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Abstract 

The efficiency of various cluster based retrieval (CBR) strategies is analyzed. The possibility of 

combining CBR and inverted index search (11s) is investigated. A method for combining the two 

approaches is proposed and shown to be cost effective in terms of paging and CPU time. The 

observations prove that the new method is much more efficient than conventional approaches. In 

the experiments, the effect of the number of selected clusters, centroid length, page size, and 

matching function is considered. The experiments show that the storage overhead of the new 

method would be moderately higher than that of IIS. The paper also examines the question: Is it 

beneficial to combine CBR and full search in terms of effectiveness? 
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1, INTRODUCTION 

The purpose of an information retrieval system (IRS) is to locate the documents which are relevant 

to the user query. Two well known approaches to query processing are full search (FS) and 

cluster based retrieval (CBR) [lo, 14. In IR, a cluster contains a homogeneous group of 

documents that are more strongly associated with each other than with those in other groups. 

Both FS and CBR use a matching (similarity) function to decide which documents are potentially 

relevant (i.e., match the query) and should be returned to the user. 

For efficiency, FS is usually implemented by inverted index search (11s). In llS, associated with 

each term there is a list of <document no., weight> pairs including each document in which that 

term appears. The similarity of all database documents is then determined by traversing only 

query term lists. A typical implementation of CBR first matches queries with cluster 

representatives, called centroids, then matches the queries with documents in the selected 

clusters to find those that actually match the query. 

As in any other information system, efficiency and effectiveness are the main concerns of an 

IRS. Efficiency and effectiveness are, respectively, associated with the time/space it takes the 

system to perform the search and with the quality of retrieval. The concern of this paper is 

efficiency of IR. More specifically, we compare the efficiency of IIS and CBR based on single level 

clustering. In the paper we use four different implementations of CBR. In one of them we 

investigate the possibility of combining IIS and CBR. First we show that the storage overhead of 

the new method is moderately higher than that of IIS. Later it is shown that the new strategy is 

cost effective in terms of paging and CPU time and is much more efficient than CBR based on a 

hierarchical clustering structure [19]. In the efficiency experiments the effect of number of 

selected clusters, page size, centroid length, and matching function is considered. In the paper 

we also show the potential benefits of combining CBR and IIS to improve effectiveness. 

The paper is organized as follows. Section 2 provides the preliminary information on CBR and 

presents the description of the new CBR strategy. Section 3 covers the experimental 

environment in terms of the document database, the clustering algorithm used for the creation of 

the experimental environment, and the matching functions. Section 4 presents the data 

structures used for the implementation of IIS and CBR strategies. The storage cost of each 

method is included and compared. Section 5 defines the query processing efficiency measures 

and presents the results of the efficiency experiments. The potential benefits of combining FS 

and CBR in terms of effectiveness is shown in Section 6. The conclusion is given in Section 7. 
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2. CLUSTER BASED RETRIEVAL (CBR) 

In the IR literature there are several publications on clustering and CBR. Further information can 

be found in [lo, 11, 12, 15, 17, 201. Most clustering research in IR is related to creation of new 

clustering algorithms and their effectiveness in terms of IR. 

In CBR, the system does not necessarily return the documents with highest similarity to the 

query. This is because, the selected clusters do not necessarily contain the best-matching 

documents. However, unlike IIS (FS), CBR does not lose the relationships between documents 

and allows the users to browse through a document database. In CBR the efficiency of retrieval is 

expected to decrease with increasing number of selected clusters (ns) A recent study on 

effectiveness of CBR shows that after a threshold, selecting more clusters does not increase the 

effectiveness in CBR [3], In IIS case only the inverted index information of query terms is 

accessed from the disk medium. As a result the efficiency of IIS decreases with increasing query 

length [I 0, p. 2931. Since for each query term a new inverted index list must be processed. CBR 

selects some of the clusters; therefore, it has the potential of being more efficient than IIS if query 

vector is long. For example, in automatically generated query environments (e.g., using a seed 

document) the query length can be long (e,g., 200 terms) 114, 161, 

A recent study on efficiency (and effectiveness) is reported in [la, 191. The paper [I91 

compares the efficiency of llS and complete link based hierarchical CBR. The findings of the 

study indicate that IIS is more efficient in terms of disk space and query processing time since the 

cluster search requires several centroid vectors. In [I91 the number of clusters that are 

considered in the search depends on the number of documents to be retrieved. It begins by 

placing the root of the cluster tree into an empty heap. Later, the top of the heap corresponds to 

the cluster with the current largest similarity with the query. The top of the heap is popped until 

the heap is empty or sufficient number of documents have been retrieved. In the search, a 

popped document is retrieved. A popped cluster is replaced by its children that have nonzero 

similarities with the query. At the end the retrieved documents are presented to the user in 

decreasing similarity. In this search policy the number of visited nodes depends on both the 

query vector, the cluster tree structure, and the centroid vectors. Notice that this top-down 

search strategy needs some modifications for very large document databases. Since for a high 

level cluster containing thousands of documents it would be impossible to obtain a reasonable 

centroid. Later in the paper we provide the efficiency performance of this search strategy [ I  91 and 

compare it with ours. 

In a non hierarchical clustering environment the best-match CBR policy selects the best- 

matching ns number of clusters and retrieves the best-matching ds documents of the selected 

clusters. In this paper we use the best-match CBR policy. 
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The implementation of the best-match CBR (or simply CBR) is conventionally done in the 

following two ways. 

ICDV: Match the query vectors with the centroid vectors (CV) and the document vectors (DV) 

of the members of the best-matching clusters. 

ICDV: Match the query vectors with the inverted indexes of centroids (IC) and the document 

vectors (DV) of the members of the best-matching clusters. 

In addition to these conventional methods we propose the following method of implementation 

for CBR. 

ICIIS: Match the query vectors with the inverted indexes of centroids (IC) and the inverted 

indexes of all documents (11s). 

In the transition from the conventional methods to the new method there is a hybrid approach. 

CVIIS: Match the query vectors with the centroid vectors (CV) and the inverted indexes of all 

documents (11s). 

Notice that ICllS has the potential of being efficient since query vectors are usually very short 

and the number of clusters to be selected can be very large depending on the database size. For 

example, the average query vector length of the queries associated with some of the 

experimental document databases are as follows (database acronym, average query length): 

(CACM, 10.80), (CISI, 28.29), (CRAN, 9.17), (INSPEC, 15.82), (Keen, 10.30), (LISA, 16.50), 

(MED, 10.10), (NPL, 7.16), (TODS214, 13.36), (UKCIS, 7.4) [3, 8, 131. However, as we stated 

before in automatically generated query environments, the query length can be long (e.g., 200) 

[14, 161. In the paper we analyze the efficiency of all of these CBR strategies and IIS. 

Now let us consider the possibility of implementation of these CBR strategies in terms of their 

internal memory requirements. The strategies CVDV and ICDV should not impose any problem. 

Our concern is ICIIS. For a document database containing nc number of clusters the IC 

component of lCllS requires O(nc) memory space to accumulate the partial similarities during the 

traversal of the query term lists. This is equal to (4*nc) bytes. Another array holds the best ns 

partial similarities seen so far. During similarity calculations all partial similarities are initially set to 

zero, then they are updated as the term lists are traversed. If the current similarity of a cluster is 

large enough, it is inserted in the top similarity array of the centroids. After processing the all 

query terms, the top similarity array contains the selected clusters. For the ISS component we use 

the identical technique [ I ,  18, 191. See [19, Figure I ]  for an example. Therefore, ISS requires an 

array of size (4*m) bytes for a database of size m documents. For the update of the top similarity 

array we consider only the documents of the selected clusters. The implementation of CVllS is 

similar. In all approaches the term weights of each vector (query, centroid, document) are 

normalized according to the matching function to be used [ I  37. 
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The above discussion shows that lCllS is realizable with an internal storage of (4*m + 4*nc) 

bytes for similarity arrays and plus (4*m) bytes for cluster membership information of the 

documents. This excludes other program variables and the program itself. The storage overhead 

of the partial similarity vectors of clusters, (4*nc) bytes, and top similarity arrays of the best- 

matching clusters ,(4*ns) bytes, and best-matching documents, (4*ds) bytes, is negligible. All in 

all, the ICIlS strategy is feasible because of the large amounts of inexpensive memory available on 

today's computers. More conservatively, we can say that IClIS would be feasible for all but the 

largest document databases (greater than one million documents) [11. 

3. EXPERIMENTAL ENVIRONMENT 

In this section a brief description of the experimental database, the clustering algorithm used for 

the creation of the CBR environment, the matching functions, and the IR quality of the CBR is 

provided. 

3.1 Document Database and Clustering Algorithm 

In the experiments the INSPEC database is used. The document-term (D) matrix and the queries 

of the database are commonly used. Some statistical characteristics of the INSPEC document 

database and the queries are provided in Table 1. In this table m, n, and t respectively, indicate 

the number of documents, terms, and total term assignments (the number of nonzero entries in 

the D matrix). 

The clustering structure of the experiments is created using the cover-coefficient-based 

clustering methodology (cM~)  [3]. In C M ~  some of the documents are selected as cluster seeds. 

Then nonseed documents are assigned to one of the clusters initiated by the seed documents. 

The number of clusters, nc, is determined using the cover-coefficient (CC) concept. According to 

CC, for an m (document) by n (term) D matrix the value range of nc and the average cluster size 

(dc) is as follows. 

1 2 nc 5 min (m, n), (1, m/n) < dc m. 

The computational complexity of C M ~  is O(m * xd * tgs), where xd and tgs indicate the average 

number of terms per document and the average number of seed documents per term, 

respectively. 

Table I. Character~st~cs of the INSPEC Database and its Queries 
A Database 

Table I. (cont) B. Queries 
Avg, query Avy, relevant No. of distinct No, of d is t inct t  

terms for q. def.s 
577 

doc. retrieved 
1,940 

No. of queries 
77 

length 
15.82 

doc. per query 
33.03 
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3.2 Query Matching and IR 

For query matching there are several matching functions depending on term weighting 

component of document and query terms. Term weighting basically has three components: the 

term frequency component, the collection frequency component, and the normalization 

component [13, 141. The weights of the terms of a document and a query are defined as the 

inner product of document and query vectors. Salton and Buckley [13] obtained 1,800 different 

combinations of documentlquery term-weight assignments, of which 287 were found to be 

distinct. In the same study, six of these combinations are recommended due to their superior IR 

performance. In the experiments we used these six matching functions and the famous cosine 

similarity function. In this study the cosine similarity function is referred to as TW1 (term weighting 

1) and the other six are referred to as TW2 through TW7. In [13] The effectiveness of these 

matching functions for the INSPEC database is reported in [3]. In that study they are again 

referred to as TW1 through TW7; in [13] they are, respectively, defined as (txc.txx), (tfc.nfx), 

(tfc-tfx), (tfc.bfx), (nfc.nfx), (nfc.tfx), and (nfc.bfx). For the query processing time efficiency 

experiments of CVDV and ICDV a trace of each query is obtained in terms of the selected clusters. 

The study reported in [3] shows that C M ~  is 15.1 to 63.5 (with an average of 47.5) percent 

better than four other clustering algorithm [q in CBR. The same study also shows that the IR 

effectiveness of the algorithm is compatible with a very demanding (in terms of CPU time and main 

memory) complete link clustering method that is know to have good retrieval performance [18, 

191. The effectiveness is measured in terms of precision (or equivalently the total number of 

relevant documents retrieved for all queries). Precision is defined as the ratio of the number of 

retrieved relevant documents to the number of retrieved documents. The effectiveness 

experiments show that selecting more clusters increases effectiveness. The increase in 

effectiveness would be expected to increase up to a certain ns, after this (saturation) point, the 

retrieval effectiveness remains the same or improves very slowly [3, Figure 61. For the INSPEC 

database this saturation point is observed at ns= 50. In the experiments, precision is obtained 

after retrieving ds (10, 20) number of documents from ns (50) number of clusters [3, Table 14. 
TW2 is observed as the most effective matching function. In a given experiment the same 

matching function is used both for cluster and document selection. 

4. STORAGE STRUCTURES 

The data structures used for the implementation of inverted index search (IIS), and all CBR 

strategies are defined in this section. These structures, when appropriate, are synonymous to 

those defined in [18, 191. This section first describes the storage structures and how to 

determine their sizes, then the values for our experimental database INSPEC. The assumed 

storage environment is a disk device. The storage requirements are expressed in terms of bytes. 
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Since the number of pages (data blocks) is not a precise description of the relative sizes of data 

structures [18, p. 1091. 

4.1 Data Structures 

For llS we need to have the inverted index representation of the D matrix, llD, and a direct file of 

document vectors, DV, of the D matrix. It is assumed that the direct file DV would be needed for 

query expansion during query feedback [I 81. 

An inverted index entry contains a fixed length header and a variable number of tuples that 

have the form <document id, term weight>. Each header is 12 bytes in length and contains a term 

number (4 bytes), the number of documents in which the term appears (4 bytes), and a pointer to 

the beginning of the document tuples for that term (4 bytes). Each tuple requires 8 bytes and 

consists of document number (4 bytes) and the weight of the term within that document (4 bytes). 

The storage requirement of llD is (1Pn + 89). 

Document vectors, DV, consists of a document number, a tuple for each term used in the 

corresponding document and a flag to signify the end of a vector. Each tuple contains number 

and weight of the corresponding term. Therefore the structure of a vector and the storage 

requirement of each component is as follows. 

vector: <document no.> <term no,, weight>* <flag> 

bytes: 4 8 4 

In the above representation "*" indicates one or more occurrences of the <term no., weight> 

tuple. Accordingly, the storage requirement of DV is (8*m + 89). 

In all CBR implementation techniques a direct file of centroid vectors, CVD, is needed. This is 

because in a dynamic document environment clusters must be maintained and the effect of the 

maintenance need to be reflected to the centroids [2, 4, 101. In CBR strategies ICllS and CVllS 

the data structure DV is needed. However, in ICDV and CVDV the data structure DV is not 

required, since for these cases document vectors are available in clustered form. The storage 

requirements of CVD is (8*nc + where tc indicates the total number of term assignments in 

the centroids. 

The cluster membership information, CM, is also needed in all CBR techniques. CM is directly 

used in ICllS and CVIIS. In all cases it is needed for cluster maintenance and centroid generation. 

For each cluster CM contains the cluster number, number of member documents, and the 

document numbers of the members, Accordingly its storage requirement is equal to (8*nc +4*m). 

The CBR technique lCllS strategy needs the inverted index of centroids, IIC, for cluster 

selection. IIC has the same structure as llD and its storage requirement is equal to ( l r 'n + 8*tc). 

ICllS uses IIS for document selection. The IIS component requires IID. 
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The CBR technique CVllS requires the centroid vectors for centroid selection. If we use 

direct file of centroid vectors, CVD, for query centroid matching the number of disk accesses is at 

least equal to nc. (This assumes that each centroid vector begins on a new page for possible 

modification.) To reduce I/O time we use packed centroid vectors, CV. The data structure CV is 

the sequential version of the direct file CVD and its storage requirement (in terms of bytes) is like 

that of CVD (8*nc + 8*tc). 

The CBR technique ICDV requires the inverted index of centroids, IIC, and the clustered 

document vectors, CDV. CDV contains the same information as DV does, i.e., the document 

vectors. However, in CDV case, document vectors are clustered and the document associated 

with the same cluster are stored in the same page(s), In CDV each cluster requires a header of 12 

bytes. A cluster header contains the corresponding cluster number, number of member 

documents, and a pointer pointing to the vectors of the member documents. The storage 

requirement of CDV is then equal to (1 2*nc + 8*m + 8*t). 

The last CBR technique, CVDV, requires previously defined data structures CV and CDV. 

The application of C ~ M  to the example D matrix given in Figure 1 produces the document 

clusters c l=  {dl, d2) and c2= {dg, d4, dg) [3]. The contents of the data structures for IID , IIC, CV, 

and CDV for the example D matrix are depicted in Figure 2. 

Figure 1. The example D matrix. 

In Figure 2 llD shows that term-1 (t l) appears in two documents: document-1 (dl) and d2. 

Since the D matrix is binary the term weights are one. IIC provides the same information for 

centroids. For example, the header information for t2 indicates that it appears in two centroids 

(the centroids of c l  and c2) In c l  both members, d l  and d2, contain t2, that is why the weight of 

t l  in c l  is two. Similarly in c2 two members, d4 and dg, contain t2. The third data structure of 

Figure 2, depicts the contents of CV, As defined before CV contains the centroid vectors. The 

first centroid (indicated by < I  >) contains t l  , t2, and t5 with a weight of 2 and t4 with a weight of 1. 

The end of each centroid is indicated by a flag (<O>). The cluster header part of the last data 

structure of Figure 2, CDV, indicates that c l  and c2, respectively, contain two and three member 
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Inverted Index for Documents (IID) Inverted Index for Centroids (IIC) 

Centroid Vectors (CV) 

Clustered Document Vectors (CDV) 

Figure 2. Data structures for the example D matrix. 
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documents. The first member of c l  is d l  (indicated by <I>) and d l  is defined by terms t i ,  t2, and 

t5, and the weight of each term is 1. The end of each document vector is indicated by a flag (<a>). 

4.2 Storage Requirements 

For the CBR experiments we used two (maximum) centroid lengths 250 and 500. The terms with 

the highest total number of occurrences within the documents of a cluster are chosen as centroid 

terms. The weight of a centroid term is defined as its total number of occurrences in the 

documents of the corresponding cluster. (In the IR experiments these weights are normalized 

according to the matching function.) The characteristics of the centroids are given in Table II. In 

this table the column "%DM indicates the total size of centroid vectors as a percentage oft of the D 

matrix of INSPEC. 

DV = Document vectors (direct access file): 8*m + 89 = 3,399,512 
IID = Inverted index for documents: 1Pn + 89 = 3,472,916 
CDV = Clustered document vectors: 1 Pnc + 8*m + 89 = 3,405,212 
llC250 = Inverted index for centroids (cent. length = 250): 12*n + 8*tc,250 = 1,075,820 
CV250 = Centroid vectors (cent. length = 250): 8*nc + 8*tc1250 = 904,744 
CVD250 = Centroid vectors (direct access file version): 8*nc + 8*tc,250 = 904,744 
llC500 = Inverted index for centroids (cent. length = 500): 12% + 8*tc,500 = 1,691,308 
CV500 = Centroid vectors (cent. length = 500): 8*nc + 8qc,500 = 1,520,232 
CVD500 = Centroid vectors (direct access file version): 8*nc + 8*tc,500 = 1,520,232 
CM = Cluster membership information: 8*nc + 4*m = 54536 

Table II. Characteristics of the Centroids 

(m= 12,684, n= 14,573, t= 41 2,255, tc,250= 112,618, tc,fioo= 189,554, nc= 475) 
Figure 3. Storage requirements of the data structures (in terms of bytes). 

Table Ill. Storaae Cost of Different A~oroaches 

%D 
27 
46 

Maximum 
Length 

250 
500 

Average 
Length 
237.09 
399.06 

(% increasgof CBR over IIS is indlbded) 
Centro. 
Length 

250 

500 

Avg. No. of 
CentJTerm 

12.96 
14.74 

% of Used 
Clus. Terms 

51 
86 

% change 
w.r.t. IIS 

0 
30 
27 
-21 
-23 
48 
45 
-3 
-5 

Method 
llS 

lCllS 
CVllS 
ICDV 
CVDV 
lCllS 

CVllS 
ICDV 
CVDV 

Total No. of 
Distnict Terms 

8,689 
12,857 

Cost Components 
DV+IID 

DV+llD+llC250+CVD250 +CM 
DV+ llD+CV250+CVD250 +CM 

llC250+CDV+CVD250 +CM 
CV250+CDV+CVD250 +CM 

DV+llD+llC500+CVD500 +CM 
DV+llD+CV500+CVD500 +CM 

llC500+CDV+CVD500 +CM 
CVrtnn+CDv+cVD~;nn +CM 

Total Cost 
6,872,428 
8,907,528 
8,736,452 
5,440,312 
5,269,236 
10,138,504 
9,967,428 
6,671,288 
6.500.21 2 
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expected value of- nc is (nlxd) [3]. Therefore, the internal storage requirement of the cluster 

headers is negligible. 

The 110 time of each query is determined independently of the others. The time needed to 

retrieve the text is ignored. However, it should be noticed that in an operational environment the 

text I10 in a clustered environment would require considerably less time than that of an 

unclustered environment [5]. 

In the experiments no paging strategy is assumed. Since pages are consumed in the order 

they brought to main memory. For instance, a page containing term lists is used only once for the 

current query. The term headers may contain information for more than one query term. Then we 

may assume that the needed term information is saved in the working storage area immediately 

after reading a term header page into main memory. Therefore, the I/O time is determined by the 

distinct number of pages accessed for the query. Then in IIS, the I/O cost of each query term is 

one or zero page access for the header information. The number of page accesses for the term 

list is determined by the generality of the term. The term generality of tj, tgj, is defined as the 

number of documents containing tj. Accordingly number of page accesses for the term list Of tj is 

determined as follows. 

[(8 * tgj) / page size1 

In the experiments we assume that the I/O time of each page is the same. Actually this is 

impossible. Since the I/O time is mainly determined by the seek time and the rotational latency 

time. Therefore, a page which is very close to the previously accessed page requires significantly 

less I10 time. It is assumed that the I/O time of a page is 30 milli second independent of its size. 

Since the data transfer time is a very small portion of the page 110 time (typically less than five 

percent) the effect of this assumption on the results is negligible. 

5.2 Measurement of CPU Time 

The CPU time measurement is done in terms of the number of idealized instructions. For this 

purpose each array indexing, pointer update, comparison, and floating point addition and 

multiplication is considered as one idealized instruction. It is assumed that each idealized 

instruction requires one micro second. The time needed for the initialization of the variables is 

ignored. 

In query processing there are two ways of similarity calculation: using the inverted indexes IIS 

and IC; and using the clustered document vectors, CDV, and centroid vectors, CV. The 

algorithms of similarity calculations are provided in Figure 4. The same figure also shows the 

number of idealized instruction(s) to be executed for each statement. These algorithms and the 

assumptions are equivalent to the ones defined in [I 8, 191. 
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for (each query term) do 
begin 

if (at end of list) then (1 inst.) 
go to next list 

else 
begin 

sim[current vec id]:=sim[current vec idltq, term wgt*vec term wgt; (3 inst.) 
increase list pointer to point to the next vec id in list (1 inst.) 

end 
end 

Figure 4.a. Inverted index (IlS, IC) similarrty calculation. 

sim:= 0; 
while (true) do 

begin 
if (q. term no > vector term no) then (1 inst.) 

begin 
increase vector pointer; (1 inst.) 
if (at end of vector) then exit loop (1 inst.) 

end 
else if (q. term no c vector term no) then (1 inst.) 

begin 
increase query pointer; (1 inst.) 
if (at end of query) then exit loop (1 inst.) 

end 
else {there is a match) 

begin 
sim:= sim + (q. term wgt *vector term wgt); (2 inst.) 
increase query pointer; (1 inst.) 
if (at end of query) then exit loop; (1 inst.) 
increase vector pointer; (1 inst.) 
if (at end of vector) then exit loop (1 inst.) 

end 
end 

4.b. Vector (document, centroid) similarity calculation. 
Figure 4, Implementation of similarity calculations using inverted index and vectors. 

5.3 Experimental Results 

In this section the effect of various search parameters (number of selected clusters, page size, 

centroid length, and matching function) on efficiency is presented. In these analyses the number 

of page accesses is used, since as it is shown later it is the major component of the query 

processing time. At the end the overall evaluation and a comparison with the results of [I91 are 

provided. In this section, unless otherwise specified, the results are given for the TW2 matching 

function, the centroid length of 250, and for the first fifty best matching clusters. This is because 

TW2 is the most effective function of our experiments and the centroid length of 250 is also used 

in the experiments of [19]. 
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5.3.1 Effect of  umber of Selected Clusters (ns) 

As we defined before in our experiments the best-match CBR policy is used. That is, we first 

select the best-matching ns number of clusters, then choose the best-matching ds documents 

from the selected clusters. Figure 5 shows the effect of ns on the average number of page 

accesses for the page size of 4K. The CBR search strategies CVllS and ICllS are independent of 

ns. However, the number of page accesses for ICDV and CVDV increases with the increase of ns. 

Because, each selected cluster brings new document vectors to match with the query vector. 

The ICIIS technique is the most efficient CBR for ns > 20. (Notice that the average query vector of 

the experiments is 15-82!) For lower values of ns, ICDV is the most efficient CBR strategy. 

However, we know that for the INSPEC database to obtain effective results we have to open 

about fifty clusters [3, Figure 61. The observations indicate that for long query vectors ICDV has 

the potential of being most effective strategy. Since for the selection of documents, ICllS must 

access one or more pages of IID for each query term. However, ICDV only accesses the 

document vectors of the selected clusters. For a very large database expected value of ns is 

much larger than expected length of a query vector. Therefore, for most cases ICllS will remain 

the most efficient strategy for CBR. The effect of ns in connection with the other experiment 

parameters is defined in the following sections. 

-+ ICDV 
+- CVDV 
-0- CVllS 

ns 

Figure 5. The effect of ns on average no. of page accesses (page size= 4K) 

5.3.2 Effect of Page Size 

The effect of page size on average number of page accesses is shown in Table IV. The 

experiments indicate that the increase in page size decreases the 110 time. This is an expected 

behavior. However, it should be noticed that we cannot increase the page size indefinitely since 
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larger page sizes would imply more internal page fragmentation. Table IV indicates that for ail page 

sizes IlS is the most efficient method. It is followed by ICIIS. The least efficient method is CVDV. 

The comparison of CVllS and ICDV shows that CVllS is more efficient for smaller page sizes; 

however, for larger page sizes the reverse is true. In CVllS and ICDV the heavy 110 components 

are, respectively, centroid vectors (CV) and clustered document vectors (CDV). CV and CDV are 

more influential in determining the overall efficiency of the methods. The decrease in I/O for ICDV 

is much more than the decrease in I/O for CVllS due to the increase in page size. This is because 

the size of the selected cluster documents is much smaller than that of centroid vectors. For the 

page size of 0.5 K, lCllS is much more efficient than ICDV. Since in ICDV, for each selected 

cluster, several document vector pages are accessed due to small page sizes. 

By definition the number of page accesses for lCllS and CVllS is independent of ns. 

However, the change in ns affects ICDV and CVDV. Clearly for smaller ns values the average 

number of page accesses for ICDV and CVDV is less, In most of the cases lCllS becomes the 

most efficient method even for ns values smaller than the average query length. This is especially 

true for smaller page sizes. For ns values greater than the average query length ICllS is the most 

efficient method for all page sizes. 

5.3.3 Effect of Centroid Length 

The effect of centroid length on paging, specifically percentage increase in paging with the 

centroid length of 500 with respect to the centroid length of 250 is depicted in Table V. The 

effect of centroid length on ICllS IS mlnor (zero to three percent). This is because, in general the 

terms brought by a longer centroid are not necessarily the query terms which have not been 

selected by using a shorter centroid length or shorter centroids may contain all of the query terms. 

The lCllS with 4K pages results In 77.58 and 77.53 number of page accesses, respectively, 

for centroid length of 250 and 500 The lower number of page accesses of lCIlS with centroid 

Table IV (cont.). (Centroid length= 500) 
Page Size 
(K bytes) 

.5 
1 
2 

1 4  I 77.53 I 420.82 I 159.34 I 502.62 I 

CVDV 
7052.83 
2623.49 
1096.1 4 

ICllS 
31 2.04 
1 78.82 
1 12.04 

CVllS 
3206.38 
161 4.29 
81 8.86 

ICDV 
41 58.49 
1 188.03 
389.32 
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length 500 is due to arbitrary selection of terms which appear in only one cluster number. In the 

experiments this policy eliminated very few of the query terms from the longer centroids. That is, 

due to this arbitrariness, centroid length 500 is not necessarily a superset of centroid length 250 

for all centroids. 

The effect of the centroid length length is more noticeable on CVllS and CVDV. Since both 

of these techniques use the data structure CV (compact centroid vectors) and an increase in 

centroid length directly affects the cost figures coming from CV. The increase in ICDV is 

moderately low (since newly added terms are not query terms) with respect to CVllS and CVDV 

and it ranges between five to fifteen percent. 

The centroid length experiments indicate that after a threshold centroid length lCllS remains 

the same and becomes the most efficient CBR strategy. The same is untrue for the other CBR 

strategies since they incur more paging cost with the increased centroid length. 

Table V. The Effect of Centroid Lenath on Paging 

5.3.4 Effect of Matching Function 

The effect of the matching function (TW1 through TW7) on the experiments was negligible (for all 

cases always less than one percent). This is natural for llS and lCllS since their efficiency is 

independent of the matching function. The other cases can be explained as follows: different 

matching functions select not necessarily the same but similar set of clusters, or clusters with 

compatible sizes, or both. More importantly, C ~ M  provides a uniform distribution of documents 

among clusters. Therefore, choosing this set or that set does not make much difference. 

We must state that the same cannot be said for an agglomerative hierarchical clustering 

environment. Since such an environment contains numerous clusters with considerable 

differences in size [18, p. 1441. Therefore, a top-down search policy using different matching 

functions may choose considerably different search paths with considerably different efficiency 

results. Furthermore, it would be difficult to replicate CBR experiments in a hierarchical clustering 

environment. Since the agglomerative hierarchical clustering algorithms do not necessarily define 

a unique hierarchy for a given data set. Since decision ties are broken arbitrarily. Furthermore 

small changes in the similarities between documents may result in considerable differences in the 

clustering structure [I 8, pp. 27-28]. 

(% increase in paging with cent. len. of 500 &.r.t. cent.-le6. of 250) 
Page size (K) 

.5 
1 
2 

IClIS 
3 
3 
2 

CVDV 
33 
39 
45 

CVllS 
60 
59 
58 

1 

ICDV 
15 
13 
11 
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5.3.5 Overall ÿ valuation 
The efficiency figures of all search strategies in terms of mean number of pages, mean number of 

instructions, and mean number of seconds for page size of 4K are given in Table VI. The overall 

evaluation is done using this page size, since it is common. The same information for hierarchical 

(complete link) CBR for centroid lengths of 75, 100, and 250 are depicted in Table VII [I 91. 

The experimental results indicate that CPU time constitutes a small portion of the total query 

processing time. For example, for 11s it is less than five percent. For ICIIS, it is less than four 

percent for both centroid sizes. The same is also true for the other CBR strategies. 

Among all CBR strategies, lCllS is the most efficient strategy in terms of both paging and CPU 

time. For example, for the centroid length of 250, CVIIS, ICDV, and CVDV, respectively, require 

253 percent, 100 percent, and 353 percent more mean processing time with respect to ICIIS. For 

the centroid length 500 the percentage increases are (in the same order) 450, 110, and 559. 

Table VI. Efficiency Performance for IIS and CBR (page size= 4K) 

Table VII. Efficiencv Performance for Hierarchical CBR 

Table VI, (continued) 

(tak6n from [I 9, Table 61) 
Max centroid length 

7 5 I 100 1 250 

Mean 
pages 
Mean 
instr. 
Mean 
secs. 

Mean 
pages 
Mean 
instr. 
Mean 
secs. 

218.1 257.2 41 8.3 

instr, 

secs. 13.07 

IIS 

48.82 

67,893 

1.53 

Max centroid length = 250 

The efficiency performance of hierarchical CBR given in Table VII indicates that the centroid 

length is influential in efficiency. For the centroid length 250 the efficiency of CVDV is compatible 

with that of hierarchical CBR. This may be coincidental or may be due to the fact that the 

Max centroid length = 500 

CVDV 

344.47 

589$659 

10.92 

ICllS 

77.58 

81,195 

2.41 

CVDV 

502.62 

81 2,341 

15.89 

ICllS 

77.53 

84,727 

2.41 

CVllS 

269.82 

41 4,383 

8.51 

ICDV 

152.23 

257,471 

4.82 

CVllS 

420.82 

626,732 

13.25 

ICDV 

159.34 

270,336 

5.05 
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technique used in E;19] is somewhat equivalent to the CVDV approach: c e n t r ~ J  and document 

vectors are matched during query processing. 

The comparison of Table VI and Table VII shows that lCllS and ICDV are more efficient than 

hierarchical CBR. This is true for all centroid lengths. For the common centroid lengths (250) of 

both studies the mean processing time of lCllS and hierarchical cluster searches, respectively, are 

2.41 and 13.07 seconds. In other words, hierarchical CBR requires 442 percent more processing 

time. The same comparison with respect to ICDV indicates 171 percent more processing time. 

Both in ICllS and ICDV, inverted centroid (IC) data structure contributes to the improvement. 

Further improvements in lCllS comes from IIS. Similarly, in a hierarchical clustering environment 

inverting the top level centroids of the tree and starting the cluster search by using an inverted 

search on top level centroids should save time 118, 191. For further improvements one can 

incorporate IIS to hierarchical search. This prevents the calculation of similarity values for 

documents containing no common term with the query vector. 

6.  EFFECTIVENESS OF lCllS 

In the previous section we showed that lCllS is an efficient CBR strategy. Furthermore, ICllS 

provides the results of FS without a cost. In this section we want to show that the combined FS 

and CBR has potential benefits in terms of increasing the effectiveness of IR. 

Efforts to choose FS or CBR in specific environments have proven fruitless. The Study 

reported in [9] considers statistical characteristics of queries to choose between CBR and FS. 

The findings of the study indicate that the automatic selection criteria will be unable to choose 

between different search mechanisms using the statistical characteristics of queries. The study 

reported in [6] investigated the use of learning automata for the selection of search strategies. 

However, since the alternative strategies were too similar to each other, the learning automata 

approach did not provide any improvement. 

Our experiments show that FS and CBR return considerably different sets of documents. 

This becomes more noticeable if FS and CBR use different matching functions. For example, for 

the centroid length of 250 and after examining twenty best-matching documents of the first fifty 

best-matching clusters, the average of the percentage of common entries between FS and CBR 

for all matching functions is sixtynine. (The average is found by averaging the individual results of 

the queries.) The same average using different matching functions for FS and CBR is fortyfive. 

The same figures for the first ten best-matching documents, respectively, are seventyfour and 

fourtyfour. This means that the results of FS and CBR can be combined to improve effectiveness. 

The "optimum" search using FS and CBR provides considerable effectiveness (precision) 

improvements. In an optimum search, FS and CBR both find ds documents. Then the relevant 

documents from each search are combined after the elimination of duplicates then other 
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documents retrieved by FS or CBR are added until the desired number of documents (ds) have 

been retrieved. 

The percentage increase in precision with respect to FS using the combined optimum search 

for the CBR conditions (ns = 50, ds = 20, centroid length= 250) is provided in Table VIII. The 

average increase in this table is twenty-seven percent. The same average for (ns = 50, ds = 10, 

centroid length= 250) is twenty-six percent. The table indicates that the optimum search provides 

considerable improvement. In Table Vlll the improvement in off-diagonal entries is more 

noticeable. They correspond to the combination of different matching functions for FS and CBR. 

Of course the implementation of combining different matching functions is more difficult in terms 

of space efficiency, since different matching functions require different normalizations for the 

document vectors. We are planning to implement methods to combine the available results of FS 

and CBR rather than choosing the results of one of them [6, 91. A simple method that may work in 

our environment is defined in [8]. 

7. CONCLUSION 

In this study the efficiency of various CBR strategies is analyzed. A new method, ICIIS, for 

combining IIS and CBR is proposed and shown to be cost effective in terms of paging and CPU 

time. The observations prove that ICllS is much more efficient than conventional CBR strategies 

including hierarchical cluster search. The storage overhead of lCllS is moderate and less than that 

of the hierarchical clustering environment. Since the clustering structure of the experiments are 

created by the cover-coefficient-based clustering methodology (c3M), the results also indicate 

that c3M creates not only effective [3] but also efficient IR environment. 

For very long query vectors a conventional CBR strategy, ICDV, may be more efficient than 

ICIIS. However, lCllS is open to further efficiency improvements. (The same is partly true for 

ICDV.) Since inverted index searches can be optimized with a slight effectiveness deterioration 

[I]. This may make lCllS more efficient than ICDV both for short and long query vectors. Further 

investigation is needed. 

Table VIII. Percentage Increase in Precision Using Combined Optimum Search 
(for ns = 50, ds = 20, centroid length= 250) 

TW1 
TW2 
TW3 
TW4 
TW5 
TW6 
i W 7  

I 
CBR 

TW7 
48 
21 
33 
23 
16 
2 5 
22 

TW6 
38 
25 
31 
31 
2 3 
19 
26 

TW5 
40 
23 
34 
2 7 
18 
2 5 
21 

TW1 
22 
20 
21 
2 6 
32 
3 1 
42 

TW2 
27 
15 
2 7 
20 
32 
32 
2 8 

TW3 
2 4 
19 
17 
28 
38 
3 3 
36 

TW4 
32 
16 
31 
16 
33 
3 6 
28 
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In the experiments the effects of several parameters (number of selected clusters, centroid 

length, page size, and matching function) are examined. By definition the efficiency of lCllS is 

independent of the number of selected clusters and the similarity function used in a given 

experiment. Therefore, with ICllS retrieving more clusters/documents has the same cost as 

retrieving fewer clusters/documents. The experiments also suggest that after a threshold, the 

effect of centroid length on the efficiency of ICllS would be negligible. These characteristics are 

desirable. 

Another advantage of ICllS is the fact that it provides the results of FS without a cost. Another 

way of saying the same thing is it provides the results of CBR with a little cost over FS. (For the 

INSPEC database the difference is less than one second.) In the paper it is experimentally shown 

that the combined FS and CBR has potential benefits in terms of increasing the effectiveness of 

IR. This will be investigated in our future research. 
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