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ABSTRACT 
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The effectiveness and efficiency of an Information Retrieval (IRJ system 
depends on the quality of its indexing system. Indexing con be used in  
inverted file sysrerns or in cluster-based retrieval. In this article, new 
concept called tunable indexing is introduced. With tunable indexing rhe 
number of clusters of a documenr clusrering sysrern can. be varied l o  any 
desired value. Also covered are the compuration of Term L)iscriminarion Value 
(TDV) with the cover coefficienr (CC) concepz and its use in tunable indexing. 
A set of erperimenxs has slrown the consistency between the CC based TDYs arrd 
rhe TDYs determined with the known methods. The main use of nrnable 
indexing has been observed in determining the paramerers of a clusrering 
sysrem.  

1. INTRODUCTION 
Indexing can roughly be described as  a process which determines descriptors 

of documents in a database. Although the definition of indexing is  simple, the 
task of indexing is  not. Document descriptors or index terms, or  terms fo r  
short, cannot be selected arbitrarily since the performance of an  IR system is  
critically dependent on them fLANC75, p. 138). Once we form a n  indexing 
system we can then (a) define the contents of documents, 0) de te rn ine  the 
topics of a document database, and (c) find the relatedness o f  user request 
(query) and individual documents of a database. 

Indexing is used both in  cluster- and inverted file-based ER systems [OZKASSa, 
SALT83, VANR791. In cluster-based retrieval sysrerns, clustering e the  
process of putting similar documents into the same group) enables efficient 
operation of text retrieval systems inclusive of full text s t a rch  systems 
IOZKA84, OZKA86aI. The partitioning (clustering) of document space also helps 
increase the effectiveness of IR systems {SALT83]. 

IR systems use the two generally accepted measures of effectiveness which 
are recall and precision. Recall is the proportion of relrieved relevant 
docunenls i t  respec1 lo the roial number of relevant d o c u m e ~ t s  in the 
daiabase. Precision is the proporlion of retrieved relevan; documerts with 
r e s p e c m o  the tola! number of rerrieved documents. The users of an f R  system 
can  be sensitive l o  either recal! or precision or bo!h. Therefore, an indexing 
subsytem i n  an IR system should be t u n e d  accorrilcg to the needs of its users. 
Consequenrly, in a recalI-sensitive user eovirfinznent we p ick  terrns wilh 
broad coverage (i.e.. t e r m  tvhich appear ic m a r ?  documents). Zo the 
precision-sensitive case we pick speciflc terms 1 . .  rerms which  appear in 
s ~ a l l  number of do cum en!^) for rhe description of documeots. In the mixed 
mcde of expeciz~icns the indexing sys iem m u :  f ind  a good combinaiion of 
general and specific terms. 



Indexing can be performed automatically and manually. Manual indexing 
depends on experts [LANC75, SALT831. In fhis article we arc based on automatic 
indexing, i.e., index terms are extracted from the documents by means of 
computer programs. 

Various contributions to the ongoing research on the theory of indexing can 
be found in sources such as Journnl of the American Sotiery for Information 
Science, lnjormarion Processing and Management, Journal of Documenration, 
and ACM SIGIR conferences. The survey in [BORK77] provides a brief 
overview of the indexing theories of Jonker, ReiIprin, Landry, and Salton and 
his co-workers. A detailed illustration of the theory of Salton and his co- 
workers can be found in [SALT75a, SALT7Sbl. Various probabilistic approaches 
for indexing are proposed in [YU76, SALT81, COOP78j. The term relevance 
measure (work of Robertson, Spark Jones, Van Rijsbergen, Harper, etc.), 
which is another probabilistic approach, can be found in [VANR79]. A n  
artificial intelligence approach to the indexing problem is  discussed in 
[KOL83]. For seff-adapting document approaches, where indexing is  
determined by inquirers' relevance assessments, the reader can refer to  
IGORD85, BOOK861. A new, yet computalionally expensive, approach is the 
generalized vector space mode1 fWONG87f. It expresses the single terrns of 
indexing in terms of atomic concepts. 

In Section 2 we will introduce the TDV concept. The computation of TDVs with 
the CC concepr and the tunable indexing concept will be introduced in Section 
3. We then introduce a new methodology called tunable indexing. It involves 
selection of proper index terrns that will yield the desired number of clusters 
within a database. Tbe utility of tunable indexing will also be discussed. 

Previously we have shown ICAN87aI that CC approach for TDV calculation 
yields results compatible with an approximation technique ISALT75aJ which is 
irnplernenred in JCRAW753. In that study the compatibility experiments of the 
two approaches were done using only one document description, D, matrix. In 
Section 4, we will present the results of the compatibility experiments 
performed wirh sixteen larger D matrices. The experiments show that our 
approach produces compatible resufrs not only with respect to the 
approximation technique but also with the exact technique fWItL85]. 
Furthermore, the experiments show that the degree of compatibility between 
the CC approach and the exact approach is higher than that of the 
approximation approach wirh the exact approach. The various experiments 
will show that the tunable indexing concept works, i-e., il produces the desired 
number of clusters. 

2. THE TDV COKCEPT 
The TDV concept is inrroduced in [SIZLT75a, S.ALT833. In the TDV concept the 

significance of an index $ern; is measured by its effect o n  distinguishability of 
d o c u m e n t s .  

To iliusrra:e zbe concept and i l c  compuiation le? US first introduce ou r  
notation. Le: D be an m by n documenr dalzbese descriplion marrix. m 
indicates the cardinality of the dalabase: (d l .  d2, . . . , dm), and n is the 

cardinality of the  indexing \-ocabulary T= t 2 ,  . . . , 1 . Accordingly, an  

enrry, d . .  (15 i 2 n?, 1 5 j 5 r)  of D ma:rix indicazer %he importance of 1 in  d j .  
3 3  j 

Indexing can either be binary or weighled. f n  the case of b i n x y  indexing d . .  
1 J 



can  be  t i t he r  1 or  0 indicating the existence of  I .  in di or non-existence of  t in  
J j 

d . ,  respectively. In weighted indexing d . .  represents weight o f  the lerm such 
1 ' 1 

as  the frequency of t .  in d j .  Obviously in a D matrix, a row with ell zeros (i.e., 
I 

an undefined document) or a column with all zeros ( e ,  an  unused term) 
cannot  exist.  

In calculating TDV the average similarity of documents, Q' can be  used.  It is 

Q' i s  also referred to as "average document space  density." In Eq. (2.11, s(di, d . )  
J 

indicates the similarity between di and d For the similarity measure  w e  may 
J '  

use the cosine similarity coefficient 
1 

*- 

2 

k= 1 k= 1 

To reduce the computational cost of Q' w e  may use the database centroid, G, 
instead of individual documents where the individual entries of  G, g. (I s j 5 n) 

1 
can  b e  defined as (d + 4j + . . . + dZm) / m, i.e., the average weight  of 1- in the 

Ij f 
database,  We can then define approximate document space  densi ty as follows 
[SALT75a, SALT831: 

Document databases with greater  separat ion of document descript ion vectors  
will  have lower Q (density) values. The  reverse is true fo r  document 
description vectors with less separat ion,  i.e., document databases wi th  similar 
documents would lead to higher Q values. 

Let us consider a term 1;; if we  delete  ti, this will change the  indexing 
J J 

vocabulary, T, the document space density, Q, and the database centroid,  G. The 
new G, 6 , would be ( g l ,  g,. . . . , , g ,  . . . , g ) The new document space  

3 i 

decs:r) Q ail: be ra!culz?ed uslng Eq. (2.3) a n d  replacing G b) G . 
J J 

The difference ( Q  - Q )  reflecls the cfiarigc due to deierion of rerrn t . If the 
j 1 

asslgnmenl of t separates the doctlme~irs from each olher. then i t  a l l 1  
3 

decrease the document space denslr} (Q). Gonsequen~ l j ,  the removal of 1. 
1 

makes the documents closer to each other  by increasing the document space 
density, Q and causing Q > Q. This wiI1 make (Q. - Q )  greater than  zero. The 

J J 
difference 

(Qj 
- Q )  is  refe;;eb 10 as ~ t e  s c r i m :  value of I . ,  TDV. 

1 j' 
jSALT75a, SALI'83]. 



A TDV has the following properties: (a) T D V  > 0 for a good discriminator t 
J j 

(i.c., the assignment of t. makes the documents more distinguishable from 
J 

each other); (b) TDV. - 0 for an indifferent term t. (i.e., l h t  assignment of t 
J J j 

does not contribute to the distinguishability of documents); (c) TDV. < 0 for a 
J 

poor discriminator t .  ( e . ,  a term which makes the documents less 
1 

dislinguishable from each other). 

The use of Eq. (2.1) yields exact TDVs; hence, it will be called "exact similarity 
method" and abbreviated as ESM. Eq. (2.3) leads to  approximate TDVs; 
therefore, it will be called 'approximate, centroid method" and will be 
abbreviated as ACM. 

R'illett [WILL851 and Crawford [CRAW751 defined efficient algorithms for the 
implementation, respectively, of ESM and ACM u s i n g .  Eq. (2.2). The 
experiments discussed in Section 4 will show thal the TDVs computed by the CC 
concept and ESM have better consistency than that of ACM with ESM. This is 
significant since ACM tries to approximate ESM. 

In the LR literature TDVs have been used for various purposes [SALT7Sa, 
SALT83, SALT861: some of which are: (a) to  construct a document weighting 
function d. .= TDV x fij, where f . .  is the number of occurrences of t. in di; @) 

'J J 11 J 
to c ~ n s t r u c f  "term phrases" and "thesaurus classes" which increase 
effectiveness of an IR system. 

Our specific purposes for using the TDV conccpt are (a) to construct a 
document weighting function d.  .= DSVi x TDV x f.. where DSV is a concept u j IJ 
similar to TDV indicating the document significance value of dj; (b) to  

implement tunable indexing in connection with the number of clusters 
indicated by the CC concept. Our experience to date have indicated that the IDSV 
approach is helpful in improving the effectiveness of an ER system [URAM)6, 
CAN87bJ. 

3. CALCULATION OF TDVs BY TEE CC CONCEPT AND TUNABLE INDEXING 
The CC concept bas been described in various publications (CAN83, CAN84, 

CAN85a, CANgSb]. For readers who are unfamiliar with this concept we have 
provided an introduction in  the appendix. 

3.1 TDV Celculation by C C  
We can use CC refaled variables i n  ihe cornpurarion of TDVs. Consider the 

notion of document decoupling. 11 is easy to realize that rfie concepts of 
document space densry  ( Q j  and  average decoupling of d o c u n e n ~ s  (6 or number 
of clusters, nc) are inverse lo  each other. Table 1 shows !be interpretation of 

zhe related quantities wi th  respect to  TDV (where 6 and ah are the average 

decoupling of documenrs before and afler rhe deletion of th ; similarly nc and 

" c h  are the n u ~ b e i  of ciusters i n  the  database). 



Table I .  Effects of the type of index t t rm(tb  ) on 

the values of Q, 6 and (nc ). . I 

According to the CC concept, a TDV is defined as (nc - rich), i.e., the change in 

the number of clusters after the deletion of term th [CAN8Sa]. In [CAN87a] it is 

shown that an exact TDV can be computed according to the CC concept as 
follows: 

where fh is the cardinality of Dh and Dh = (dil diE D A dih c 0), i r . ,  Dh is the Scl 

of documenl containing the term t h .  As we have defined in the appendix, ai 

and ph indicate the reciprocal of row-i and column-h s u m  of the D matrix 

respectively. And aih = {ai-'- di h ) - l ,  i.e., aih is the reciprocal of row-i rum 
excluding di 

2 -1 For a binary D matrix dih  = d i h  a = d a i  - ( a i h ) ~ l = l ~ d i h = l , f o r l ~ i ~ ~ l ~  
h I. n. Hence, for a binary D matrix, Eq. (3.1) will take the following form: 

f 

TDY h = z o *  1 I (ph - 5 )  
i =l 

I1 should be mentioned that the TDV values obtained with the CC concept arc 
exact values. This is because their calculation does not involve any 
approximarion. In this paper, the CC method for n>V calculation will be 

2 referred ro as C D'lrM. 

2 
In [CAAh'87a] a-e have shown that compurarional complexity of C DVM is O(6t)- 

O(I)  where t is nlil~jber of nonzero entries in D matrix. This compares 
fzvorzbly wi th  rhe compula!iona! cos! of ESM and ACM [CRAW75, WILL851, 
which are O ( a t )  2nd O(9;). resfiec~ivel>. Even though the order of magnirude 
scales i?re Ihe s a m e  6 is less lhan 9 and much less than m. 



3.2 Tunable ladesing: Concept end Implcracatrtlon 
In designing and implementing an IR system we may want  to vary  var ious  

parameters .  If w e  are using clustering we may need to  tune average  c lu s t e r  
size due  t o  external constraints. In the CC based clustering we c a n  predict  t he  
cluster  s i ze  analytically [CAN85b]. However, for  better precision or recal l  the  
IR sys tem administrator may want to decrease or  increase clustcr  s ize .  Also ,  
for  eff iciency of the underlying computer  system we may want  t o  opt imize  
cluster(parti1ion) s ize with respect t o  paging and memory constraints .  In 
hierarchical  clustering, we may also want  to  control the number of c lus te rs  a1 
each  leve l  of the hierarchy. 

In  t h e  tunable indexing scheme, the administrator can specify t he  number  of 
clusters  that  he(she) wants to  have within a database. Assume thal  Nc i s  t he  

number of clusters that the administrator wants  to  have within a da tabase .  
(Note thar the number of clusters, nc, computed by the CC concept  must  b e  

within the  range: 1 5 n 2 min(m, a ) ;  this  property must also b e  observed b y  Nc. 
Another  resrriciion on  Nc will be  stated later when w e  def ine  the  tunable  

indexing algorithm.) According to  the analytical relationships observed  
[CAN87a] between indexing and cluster ing once we fix Nc then w e  must  vary  

indexing to  obtain the desired partit ion partern. 

Figure 1. Tiinable indexing concept 

T h e  system view of ou r  tunable indexing concept  is illustrated in F igure  1. 
The tunable indexing process will be  activated whenever Nc is different  f rom 

n c  which is  the number of clusters implied by the original D mairix.  By 
applying tunable indexing we will obtain a refined D rnatrrr that will yield the 
desired number of clusters: Kc. In the figure, tern; selecror is responsibie  

frolr, the choice of index terms. Classifier rs the CC based cfusrering suSsystem. 
The tunrcg procedure takes tbe foIlo.uing f o r m  ilependlng upoo the 
r e l a l i onsk~p  be l aeeo  Kc and nc (1.e.. requirel  and tf;eorel:cal). 

a )  % , - a c :  'he curreni description of the D malrix sblirfies ihe adm~nis i ra tor ' s  

requlremea:, Thls means no tunlng, hence changing of D, 1s required. 

b) 5 n : the  curren! a u a b e r  of  ciuslers  resu:i~ng f ron  the  ar iginal  D ~ i ~ t r ! i  

is sn,a!ler l h a n  the  adrninlsiraror's requlremeni. fn thrs case the  terms which 



reduce the number of ciusrers should be delcred from the index vocabulary I. 
These terms have negative TDVs. Therefore, term selector will add, one by one, 
the terms with positive TDVs. In the figure these newly added terms are 
indicated by t h .  The document vectors cxlended by tb will be passed to 

Classifier. The number of clusters, rich, implied by the resulting T= itl, t2, . . . 
t h )  will be passed to ihc decision maker, which implemenrs the stopping 

criterion by comparing Kc and nc h .  The  resulr is to stop or continue the term 
selection process. In other words, the  system modifies itself, or learns, so that 
it  reaches the desired number, Nc, of clusters. 

c) N,<n,:  the current number of clusters resulting from the original D matrix 
is greater than the administrator's requirement. In this case, the terms which 
increase the number of clusters should be deleted from T. These terms have 
positive TDVs. 

Let us start with a solulion for case (c): 

Algorithm for index taning for the case Nc*. B,: 
[a]  Cempure TDVh (I ( h  ( n) 

Sort terms in ascending order accordirrg 2 0  their TDVs 
h= 0 
T= 9 I' nuU ser */ 

P I  EiE&w 
L = h + I  
T= T U q  J I* where rh i s  the h'th t e r n  of the sorted list */ 

d all documents are defined by at leas! one term 

nch I* nCh is the number of clvszers in the Oh matrix of s i ze  n 

b y h  "/ 

%in"  Z A  
[c] yh i l e  nch eNc & h c n  

3 s = h + 1  
T= T U{q 

"c h 

The  tunable indexing algorithm assumes an initial D matrix of size nt by n. 
The  initial D matrix is used in the computation of TDVs. S tep  (b) provides the 
definition of all documents b~ at leasr one term.  R'e must firs1 d e f j ~ e  all 
documents and this of colirse is necessary i n d e p e n d e ~ t  of the value of KC.  A? 

the end  of s!ep (b). T contains h terms with the lowes! TDVs. Accordingly, the 
nurnber of ciusrers resulting f r ~ m  the D matrix would be rhe m i ~ i r n u r n  
possible, Kmin' number of clusiers.  As we increase the size of 7 in step (c) the 

number of clusiers n c b  resulting from the changing D mairix will increase.  

The  algorirhm will terrniriate n henever nc  $ =  Kc, nc > N C '  or h= n. 

The solution for case (b) .  i .e. ,  Nc > nc ,  is \er! similar to the previous seiurion.  

H o ~ e v e r ,  in step (a) a e  will sorl the terms in  descending order, and at the end 



of step (b), nCh will be Nmal, i.s., maximum possible number of clusterr. This 
is because T contains the terms w i ~ h  highest TDVs and, by definition, these are 
the terms which distinguish the documtnls most. In this solution the 
condition of the while statement in step (c) must be wnch > Nc and b < n." 

The foregoing explanation indicates the value range 1 I. Nm I N, S NmaX d 
rnin(m, n) for Nc. 11 should be noticed thal the above algorithms are 
approximations, since at the time of adding t h  to T Ihcre is no guarantee that 

th  will be the term with the minimum TDV among the terms added, in the case 
of N, > nc, and similarly, the term with the maximum TDV among the terms 
added in the case of N, < nc. For n terms there are n! possible permutations for 
the addition sequence and it is not possible to consider all possible sequences to 
reach the best addition sequence. However, the foregoing approximation 
methods seem reasonable and their expected behavior is shown in Figure 2. In 
this figure h arid nCh indicate the cardinality of indexing vocabulary, T, and 
the number of cluster implied by matrix Dh , respectively. And nc is the 
number of clusters in the original D matrix, n is the size of T for original I), 

*max is the maximum possible number of clusters, and N m i n  is the rninimum 
possible number of clusters. Nmax and Nmi are obtained by  tunable 
indexing. Therefore, when we apply the tunable indexing algorithm for Nc is 
greater than nc, we are expecting a gradual decrease from Nmax 10 nC 8s we 

increase the size of T. For the reverse case, i.e., when Nc is less than nc, we are 
expecting a gradual increase from N m i n  to n,. 

The experiments of the next section will show that the tunable indexing 
algorithms could be used to obtain a D matrix that defines documents in the 
required detail to obtain desired number of clusters. 

Figure 2. Expec:ed behav io r  of tunab le  index ing  algorilhms 

Nou Lel us c o ~ s ~ d c ~ r  l h e  ~ m ~ : e m e n ? a r i o ~  iispects of tunab le  i n d e x i n g  ir: rerrns 
of CC based TDVs. Let f h + l  b e  the  cardicalir!  of D h A l ,  where Dh,l = {till d,E D A 



d i , h t  1 r 0), i.c., Dh+ is the set of documents containing the term at the rank 

h t l .  Then the number of clusters, r ~ ~ , ~ + ~ ,  in refined D can be  expressed as 

Eq. (3.3) can be rewritten as follows, by using the identity given in Eq. (3.5) 

where biPh and bi,hll indicate the decoupling coefficient of di With T= (tl ,  t2, . . 
. . +, } and T= (tl% 4, . . . , respectively. And 

For a binary D matrix, Eq. (3.4) becomes 

A reasonable storage overhead for keeping intermediate ai values decreases 

the computational complexiry of tunable indexing (CAN87al. 

h'ctiee ?ha? Eqs (3.1) and (3.5). and Eqs. (3.2) and (3.6) are sirnllar and ye1 nat 
  den ti is! to each o?her This 1s because in tunabie ~naex lng  our concern is the 
change in tbe number of clusiers a h e n  we 'exiend' the inderlng vocabviary 
of size .h* b! t h e  b-!st leim of the sorted list. In the TDV case, we calculate the 
c tznge in the n ~ m b e r  of  clusters when we 'decreaser the indexing 
\ocablilarj of size *n" b) one term. 



4. EXPERIMENTAL EVALUATION 
f b e  experiments described i n  this section are performed to verify (a) the CC 

based TDV calculation metbodology ( C ~ D V M ) ,  and @) tunable indexing. lo  (a) 
2 and (b) we will, respectively, show that C DVM produces compatible results as 

compared to ACM (approximate centroid method), end ESM (exact similarity 
method) and tunable indexing can be used lo obtain an indexing vocabulary 
for a D matrix that results i n  the desired number of clusters. 

4.1 Document D ~ t ~ b a s e  nod Indexing Policy 
In order to perform the experiments we need to start with the initial D 

matrices which will be used in the calculation of IDVs,  and later, in tunable 
indexing. The document dalabase is the TODS database which contains titles, 
abstracts, and keywords of 214 articles from tbe journal called ACM 
lfansactions on Database Systems. This database has been used in our previous 
studies and its indexing metbodology is described in [OZKA86bf. A stem 
becomes a term if it satisfies the folloa*ing two conditions: (a) i t  must not 
appear in the stop list (containing the frequent words of English language and 
database literature); (b) the number of documents containing the stem must be 
within the range f m i  through f m a x .  The weight d . .  of terms within 

IJ ' 
documents, i s  determined as the frequency of a document in a specific 
document (i.e., d f. . Hence, d .  indicates the number of occurrences of t in 

1J ZJ 1 
di,  (1 i 2 2 1 4 ,  1 5 j 5 n). In this case, n is a function of f m i n  and fmar. The 

lower f m i n  and higher f m a x  imply the higher value of n. The opposite, i.e., 

the higher fm and lower frnax implies the lower value of n. For 

experimentation we need to have various 5 matrices and this is obtained by 
using different f m i n  (2, 3, 4) m d  I,,, (20, 30, 40) values. The characteristics 

of the D matrices for different f m i n ,  fmax combinations are shown in Table 2. 

Table 2. Statistics of the 5 matrices generated according to the frequency 

The meaning of rhe column headers in Table 2 is as follows. n: IT/, 1: the total 
number of non-zero e n ~ r i e i  ic D. r d :  the  average number of distinct terms per 

documen? (depth of indexing), 
'g: 

the average number of distinct documents 

per term (ierm genera:::)-). x :  the average lerai weight per docurnen1 

(weighred depth of  indexing), i : rhe average lotal weight per term 
gu. 



(weighted term generality), and n,: tbe number of clusters  indicated by the 

CC concept. 

Relaxed condirions (i.e., smaller f m i n  and higher f m a X )  lead to larger D 
matrices in terms of n and t (m is always fixed and equal to 214 i n  all the 
experiments).  Let us compare D2-40 (where the first subscripl ,  20, 

corresponds to f m i  and second, 40, corresponds to f m a r )  wilh Dq-20. D2-40 is 

a 214 by 1060 matrix with 7446 non-zero entries. On the other  hand, r)4-20 is a 

214 by 532 matrix witb 4472 non-zero entries. 

4.2 Experiments for Checking the Consistency of the Three TDV 
C~lcntatlon Methods 

The  experiments of  this section wili measure the consistency between CC 
2 based TDV calculation method (C DVM) witb the other  known methods, i.e., ESM 

and ACM. Specifically, the consislency measurements will b e  performed 
b e t w e e n  

a) C ~ D V M  and ACM, 

b) C ~ D V M  and ESM, and 

c) ACM and ESM 

i tem (a) measures tbe compatibility o r  agreement of the two approaches that  
involve relatively small number o f  computations. Items (b) and ( c )  measure 

the agreement between these two TDV calculalion techniques (SDVM, ACM) 
involving small number of computations and the one (ESM) that  involves a 
high number of computations. In these comparisons, one  would normafly 
expect  to obtain higher consistency in (c) than the  ones obtained for  i tems (a) 
and (b). This i s  because ACM is an approximation for  ESM. However, the 

opposite, i.c., higher consistency berueen C ~ D V M  and ACM, and C*DVM and 
ESM were observed i n  the experiments that will follow. 

In the consistency experiments, we  will use sixteen weightcd D matrices. 
Nine of these matrices a re  described in Table 2. The additional seven D 
matrices that were generated in tunable indexing are  also used in the 
consistency experiments. The statistics of these additionaI matrices, which 
urili be referred to as D' marrices, are provided in  Tabfe 4.C. 

11 is obvious thal the three approaches may no? assign identical TDVs to 
identical terms. This has been seen to be true even when the TDVs were 
calculaled w i t h  two different sirniiariry coef f~cients  using  he exact  similarity 
approach [U'ILLF5]. Therefore, to  evaluate the consSstency, the terms were 
sorted in descending order according to their TDVs rhus giving the rank of 1 
and n to the terms with the highesr and lowest TDV, respectiveIy. 

In the consistency experiments, a bivariate correiarion analysis is performed 
cn t he  experirnen~al d a : ~  using ;he rarikc of the terms. F G ~  this purpose we 
used the SPSS statistical package [KIE75].  In the bivariate correlation analysis, 



we used Spearman's rank order correlation coefficienr (denoted rs ts). l n  this 
analysis, if the value of rs is ctose to zero, then there is little or no linear 
relationship between the two variables being correlated. Whenever rS r  1, 

there is a perfect linear relationship between the two variables (in our case, 
the ranks of the terms in  the sorted lists). On the other hand, when rs= -1, 

there is a perfect inverse relationship. This means that terrns which have 
high ranks in one sorted list rend to have low ranks in the other sorted list. 

Associated witb the bivariate correlation, a linear regression line is obtained 
to locate the best-fitting straight Iine for the two approaches being correlated. 
This is done using the scattergram facility of SPSS, obtaining a plol and an 
equation of the regression line as the result. In this article we will provide 
the equation of the regression line since i t  also serves as a summary of the 
scattergram plot. To give an idea the scattergrarn plot for matrix D'4-40 is  
given in Figure 3. In this plot an asterisk indicates an observation, and a 
number (twos, threes, and four) indicates more than one (i.e., two, three, or  
four) observations at that point. In Figure 2 the horizontal (X) and vertical (Y) 
axes correspond to ESM and ACM, respectively. Hence, an observation (Xi, Yi) 
in the data set indicates that there is a term with ranks Xi and Yi with respect 
to ESM and ACM. 

The scattergrarn outputs showed that all three methods are more consistent on  
the high-ranked terms than they are on the low-ranked terms. This 
observafion shows that the methods are more consislenl in determining the 
TDV of the worst terms, i.e., the terrns with low (negative) TDV. (Remember 
that terms are sorted in descending order according to their TDVs.) 

Now let us consider the regression lines. Let RAm, and RESM 
2 denote the ranks obtained by use of the C DVM, ACM, and ESM, respectively. In 

the experimentsthe following regression lines were obtained indicating the 
relationships among RCZDVM, RAW, and RE=: 

%Sere bl an6 a j  (1 2 I 5 3) are the slope and lnterccpr of the regression lines. 
3 

Obvloilsfj i f  Ihe  results o f  a n j  t a o  methods are perfec:lj ~ d e n t ~ c a l .  s a j  C'DVM 
acd ACM. then we w o u t d  ob;ala RCZDVM= RACM. or I E  general b, and ai  a111 be 

closer to 1 and 0, respectlxel) (1 5 I 5. 3).  Rather lhan d i sp l a j l ng  the 

paramelers of equations. i .e . ,  a l ,  a2. a j  and b l .  b2.  b3 m iabuIar form a plot of 

rhem is provided i n  Figure 4 for eas! io te rpre~at ion .  



Figure 3. The scattergram which shows the consistency of 
ACM and ESM for the matrix 

The validity of each regression line is indicated by the Pearson product- 
momens correlation value ri (1 5 i 5 3). Since we are using ordinal Bevel data 

( i .  the ranks of terms) in our analysis %be slope (bi) of the regression line, 

Pearson producr-moment correlation (ri), and Spearman's correlation 

coefficient ( yield identical values. The snalyrjcal validity of tbesc 

identities can be easy show by wing the formulas given in [NIE75]. 

In ail of the experiments, the statistical significances obtained are 0.001, 
0.00000 for rsi and r j  (1 i 2 31, respectively. Such law values for the statistical 

significances indicate the validi~y of the erperimea?ai results. 

S o a ,  Iei us conslder lbe consisienc) aspects. In Figure 4 i l  1s eas) lo see t h a ~  
3 

the conslslenc) b r l aeen  C-DVM and ACM is a!aa?s  belle? than the canslsiency 
beraeen ESM and ACM Tbis 1s because b l  > bg and al  4 5 ho13 for all of the 

sixteen D malrlres used &oI,ie iha: consislenc) beiaeer.  C ~ D V M  and ACM is 
remarkabi) high, because bl values are %er) h lgt  the sinailesl bl occurrence 

3 

being 0.803. Slilllarl),  the conslsienc! betaeen C-DVM and ACM 1s beiier lban 



Data from blvarlate 8nalysls: slopes 

Figure 

Experiment No 

4.8 Results of the biyariale analysis tests  with s lopes :  bl, b2' b3 

Data from bivariate analysis: intercepts 

Experiment No 

FIguie 4.b Results of the bisariate analysis tests with intercepts:  al, 9. 83 
F i g a r e  4 .  Reiulir of the  bivar ia te  analysis exper iments  

(R$DvM= b i  I R~~~ + ai .  R $DFM= 
bl  x RESM t a i .  RACM= b l  X RESM + al)  



the consistency between C ~ D V M  and ESM (i.e., when compared bl and b2 in 

fifteen of  the sixteen observations bl comes out greater lhao bt the only 

exception being the case of  D2-40). 

As we stared previously, ACM had been introduced t o  reduce the 
computational requirements of  ESM and as an approximation lo ESM. However, - 
our experiments show that C ~ D V M ,  which is computarionally the most effective 
among the three, is a better approximation to ESM as observed in the twelve 
observations with b2 . b3 and a2 c out of the total sixteen. To confirm this 

the Wilcoxon matched-pairs signed-ranks test [DAN1781 has been performed by 
using the sixleen bt and b j  (the slopes of the regression lines) values of 

2 Figure 4. The one sided tesl has indicated that C DVM-ESM is more consistent 
than ACM-ESM with the critical value (P) of less than 0.022. 

4.2 Tunable Indexing 
The experiments on tunable indexing have been performed using the nine D 

matrices defined in Table 2. The experiments are performed in the following 
two ways (for the complete algorithm refer to Section 3.2): 

For N, < m,: In slcp (a) of the tunable indexing algorithm terms are sorted in  

ascending order according to TDVs. For this ease s tep  @) of the algorithm 
yields N m i n .  In s tep  (c) of the algorithm we expect a gradual increase in x + h  
that finally reaches rich= nc when h= n, nc being the number of clusters of  

the original I) matrix. 

For N, r R,: Terms are sorted i n  descending order according t o  TDVs. This 

time step @) of the tunable indexing algorithm will yield Nmax .  In s tep  (c) of 

the algorithm w e  expect a gradual decrease in the number of clusters. 

As can be  seen, the number of clusrers N m i n  and NLnax can be observed with 

different indexing vocabularies for the same initial D matrix. The statistics of 
the D matrices that would result in N m i n  and Nmax number o f  clusters a re  

given in Tables 4.A and 4.B, respectively. 

Tables 4.A and 4.B show that for D2-40 we obtain N m i  n =  15 and Nma,= 8 0  by 

using 211 and 432 terms. In  order to obtain N m i  w e  used the  terms with 

lowest TDVs , i.e., the terms a - i t h  high term generalit). tha: appear in large 
number of documenls. Therefore. rhe D matr ix  has fewer  number of t e rns .  
For example, for D2-40 and 03-40 the D matrix can be defined with 217 and  201 

terns .  respecriveiy, which correspond to the cardinal i ty  of t h e  indexing 
vocabulary T. For these marrices,  the term generafiries ( I  ) are also ralher 

B 
high.  For example, for D2-40 and D3.40 they are 18.32 and 18.62 respectively. 

Obvicusly this will  sarisf). the recall sensiljve users because the documents are 
more similar to each other. And ihis generates larger clusters increasing 
recall in a cluster-based retrieval envirooment iSALT78, CAN87bI. 



Table 4. Stetistics of D matrices generated wirb tunable indexing 



The  opposi te  case is valid for  Nmax.  In other words. to observc  Nmax t h e  

lcrms wi th  high TDVs are used and these lcrms have low term genera l i ly .  
Hence,  more terms arc needed to  obiain a D matrix that yields N m a x .  Howevcr ,  

compar ing  D2-40 and D3-40 ( se t  Table 4.B), we can see  lhal  D matrices a r e  

defined by 432 and 241 terms, r e spcc~ ive ly .  We t e e  that 241 c< 432 s i n c e  the i r  
corresponding minimum I s are 2 and 3 respectiveiy. This means  that  .E 
whenever T is extended, a -dewly added term will appear  in at leas1 two  and 
three documents for the respective D matrices. This is because t o  reach Nc w e  

need smaller  T set  with D3-40 than with D2-40- 

In the  tunable indexing experiments n C h  has varied from N m i n  (N,,,) t o  n, 

as  expected  with respect to Figure 2. The  change in nch  witb respec t  t o  h 

(where h is 
in Figure 5 .  
will display 

the number of terms used in the description of  D matrix) i s  p lo t ted  
Because the results for  all  nine matrices of Table 2 a r e  s imilar  w e  

only the results of matrices D2-30, D3-30. and D4-30. These  p lo ts  

show that  the cxperimentali behavior of  the algorithm agrees  wi th  the  
theoret ical  expectation. In other  words, if we begin nc h =  Nmi the inc lus ion  

of more  terms in T increases the number of  clusters, i.e., in  genera l  nci < n c j  

for  i < j On the other hand when we  start with rich= Nmax the  inclusion o f  

more  terms decreases the number of clusters  and in general nci > n CJ . for i < j. 

h (number of termsj 

Figuie 5 .  n c  vs h for D2-30. D3-30. and Dq-30 

Let the n ~ r r , b e r  of clusters desired b j  the sys?eo! adrnioistraror be K c =  

m, ' lop2m. Then for m= 214 (our dalabase size). Kc= 27.64. (In ihe cornpieail) 



analysis of clustering algorithms, it has been assumed fSALT75cI that for a 
database of size m, Ibe average cluster size would be 1og2m.) Nc is reached 

either when going up from N m i 2 o  nc or when going down from Nmax to nc. 

The characteristics of the D matrices generated for Nc- m/log2m (27.64) are 

given in  Table 4.C. In the N, column, Table 4.C shows that Nc is closest to 27.64 

which is obtained from the corresponding matrix. The table shows that with 
different inirial D matrices we obtain differen1 resultant D matrices that yield 
the desired number, Nc, of clusrers. Notice that Dj-qo of Table 4.C is identical to 

D3-40 of Table 2, i.e., the orjginai D matrix gives the desired number of 

clusters. SimilarIy, D4-40 and D4-30 of Table 4.C are identical. 

5. CONCLUSION 
I1 is shown that the CC based TDV calcufation approacb yields results that are 

compatible with the two other approaches available in the literature. In the 
experiments described, sixteen document description matrices are generated 
from a document database consisting of the titles, abstracts, and keywords of 
the 214 ACM TODS publications. 

In the various tunable indexing experiments it  is shown that CC based TDVs 
can be used to obtain an indexing vocabulary that yields the desired number of 
clusters. The tunable indexing concept can be used (a) to achive a high 
discrimination value model to enhance precision, or a low discrimination 
value model to increase recall, (b) to control the compulational complexity of 
the CC based clustering metbodotogy, and (c) to obtain clusters whose sizes are 
dictated by external (such as paging and memory) constraints. Also, in 
hierarchical clustering we may want to control the number of clusters at each 
level of the hierarchy. Tunable indexing can be used in achieving this. 

Currently, we are evaluating the effect of tunable indexing on retrieval 
effect iveness .  
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APPENDIX 
The Cover Coefficient Concept 

The cover coefficient (CC) concept was originally introduced for document 
clustering purposes [CAh'83]. In this concept the docurnenl description matrix 
(refer to Section 2 for its definition) is mapped onto an m by m C (cover 
coefficient) matrix. Each entry, c i i ,  of the C matrix is the result of a double- 

stage probabilistic experiment [ ~ ~ 6 8 7 b ]  and indicates the cxlent with which 
docurnenti  (di) is covered b) d.. 

J 
A C matrix is formed by using the matrices S and S' and the relationship C= S x 

ST, where stT is the transpose of the matrix St. Tbc entries of the S and S' 
matrices are defined as follows: 

- 1 

s i j  = d  i j  x[sik]', sti,= di, x [%,,I l s i s r n , ~ z r j s n  
k= 1 k= l 

s.. and slij indicate, respectively, the significance of t. for di or probability of 
'1 3 

selecting t. from dj ,  and significance of di for t or probability of selecting di 
J J 

from 1.. The entries of the C matrix are defined as follows: 
1 

C. .= x s f j  b i i  of selecting t k f rom d . )  I x 

I J  k = l  k = l  
(probability of selecting d from tk) 

J 
From the definition of the S and S' marrices 

a h e r e  ai and fik are f i e  reciprocals of ron-. I and column k sums.  respec1iveIy. 

Each enrry of C is a covering coefficient among documents and  ( c i l  + ci2 + . . . 4 

c .  )= 1 for 1 5  i (m. 
1 n 

Tbe diagonal entries c . .  o f  the C marr ix  indicate the extent  with n-hlch dl is 
1 I 

ccvered by itself a n d  ca!!ed the uniqueness or decquplinp coefficient.  bi. of d i .  



c i i  >c .  if  i* j for a binary D matrix; however, this condition does not hold for a 
1 j 

weighted D matrix. 
If none of the terms of di is used by any other document then bi= 1, i.e., di is 

unique or completely "decoupledR from the other documents of tbe document 
database; otherwise, bi < I meaning that d, is coupied with one or more 

documents of the da~abase .  Thus the values of bi fail in the range 0 c bi S1. 

The sum of the off-diagonal entries of rowi is referred to  as the coupling 

coefficient yi of di .  Vi indicates the extent of coupling of di with thc olher 

documents in the database. qj = 1 - €$ and from the definition of bi, the value 

range of qi is 0 5 qi < 1. 

The overall or  average decoupling coefficient of the database, b, is the 
average of ai values where 1 i 5 m. It is hypothesized that the number of 

clusters within a database, nc, can be obtained as 

n = b x  m= 
c 2i i =I 

It is shown that the value range for nc indicaled by b is 1 I nc 5 min(m, n). The 

average number of documents within a cluster would be m/nc= m/(6 x m)= 118. 

The concept of decoupling coefficient indicates that she increase in 2, o r  
individual bi (1 c i ( m) will increase the number of clusters and hence 

decrease their average size. (Remember tbar the number of clusters is 
nothing but the summation of individual decoupling coefficients.) When 
generating clusters nc number of documents are selected as cluster seeds and 

non-seed documents are assigned to seeds which cover them maximally. 
The use of CC related concepts for clustering and cluster maintenance can be  

found in various publications [CAM87c, CAN88, OZKA86aJ. 


