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ABSTRACT 

Graphical programming has been used in conjunction with 

conventional simulation languages via block diagrams or activity 

networks. Its beneficial effects on programming and modeling in 

simulation have been accepted by everyone involved in these 

languages. However, none of these conventional techniques is 

truely interactive. Given the level of the current hardware and 

software technology, it is possible to design a very good 

graphical programming system which supports an interactive 

incremental programming style in specifications of simulation 

models. The benefit of such a visual system would go beyond the 

modeling phase of a simulation study and it might as well be 

realized in understanding the behavior of complex problems, in 

being a communication and training medium for the user and 

developers, and finally in presenting the simulation results. 

In this study, the graphical programming methodology has 

been investigated from the perspective of object-oriented 

simulation. The truely interactive and graphical orientation of 

some of the object-oriented languages (e.g., Smalltalk-80) has 

opened up new avenues of research in this very important topic. 

Today, the nature of this type of research will be not whether it 

can be done but how the known techniques should be combined to 

yield the highest benefit. 
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I. INTRODUCTION 

AFHRL/LRL is currently undertaking a study that will expand 

the capabilities of the Air Force in analyzing logistics support 

systems. As a part of the Productivity Improvements in Simulation 

Modeling (PRISM) project, the system currently under study is an 

Integrated Model Development Environment (IMDE) which will create 

a state-of-art development and test environment for the various 

simulation models of capability assessment. The IMDE will consist 

of an integrated set of hardware and software tools which support 

model specifications, model development, and model verification 

as well as specific function such as data retrieval and update. 

An important feature of such an environment is the user-friendly 

interface programs between the user and the simulation language. 

To this end, the development of a graphical programming facility 

will be evaluated for object-oriented simulation. The graphical 

elements should be manipulated with friendly hardware tools, such 

as a mouse or touch sensitive screen. The graphical models thus 

created will be translated into executable simulation programs 

automatically. A running simulation program should be observed in 

several views focused on different aspects of the simulated 

world. 

11. OBJECTIVES OF THE RESEARCH EFFORT 

The main goal of the summer research has been directed 

towards an exploratory investigation of graphical programming for 

object-oriented simulation. Graphical programming for simulation 

in the object-oriented environment is very new and has not been 

studied specifically in the research literature. At the current 

conceptual development stage of the PRISM project, it is 



considered to be the most suitable goal to study the general 

interface features of the object-oriented languages and the 

graphical programming in the conventional simulation languages 

and to recommend future research directions on a promising 

graphical methodology for the IMDE. 

In the light of the above research goal, the following 

activities were identified for the summer research study: 

i) Review of the related literature on object-oriented 

programming and graphical programming of conventional 

simulation languages. 

ii) Evaluate Smalltalk-80 for graphical programming techniques. 

iii) Formulate a graphical programming methodology that will be 

investigated further in a future research effort. 

111. S I ~ ~ T I O N  IN AN OBJECT-ORIENTED ENVIRONMENT 

Although the object-oriented paradigm is a relatively new 

popular concept in software engineering, the idea of programming 

based on objects was first developed in Simula (Dahl and Nygaard, 

1966), which is a simulation extension to Algol-60 language. The 

basic idea is to modularize the programming tasks on the basis of 

abstract or physical objects of the system. The data structures 

and methods associated with an object are encapsulated within the 

object so that the only way its data can be accessed or changed, 

or one of its methods can be invoked, is via sending an 

appropriate message to the object. Thus, programming in this 

paradigm involves creating the proper sequence of the messages to 

be passed among the objects as well as creating the object 

themselves. An object-oriented language comes with its own 



abstract classes of objects to provide a programming environment. 

The inheritance of the data structures and methods from the 

superior classes is one of the most important characteristics of 

the object-oriented environments. This provides a flexible 

programming environment that is organized in a hierarchical 

structure of object classes with reusable programs. 

The object-oriented paradigm creates an excellent simulation 

environment in which the objects of the simulated world can 

interact with one another according to the predetermined behavior 

patterns in the closest way to their physical nature. This is a 

higher level of abstraction and more natural than it is possible 

with the procedure-oriented simulation languages, (Shannon, 

1987). Any system that we try to simulate can be viewed as a 

collection of interacting objects . These objects can be 
categorized into classes of different kinds of objects. Objects 

created from each class will be similiar but not necessarily 

identical. Simulation in the object-oriented environment 

therefore entails decomposition of the problem into a set of 

object classes with simple interactions. Modularity is strongly 

supported because the internal implementation of these objects 

need not concern the modeler, (Unger, 1986). 

An object-oriented simulation approach would contain three 

types of objects: domain independent abstract classes of objects, 

domain dependent general classes and application specific 

objects. Domain independent objects provide a simulation 

environment which describes the behavior of the generic model 

components common to all simulations, such as probability 

distributions that generates the random events. Domain dependent 



objects describe the general model components which correspond to 

the domain of application. They provide the templates for creation 

of instances specific to the application area. Application 

specific objects provide information about the particular 

configuration of the components, and their processes that are 

unique to a single application. 

The object-oriented simulation programs make excellent 

use of modularization, extensibility, and exploratory style of 

programming as it is supported by the object-oriented 

environment, Stairnmand and Kreutzer, 1988. The recent developments 

in software engineering and hardware technology have enabled 

the interactive programming techniques to be employed on the work 

stations and some high-end personal computers, which form a base 

for exploratory and incremental style of programming. These are 

all essential elements of a rapid model development environment 

for complex simulation problems. With the advent of the parallel 

computers, speedups of several orders of magnitude should be possible 

for large simulations if they are constructed with concurrency 

in mind without hiding the parallelism inherent in problems. 

It has been suggested that the future simulation environments 

will be built on the object-oriented paradigm in which this 

concurrency is a natural extension, Jefferson, 1984 and Unger, 1987. 

IV. DIFFERENT SIMULATION STRATEGIES 

The most important characteristic of a simulation approach 

is the strategy employed in selecting the next event to be 

executed and the time management. For this purpose, Three 

different types of world views have been used to model simulation 



problems - event scheduling, activity scanning and process- 

interaction. Each world view emphasizes a different type of 

locality - the property when all the relevant parts of a program 

are found in the same place, Overstreet, 1987. Event scheduling 

emphasizes locality of time. Each event routine describes a 

collection of actions which may all occur in one instant. 

Activity scanning emphasizes locality of state. Each activity 

routine describes a collection of actions which will occur once 

the certain conditions are reached. These resulting actions may 

occur at different time points, but they must all occur. Process 

interaction emphasizes the locality of object. Each process 

routine describes all actions taken by one object. 

The conventional simulation languages use one or allow a 

combination of the world views. In general, the simulation 

programs of US origin use either the event scheduling or process 

interaction whereas those of British origin tend to prefer the 

activity scanning view. However, it has been illustrated that 

each world view allows simpler model specifications for some 

problems, no one particular view is superior to the others, 

Overstreet 1987, Hooper 1986, and OtKeefe 1986. Some conventional 

simulation languages and their wold views are shown in Figure 1. 

Event Scheduling Process Interaction Activity Scanning 

GASP IV 
SINSCRIPT 11.5 
SLAM I1 
SIMAN 

GPSS/ H AS 
SIMPSCRIPT 11.5 CSL 
SLAP/ I1 ECSL 
SIMAN SIMON 
Q-GERT ESP 
SIPllEJLA 

Figure 1: Some simulation languages and their wold views. 



According to Hooper 1986, the three world views including 

the process interaction view that is usually employed by the 

object-oriented simulations have the following characteristics: 

Event scheduling: 

* efficient execution with relatively independent entities 
* very flexible with respect to scope and standard features. 
* considerable model development effort is required some 
event routines may have to be written in a general-purpose 
language 

Process Interaction: 

* model representation is close to problem 
* straight forward model development and modification 
* greatest support from the simulation executive 
* maybe, inefficient execution time 

Activity Scanning: 

* efficient execution for highly dependent entities 
* considerable work is done by simulation executive 
* inefficient execution for relatively independent entities 

Any world view of simulation can be formulated in an object- 

oriented environment. However, the process interaction approach 

is most compatible with the object orientation where behavior 

patterns can be written into the object definitions as another 

method. This is the approach which has been employed by object- 

oriented simulation languages, Demos (Birtwistle, 1979) and 

Smalltalk-80 (Goldberg and Robson, 1983). 



V. SIMULATION IN THE OBJECT-ORIENTED ENVIRONMENT OF SPIALLTALK-80 

Here in this section, we would like to briefly describe how 

the Smalltalk-80 environment (Goldberg and Robson, 1983) supports 

discrete event simulation. Everything in Smalltalk is an object 

and every object is an instance of a class. Classes are arranged 

in a tree structure with each class having exactly one parent 

class. The root class of the tree structure is "Object". A 

subclass inherits all the variables and methods of parent class. 

Simulation in Smalltalk is facilitated with the use of a 

small set fa dozen or so) of abstract object classes. The modeler 

uses some of these classes directly and/or may extend them 

through creating their subclasses. In a simulation study, a set 

of instances of these classes are formed to act according to the 

behavior patterns ascribed to the objects in the particular 

simulation situation as a combination of class methods inherited 

and the instance methods added during modeling. The abstract 

simulation classes can be grouped together into five categories: 

simulation executive; simulation objects; resources; statistics- 

gathering and monitoring classes ; basic support classes. These 

domain independent simulation classes and their relationship are 

shown in Figure 2. 

The simulation executive has a single class, (Simulation) 

which creates and oversees all the objects in simulation as well 

as managing the time-ordered list of the future events over the 

simulated clock,time. Usually, the modeler creates one instance 

of this class to manage a particular simulated world. This 

simulation executive creates resources and provides access to 

them. At initialization and during simulation run, it schedules 



the creation of instances of other simulation objects according 

to a probability distribution of interarrival times or at 

specified times. 

Figure 2: The domain independent simulation classes for 
the Smalltalk-80. 

The class of the simulation objects (SimulationObject) 

represents a general kind of entity (object) that has a set of 

activities to perform during simulation. This class provides a 

skeleton which the modeler will use as a basic template to 

describe the objects which have some role to play in the 

simulation. A simulation object may be a temporary entity such as 

a 'customer' who must receive a list of services, or a permanent 

entity, such as a server who can perform some activities. These 

two types of simulation objects must coordinate the common 

activities through the next category of simulation classes. When 

a simulation object is denied the resource it has requested for some 

operation, its process is suspended until the resource becomes available 



The third category of simulation classes is the resources 

(Resource) which have some general methods to manage and 

coordinate resources to be used in a simulation situation. Its 

subclasses are ResourceProvider and ResourceCoordinator. The 

class ResourceProvider manages both the resources that are 

created in fixed amounts during initialization phase by the 

simulation executive, and the resources that are produced and 

consumed during simulation . When a simulation object needs a 
resource to carry out its activity, it sends a message to the 

current simulation executive to that effect. The simulation 

executive in turn establishes the connection between the 

simulation object and the appropriate instance of the 

Resource~rovider which manages the type of the resource 

requested. The resource provider queues up the request with 

respect to the priority and within the same priority class it 

processes the requests on the basis of FCFS as the resource 

becomes available. 

The subclass ResourceCoordinator provides synchorinization 

of the tasks among more than one simulation objects, e.g., among 

the customers and a server. It does this by means of keeping the 

tracts of the customers' requests and serverst availabilities in 

a queue. At any one time this queue will consist either entirely 

of servers or entirely of customers. 

There are various ways of collecting statistics and 

monitoring the activities of the objects. Goldberg and 

Robson,1983 created four abstract classes for this purpose - 

SimulationObjectRecord, Histogram, EventMonitor and Tally. These 

are the subclasses of the SimulationObject or create a file in 



order to store data. The type of the statistical data can be 

gathered is the entrance, exit and processing times of the 

simulation objects, the number of simulation objects that spend 

time within prespecified limits during simulation. In addition, 

the tallies of special events can be kept and any major events 

can be monitored completely. 

The last fifth category of simulation classses is the 

remaining support classes which make possible the functions of 

the first four categories. The class DelayedEvent is used to 

delay the actions of the blocked objects as a package of 

suspended processes to a future time until the appropriate 

resource becomes available or synchronization among the 

simulation objects are possible. The various distribution classes 

are also defined to generate events from a set of probability 

distributions. 

In summary, Smalltalk seems to provide an excellent support 

for discrete event simulation with its reusable classes and the 

graphics input and output capabilities. Smalltalk simulation 

environment provides the user with very powerful coding and 

debugging tools, leading to high productivity in writing and 

modifying simulation applications. This same conclusion has also 

been arrived by different researchers, (Knapp, 1987; Bezivin, 

1987; Ulgen and Thomasma, 1986). A small simulation problem 

programmed in Smalltalk is given in Appendix B. 

VI. VISUAL INTERACTIVE SIMULATION 

A visual interactive simulation (VIS) is a term for a 

simulation which has features for specification of the model 



graphically, produces a dynamic display of the system model, and 

allows the user to interact with the running program, ( OIKeefe, 

1987: Hurrion, 1986). Thus, a VIS system typically provides 

facilities for: 

i) Graphical Programming: where a model can be created visually 

on the screen in an interactive style. 

ii) User Interaction: allows the user to interact with the 

running program. Interaction can be such that the simulation 

halts and requests information from the user, or the user stops 

the simulation at will and interacts with the program. 

iii) Visual Display: portrays the dynamic behavior of the system 

on the screen. Figure 3 depicts the roles that these features 

play in a simulation study. 

Figure 3: The role of Visual Interactive Simulation in 

a typical simulation study. 



The General Benefits Attributed to VIS: The research 

attributes various observed benefits to VIS, (Hurrion, 1986; 

OtKeefe, 1987; Sargent, 1986; Ozden, 1988; Browne et al. 1986). 

The following are the most frequently cited benefits: 

a) The graphical display becomes a communication medium that 

provides a common base between the developer and the user for 

discussion on development and experimentation. It is an excellent 

presentation medium for the results. 

b) There is a lot to learn in understanding the behavior of a 

complex system by experimenting with the simulation model. Thus, 

VIS can be a teaching tool as well as an analysis tool. 

c) The user can be incorporated into the model with the model 

determined interactions. In this way, the decisions that are too 

difficult to be handled by the model alone can be referred to the user. 

d) The graphical techniques can be a useful means of detecting faults 

in coding and logic. The visual monitoring of the simulated behavior 

makes use of the powerful ability of the human brain to recognize 

logical and spacial relationships in detecting aberrant behavior. 

e) VIS can increase the model validity and thereby the model 

credibility. Especially for the unobservable systems, where comparison 

between the system and model behavior is impossible, VIS may play 

an important role in building user confidence. 

VII. GRAPHICAL PROGRAMMING 

Modeling a simulation problem is a complex task demanding 

both the creative ability of the modeler and the support tools 

of the development environment . This step basically involves 
translation of the conceptual problem into a program which is 



executable by the computer. In simulation jargon, the modeler 

first needs to identify the temporary and permanent entities, and 

their data structures, as well as the behavior patterns that will 

closely resemble the particular problem setting under study, and 

then define appropriate representation forms for them in the 

simulation language. 

Graphical programming is expected to meet the following 

objectives when used in a simulation environment: 

a) Facilitate easy use of the simulation environment. 

b) The graphical programming should itself be easy to use. 

c) Modeler's productivity should be increased. 

d) It should minimize programming error. 

e) It should facilitate easy visualization of the conceptual problem. 

These objectives are certainly not in conflict with each other, 

and an improvement of one may mean some betterment of the others. 

In an object-oriented simulation where the domain 

independent-object and domain dependent-object classes exist in 

the programming environment, the modeling phase amounts to 

creating the application-specific classes and the instances of 

all relevant classes at the proper simulated time, and defining 

the behavior patterns (processes) of the objects in terms of the 

methods that already reside within the objects. Although 

existence of the object classes with the proper data structures 

and methods for simulation is a very convenient environment for 

modeling, it is still a challenging job to define the application 

specific classes and objects with the correct processes in terms of 

the programming language. It requires a good deal of working 

knowledge with the underlying language. A better interface is a 



graphical programming in which the user deals with the underlying 

language indirectly in an easier and more natural way. By means 

of graphs, icons, menus, windows and forms, a graphical 

programming interface can lead the user to the model 

specification with a sequence of visual and textual cues 

minimizing deviations from the correct translation of the 

conceptual problem. 

In this respect, graphical programming is an unrivaled aid 

for human beings to observe the spatial and logical relationships 

among the simulation objects. Graphical programming may take 

various forms depending on the domain, and the hardware and 

software being used. The graph of spatial symbols, icons, menus 

and forms, and their combination is frequently used . We will 
review the graphical programming approaches developed and being 

considered in some simulation systems currently under development 

below. 

Ideally, a graphical programming of simulation should be 

performed in such a natural and simple manner with ( visual 

tools and perhaps aided with a natural language processor) that 

the modeler will be faced with a task compatible to the human 

cognitive process necessary to expain the conceptual problem to 

another human being. At the same time, an intelligent workstation 

should oversee this process to catch the bugs and inconsistencies 

in programming. Probably, a generalized modeling environment will be 

realized in the late 1990's. In the near future, we have to be 

content with the domain specific systems where we can achieve 

comparibly good results. 

The current graphical programming approaches can be classified 



in three groups: i) Network and block diagrams; ii) Icons, menus, 

forms and windows; iii) Dialogs and tree structured menus. We are 

going to describe these systems in the following sections. 

Network and block diagrams have been used as a modeling 

and communication aid in conventional simulation languages, 

such as GPSS, SLAM, SIMSCRIPT, and SIMAN etc. Here, the 

activities which each temporary entity ( customer, transaction, 

or job) performs with the permanent entities ( facilities, 

resources or stages) are described by the use of a sequence of 

blocks or a network of nodes. Each block or node represents a 

macro-code in the host language. In this way, computer 

programming is facilitated in chunks of codes taken at each step 

in addition to the visual help. Most of these simulation 

languages are oriented towards simulating queueing systems and 

they have wide application areas. They tend to have the view of 

the facilities in programming rather than the individual 

transactions. The transactions are usually dealt with in 

aggregate and probabilistic manner if possible, and the average 

facility performance (such as the percentage busy-time or the 

average waiting time at a facility etc.) is the main concern. 

Almost all of them now have an automatic translation feature which 

loads the network or block diagram as an executable code. Some 

even offer an interactive graphical programming feature for the 

restricted domains (e.g., flexible manufacturing systems) that 

can also display the animated view of the simulation, such as 

SIMAN/CINEMA and SLAM/TESS . 
The number of allowable blocks or nodes may be quite large, 

(e.g., over 60 for GPSS) . So the modeler's job is to find the 



right sequence of these macro elements with the correct parameter 

assignments. This is usually not a straight forward task and it 

may even require some external subroutines to be written in 

another programming language. SIMNET (Taha, 1987) reduces the 

number of these macro elements to a set of only four essential 

ones, and claims that this eliminates the need for external 

programming since it is possible to program the physically 

parallel processes in a parallel manner, and it is friendlier 

since one has to deal with only a few elements. This is a step in 

the right direction. But none of these simulation languages has a 

truly interactive graphical programming yet. 

Icons, menus, forms and windows are the interface mode that 

has originated from the past artificial intelligence research 

because of the critical need for friendlier interfaces, This type 

of programming is the usual programming style for some modern 

languages, such as Smalltalk-80. But, it is better known as the 

Macintosh interface mode by the general public. Especially with a 

pointing device such as a mouse, it is a lot friendler than 

key-board entry of data. Icons facilitate easy programming for 

the frequently used pieces of computer codes, with a single 

pointing action. Menus, on the other hand, offer alternative 

choice of operations on fixed menu items as a pull-down menu, 

or as a pop-up menu on the user request for a different course 

of action. Windows are usually used for parallel views and 

programming of the different parts of a computer code. Forms are 

for inputing standard information in a template form. Any 

combination of these interface modes are possible and widely 

used, e.g., icon/menu or window/form. This turns out to be 



especially a very convenient interface mode for the object- 

oriented languages in which flexible, and reusable parts of codes 

form the main program structure of the language, (as used in the 

paper by Cox and Hunt 1986, these are the Software-ICs just like 

the silicon chips in an electronic circuitry.) 

In simulation, this type of programming style has been used 

in specific application areas, such as computer performance 

evaluation or manufacturing, (e.g., Melamed and Morris, 1985; 

Browne, et al. 1986; Sinclair et al. 1985; Duersch and Laymon, 

1985; Stanwood et al. 1986). 

Dialog-based programming is new in simulation. It has been 

developed as a part of a simulation environment, (Unger et al. 

1984; Birtwistle and Luker, 1984). It originated from the idea 

that all simulation programs have a structured form of 

specifications no matter what the application area is. Therefore, 

a structured dialog with the user can be prepared beforehand to 

obtain the necessary information for any simulation model. In the 

dialog, the user is first asked for the process types and other 

global data and then requested to input the process details. 

Through the dialog, an intermediate representation of the model 

is built and is then run under an interpreter which may present 

different graphical views of the simulated world with icons and 

windows for verification purpose. Once the verification phase is 

completed the intermediate form is used to generate a compiled 

code for speed of execution. A different form of dialog style 

programming is also developed for simulation in a restricted area 

by Ingalls, 1986, Here, the dialog is based on a set of menus 

structured in the form of a tree. The user chooses a path of 



model specification from the root of the tree towards the lower 

branches pointing his choices from the menus. 

VIII. GRAPHICAL PROGRAMNING FOR OBJECT-ORIENTED SIMULATION 

It is important to understand that the software technology 

for graphical programming and object-oriented systems in general 

is fairly new and therefore the ideas and methodologies need to 

be tested in prototype systems before a full scale production 

system is attempted for developement. However, this orientation 

has many fruits to bear for the systems under development as well 

as for the future other systems, It has become apparent now that 

the software systems are the bottlenecks in modern technologies 

and the old paradigms do not comprise a solution to this problem. 

In this sense, graphical programming in the object-oriented 

simulation environment is future oriented and experimental in 

nature. In the light of all these facts, we propose a tentative 

graphical programming methodology below that needs to be examined 

with prototype problems close enough to the domain area. This 

methodology may have to be modified or expanded as discrepences 

are observed with these experiments. For the prototyping 

environment, a typical object-oriented language with nice and 

full features of the object-oriented enviroment should be chosen 

so that the transfer of the methodology into the ultimate 

language of the IMDE will be least painful. 

In an object-oriented simulation, the global simulation data 

(such as, the number of temporary and permanent entities involved, 

and the total simulation duration, etc.), the topology (objects 

and their relationships), and the behavior of each object have to 



be defined during the model specification phase. Here in this 

section, we will describe a possible graphical programming for an 

object-oriented simulation environment in a rather speculative 

style. The exact form of a graphical programming application 

would depend upon various factors including how a set of 

graphical and textual features will be selected on the basis of 

the objectives stated in the previous section as well as the 

hardware and software being used. Of course, a specific 

application domain can be supported better than a general purpose 

simulation environment. Here, we assume that the IMDE will 

primarily be a rectricted simulation domain of capability 

assessment of logistics support systems. 

The minimum requirements of a graphical programming for an 

object-oriented simulation system should cover the following: 

a) A graphical programming editor to create new object classes 

and graphical elements (icons, menus and forms etc.) to be stored 

in the simulation lllibraryM (data base for persistent objects, 

and to edit the old objects from the library and the simulation 

applications saved in the form of graphical models. It should have 

a "dictionaryw access to this library of objects. The dictionary 

could be for most part iconic and organized in some hierarchical 

fashion for easy access. 

b) An interpreter to translate the graphical models to be created 

with the editor into the computer executable form . 
c) View builder: the style of model development in this 

environment will be mostly exploratory and incremental. The 

objects and their relationships as created in part (a) should be 

able to be viewed graphically in a static manner (e.g., activity 



cycle diagrams). When the programs are run, the simulation with 

different object views should be observed possibly dynamically to 

facilitate verification of the model created so far. If the 

programs need to be modified the graphical models stored in a 

file should be reloaded. 

A typical scenario of graphical programming in the object- 

oriented simulation will be depicted below. Since the global 

simulation data input will be conducted in a standard way for all 

simulation applications , this phase can be facilitated filling 

standard forms interactively on the screen. If the simulation 

has already been created or it is going to be some modified 

version of an old simulation program, the graphical model or the 

compiled code of the simulation will be reloaded from a file. 

Since it is assumed that the simulation environment will 

have a restricted domain of application, most of the classes and 

subclasses of the objects needed for the particular application 

will be found in the objects library that can be accessed with 

the dictionary. Thus, when one identifies a temporary entity that 

will take place in simulation ,say a particular type of airplane, 

the icon representing that object is looked up in the dictionary 

of temporary entities, and the appropriate button of the mouse is 

clicked on the icon. This action will load the object into the 

graphical programming environment from the data base and at the 

same time on the screen the user sees a form that prompts him to 

fill the related information, such as the number of airplanes of 

the selected type, how they will enter the simulated world (e.g., 

type of the interarrival distributions) and the number and types 

of processes in which this particular object will be involved, 



etc. If some particular information about an item of the object 

refers to some existing data in the environment, the help can be 

obtained by means of a menu which offers alternatives and in turn 

when one is selected asks for more detailed information on that 

particular item, e.g., the distribution and then its parameters. 

All the elementary operations necessary to define a process 

that an object may perform will already have been defined at the 

creation of the object. During the process definition phase of an 

object in graphical programming, all the methods that may take 

part in process definition and the resources defined so far can 

be presented as menus. When a method is selected from this menu, 

the proper parameter settings may be asked automatically. If a 

new type of resource is needed from the resource dictionary it is 

loaded into the simulation world and an account of used resources 

is kept. Later on, the necessary parameter definitions of these 

resources will be asked from the user automatically. The 

simulation world thus defined is converted into an internal 

representation form. 

The behavior pattern (processes) of object cannot be defined 

unless the object always behaves in the same manner in which case 

this can also be incorporated in the library definition. For 

example, the mission of an airplane will most probably change 

from application to application. However, as noted elsewhere ( 

Birtwistle and Luker, 1984 ) ,  the structure of behavior patterns 

of objects is regular and is composed of a set of processes, each 

of which in turn demands a certain amount of a resource, holds it 

for some time and then returns some amount of the same resource. 

In fact this well structured behavior forms the basis for the 



graphical representation known as the activity cyle diagrams, 

Birtswistle, 1979. 

The view builder of the graphical programming should be able 

to display different views of the simulated world. For example, 

an activity cycle diagram for each primary object could display 

the processes and its relationship with the resources graphically 

on the screen ; or a resource view could present all the 

temporary entities that use a particular resource graphically on 

the screen. Such orthoganal views of a simulation application may 

reveal a lot for verification purpose. At the same time, these 

views may be used to observe the dynamic behavior of the objects. 

For example, the resource view may show all the objects that are 

using different types of resources and the objects that are 

blocked due to lack of resources at each discrete time as 

animated graphics. Once the simulation modeling is completed, the 

intermediate form (graphical model) would be saved and be 

compiled for experimental runs. 

In a real-life simulation case, there may be thousands of 

objects that need to be defined for the simulation world, But most 

of these objects will probably remain the same from one 

application to another and will not get involved with the other 

objects in complex interactions. Therefore, it may be very 

helpful to modify a copy of the closest simulation application 

stored on a file rather than creating it from scratch. This 

modifiability (reuseability) of the old programs is another asset 

of the object-oriented paradigm which will affect programmer's 

productivity a great deal. 



IX. RECOmENDATIONS 

As a result of this summer research on graphical programming 

in object-oriented simulation, the following main points of 

opinion are formed: 

a) Interactive graphical programming should be an integral 

part of the model development environment and it should 

support incremental programming, and load the graphical 

model automatically for execution. The object-oriented 

environment is compatible with and fully supportive of such 

a feature. 

b) In the graphical programming, the model specification effort 

should be guided with icons, menus, forms and windows. There 

are many ways of combining these visual aids. The best design 

for a particular domain can be achieved through 

protototyping small problems in the domain. 

c) Another important component of the graphical programming 

is a facility which will display different graphical views 

of the simulated "worldw. This will especially be helpful for 

verification purpose as well as reviewing typical 

applications saved on the files. 
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APPENDIX A 

THREE WORLD VIEWS OF SIMULATION AND THEIR RELATIONS 

In order to clarify the distinction between the different 

word views assumed by simulation programs, we demonstrate them 

with an example problem . This explanation is basically adopted 
from Overstreet's paper ( Overstreet, 1987): the problem is 

somewhat simplified and some mistakes in the original paper are 

corrected and the pseudocode is also modified. Lets consider the 

following simple production problem. 

Problem: Parts arrive for processing by a single machine. 

Processing is sometimes interupted due to machine failure. The 

parts that have their processing interupted will be finished once 

the machine resumes operation. Interarrival times, machine 

processing times and inter-machine-failure times are randomly 

distributed. Estimate the amount of time required to process a 

fixed number of parts. 

The formulation of this problem into the models of the three 

world views are achieved in the same three steps: i) 

identification of valid model actions, ii) grouping these into 

event, activity, or processes (depending on the world views), and 

iii) simplification of the individual event, activity or process 

descriptions. 

After analysis of the problem, for the first step of 

formulation, the following actions groups can be identified: 



Step i) 
conditions (events) actions 

initialization (IN) Create ( parts) 
Create( machine) 
Initialize( statistics) 
Setup ( partArriva1) 
Setup ( machineFailure) ........................................................... 

termination (TE) Report ( statistics) 
#finishedParts = N Stop ........................................................... 

partArriva1 (PA) Setup ( partArriva1) 
Add+l ( queue) ........................................................... 

beginservice (BS) Add-l( queue) 
Setup ( endservice) ........................................................... 

endservice (ES) Add+l( #finishedParts) ........................................................... 
machineFailure (MF) Determinestatus( machine) 

busyFailure= BF 
or idleFailure= IF ........................................................... 

busyFailure (BF) rernainTime <-- endservice - clock 
Cancel( endservice) 
Setup( endBusyRepair) ........................................................... 

idleFailure (IF) Setup( endIdleRepair) ............................................................ 
endBusyRepair ( BR) Setup ( machineFailure) 

Setup ( endservice) ............................................................ 
endIdleRepair (IR) Setup( machineFailure) 

Step ii) Grouping of the events into the appropriate event, 

action or processes can be facilitated with the event- 

incidence-diagram. The nodes represent events and there 

...... are two types of links conecting these nodes: 11 

denotes the ability of one event to cause the occurence 

of another at a future instance; It----I1 denotes the 

ability of one event to cause the intantaneous 

occurrence of another. 



a) To create the event scheduling world view, identify all 

the events can occur at the same time point - the events that are 

linked with the dashed lines in the event-instance-diagram. 

Pseudo-code for the event scheduling view: as an event 

becomes current in the future event list that is maintained by 

the simulation executive, perform the associated operations shown 

below. 

initialization (IN) partArrival (PA) 

Create ( part) 
Create( machine) 

Setup ( PA) 
If machine (idle) ,Setup ( ES) and 

set (machine, busy) ; 
Initialize( statistics) 
Setup ( PA) 
Setup ( MF) 

endservice (ES) 

Add+l( #finishedPart) 
If #finishedPart = N, 

Report (statistics) , Stop; 
Else if queue > 0, 

Else Add+l( queue) 

machineFailure (MF) 

If machine (busy) , 
remainTime <-- endservice 

- clock, 
Cancel ( ES) , 



Add-1 ( queue) , Setup ( ES) ; Setup ( BR) ; 
Else set (machine, idle) . Else Setup ( BR) . 

endBusyRepair (BR) 

Setup( ES, repairTime), 
Setup( MF) 

endIdleRepair (IR) 

Setup ( MF) 
If queue > 0, Add-1 (queue) 

Setup( ES) . 

b) To create the activity scanning world view, identify all the 

activities that can occur some time later once a specified event 

has occurred : the activities that are represented with the 

dotted lines in the event-instance-diagram. Scan these 

activities for the their occurrance times in the future event 

list, as the clock is updated. 

I - _ _ - _ ,  

Pseudo-code of the activity scanning world view will be: 

initialization activity 

Create ( part) 
Create( machine) 
Initialize( statistics) 
Concurrentwait( ES) 
Concurrentwait( MF) 

service activity (condition: queue > 0, machine(id1e) ) 

Add-1 ( queue) 
Wait ( ES) 
Add+l( #finishedPart) 

termination activity (condition: #finishedPart = N) 

Stop 

busy machine failing activity (condition: (MI?), machine( busy) ) 

remainingTime <-- endservice - clock) 
Cancel ( ES) 



Wait ( BR) 

idle machine failing activity ( condition: (MF), machine(idle)) 

Wait ( IR) 

busy machine repairing ( condition: (BR) ) 

Concurrentwait (MF) 
Concurrentwait( ES, remainingTime) 
Add+l( #finishedPart) 

idle machine repairing ( condition: (IR) ) 

Wait ( MF) 

c) To create the process interaction world view of the 

problem, identify the objects which are undergoing processes: 

system, parts and machine. 

System Parts ~achine 

System Process 

Create (part) 
Create( machine) 
Initialize( countstats) 

Parts Process 

Initialize( partstats) 
Loop 

Add+l ( queue) 
Hold(interarriva1Time) 

End Loop 



Machine Process 

Loop 
If machine( busy), 

remainingTime <-- endservice - clock, 
Passivate( machineProcess - 2), 

Else 
Hold ( repairTime) , 
Activate( machineprocess-2) 

End Else, 
Hold( machineuptime) 

End Loop. 

Machine Process 2 

Loop 
WaitUntill( queue > 0 and machine( idle) ) 
Set(machine, busy) 
If Passivated 

Hold( remainingTime) 
Else Add-l( queue) 

Hold( endProcessingTime) 
Set ( machine, idle) 

End Else 
Add+l( #finishedPart) 
If ( #finishedPart = N) 

Report ( statistics) 
stop 

End Loop 



APPENDIX B 

A SIMULATION EXAMPLE IN SMALLTALK-80 

Here, we will prepare the classes and and subclasses 

necessary to simulate a problem in Smalltalk-80 in order to 

illustrate what is specifically involved in simulation in this 

powerful environment. Also, this illustration will shed some 

light on the question of how to set a simulation model in an 

object-oriented environment, which will be the subject of the 

following section. 

We consider a ferry shuttling problem between an island and 

a mainland, which was given as an example originally in 

Birtwistle's Demos (Birtwistle, 1979) and also in the Smalltalk- 

80 book (Goldberg an Robson, 1983). 

Problem: A ferry operates 1000 minutes and stops at one of 

the docking locations. A truck goes from the mainland to the 

island in oreder to make deliveries, returns to the mainland to 

get more supplies, and goes to the island again. The ferry can 

carry as many as four cars in addition to the truck, but the 

ferry will not cross across unless there is the truck to carry. 

The crossing takes approximately 8 minutes with the standard 

deviation of 0.5 minutes. 

This example requires a coordination of SimulationObjects 

representing the ferry and the truck; each has its own sequence 

of tasks, but the truck cannot do its tasks without the 

assistance of the ferry and the ferry has no tasks to do in the 

absence of the truck. On the hand, cars will be treated as 

intances of the StaticResource class. 



Before we start defining the object classes for the fery 

problem, it will be useful to prepare the activity diagram of 

these objects involved in the problem. The activity diagram 

represents the processes of two objects and their interactions . 

Ferry Tuck 
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I 

L ----- L-.. ---- 
unload a 

I 
I + -  

I 
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First, we define the particular simulation executive, 

Ferrysimulation which will manage the ferry problem as a subclass 

of the abstract class Simulation. 

class name 
super class 

~erry~imulation 
Simulation 

instance methods 
initialization 

defineArrivalSchedule 
self scheduleArrivalOf: Truck new at: 0 .  
self scheduleArrivalOf: Ferry new at: 0 .  

defineResources 
self coordinate: tTruckCrossingl 

Note that all the necessary methods such as scheduleArrival~f 

coordinate and many others need not be defined here since they 

can be inherited from the super class Simulation which resides in 

the simulation environment of Smalltalk-80. 'TruckCrossingl is 

formulated as some sort of resource that is produced by the truck 

object and aquired by the ferry object in order to complete their 

common crassing tasks. In this way, the coordination between the 

processes of the two objects is formulated in this problem. 

class name Ferry 
super class SimulationObject 
instance methods 
simulation control 

tasks 
I truckRequest I 
[ Activesimulation time > 10001 whileFalse: 

[truckRequest <-- self acquireResource: 'TruckCrossingt. 
self load. 
self crossover. 
self unload. 
self resume: truckRequest] 

load 
self holdFor: 5.0 

unload 
self holdFor: 3.0 

crossover 
self holdFor: (Normal mean: 8 deviation: 0.5) next 



Note here again that all we have to define the application 

specific methods (load, unload, crossover and the sequence of 

tasks , i.e., the process): all other methods (acquireResource, 

holdFor, resume etc. are inherited from the super class), and 

Normal is name of a class in SrriallTalk which generates events 

from a specified normal distribution. 

Now, we have to define the third object, Truck as a subclass 

of the abstract class, Simulationobject. 

class name Truck 
super class Simulationobject 
instance methods 
simulation control 

tasks 
[ true ] whileTrue: 

[ self produceResource: sTruckCrossingf. 
self deliverSupplies. 
self produceResource: sTruckCrossings. 
self pickupsupplies ] 

deliversupplies 
self holdFor: ( Uniform from: 15 to: 30) next 

pickupsupplies 
self holdFor: ( Uniform from: 30 to: 45) next 

Here again, we define the sequence of tasks and the 

associated methods of the Truck specific to the problem at hand, 

The method, holdFor will be inherited from the super class and 

the distribution object (Uniform) which knows the rriethod next, 

generates the process times with the associated parameters from 

the uniform distribution. 


