
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Graphical Programming of Simulation

Models in an Object-Oriented

Environment

Mufit Ozden
Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/67

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1988-005

Graphical Programming of Simulation Models
In an Object-oriented Environment

Mufit Ozden

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

GRAPHICAL PROGRAMMING OF SIMULATION MODELS

IN AN OBJECT-ORIENTED ENVIRONMENT

Muf i t Ozden
Systems Anal y si s Department

M i arni Uni v e r s i ty
Oxford, Ohio 45056

Working Paper #88-005 J u l y 1988

1988 USAF-UES SUKMER FACULTY RESEARCH PROGFW?I/

GRADUATE STUDENT RESEARCH PROGRAM

Sponsored by the

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

Conducted by the

Universal Energy Systems, Inc.

FINAL REPORT

GRAPHICAL PROGW@!l.IING SSfVIULATION MODELS
IN OBJECT-ORIENTED ENVIRONMENT -

by

Muf it H. Ozden

Department Systems Analysis

MIAMI UNIVERSITY

Oxford, OH 45056

Phone: (513) 529 - 5937

Research Location: AFHRL / LRL
Wright Patterson AFB
Dayton, OH 45433

USAF Researcher : Douglas A. Popken

Date : May 9 - July 15, 1988

Contract No: F49620-87-R-0004

GRAPHICAL PROGRAMPIING SIMULATION MODELS

IN OBJECT-ORIENTED ENVIRONMENT -
by

Mufit H. Ozden

ABSTRACT

Graphical programming has been used in conjunction with

conventional simulation languages via block diagrams or activity

networks. Its beneficial effects on programming and modeling in

simulation have been accepted by everyone involved in these

languages. However, none of these conventional techniques is

truely interactive. Given the level of the current hardware and

software technology, it is possible to design a very good

graphical programming system which supports an interactive

incremental programming style in specifications of simulation

models. The benefit of such a visual system would go beyond the

modeling phase of a simulation study and it might as well be

realized in understanding the behavior of complex problems, in

being a communication and training medium for the user and

developers, and finally in presenting the simulation results.

In this study, the graphical programming methodology has

been investigated from the perspective of object-oriented

simulation. The truely interactive and graphical orientation of

some of the object-oriented languages (e.g., Smalltalk-80) has

opened up new avenues of research in this very important topic.

Today, the nature of this type of research will be not whether it

can be done but how the known techniques should be combined to

yield the highest benefit.

Acknowledsements

I wish to thank the Air Force Systems Command and Air Force

Office of Scientific Research for sponsorship of this research. I

also would like to thank Universal Energy Systems for their

administrative work and concern for arranging a suitable

environment for the summer faculty.

I found my summer experience totally enriching and

stimulating. Capt. Douglas Popken was most informative and

helpful in defining the research problem area and in discussing

the developing ideas. The concern of The Branch Chief Ms. Wendy

Campbell is most sincerely appreciated. The family atmosphere at

AFHRL/LR was most welcome, and was an enjoyable environment for

my summer research for which I would like to extend my thanks and

appreciation to the division commander Col. Donald C. Tetmeyer

and the technical director Mr. Bert Cream.

I. INTRODUCTION

AFHRL/LRL is currently undertaking a study that will expand

the capabilities of the Air Force in analyzing logistics support

systems. As a part of the Productivity Improvements in Simulation

Modeling (PRISM) project, the system currently under study is an

Integrated Model Development Environment (IMDE) which will create

a state-of-art development and test environment for the various

simulation models of capability assessment. The IMDE will consist

of an integrated set of hardware and software tools which support

model specifications, model development, and model verification

as well as specific function such as data retrieval and update.

An important feature of such an environment is the user-friendly

interface programs between the user and the simulation language.

To this end, the development of a graphical programming facility

will be evaluated for object-oriented simulation. The graphical

elements should be manipulated with friendly hardware tools, such

as a mouse or touch sensitive screen. The graphical models thus

created will be translated into executable simulation programs

automatically. A running simulation program should be observed in

several views focused on different aspects of the simulated

world.

11. OBJECTIVES OF THE RESEARCH EFFORT

The main goal of the summer research has been directed

towards an exploratory investigation of graphical programming for

object-oriented simulation. Graphical programming for simulation

in the object-oriented environment is very new and has not been

studied specifically in the research literature. At the current

conceptual development stage of the PRISM project, it is

considered to be the most suitable goal to study the general

interface features of the object-oriented languages and the

graphical programming in the conventional simulation languages

and to recommend future research directions on a promising

graphical methodology for the IMDE.

In the light of the above research goal, the following

activities were identified for the summer research study:

i) Review of the related literature on object-oriented

programming and graphical programming of conventional

simulation languages.

ii) Evaluate Smalltalk-80 for graphical programming techniques.

iii) Formulate a graphical programming methodology that will be

investigated further in a future research effort.

111. S I ~ ~ T I O N IN AN OBJECT-ORIENTED ENVIRONMENT

Although the object-oriented paradigm is a relatively new

popular concept in software engineering, the idea of programming

based on objects was first developed in Simula (Dahl and Nygaard,

1966), which is a simulation extension to Algol-60 language. The

basic idea is to modularize the programming tasks on the basis of

abstract or physical objects of the system. The data structures

and methods associated with an object are encapsulated within the

object so that the only way its data can be accessed or changed,

or one of its methods can be invoked, is via sending an

appropriate message to the object. Thus, programming in this

paradigm involves creating the proper sequence of the messages to

be passed among the objects as well as creating the object

themselves. An object-oriented language comes with its own

abstract classes of objects to provide a programming environment.

The inheritance of the data structures and methods from the

superior classes is one of the most important characteristics of

the object-oriented environments. This provides a flexible

programming environment that is organized in a hierarchical

structure of object classes with reusable programs.

The object-oriented paradigm creates an excellent simulation

environment in which the objects of the simulated world can

interact with one another according to the predetermined behavior

patterns in the closest way to their physical nature. This is a

higher level of abstraction and more natural than it is possible

with the procedure-oriented simulation languages, (Shannon,

1987). Any system that we try to simulate can be viewed as a

collection of interacting objects . These objects can be
categorized into classes of different kinds of objects. Objects

created from each class will be similiar but not necessarily

identical. Simulation in the object-oriented environment

therefore entails decomposition of the problem into a set of

object classes with simple interactions. Modularity is strongly

supported because the internal implementation of these objects

need not concern the modeler, (Unger, 1986).

An object-oriented simulation approach would contain three

types of objects: domain independent abstract classes of objects,

domain dependent general classes and application specific

objects. Domain independent objects provide a simulation

environment which describes the behavior of the generic model

components common to all simulations, such as probability

distributions that generates the random events. Domain dependent

objects describe the general model components which correspond to

the domain of application. They provide the templates for creation

of instances specific to the application area. Application

specific objects provide information about the particular

configuration of the components, and their processes that are

unique to a single application.

The object-oriented simulation programs make excellent

use of modularization, extensibility, and exploratory style of

programming as it is supported by the object-oriented

environment, Stairnmand and Kreutzer, 1988. The recent developments

in software engineering and hardware technology have enabled

the interactive programming techniques to be employed on the work

stations and some high-end personal computers, which form a base

for exploratory and incremental style of programming. These are

all essential elements of a rapid model development environment

for complex simulation problems. With the advent of the parallel

computers, speedups of several orders of magnitude should be possible

for large simulations if they are constructed with concurrency

in mind without hiding the parallelism inherent in problems.

It has been suggested that the future simulation environments

will be built on the object-oriented paradigm in which this

concurrency is a natural extension, Jefferson, 1984 and Unger, 1987.

IV. DIFFERENT SIMULATION STRATEGIES

The most important characteristic of a simulation approach

is the strategy employed in selecting the next event to be

executed and the time management. For this purpose, Three

different types of world views have been used to model simulation

problems - event scheduling, activity scanning and process-

interaction. Each world view emphasizes a different type of

locality - the property when all the relevant parts of a program

are found in the same place, Overstreet, 1987. Event scheduling

emphasizes locality of time. Each event routine describes a

collection of actions which may all occur in one instant.

Activity scanning emphasizes locality of state. Each activity

routine describes a collection of actions which will occur once

the certain conditions are reached. These resulting actions may

occur at different time points, but they must all occur. Process

interaction emphasizes the locality of object. Each process

routine describes all actions taken by one object.

The conventional simulation languages use one or allow a

combination of the world views. In general, the simulation

programs of US origin use either the event scheduling or process

interaction whereas those of British origin tend to prefer the

activity scanning view. However, it has been illustrated that

each world view allows simpler model specifications for some

problems, no one particular view is superior to the others,

Overstreet 1987, Hooper 1986, and OtKeefe 1986. Some conventional

simulation languages and their wold views are shown in Figure 1.

Event Scheduling Process Interaction Activity Scanning

GASP IV
SINSCRIPT 11.5
SLAM I1
SIMAN

GPSS/ H AS
SIMPSCRIPT 11.5 CSL
SLAP/ I1 ECSL
SIMAN SIMON
Q-GERT ESP
SIPllEJLA

Figure 1: Some simulation languages and their wold views.

According to Hooper 1986, the three world views including

the process interaction view that is usually employed by the

object-oriented simulations have the following characteristics:

Event scheduling:

* efficient execution with relatively independent entities
* very flexible with respect to scope and standard features.
* considerable model development effort is required some
event routines may have to be written in a general-purpose
language

Process Interaction:

* model representation is close to problem
* straight forward model development and modification
* greatest support from the simulation executive
* maybe, inefficient execution time

Activity Scanning:

* efficient execution for highly dependent entities
* considerable work is done by simulation executive
* inefficient execution for relatively independent entities

Any world view of simulation can be formulated in an object-

oriented environment. However, the process interaction approach

is most compatible with the object orientation where behavior

patterns can be written into the object definitions as another

method. This is the approach which has been employed by object-

oriented simulation languages, Demos (Birtwistle, 1979) and

Smalltalk-80 (Goldberg and Robson, 1983).

V. SIMULATION IN THE OBJECT-ORIENTED ENVIRONMENT OF SPIALLTALK-80

Here in this section, we would like to briefly describe how

the Smalltalk-80 environment (Goldberg and Robson, 1983) supports

discrete event simulation. Everything in Smalltalk is an object

and every object is an instance of a class. Classes are arranged

in a tree structure with each class having exactly one parent

class. The root class of the tree structure is "Object". A

subclass inherits all the variables and methods of parent class.

Simulation in Smalltalk is facilitated with the use of a

small set fa dozen or so) of abstract object classes. The modeler

uses some of these classes directly and/or may extend them

through creating their subclasses. In a simulation study, a set

of instances of these classes are formed to act according to the

behavior patterns ascribed to the objects in the particular

simulation situation as a combination of class methods inherited

and the instance methods added during modeling. The abstract

simulation classes can be grouped together into five categories:

simulation executive; simulation objects; resources; statistics-

gathering and monitoring classes ; basic support classes. These

domain independent simulation classes and their relationship are

shown in Figure 2.

The simulation executive has a single class, (Simulation)

which creates and oversees all the objects in simulation as well

as managing the time-ordered list of the future events over the

simulated clock,time. Usually, the modeler creates one instance

of this class to manage a particular simulated world. This

simulation executive creates resources and provides access to

them. At initialization and during simulation run, it schedules

the creation of instances of other simulation objects according

to a probability distribution of interarrival times or at

specified times.

Figure 2: The domain independent simulation classes for
the Smalltalk-80.

The class of the simulation objects (SimulationObject)

represents a general kind of entity (object) that has a set of

activities to perform during simulation. This class provides a

skeleton which the modeler will use as a basic template to

describe the objects which have some role to play in the

simulation. A simulation object may be a temporary entity such as

a 'customer' who must receive a list of services, or a permanent

entity, such as a server who can perform some activities. These

two types of simulation objects must coordinate the common

activities through the next category of simulation classes. When

a simulation object is denied the resource it has requested for some

operation, its process is suspended until the resource becomes available

The third category of simulation classes is the resources

(Resource) which have some general methods to manage and

coordinate resources to be used in a simulation situation. Its

subclasses are ResourceProvider and ResourceCoordinator. The

class ResourceProvider manages both the resources that are

created in fixed amounts during initialization phase by the

simulation executive, and the resources that are produced and

consumed during simulation . When a simulation object needs a
resource to carry out its activity, it sends a message to the

current simulation executive to that effect. The simulation

executive in turn establishes the connection between the

simulation object and the appropriate instance of the

Resource~rovider which manages the type of the resource

requested. The resource provider queues up the request with

respect to the priority and within the same priority class it

processes the requests on the basis of FCFS as the resource

becomes available.

The subclass ResourceCoordinator provides synchorinization

of the tasks among more than one simulation objects, e.g., among

the customers and a server. It does this by means of keeping the

tracts of the customers' requests and serverst availabilities in

a queue. At any one time this queue will consist either entirely

of servers or entirely of customers.

There are various ways of collecting statistics and

monitoring the activities of the objects. Goldberg and

Robson,1983 created four abstract classes for this purpose -

SimulationObjectRecord, Histogram, EventMonitor and Tally. These

are the subclasses of the SimulationObject or create a file in

order to store data. The type of the statistical data can be

gathered is the entrance, exit and processing times of the

simulation objects, the number of simulation objects that spend

time within prespecified limits during simulation. In addition,

the tallies of special events can be kept and any major events

can be monitored completely.

The last fifth category of simulation classses is the

remaining support classes which make possible the functions of

the first four categories. The class DelayedEvent is used to

delay the actions of the blocked objects as a package of

suspended processes to a future time until the appropriate

resource becomes available or synchronization among the

simulation objects are possible. The various distribution classes

are also defined to generate events from a set of probability

distributions.

In summary, Smalltalk seems to provide an excellent support

for discrete event simulation with its reusable classes and the

graphics input and output capabilities. Smalltalk simulation

environment provides the user with very powerful coding and

debugging tools, leading to high productivity in writing and

modifying simulation applications. This same conclusion has also

been arrived by different researchers, (Knapp, 1987; Bezivin,

1987; Ulgen and Thomasma, 1986). A small simulation problem

programmed in Smalltalk is given in Appendix B.

VI. VISUAL INTERACTIVE SIMULATION

A visual interactive simulation (VIS) is a term for a

simulation which has features for specification of the model

graphically, produces a dynamic display of the system model, and

allows the user to interact with the running program, (OIKeefe,

1987: Hurrion, 1986). Thus, a VIS system typically provides

facilities for:

i) Graphical Programming: where a model can be created visually

on the screen in an interactive style.

ii) User Interaction: allows the user to interact with the

running program. Interaction can be such that the simulation

halts and requests information from the user, or the user stops

the simulation at will and interacts with the program.

iii) Visual Display: portrays the dynamic behavior of the system

on the screen. Figure 3 depicts the roles that these features

play in a simulation study.

Figure 3: The role of Visual Interactive Simulation in

a typical simulation study.

The General Benefits Attributed to VIS: The research

attributes various observed benefits to VIS, (Hurrion, 1986;

OtKeefe, 1987; Sargent, 1986; Ozden, 1988; Browne et al. 1986).

The following are the most frequently cited benefits:

a) The graphical display becomes a communication medium that

provides a common base between the developer and the user for

discussion on development and experimentation. It is an excellent

presentation medium for the results.

b) There is a lot to learn in understanding the behavior of a

complex system by experimenting with the simulation model. Thus,

VIS can be a teaching tool as well as an analysis tool.

c) The user can be incorporated into the model with the model

determined interactions. In this way, the decisions that are too

difficult to be handled by the model alone can be referred to the user.

d) The graphical techniques can be a useful means of detecting faults

in coding and logic. The visual monitoring of the simulated behavior

makes use of the powerful ability of the human brain to recognize

logical and spacial relationships in detecting aberrant behavior.

e) VIS can increase the model validity and thereby the model

credibility. Especially for the unobservable systems, where comparison

between the system and model behavior is impossible, VIS may play

an important role in building user confidence.

VII. GRAPHICAL PROGRAMMING

Modeling a simulation problem is a complex task demanding

both the creative ability of the modeler and the support tools

of the development environment . This step basically involves
translation of the conceptual problem into a program which is

executable by the computer. In simulation jargon, the modeler

first needs to identify the temporary and permanent entities, and

their data structures, as well as the behavior patterns that will

closely resemble the particular problem setting under study, and

then define appropriate representation forms for them in the

simulation language.

Graphical programming is expected to meet the following

objectives when used in a simulation environment:

a) Facilitate easy use of the simulation environment.

b) The graphical programming should itself be easy to use.

c) Modeler's productivity should be increased.

d) It should minimize programming error.

e) It should facilitate easy visualization of the conceptual problem.

These objectives are certainly not in conflict with each other,

and an improvement of one may mean some betterment of the others.

In an object-oriented simulation where the domain

independent-object and domain dependent-object classes exist in

the programming environment, the modeling phase amounts to

creating the application-specific classes and the instances of

all relevant classes at the proper simulated time, and defining

the behavior patterns (processes) of the objects in terms of the

methods that already reside within the objects. Although

existence of the object classes with the proper data structures

and methods for simulation is a very convenient environment for

modeling, it is still a challenging job to define the application

specific classes and objects with the correct processes in terms of

the programming language. It requires a good deal of working

knowledge with the underlying language. A better interface is a

graphical programming in which the user deals with the underlying

language indirectly in an easier and more natural way. By means

of graphs, icons, menus, windows and forms, a graphical

programming interface can lead the user to the model

specification with a sequence of visual and textual cues

minimizing deviations from the correct translation of the

conceptual problem.

In this respect, graphical programming is an unrivaled aid

for human beings to observe the spatial and logical relationships

among the simulation objects. Graphical programming may take

various forms depending on the domain, and the hardware and

software being used. The graph of spatial symbols, icons, menus

and forms, and their combination is frequently used . We will
review the graphical programming approaches developed and being

considered in some simulation systems currently under development

below.

Ideally, a graphical programming of simulation should be

performed in such a natural and simple manner with (visual

tools and perhaps aided with a natural language processor) that

the modeler will be faced with a task compatible to the human

cognitive process necessary to expain the conceptual problem to

another human being. At the same time, an intelligent workstation

should oversee this process to catch the bugs and inconsistencies

in programming. Probably, a generalized modeling environment will be

realized in the late 1990's. In the near future, we have to be

content with the domain specific systems where we can achieve

comparibly good results.

The current graphical programming approaches can be classified

in three groups: i) Network and block diagrams; ii) Icons, menus,

forms and windows; iii) Dialogs and tree structured menus. We are

going to describe these systems in the following sections.

Network and block diagrams have been used as a modeling

and communication aid in conventional simulation languages,

such as GPSS, SLAM, SIMSCRIPT, and SIMAN etc. Here, the

activities which each temporary entity (customer, transaction,

or job) performs with the permanent entities (facilities,

resources or stages) are described by the use of a sequence of

blocks or a network of nodes. Each block or node represents a

macro-code in the host language. In this way, computer

programming is facilitated in chunks of codes taken at each step

in addition to the visual help. Most of these simulation

languages are oriented towards simulating queueing systems and

they have wide application areas. They tend to have the view of

the facilities in programming rather than the individual

transactions. The transactions are usually dealt with in

aggregate and probabilistic manner if possible, and the average

facility performance (such as the percentage busy-time or the

average waiting time at a facility etc.) is the main concern.

Almost all of them now have an automatic translation feature which

loads the network or block diagram as an executable code. Some

even offer an interactive graphical programming feature for the

restricted domains (e.g., flexible manufacturing systems) that

can also display the animated view of the simulation, such as

SIMAN/CINEMA and SLAM/TESS .
The number of allowable blocks or nodes may be quite large,

(e.g., over 60 for GPSS) . So the modeler's job is to find the

right sequence of these macro elements with the correct parameter

assignments. This is usually not a straight forward task and it

may even require some external subroutines to be written in

another programming language. SIMNET (Taha, 1987) reduces the

number of these macro elements to a set of only four essential

ones, and claims that this eliminates the need for external

programming since it is possible to program the physically

parallel processes in a parallel manner, and it is friendlier

since one has to deal with only a few elements. This is a step in

the right direction. But none of these simulation languages has a

truly interactive graphical programming yet.

Icons, menus, forms and windows are the interface mode that

has originated from the past artificial intelligence research

because of the critical need for friendlier interfaces, This type

of programming is the usual programming style for some modern

languages, such as Smalltalk-80. But, it is better known as the

Macintosh interface mode by the general public. Especially with a

pointing device such as a mouse, it is a lot friendler than

key-board entry of data. Icons facilitate easy programming for

the frequently used pieces of computer codes, with a single

pointing action. Menus, on the other hand, offer alternative

choice of operations on fixed menu items as a pull-down menu,

or as a pop-up menu on the user request for a different course

of action. Windows are usually used for parallel views and

programming of the different parts of a computer code. Forms are

for inputing standard information in a template form. Any

combination of these interface modes are possible and widely

used, e.g., icon/menu or window/form. This turns out to be

especially a very convenient interface mode for the object-

oriented languages in which flexible, and reusable parts of codes

form the main program structure of the language, (as used in the

paper by Cox and Hunt 1986, these are the Software-ICs just like

the silicon chips in an electronic circuitry.)

In simulation, this type of programming style has been used

in specific application areas, such as computer performance

evaluation or manufacturing, (e.g., Melamed and Morris, 1985;

Browne, et al. 1986; Sinclair et al. 1985; Duersch and Laymon,

1985; Stanwood et al. 1986).

Dialog-based programming is new in simulation. It has been

developed as a part of a simulation environment, (Unger et al.

1984; Birtwistle and Luker, 1984). It originated from the idea

that all simulation programs have a structured form of

specifications no matter what the application area is. Therefore,

a structured dialog with the user can be prepared beforehand to

obtain the necessary information for any simulation model. In the

dialog, the user is first asked for the process types and other

global data and then requested to input the process details.

Through the dialog, an intermediate representation of the model

is built and is then run under an interpreter which may present

different graphical views of the simulated world with icons and

windows for verification purpose. Once the verification phase is

completed the intermediate form is used to generate a compiled

code for speed of execution. A different form of dialog style

programming is also developed for simulation in a restricted area

by Ingalls, 1986, Here, the dialog is based on a set of menus

structured in the form of a tree. The user chooses a path of

model specification from the root of the tree towards the lower

branches pointing his choices from the menus.

VIII. GRAPHICAL PROGRAMNING FOR OBJECT-ORIENTED SIMULATION

It is important to understand that the software technology

for graphical programming and object-oriented systems in general

is fairly new and therefore the ideas and methodologies need to

be tested in prototype systems before a full scale production

system is attempted for developement. However, this orientation

has many fruits to bear for the systems under development as well

as for the future other systems, It has become apparent now that

the software systems are the bottlenecks in modern technologies

and the old paradigms do not comprise a solution to this problem.

In this sense, graphical programming in the object-oriented

simulation environment is future oriented and experimental in

nature. In the light of all these facts, we propose a tentative

graphical programming methodology below that needs to be examined

with prototype problems close enough to the domain area. This

methodology may have to be modified or expanded as discrepences

are observed with these experiments. For the prototyping

environment, a typical object-oriented language with nice and

full features of the object-oriented enviroment should be chosen

so that the transfer of the methodology into the ultimate

language of the IMDE will be least painful.

In an object-oriented simulation, the global simulation data

(such as, the number of temporary and permanent entities involved,

and the total simulation duration, etc.), the topology (objects

and their relationships), and the behavior of each object have to

be defined during the model specification phase. Here in this

section, we will describe a possible graphical programming for an

object-oriented simulation environment in a rather speculative

style. The exact form of a graphical programming application

would depend upon various factors including how a set of

graphical and textual features will be selected on the basis of

the objectives stated in the previous section as well as the

hardware and software being used. Of course, a specific

application domain can be supported better than a general purpose

simulation environment. Here, we assume that the IMDE will

primarily be a rectricted simulation domain of capability

assessment of logistics support systems.

The minimum requirements of a graphical programming for an

object-oriented simulation system should cover the following:

a) A graphical programming editor to create new object classes

and graphical elements (icons, menus and forms etc.) to be stored

in the simulation lllibraryM (data base for persistent objects,

and to edit the old objects from the library and the simulation

applications saved in the form of graphical models. It should have

a "dictionaryw access to this library of objects. The dictionary

could be for most part iconic and organized in some hierarchical

fashion for easy access.

b) An interpreter to translate the graphical models to be created

with the editor into the computer executable form .
c) View builder: the style of model development in this

environment will be mostly exploratory and incremental. The

objects and their relationships as created in part (a) should be

able to be viewed graphically in a static manner (e.g., activity

cycle diagrams). When the programs are run, the simulation with

different object views should be observed possibly dynamically to

facilitate verification of the model created so far. If the

programs need to be modified the graphical models stored in a

file should be reloaded.

A typical scenario of graphical programming in the object-

oriented simulation will be depicted below. Since the global

simulation data input will be conducted in a standard way for all

simulation applications , this phase can be facilitated filling

standard forms interactively on the screen. If the simulation

has already been created or it is going to be some modified

version of an old simulation program, the graphical model or the

compiled code of the simulation will be reloaded from a file.

Since it is assumed that the simulation environment will

have a restricted domain of application, most of the classes and

subclasses of the objects needed for the particular application

will be found in the objects library that can be accessed with

the dictionary. Thus, when one identifies a temporary entity that

will take place in simulation ,say a particular type of airplane,

the icon representing that object is looked up in the dictionary

of temporary entities, and the appropriate button of the mouse is

clicked on the icon. This action will load the object into the

graphical programming environment from the data base and at the

same time on the screen the user sees a form that prompts him to

fill the related information, such as the number of airplanes of

the selected type, how they will enter the simulated world (e.g.,

type of the interarrival distributions) and the number and types

of processes in which this particular object will be involved,

etc. If some particular information about an item of the object

refers to some existing data in the environment, the help can be

obtained by means of a menu which offers alternatives and in turn

when one is selected asks for more detailed information on that

particular item, e.g., the distribution and then its parameters.

All the elementary operations necessary to define a process

that an object may perform will already have been defined at the

creation of the object. During the process definition phase of an

object in graphical programming, all the methods that may take

part in process definition and the resources defined so far can

be presented as menus. When a method is selected from this menu,

the proper parameter settings may be asked automatically. If a

new type of resource is needed from the resource dictionary it is

loaded into the simulation world and an account of used resources

is kept. Later on, the necessary parameter definitions of these

resources will be asked from the user automatically. The

simulation world thus defined is converted into an internal

representation form.

The behavior pattern (processes) of object cannot be defined

unless the object always behaves in the same manner in which case

this can also be incorporated in the library definition. For

example, the mission of an airplane will most probably change

from application to application. However, as noted elsewhere (

Birtwistle and Luker, 1984) , the structure of behavior patterns

of objects is regular and is composed of a set of processes, each

of which in turn demands a certain amount of a resource, holds it

for some time and then returns some amount of the same resource.

In fact this well structured behavior forms the basis for the

graphical representation known as the activity cyle diagrams,

Birtswistle, 1979.

The view builder of the graphical programming should be able

to display different views of the simulated world. For example,

an activity cycle diagram for each primary object could display

the processes and its relationship with the resources graphically

on the screen ; or a resource view could present all the

temporary entities that use a particular resource graphically on

the screen. Such orthoganal views of a simulation application may

reveal a lot for verification purpose. At the same time, these

views may be used to observe the dynamic behavior of the objects.

For example, the resource view may show all the objects that are

using different types of resources and the objects that are

blocked due to lack of resources at each discrete time as

animated graphics. Once the simulation modeling is completed, the

intermediate form (graphical model) would be saved and be

compiled for experimental runs.

In a real-life simulation case, there may be thousands of

objects that need to be defined for the simulation world, But most

of these objects will probably remain the same from one

application to another and will not get involved with the other

objects in complex interactions. Therefore, it may be very

helpful to modify a copy of the closest simulation application

stored on a file rather than creating it from scratch. This

modifiability (reuseability) of the old programs is another asset

of the object-oriented paradigm which will affect programmer's

productivity a great deal.

IX. RECOmENDATIONS

As a result of this summer research on graphical programming

in object-oriented simulation, the following main points of

opinion are formed:

a) Interactive graphical programming should be an integral

part of the model development environment and it should

support incremental programming, and load the graphical

model automatically for execution. The object-oriented

environment is compatible with and fully supportive of such

a feature.

b) In the graphical programming, the model specification effort

should be guided with icons, menus, forms and windows. There

are many ways of combining these visual aids. The best design

for a particular domain can be achieved through

protototyping small problems in the domain.

c) Another important component of the graphical programming

is a facility which will display different graphical views

of the simulated "worldw. This will especially be helpful for

verification purpose as well as reviewing typical

applications saved on the files.

REFERENCES

Bezivin, J:, llTimelock: A Concurrent Simulation Technique and its
Description in Smalltalk-80,Conf. of 1987 W. Simul.Conf.,l987.

Birtwistle, G.M.,Discrete Event Modellinq on Simula, MacMillan, 1979.

Birtwistle, G. M. and P. Luker, tlDialogs for Sim~lation,~~
Proc. Of Conf. on Simul. in S. Typed Lana., San Diego, 1984.

Birtwistle, G. M., B. Wyvi11,D. Levinson and R. Neal,
wVisualising a Simulation Using Animated PicturesItl Proc.
of Conf. on Simul. in S. Typed Lang., SanDiego, 1984. -

Browne, J. C., J. E. Dutton and D. M. Neuse, "Introduction to
Graphical programming of Simulation Models,It Proc. of 1986
S. ~imul. cornxi. ~onf,, 1986. -

Cox, B. and B. Hunt, llObjects, Icons, and Software-ICs, Bvte, 1986.

Dahl, 0. J. and K. Nygaard, "SIMULA: An Algol Based Simulation
Language," Comm. of %MI Vol. 9, 1966.

Duersch, R. R. and M. A. Laymon, "Programming-free Graphic Factory
Simulation with GEFMS/PC, I1Proc. of 1985 W. Simul. Conf. 1985.

Goldberg, A and D. Robson, Smalltalk-80: The Lanquaae and Its
Implementation, Addison Wesley, Reading , Mass, 1983.

Hooper, J. W., "Srategy-related Characteristics of Discrete-event
Languages and ModelsItt Simulation, Vol. 46, 1986.

Hurrion, R. D., wVisual Interactive Modelling,It EJOR,Vo1.23,1986.

Ingalls, R. G., vAutomatic Model Generation,I1 Proc. of 1986 W,
Simul. Conf., 1986.

Jefferson, D., "Future Directions in Simulation at the Conference
on Simulation in Strongly Typed Languages (Panel)," Proc. Qf
Conf. on Simul. in &, Typed Lana., SanDiego, 1984.

Knapp, V. ! "The Smalltalk Simulation Environment, It Proc. of 1987
W. Slmul. Conf., 1987.

 ath hew son, S. C. , llSimulation Program Generators: Code and
Animation on a P.C.," J. of 0 ~ 1 . Res. Society, Vo1.36, 1985.

Melamed, B. and R. J. T. Morris, "Visual Simulation: The
Performance Analysis Workstation,"Com~uter, IEEE, Vo1.18, 1985.

OIKeefe, R. H., "What is Visual Interactive Simulation ?
Proc. of 1987 W. Simul. Conf., 1987.

Overstreet, C. M., "Using Graphs to Translate Between World Views,"
Proc. of 1987 W. Simul. Conf., 1987.

Ozden, M., I1A Simulation Study of Multi-load-carrying Automated
Guided Vehicles in a Flexible Manufacturing System," Int. J.
Prod. Res., Vo1.26, 1988,

Pegden, C. D., Introduction to SIMAN, Systems Modelling Corp.,1985.

Popken, D. A. , I1The Productivity Improvements in Simulation
Hodelling (PRISM) Project : Concepts and Motivation, Draft
Report, AFHLR / LRL, WPAFB, 1988.

Pritsker, A. A. B., Introduction to Simulation and Slam a,
Halsted Press, 1984.

Rothenberg, J., "Object-oriented Simulation: Where Do We Go From
Here ?", Proc. of 1986 W. Simul. Conf.! 1986.

Sargent, R. G., "The Use of Graphical Models In Model ValidationIt'
Proc. of 1986 W. Simul. Conf,, 1986.

Schriber, T. J., Simulation Usinq GPSS, 3-Wiley and Sons,NY, 1974.

Shannon, R. E., @@Models and Artificial Intelligence, " Proc. of
1987 Winter Simul. Conf. , 1987.

Sinclair, J. B., K. A. Doshi and S. Madala, "Computer Performance
Evaluation with GIST: a Tool for Specifying Extended
Queueing Network Models,@1 Proc. of 1985 W. Simul. Conf., 1985.

Stairmand, M. C. and W. Kreutzer, "POSE: a Process-oriented
Simulation Environment Embedded in Scheme," Simulation, Vol.
50, 1988.

Stanwood, K. L., L. N. Waller and G. C. Marr, *@System Iconic
Modeling Facility," Proc. of 1986 W. Simul. Conf. 1986.

Stefik, M. and D. G. Bobrow, "Object-oriented Programming: Themes
and Variations," The &J Maqazine, Vol. 6, 1986.

Taha, H.A.,"SIMNET Simulation LanguagermProc.of 1987 W.Simul.Conf.,l987.

Thomasma, T. and 0. M. Ulgen, "Modeling of a Manufacturing Cell
Using a Graphical Simulation System Based on Smalltalk-80,
Proc. of 1987 W. Simul. Conf., 1987.

Ulgen, 0. M. and T. Thomasma, wSimulation Modelling in an Object-
oriented Environment Usinq Smalltalk-80, '@ Proc. of 1986 W. -
Simul. Conf., 1986.

Unger, B., G. Birtwistle, J. Cleary, D. Hill, G. Lomow, R Neal,
M. Peterson, I. Witten, and B. Wyvill, " JADE: A Simulation
and Software Prototyping Environment," Proc. Of Conf. on
Sim. in $. Typed Lanq., SanDiego, 1984. --

Unger, B. W., @lSimulation Environments & Paralleli~m,~~ in
Simulation Environments of the 1990's (Panel), Proc. of 1987
W. Simul. Conf. , 1987. -

APPENDIX A

THREE WORLD VIEWS OF SIMULATION AND THEIR RELATIONS

In order to clarify the distinction between the different

word views assumed by simulation programs, we demonstrate them

with an example problem . This explanation is basically adopted
from Overstreet's paper (Overstreet, 1987): the problem is

somewhat simplified and some mistakes in the original paper are

corrected and the pseudocode is also modified. Lets consider the

following simple production problem.

Problem: Parts arrive for processing by a single machine.

Processing is sometimes interupted due to machine failure. The

parts that have their processing interupted will be finished once

the machine resumes operation. Interarrival times, machine

processing times and inter-machine-failure times are randomly

distributed. Estimate the amount of time required to process a

fixed number of parts.

The formulation of this problem into the models of the three

world views are achieved in the same three steps: i)

identification of valid model actions, ii) grouping these into

event, activity, or processes (depending on the world views), and

iii) simplification of the individual event, activity or process

descriptions.

After analysis of the problem, for the first step of

formulation, the following actions groups can be identified:

Step i)
conditions (events) actions

initialization (IN) Create (parts)
Create(machine)
Initialize(statistics)
Setup (partArriva1)
Setup (machineFailure) ...

termination (TE) Report (statistics)
#finishedParts = N Stop ...

partArriva1 (PA) Setup (partArriva1)
Add+l (queue) ...

beginservice (BS) Add-l(queue)
Setup (endservice) ...

endservice (ES) Add+l(#finishedParts) ...
machineFailure (MF) Determinestatus(machine)

busyFailure= BF
or idleFailure= IF ...

busyFailure (BF) rernainTime <-- endservice - clock
Cancel(endservice)
Setup(endBusyRepair) ...

idleFailure (IF) Setup(endIdleRepair) ..
endBusyRepair (BR) Setup (machineFailure)

Setup (endservice) ..
endIdleRepair (IR) Setup(machineFailure)

Step ii) Grouping of the events into the appropriate event,

action or processes can be facilitated with the event-

incidence-diagram. The nodes represent events and there

...... are two types of links conecting these nodes: 11

denotes the ability of one event to cause the occurence

of another at a future instance; It----I1 denotes the

ability of one event to cause the intantaneous

occurrence of another.

a) To create the event scheduling world view, identify all

the events can occur at the same time point - the events that are

linked with the dashed lines in the event-instance-diagram.

Pseudo-code for the event scheduling view: as an event

becomes current in the future event list that is maintained by

the simulation executive, perform the associated operations shown

below.

initialization (IN) partArrival (PA)

Create (part)
Create(machine)

Setup (PA)
If machine (idle) ,Setup (ES) and

set (machine, busy) ;
Initialize(statistics)
Setup (PA)
Setup (MF)

endservice (ES)

Add+l(#finishedPart)
If #finishedPart = N,

Report (statistics) , Stop;
Else if queue > 0,

Else Add+l(queue)

machineFailure (MF)

If machine (busy) ,
remainTime <-- endservice

- clock,
Cancel (ES) ,

Add-1 (queue) , Setup (ES) ; Setup (BR) ;
Else set (machine, idle) . Else Setup (BR) .

endBusyRepair (BR)

Setup(ES, repairTime),
Setup(MF)

endIdleRepair (IR)

Setup (MF)
If queue > 0, Add-1 (queue)

Setup(ES) .

b) To create the activity scanning world view, identify all the

activities that can occur some time later once a specified event

has occurred : the activities that are represented with the

dotted lines in the event-instance-diagram. Scan these

activities for the their occurrance times in the future event

list, as the clock is updated.

I - _ _ - _ ,

Pseudo-code of the activity scanning world view will be:

initialization activity

Create (part)
Create(machine)
Initialize(statistics)
Concurrentwait(ES)
Concurrentwait(MF)

service activity (condition: queue > 0, machine(id1e))

Add-1 (queue)
Wait (ES)
Add+l(#finishedPart)

termination activity (condition: #finishedPart = N)

Stop

busy machine failing activity (condition: (MI?), machine(busy))

remainingTime <-- endservice - clock)
Cancel (ES)

Wait (BR)

idle machine failing activity (condition: (MF), machine(idle))

Wait (IR)

busy machine repairing (condition: (BR))

Concurrentwait (MF)
Concurrentwait(ES, remainingTime)
Add+l(#finishedPart)

idle machine repairing (condition: (IR))

Wait (MF)

c) To create the process interaction world view of the

problem, identify the objects which are undergoing processes:

system, parts and machine.

System Parts ~achine

System Process

Create (part)
Create(machine)
Initialize(countstats)

Parts Process

Initialize(partstats)
Loop

Add+l (queue)
Hold(interarriva1Time)

End Loop

Machine Process

Loop
If machine(busy),

remainingTime <-- endservice - clock,
Passivate(machineProcess - 2),

Else
Hold (repairTime) ,
Activate(machineprocess-2)

End Else,
Hold(machineuptime)

End Loop.

Machine Process 2

Loop
WaitUntill(queue > 0 and machine(idle))
Set(machine, busy)
If Passivated

Hold(remainingTime)
Else Add-l(queue)

Hold(endProcessingTime)
Set (machine, idle)

End Else
Add+l(#finishedPart)
If (#finishedPart = N)

Report (statistics)
stop

End Loop

APPENDIX B

A SIMULATION EXAMPLE IN SMALLTALK-80

Here, we will prepare the classes and and subclasses

necessary to simulate a problem in Smalltalk-80 in order to

illustrate what is specifically involved in simulation in this

powerful environment. Also, this illustration will shed some

light on the question of how to set a simulation model in an

object-oriented environment, which will be the subject of the

following section.

We consider a ferry shuttling problem between an island and

a mainland, which was given as an example originally in

Birtwistle's Demos (Birtwistle, 1979) and also in the Smalltalk-

80 book (Goldberg an Robson, 1983).

Problem: A ferry operates 1000 minutes and stops at one of

the docking locations. A truck goes from the mainland to the

island in oreder to make deliveries, returns to the mainland to

get more supplies, and goes to the island again. The ferry can

carry as many as four cars in addition to the truck, but the

ferry will not cross across unless there is the truck to carry.

The crossing takes approximately 8 minutes with the standard

deviation of 0.5 minutes.

This example requires a coordination of SimulationObjects

representing the ferry and the truck; each has its own sequence

of tasks, but the truck cannot do its tasks without the

assistance of the ferry and the ferry has no tasks to do in the

absence of the truck. On the hand, cars will be treated as

intances of the StaticResource class.

Before we start defining the object classes for the fery

problem, it will be useful to prepare the activity diagram of

these objects involved in the problem. The activity diagram

represents the processes of two objects and their interactions .

Ferry Tuck

+
I

L ----- L-.. ----
unload a

I
I + -

I

I.
I

COOPT

First, we define the particular simulation executive,

Ferrysimulation which will manage the ferry problem as a subclass

of the abstract class Simulation.

class name
super class

~erry~imulation
Simulation

instance methods
initialization

defineArrivalSchedule
self scheduleArrivalOf: Truck new at: 0 .
self scheduleArrivalOf: Ferry new at: 0 .

defineResources
self coordinate: tTruckCrossingl

Note that all the necessary methods such as scheduleArrival~f

coordinate and many others need not be defined here since they

can be inherited from the super class Simulation which resides in

the simulation environment of Smalltalk-80. 'TruckCrossingl is

formulated as some sort of resource that is produced by the truck

object and aquired by the ferry object in order to complete their

common crassing tasks. In this way, the coordination between the

processes of the two objects is formulated in this problem.

class name Ferry
super class SimulationObject
instance methods
simulation control

tasks
I truckRequest I
[Activesimulation time > 10001 whileFalse:

[truckRequest <-- self acquireResource: 'TruckCrossingt.
self load.
self crossover.
self unload.
self resume: truckRequest]

load
self holdFor: 5.0

unload
self holdFor: 3.0

crossover
self holdFor: (Normal mean: 8 deviation: 0.5) next

Note here again that all we have to define the application

specific methods (load, unload, crossover and the sequence of

tasks , i.e., the process): all other methods (acquireResource,

holdFor, resume etc. are inherited from the super class), and

Normal is name of a class in SrriallTalk which generates events

from a specified normal distribution.

Now, we have to define the third object, Truck as a subclass

of the abstract class, Simulationobject.

class name Truck
super class Simulationobject
instance methods
simulation control

tasks
[true] whileTrue:

[self produceResource: sTruckCrossingf.
self deliverSupplies.
self produceResource: sTruckCrossings.
self pickupsupplies]

deliversupplies
self holdFor: (Uniform from: 15 to: 30) next

pickupsupplies
self holdFor: (Uniform from: 30 to: 45) next

Here again, we define the sequence of tasks and the

associated methods of the Truck specific to the problem at hand,

The method, holdFor will be inherited from the super class and

the distribution object (Uniform) which knows the rriethod next,

generates the process times with the associated parameters from

the uniform distribution.

