of size m by n.
The initial D matrix is used in the computation of TDVs. Siep (b) provides the
definition of all documents by at least one term. We must first define all
documents and this of course is necessary independent of the value of NC. Al

the end of step (b)'T coptains h terms with the lowest TDVs. Accordingly, the
number of clusters resulting from the D matrix would be the minimum
possible, Nm"n’ number of clusiers. As we increase the size of T in step (c¢) the

i

number of clusters n resulting from the changing D matrix will increase.

=N _,
C

ch
The algorithm will terminate whenever n >Nc’ or h= 1.

ch nch

The solution for case (b), i.e., N_>n_, is very similar to the previous sclution.
c 3

c
However, in siep (a) we will sort the terms in descending order, and at the end

~J



of step (b), L IY will be Nmax’ i.e., maximum possible pumber of clusters. This

is because T contains the terms with highest TDVs and, by defipition, these are
the ierms which distinguish the documents most. In this solution the
condition of the while staiement in step (¢} must be ”nch >Nc and b < n."

The foregoing explanation indicates the wvalue range 1 < Nmin _<,Nc SNmax

min(m, n) for N.. It should be moticed that the above algorithms are

approximations, since at the time of adding t, 1o T there is no guaraniee that
Y will be the term with the minimum TDV among the terms added, in the case
of Nc >n,,

added in the case of Nc <n.. For n terms there are n! possible permuiations for
the addition sequence and it is not possible to consider all possible sequences 1o
reach the best addition sequence. However, the foregoing approximation
methods seem reasonable and their expected behavior is shown in Figure 2. In

this figure b and LY indicate the cardipality of indexing vocabulary, T, and

<

and similarly, the term with the maximum TDV among the terms

the pumber of clusier implied by matrix D,, respectively. And n. is the

number of clusters in the original D matrix, n is the size of T for original D,

Nmax is the maximum possible number of clusters, and N is the minimum

possible pumber of clusters. Nmax and Nmin

indexing.  Therefore, when we apply the tunzble indexing algorithm for N, is
1o n, as we

min
are obtained by tunable

greater than n,, we arc expecting a gradual decrease from Nmax

increase the size of T. For the reverse case, i.c., when Nc is less than n_, we are

c,

expecting & gradual increase from N ton..

min

The cxperiments of the next section will show that the tunable indexing
algorithms could be used 10 obtain a D matrix that defines documents in the
required detail to obtain desired number of clusters.

2N

N for N> n,
mex
1’1{2
i for N <n
. : <
Nmm ¢

h

S
7

n
Figure 2. Expected behavior of tupable indexing algorithms

Now let us consider the implementation aspects of tunable indexing in terms

of CC based TDVs. Let fbd!’1 be the cardinality of Dh+l’ where Dh+}= {dil diEDA

8




d. » 0}, ic, D is the set of documents containing the term &t the rank
i,hel h+1

B+1. Then the number of clustiers, D.ohet in refined D can be expressed as
f
, 5 -b }
e b1 Den +S[ i,hel i,b (3.3)
' i=1
Eq. (3.3) can be rewritten as follows, by using the identity given in Eq. (3.5)
f
2 6. 2
D = + a +d x -d 3.4
¢ be1” Teb T ibel | @ iher * Poa ih (3-4)
i=1 i,h
o, . 2
i
- 2 4 d x .
8 1™ %iper ¥ | o ipe1 * Poar (3.5)
i,h

where bi h and 6i,h+1

indicate the decoupling coefficient of d, with T= {1,, t,, ..
- ‘h} and T= {tl, byoes ‘h-z»l}’ respectively. And

-1 -1

a = S;i and a = E;ﬂ
i,h i} ih+l 4 1}

F1 Fl
For a binary D matrix, Eq. (3.4) becomes

f

_ 5]
Bober” Zen ” S[Qi,h” x [5“1 i,h :I (3,6)

i=1

A reasonable storage overhead for keeping intermediate 6i values  decreases
the computational complexity of tunable indexing [CAN87a].

Notice that Egs. (3.1) and (3.5), and Eqgs. (3.2) and (3.6) are similar and yet not
identical to each other. This is becazuse in tunabie indexing our concern is the
change in the npumber of clusters when we “extend” the indexing vocabulary
of size "h" by the h+1st term of the sorted list. In the TDV case, we calculate the
change in the npumber of clusters when we “decrease” the indexing
vocabulary of size "n”™ by one term.




4. EXPERIMENTAL EVALUATION
The experiments described in this section are performed to verify (a) the CC

based TDV calculation methodology (CZDVM), and (b) tunadble indexing. In (&)

and (b) we will, respectively, show thal CZDVM produces compatible results as
compared to ACM (approximate centroid method), and ESM (exact similarity
method) and tunable indexing can be used 1o obtain an indexing vocabulary
for 8 D matrix that resulis ip the desired number of clusters.

4.1 Document Database and Indexing Policy

In order to perform the experiments we mneed to start with the initial D
matrices which will be used in the calculation of TDVs, and later, in tunable
indexing. The document database is the TODS database which contains titles,
abstracts, and keywords of 214 articles from the journal called ACM
Transactions on Database Systems. This database has been used in our previous
studies and its indexing methodology is described in [OZKAS86b]. A stem
becomes a term if it satisfies the following two conditions: (&) it must pot
appear in the stop list (containing the frequent words of English language and
database literature); (b) the number of documents containing the stem must be
within the range f . =~ through f__ . The weight dij’ of terms within

documents, is determined as the frequency of a document in & specific
document (i.e., dij= fij)' Hence, dij indicates the snumber of occurrences of tj- in

di’ (1 £ix214,1 < j < n). In this case, n is 2 function of fmin and fmax‘ The

lower f and higher fmax imply the bhigher value of n. The opposite, i.c.,

min
the  higher f_ . =~ and lower f_ . implies the Jower value of n. For

experimentation we need to have various D matrices and this is obiained by

using different fmin (33, 4) and (20, 30, 40) values. The characteristics

max
of the D matrices for different fmin’ fmax combipations are shown in Table 2.

Table 2. Statistics of the D matrices generated according to the frequency

constraints: Epin &_ux)
fmin fmax] @ ! *d g *dw ew >
2. 40 1060 7446 34.79 71.02 53.02 10.70 34
3. 40 757 6840 31.96 ©.04 49.15 13.90 27
4,40 604 6381 29.82 10.56 46.13 16.34 24
2, .30 1045 6916 32.32 6.62 48.90 10.01 36
3.30 742 6310 29.49 8.50 45.04 12.99 29
4. 30 589 5851 27.34 6.93 42.01 15.26 26
2. 20 988 5537 25.87 5.60 37.64 8.15 43
3.20 685 4931 23.04 7.20 33.78 10.88 35
4,20 532 4472 20.90 8.41 30.75 12.37 30

The meaning of the column headers in Teble 2 is as follows. m: [T}, 1: the total
number of non-zero eniries in D, x4 the average pumber of distinct terms per

document (depth of indexing), :g: the average number of distinct documents
per term (ierm  generality), Xga the average iotal weight per document
(weighted depth of indexing), igvv: the average 1otal weight per term

10




(weighted term generality), end n.: the number of clusters indicated by the
CC concept.

Relaxed conditions (i.c., smaller f . = and higher fmax) lead to larger D

matrices in terms of n and t (m is always fixed and equal to 214 ip &ll the
experiments). Let us compare D2.40 (where the first subscript, 20,

corresponds 10 fmin
a2 214 by 1060 matrix with 7446 non-zero entries. On the other hand, D, ,, is 2

and second, 40, corresponds to f .. ) with D, 5q. Dy 40 is

214 by 532 matrix with 4472 non-zero entries.

4.2 Experiments for Checking the Consistency of the Three TDV
Calculation Methods
The experiments of this section will measure the consistency between CC

based TDV calculation method (CzDVM) with the other known methods, i.e., ESM
and ACM. Specifically, the consistency measurements will be performed
between

a) C2DVM and ACM,

b) CZDVM and ESM, and
¢) ACM and ESM

Item (a) measures the compatibility or agreement of the two approaches that
involve relatively small number of computations. Items (b) and (c) measure

the agreement between these two TDV calculation techniques (CZDVM, ACM)
involving small number of computations and the one (ESM) that involves a
high pumber of computations. In these comparisons, one would normally
expect 1o obtain higher comsistency in (c) than the ones obtained for items (a)
and (b). This is because ACM is an approximation for ESM. However, the

opposite, i.e., higher consisiency between C2DVM and ACM, and C2DVM  and
ESM were observed in the experiments that will follow.

In the consistency experiments, we will use sixieen weighied D matrices.

Nine of these matrices are described in Table 2. The additional seven D
matrices that were generated in 1unable indexing are also wused in the
consistency experiments. The statistics of these additional matrices, which

will be referred to as D' martrices, are provided in Table 4.C.

It is obvious that the three approaches may npot assign identical TDVs to

ideptical terms. This has been seen 1o be true even when the TDVs were
calculated with two different similarity coefficients using the exact similarity
approach [WILL8S]. Therefore, to evaluate the consistency, the terms were

sorted in descending order according to their TDVs thus giving the rank of 1
and n to the terms with the highest and lowest TDV, respectively.

In the consistency experiments, a bivariate correlation analysis is performed
on the experimental daia using the ranks of the terms. For this purpose we
used the SPSS statistical package [NIE75]. In the bivariate correlation analysis,

Tk
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we used Spearman’s rank order correlation coefficient (denoted as r.). In this
analysis, if the value of I, is close to zero, then there is little or no linear
relationship between the two varisbles being correlated. Whenever =1,

there is a perfect lincar relationship between the two variables (in our case,
the ranks of the terms in tbe sorted lists). On the other hand, when rg= -1,

there is a perfect inverse relationship. This means that terms which have
high ranks in one sorted list tend to bhave low ranks in the other soried list.

Associated with the bivariate correlation, & linear regression line is obtained
to locate the best-fitting siraight line for the two approaches being correlated.
This is done using the scattergram facility of SPSS, obtaining & plot and an
equation of the regression line as the result. In this article we will provide
the equation of the regression line since i1 also serves as & summary of the
scattergram plot. To give an idea the scatiergram plot for matrix 13’4,40 is
given in Figure 3. In this plot ap asterisk indicates an observation, and a
number (twos, threes, and four) indicates more than one (i.c., two, three, or
four) observations at that point. In Figure 2 the borizontal (X) and vertical (Y)
axes correspond to ESM and ACM, respectively. Hence, an observation (Xi, Yi)
in the data set indicates that there is 2 term with ranks X; and Y; with respect

1o ESM and ACM.

The scattergram outputs showed that all three methods are more consistent on
the high-ranked terms than they are on the low-ranked terms. This
observation shows that the methods are more consistent ipn determining the
TDV of the worst terms, i.c., the terms with low (megative} TDV. (Remember
that terms are sorted in descending order according to their TDVs.)

Now let us consider the regression lines. Let RCZDVM’ Raome 8nd Regyy

denote the ranks obtained by use of the CZDVM, ACM, and ESM, respectively. In
the experimenisthe following regression lines were obtained indicating the

relationships among RCZDVM’ RACM’ and RESM:
R2pvM=b; X Racy + 2

R2pym=DP2 X Regy *+ 8

Riom= b3 X Rpgy + 3y

where bi and a, (1 £i1 < 3) are the slope and intercept of the regression lines.

. . 2 vy
Obviously if the results of apy two methods are perfecily identical, say C°DVM
Y . : . 1 P o - 3 .3
and ACM, thern we would obiain RC'DVM' RACM‘ or in general bi and a; will be
closer to 1 and 0, respectively (1 < i < 3). Rather than displaying the
parameters of equations, i.e., 2y, 25, 83 and bl’ b,. b3 in tabular form a plot of

them is provided in Figure 4 for easy interpretation.
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Figure 3. The scattergram which shows the consistency of
ACM and ESM for the matrix D'y .4

The wvalidity of each regression line is indicated by the Pearson product-
momen! correlation value I (1 £ i < 3). Sipce we are using ordinal level data

(i.e., the rapks of terms) in our analysis the slope (b)) of the regression line,
Pearson product-moment correlation (ri), and Spearman's correlation
coefficient (rsi) yicld 1identical wvalues. The analytical wvalidity of these
identities can be easy show by using the formulas given in [NIE75].

In all of the experiments, the statistical significances obtained are 0.001,
0.00000 for 1,; and 1, (1 < i< 3), respectively. Suchk low values for the statistical

significances indicate the wvalidity of the experimental results.

Now, let us consider the consistency aspects. In Figure 4 it is easy 1o see that

the consistency beiween CzDVM and ACM is always beiter than the consisiency
between ESM and ACM. This is because b1 >by and a, <a; hold for all of the

sixteen D mairices used. Notice that consistency between CQDVM and ACM is
remarkably high, because by values are very high the smallest b1 occurrence

2
being 0.803. Similarly, the consisiency beiween C DVM and ACM is betier thanp

[
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Data from Dbivariate analysis: slopes
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Figure 4.2 Results of the bivariate analysis tests with slopes: by, by, by

Data from Dbivariate analysis: intercepts
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Figure 4.b Results of the bivariate analysis 1esits with iniercepts: a,;, @5, 35
Figure: 4. Results of the bivariate analysis €xperiments
(R 2pvm= b1 * Racm * 21 Repvm=P1 * Resm * 20 Raom™ P1 * Resm * &)

Table 3. Correspondence bgiween experiments and D matrices for Figure 4
Exp. No 1 2 3 4 5 6 7 8

D mewin |D, oo D340 |Pe 40 |P2-30 [P3-30 {Pa-30 |P2-20 {P3-20

3
Exp. No 9 10 11 12 13 14 1 16
D maurix |D, 55 Poag Pa.s0 P30 P30 P2.20 P3.20 P's.20

o

R4l )

bord
o



the consistency beiween CZDVM and ESM (i.c., when compared bl and b2 in
fifieen of the sixteen observations bJ comes out greater than b2 the osnly
exception being the case of D2‘40).

As we stated previously, ACM bad been iptroduced 1to reduce 1the
computational requirements of ESM and as an approximation to ESM. However,

our experimenis show that CZDVM, which is computationally the most effective
among the three, is a better approximation to ESM as observed in the twelve
observations with b2 >b3 and a, <ay oul of the total sixteen. To confirm this

the Wilcoxon matched-pairs signed-ranks test [DANI78] has been performed by
using the sixteen b, and by (the slopes of the regression  lines} values of

Figure 4. The one sided test has indicated that CZDVM-ESM is more consistent
than ACM-ESM with the critical value (P) of less than 0.022.

4.2 Tunable Indexing

The experiments on tunable indexing have been performed using the nine D
matrices defined in Table 2. The experiments are performed in the following
two ways (for the complete algorithm refer to Section 3.2):

For Nc <nm.: In step (a) of the tunable indexing algorithm terms are sorted in

ascending order according 1o TDVs. For this case step (b) of the algorithm
yields N . . In step (c) of the algorithm we expect a gradual increase in m.p

that finally reaches n.p= 0, when h= n, n. being the number of clusters of
the original D matrix.

For N. > m.: Terms are sorted in descending order according to TDVs. This

time step (b) of the tunable indexing algorithm will yield N In step (¢) of

max’
the algorithm we expect a pgradual decrease in the number of clusters.

As can be seen, the number of clusiers Nmiﬁ and Nmax can be observed with
different indexing vocabularies for the same initial D matrix. The statistics of
the D matrices that would result in Nmin and Nmax number of clusiers are

given in Tables 4.A apnd 4.B, respectively.

Tables 4.A and 4.B show that for D2-40 we obtain Nmin: 15 and Nmax= 80 by

using 211 and 432 terms. In order to obtain N we used the terms with

min
lowest TDVs , i.e., the terms with high term generality that appear in large
number of documents.  Therefore. the D matrix has fewer number of terms.

o o . iy 5
For example, for D2—4O and D3‘40 the D matrix can be defined with 211 and 201

terms, respectively, which «correspond to  the cardinality of the indexing
vocabulary T For these mairices, the term generalities (ig) are also raiher

high. For example, for D2~4O and D3—4G they are 18.32 and 18.62 respectively.

Obviously this will satisfy the recall sensitive users because the documenls are
more similar to each other. And this generates larger clusters increasing
recall inp a cluster-based reirieval environment [SALT78, CAN87b].




Teble 4. Statistics of D matrices generated with tunable indexing
A) For minimum possible number of clusters (N /)

D matrix n 1 X4 1, X 4w ‘gw Nmin
Dy.s0 | 211 3865 | 18.06 | 1832 | 2033 | 2975 15
Di.a0 | 201 3742 | 17.40 | 1862 | 2819 | 30.01 14
Ds.a0 | 177 3402 | 1500 | 1966 | 2550 | 31.65 13
Dy.30 | 212 3511 | 1641 | 1656 | 2637 | 26.62 16
D330 | 202 3404 | 1591 | 16.85 | 2524 | 26.74 16
Ds.30 | 178 3120 | 1458 | 17.53 | 2327 | 27.98 15
Dy.20 | 203 2574 | 12.03 | 1268 | 1796 | 1894 | 20
Dyog | 104 2510 | 1173 | 1204 | 1735 | 1913 20
Dy.20 172 2296 | 10.73 | 1335 | 1587 | 1995 19

B) For maximum possible number of clusters (Nmax)

D matrix n t X4 ty Xiw tﬁ.‘L Nma—
Dy 40 | 432 12751 596 275 | 1027 | s.09 80
D340 | 241 1058 | 4.96 4.39 9.17 8.15 57
D40 182 1055 4.93 5.80 9.14 10.75 45
Dy 30 | 403 1164 | s44 | 280 | 948 503 82
D3 30 | 258 1006 | 512 425 | 914 7.59 58
Dy.30 | 187 1051 | 491 s62 | 087 | 1016 45
Dy20 | 342 920 | 434 | 272 | 157 4.73 87
D320 | 343 1416 | 6.62 413 | 1049 | 6.54 58
Dsjo0 | 183 982 4.59 537 | 809 9.46 47

C) For NC= m/log2m= 27.64

D matrix n 1 X4 t‘z Xgw 12“, Nc
D'y 40 | 006 6953 | 3249 | 767 | 4764 | 1125 | 27.66
D3 40 | 757 6840 | 3196 | 904 | 4015 | 1390 | 27.46
Dy sag | 3570 5355 | 2502 | 939 | 3718 | 1396 | 27.58
Dha0 | 814 6223 | 208 | 764 | 4225 11131 | 27.66
D330 | 720 6223 | 2008 | 864 | 4371 | 1299 | 27.69
Dy30 | s70 s355 | 2502 | 939 13718 | 1396 | 27.58
D'y.20 | 506 4218 | 1971 | 834 1278 | 1179 | 27.66
D300 | 522 4238 | 1980 | 812 | 2735 | 1121 | 27.64
D420 | 489 4226 | 1995 | 864 | 2707 | 1224 | 2771
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The opposite case is valid for N ... In other words, to observe N_ .. the

terms with high TDVs are used 8and these terms have low term generality.

Hence, more terms are needed 1o obtain & D matrix that yields Nmax' However,

comparing D, ,, &nd Dy 4o (sec Table 4.B), we can sece that D matrices are

defined by 432 and 241 terms, respectively. We see that 241 << 432 since their
corresponding  minimum 1 s are 2 and 3 respectively. This means that

whepever T is extended, a newly added term will appear in at least two and
three documents for the respective D matrices. This is because to reach N, we

need smaller T set with D3-4O thap with D2-4O‘

In the tunable indexing experiments n., has varied from N ) to o,

min (Nmax
as expected with respect to Figure 2. The change in bp , With respect to b
(where h is the pumber of terms used in the description of D matrix) is plotted
in Figure 5. Because the results for all nine mairices of Table 2 arc similar we
will display only the results of matrices D, 34, D3 34, 800 Dy 3. These plots

show that the experimental behavior of the algorithm agrees with the
theoretical expeciation. In other words, if we begin nch"Nmin the inclusion
of more terms in T increases the number of clusters, i.c., ip general m., <n

cj
for i < j On the other hand when we start with n_ ,= Nmax the inclusion of
more terms decreases the pumber of clusters and in geperal p., >ncj fori<j.
90
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Figure S. D, Vs b for D2_30,D3‘30. and D, 54

Let the pumber of clusters desired¢ by the sysiem adminisiraior be ch

m/log,m. Then for m= 214 (our dailabase size), NC= 27.64. (In the complexity




analysis of clustering algorithms, it has been assumed [SALT75¢] that for a
database of size m, the average cluster size would be log,m.) N_. is resched

cither when going up from N to o, or when going down from N ton..

min max
The characteristics of the D matrices generated for NC- m/logzm (27.64) sare

given in Table 4.C. In the Nc column, Table 4.C shows that Nc is closest 10 27.64

which is obiained from the correspopding matrix.  The table shows that with
different imitial D matrices we obtain different resultant D mairices that yield
the desired number, N, of clusters. Notice that Dy _,q of Table 4.C is identical to

D3 4o of Table 2, ie. the original D matrix gives the desired number of
clusters. Similarly, D4_40 and D4-30 of Table 4.C are identical.

5. CONCLUSION

It is shown that the CC based TDV calculation approach yields results that are
compatible with the two other approaches available in the literature. In the
experiments described, sixteen document description matrices are generated
from & document database consisting of the titles, abstracts, and keywords of
the 214 ACM TODS publications.

In the various tunable indexing experiments it is shown that CC based TDVs
can be used to obtain an indexing vocabulary that vyields the desired number of
clusters.  The tunable indexing concept can be used (a2) to achive a high
discrimination value model to enhance precision, or a low discrimination
value model to increase recall, (b) to control the computational complexity of
the CC based clustering methodology, and (c) to obtain clusters whose sizes are
dictated by external (such as paging and memory) constraints. Also, in
hierarchical clustering we may want to contirol the number of clusters at each
level of the hierarchy. Tunable indexing can be used in achieving this.

Currently, we are evaluating the effect of tunable indexing on retrieval
effectiveness.
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APPENDIX
The Cover Coefficient Concept

The cover coefficient (CC) concept was originally introduced for document
clustering purposes [CAN83]. In this concept the document description matrix
(refer to Section 2 for its definition) is mapped onto an m by m C (cover
coefficient) matrix. Each entry, cij’ of the C matrix is the result of a double-

stage probabilistic experiment [CAN87b] and indicates the extent with which
r!c)c:umcnti (di) is covered by dj‘

A C matrix is formed by using the matrices S and S' and the relationship C= S x

S‘T, where S”r is the transpose of the matrix S8'. The entries of the § and S’

matrices are defined as follows:
.1 -1

s =d x E;j , . =d x S;l l1sismlsjsn
i} 1} ik 1j 1] kj

k=1 k=1

sij and s'ij indicate, respectively, the significance of tj for 4, or probability of
selecting t. from d,, and significance of d, for tj or probability of selecting cii
from lj. The entries of the C matrix are defined as follows:

cij:: Zsik x ska 2probabzmy of selecting L from di) x
(probability of selecting d_from tk)
)

From the defipition of the S and S' matrices

c:axsd x x d lsismlsjsm
1] i 1k 5k ik ( ] )
k=1
where a; and 6& are the reciprocals of Tow, and co}umnk sums. respectively.

Each eniry of C is a covering coefficient among documents and (c T IAEERE
c. )=1forlgcigm

in ==

The diagonal entries ¢;; of the C matrix indicate 1he esxtent with which g, is

covered by itself and called the unigueness or decoupling coefficient, éi’ of d,.




€ii >c,.j if im j for a binary D matrix; however, this condition does not! hold for a

weighted D matrix.
If none of the terms of d, is used by any other document then 6,=1,iec., d; is

unique or completely "decoupled” from the other documents of the document
database; oOtherwise, 6i < 1 meaning that éi is coupled with one or more

documents of the database. Thus the values of bi fall in the range O < bi <1l

The sum of the off-diagonal eniries of row, is referred to as the coupling
coefficient v, of d,. v, indicates the extent of coupling of 4, with the other
documents in the database. vy, =1 - b, and from the definition of bi’ the value
range of ¢, sO<y; <1

The overall or average decoupling coefficient of the database, &, is the
average of 8, values where 1 < i < m. It is hypothesized that the number of

clusters within a database, ., can be obtained as

p =0x m= S'P
[ 3

1=1
It is shown that the value range for n, indicated by 8 is 1 < o, < min(m, p). The

average number of documents within a cluster would be m/ncz m/(d x m)= 1/6.

The concept of decoupling coefficient indicates that the increase in & or
individual 6i (1 < i £ m) will increase the number of clusters and hence

decrease their average size. (Remember that the number of clusters is
nothing but the summation of individual decoupling coefficients.) When
generating  clusters  n. number of documents are sclected as cluster seeds and

non-seed documents are assigned 1o seeds which cover them maximally.
The use of CC related concepts for clustering and cluster maintenance can be
found in various publications [CAN87c, CAN88, OZKA86a].




