
Computer Science and Systems Analysis

Computer Science and Systems Analysis

Technical Reports

Miami University Year 

Experiments on the Efficiency of Cluster

Searches

Fazli Can∗ David Anderson†

∗Miami University, commons-admin@lib.muohio.edu
†Miami University, commons-admin@lib.muohio.edu

This paper is posted at Scholarly Commons at Miami University.

http://sc.lib.muohio.edu/csa techreports/62

DEPARTMENT OF COMPUTER SCIENCE
& SYSTEMS ANALYSIS

TECHNICAL REPORT: MU-SEAS-CSA-1991-001

Experiments on the Efficiency of Cluster Searches
Fazli Can and David Anderson

School of Engineering & Applied Science | Oxford, Ohio 45056 | 513-529-5928

EXPERIMENTS ON THE EFFICIENCY

OFCLUSTERSEARCHES

Fazli Can David Anderson
Systems Analysis Department

Miami University
Oxford, Ohio 45056

Working Paper #91-001 031'9 1

This paper has been submitted for publication and will be copyrighted if
accepted. Its distribution is limited to peer communications and specific
requests.

EXPERIMENTS ON THE EFFICIENCY OF CLUSTER SEARCHES

Fazli CAN*

David J. ANDERSON

Department of Systems Analysis

Miami University

Oxford, OH 45056

March 24, 1991

Abstract

The efficiency of various cluster based retrieval (CBR) strategies is analyzed. The possibility of

combining CBR and inverted index search (11s) is investigated. A method for combining the two

approaches is proposed and shown to be cost effective in terms of paging and CPU time. The

observations prove that the new method is much more efficient than conventional approaches. In

the experiments, the effect of the number of selected clusters, centroid length, page size, and

matching function is considered. The experiments show that the storage overhead of the new

method would be moderately higher than that of IIS. The paper also examines the question: Is it

beneficial to combine CBR and full search in terms of effectiveness?

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

1, INTRODUCTION

The purpose of an information retrieval system (IRS) is to locate the documents which are relevant

to the user query. Two well known approaches to query processing are full search (FS) and

cluster based retrieval (CBR) [lo, 14. In IR, a cluster contains a homogeneous group of

documents that are more strongly associated with each other than with those in other groups.

Both FS and CBR use a matching (similarity) function to decide which documents are potentially

relevant (i.e., match the query) and should be returned to the user.

For efficiency, FS is usually implemented by inverted index search (11s). In llS, associated with

each term there is a list of <document no., weight> pairs including each document in which that

term appears. The similarity of all database documents is then determined by traversing only

query term lists. A typical implementation of CBR first matches queries with cluster

representatives, called centroids, then matches the queries with documents in the selected

clusters to find those that actually match the query.

As in any other information system, efficiency and effectiveness are the main concerns of an

IRS. Efficiency and effectiveness are, respectively, associated with the time/space it takes the

system to perform the search and with the quality of retrieval. The concern of this paper is

efficiency of IR. More specifically, we compare the efficiency of IIS and CBR based on single level

clustering. In the paper we use four different implementations of CBR. In one of them we

investigate the possibility of combining IIS and CBR. First we show that the storage overhead of

the new method is moderately higher than that of IIS. Later it is shown that the new strategy is

cost effective in terms of paging and CPU time and is much more efficient than CBR based on a

hierarchical clustering structure [19]. In the efficiency experiments the effect of number of

selected clusters, page size, centroid length, and matching function is considered. In the paper

we also show the potential benefits of combining CBR and IIS to improve effectiveness.

The paper is organized as follows. Section 2 provides the preliminary information on CBR and

presents the description of the new CBR strategy. Section 3 covers the experimental

environment in terms of the document database, the clustering algorithm used for the creation of

the experimental environment, and the matching functions. Section 4 presents the data

structures used for the implementation of IIS and CBR strategies. The storage cost of each

method is included and compared. Section 5 defines the query processing efficiency measures

and presents the results of the efficiency experiments. The potential benefits of combining FS

and CBR in terms of effectiveness is shown in Section 6. The conclusion is given in Section 7.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

2. CLUSTER BASED RETRIEVAL (CBR)

In the IR literature there are several publications on clustering and CBR. Further information can

be found in [lo, 11, 12, 15, 17, 201. Most clustering research in IR is related to creation of new

clustering algorithms and their effectiveness in terms of IR.

In CBR, the system does not necessarily return the documents with highest similarity to the

query. This is because, the selected clusters do not necessarily contain the best-matching

documents. However, unlike IIS (FS), CBR does not lose the relationships between documents

and allows the users to browse through a document database. In CBR the efficiency of retrieval is

expected to decrease with increasing number of selected clusters (ns) A recent study on

effectiveness of CBR shows that after a threshold, selecting more clusters does not increase the

effectiveness in CBR [3], In IIS case only the inverted index information of query terms is

accessed from the disk medium. As a result the efficiency of IIS decreases with increasing query

length [I 0, p. 2931. Since for each query term a new inverted index list must be processed. CBR

selects some of the clusters; therefore, it has the potential of being more efficient than IIS if query

vector is long. For example, in automatically generated query environments (e.g., using a seed

document) the query length can be long (e,g., 200 terms) 114, 161,

A recent study on efficiency (and effectiveness) is reported in [la, 191. The paper [I91

compares the efficiency of llS and complete link based hierarchical CBR. The findings of the

study indicate that IIS is more efficient in terms of disk space and query processing time since the

cluster search requires several centroid vectors. In [I91 the number of clusters that are

considered in the search depends on the number of documents to be retrieved. It begins by

placing the root of the cluster tree into an empty heap. Later, the top of the heap corresponds to

the cluster with the current largest similarity with the query. The top of the heap is popped until

the heap is empty or sufficient number of documents have been retrieved. In the search, a

popped document is retrieved. A popped cluster is replaced by its children that have nonzero

similarities with the query. At the end the retrieved documents are presented to the user in

decreasing similarity. In this search policy the number of visited nodes depends on both the

query vector, the cluster tree structure, and the centroid vectors. Notice that this top-down

search strategy needs some modifications for very large document databases. Since for a high

level cluster containing thousands of documents it would be impossible to obtain a reasonable

centroid. Later in the paper we provide the efficiency performance of this search strategy [I 91 and

compare it with ours.

In a non hierarchical clustering environment the best-match CBR policy selects the best-

matching ns number of clusters and retrieves the best-matching ds documents of the selected

clusters. In this paper we use the best-match CBR policy.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches Pa 4

The implementation of the best-match CBR (or simply CBR) is conventionally done in the

following two ways.

ICDV: Match the query vectors with the centroid vectors (CV) and the document vectors (DV)

of the members of the best-matching clusters.

ICDV: Match the query vectors with the inverted indexes of centroids (IC) and the document

vectors (DV) of the members of the best-matching clusters.

In addition to these conventional methods we propose the following method of implementation

for CBR.

ICIIS: Match the query vectors with the inverted indexes of centroids (IC) and the inverted

indexes of all documents (11s).

In the transition from the conventional methods to the new method there is a hybrid approach.

CVIIS: Match the query vectors with the centroid vectors (CV) and the inverted indexes of all

documents (11s).

Notice that ICllS has the potential of being efficient since query vectors are usually very short

and the number of clusters to be selected can be very large depending on the database size. For

example, the average query vector length of the queries associated with some of the

experimental document databases are as follows (database acronym, average query length):

(CACM, 10.80), (CISI, 28.29), (CRAN, 9.17), (INSPEC, 15.82), (Keen, 10.30), (LISA, 16.50),

(MED, 10.10), (NPL, 7.16), (TODS214, 13.36), (UKCIS, 7.4) [3, 8, 131. However, as we stated

before in automatically generated query environments, the query length can be long (e.g., 200)

[14, 161. In the paper we analyze the efficiency of all of these CBR strategies and IIS.

Now let us consider the possibility of implementation of these CBR strategies in terms of their

internal memory requirements. The strategies CVDV and ICDV should not impose any problem.

Our concern is ICIIS. For a document database containing nc number of clusters the IC

component of lCllS requires O(nc) memory space to accumulate the partial similarities during the

traversal of the query term lists. This is equal to (4*nc) bytes. Another array holds the best ns

partial similarities seen so far. During similarity calculations all partial similarities are initially set to

zero, then they are updated as the term lists are traversed. If the current similarity of a cluster is

large enough, it is inserted in the top similarity array of the centroids. After processing the all

query terms, the top similarity array contains the selected clusters. For the ISS component we use

the identical technique [I , 18, 191. See [19, Figure I] for an example. Therefore, ISS requires an

array of size (4*m) bytes for a database of size m documents. For the update of the top similarity

array we consider only the documents of the selected clusters. The implementation of CVllS is

similar. In all approaches the term weights of each vector (query, centroid, document) are

normalized according to the matching function to be used [I 37.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches P a 5

The above discussion shows that lCllS is realizable with an internal storage of (4*m + 4*nc)

bytes for similarity arrays and plus (4*m) bytes for cluster membership information of the

documents. This excludes other program variables and the program itself. The storage overhead

of the partial similarity vectors of clusters, (4*nc) bytes, and top similarity arrays of the best-

matching clusters ,(4*ns) bytes, and best-matching documents, (4*ds) bytes, is negligible. All in

all, the ICIlS strategy is feasible because of the large amounts of inexpensive memory available on

today's computers. More conservatively, we can say that IClIS would be feasible for all but the

largest document databases (greater than one million documents) [11.

3. EXPERIMENTAL ENVIRONMENT

In this section a brief description of the experimental database, the clustering algorithm used for

the creation of the CBR environment, the matching functions, and the IR quality of the CBR is

provided.

3.1 Document Database and Clustering Algorithm

In the experiments the INSPEC database is used. The document-term (D) matrix and the queries

of the database are commonly used. Some statistical characteristics of the INSPEC document

database and the queries are provided in Table 1. In this table m, n, and t respectively, indicate

the number of documents, terms, and total term assignments (the number of nonzero entries in

the D matrix).

The clustering structure of the experiments is created using the cover-coefficient-based

clustering methodology (cM~) [3]. In C M ~ some of the documents are selected as cluster seeds.

Then nonseed documents are assigned to one of the clusters initiated by the seed documents.

The number of clusters, nc, is determined using the cover-coefficient (CC) concept. According to

CC, for an m (document) by n (term) D matrix the value range of nc and the average cluster size

(dc) is as follows.

1 2 nc 5 min (m, n), (1, m/n) < dc m.

The computational complexity of C M ~ is O(m * xd * tgs), where xd and tgs indicate the average

number of terms per document and the average number of seed documents per term,

respectively.

Table I. Character~st~cs of the INSPEC Database and its Queries
A Database

Table I. (cont) B. Queries
Avg, query Avy, relevant No. of distinct No, of d is t inct t

terms for q. def.s
577

doc. retrieved
1,940

No. of queries
77

length
15.82

doc. per query
33.03

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

3.2 Query Matching and IR

For query matching there are several matching functions depending on term weighting

component of document and query terms. Term weighting basically has three components: the

term frequency component, the collection frequency component, and the normalization

component [13, 141. The weights of the terms of a document and a query are defined as the

inner product of document and query vectors. Salton and Buckley [13] obtained 1,800 different

combinations of documentlquery term-weight assignments, of which 287 were found to be

distinct. In the same study, six of these combinations are recommended due to their superior IR

performance. In the experiments we used these six matching functions and the famous cosine

similarity function. In this study the cosine similarity function is referred to as TW1 (term weighting

1) and the other six are referred to as TW2 through TW7. In [13] The effectiveness of these

matching functions for the INSPEC database is reported in [3]. In that study they are again

referred to as TW1 through TW7; in [13] they are, respectively, defined as (txc.txx), (tfc.nfx),

(tfc-tfx), (tfc.bfx), (nfc.nfx), (nfc.tfx), and (nfc.bfx). For the query processing time efficiency

experiments of CVDV and ICDV a trace of each query is obtained in terms of the selected clusters.

The study reported in [3] shows that C M ~ is 15.1 to 63.5 (with an average of 47.5) percent

better than four other clustering algorithm [q in CBR. The same study also shows that the IR

effectiveness of the algorithm is compatible with a very demanding (in terms of CPU time and main

memory) complete link clustering method that is know to have good retrieval performance [18,

191. The effectiveness is measured in terms of precision (or equivalently the total number of

relevant documents retrieved for all queries). Precision is defined as the ratio of the number of

retrieved relevant documents to the number of retrieved documents. The effectiveness

experiments show that selecting more clusters increases effectiveness. The increase in

effectiveness would be expected to increase up to a certain ns, after this (saturation) point, the

retrieval effectiveness remains the same or improves very slowly [3, Figure 61. For the INSPEC

database this saturation point is observed at ns= 50. In the experiments, precision is obtained

after retrieving ds (10, 20) number of documents from ns (50) number of clusters [3, Table 14.
TW2 is observed as the most effective matching function. In a given experiment the same

matching function is used both for cluster and document selection.

4. STORAGE STRUCTURES

The data structures used for the implementation of inverted index search (IIS), and all CBR

strategies are defined in this section. These structures, when appropriate, are synonymous to

those defined in [18, 191. This section first describes the storage structures and how to

determine their sizes, then the values for our experimental database INSPEC. The assumed

storage environment is a disk device. The storage requirements are expressed in terms of bytes.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches P. 7

Since the number of pages (data blocks) is not a precise description of the relative sizes of data

structures [18, p. 1091.

4.1 Data Structures

For llS we need to have the inverted index representation of the D matrix, llD, and a direct file of

document vectors, DV, of the D matrix. It is assumed that the direct file DV would be needed for

query expansion during query feedback [I 81.

An inverted index entry contains a fixed length header and a variable number of tuples that

have the form <document id, term weight>. Each header is 12 bytes in length and contains a term

number (4 bytes), the number of documents in which the term appears (4 bytes), and a pointer to

the beginning of the document tuples for that term (4 bytes). Each tuple requires 8 bytes and

consists of document number (4 bytes) and the weight of the term within that document (4 bytes).

The storage requirement of llD is (1Pn + 89).

Document vectors, DV, consists of a document number, a tuple for each term used in the

corresponding document and a flag to signify the end of a vector. Each tuple contains number

and weight of the corresponding term. Therefore the structure of a vector and the storage

requirement of each component is as follows.

vector: <document no.> <term no,, weight>* <flag>

bytes: 4 8 4

In the above representation "*" indicates one or more occurrences of the <term no., weight>

tuple. Accordingly, the storage requirement of DV is (8*m + 89).

In all CBR implementation techniques a direct file of centroid vectors, CVD, is needed. This is

because in a dynamic document environment clusters must be maintained and the effect of the

maintenance need to be reflected to the centroids [2, 4, 101. In CBR strategies ICllS and CVllS

the data structure DV is needed. However, in ICDV and CVDV the data structure DV is not

required, since for these cases document vectors are available in clustered form. The storage

requirements of CVD is (8*nc + where tc indicates the total number of term assignments in

the centroids.

The cluster membership information, CM, is also needed in all CBR techniques. CM is directly

used in ICllS and CVIIS. In all cases it is needed for cluster maintenance and centroid generation.

For each cluster CM contains the cluster number, number of member documents, and the

document numbers of the members, Accordingly its storage requirement is equal to (8*nc +4*m).

The CBR technique lCllS strategy needs the inverted index of centroids, IIC, for cluster

selection. IIC has the same structure as llD and its storage requirement is equal to (l r 'n + 8*tc).

ICllS uses IIS for document selection. The IIS component requires IID.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches P. 8

The CBR technique CVllS requires the centroid vectors for centroid selection. If we use

direct file of centroid vectors, CVD, for query centroid matching the number of disk accesses is at

least equal to nc. (This assumes that each centroid vector begins on a new page for possible

modification.) To reduce I/O time we use packed centroid vectors, CV. The data structure CV is

the sequential version of the direct file CVD and its storage requirement (in terms of bytes) is like

that of CVD (8*nc + 8*tc).

The CBR technique ICDV requires the inverted index of centroids, IIC, and the clustered

document vectors, CDV. CDV contains the same information as DV does, i.e., the document

vectors. However, in CDV case, document vectors are clustered and the document associated

with the same cluster are stored in the same page(s), In CDV each cluster requires a header of 12

bytes. A cluster header contains the corresponding cluster number, number of member

documents, and a pointer pointing to the vectors of the member documents. The storage

requirement of CDV is then equal to (1 2*nc + 8*m + 8*t).

The last CBR technique, CVDV, requires previously defined data structures CV and CDV.

The application of C ~ M to the example D matrix given in Figure 1 produces the document

clusters c l= {dl, d2) and c2= {dg, d4, dg) [3]. The contents of the data structures for IID , IIC, CV,

and CDV for the example D matrix are depicted in Figure 2.

Figure 1. The example D matrix.

In Figure 2 llD shows that term-1 (t l) appears in two documents: document-1 (dl) and d2.

Since the D matrix is binary the term weights are one. IIC provides the same information for

centroids. For example, the header information for t2 indicates that it appears in two centroids

(the centroids of c l and c2) In c l both members, d l and d2, contain t2, that is why the weight of

t l in c l is two. Similarly in c2 two members, d4 and dg, contain t2. The third data structure of

Figure 2, depicts the contents of CV, As defined before CV contains the centroid vectors. The

first centroid (indicated by < I >) contains t l , t2, and t5 with a weight of 2 and t4 with a weight of 1.

The end of each centroid is indicated by a flag (<O>). The cluster header part of the last data

structure of Figure 2, CDV, indicates that c l and c2, respectively, contain two and three member

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches P. 9

Inverted Index for Documents (IID) Inverted Index for Centroids (IIC)

Centroid Vectors (CV)

Clustered Document Vectors (CDV)

Figure 2. Data structures for the example D matrix.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 10

documents. The first member of c l is d l (indicated by <I>) and d l is defined by terms t i , t2, and

t5, and the weight of each term is 1. The end of each document vector is indicated by a flag (<a>).

4.2 Storage Requirements

For the CBR experiments we used two (maximum) centroid lengths 250 and 500. The terms with

the highest total number of occurrences within the documents of a cluster are chosen as centroid

terms. The weight of a centroid term is defined as its total number of occurrences in the

documents of the corresponding cluster. (In the IR experiments these weights are normalized

according to the matching function.) The characteristics of the centroids are given in Table II. In

this table the column "%DM indicates the total size of centroid vectors as a percentage oft of the D

matrix of INSPEC.

DV = Document vectors (direct access file): 8*m + 89 = 3,399,512
IID = Inverted index for documents: 1Pn + 89 = 3,472,916
CDV = Clustered document vectors: 1 Pnc + 8*m + 89 = 3,405,212
llC250 = Inverted index for centroids (cent. length = 250): 12*n + 8*tc,250 = 1,075,820
CV250 = Centroid vectors (cent. length = 250): 8*nc + 8*tc1250 = 904,744
CVD250 = Centroid vectors (direct access file version): 8*nc + 8*tc,250 = 904,744
llC500 = Inverted index for centroids (cent. length = 500): 12% + 8*tc,500 = 1,691,308
CV500 = Centroid vectors (cent. length = 500): 8*nc + 8qc,500 = 1,520,232
CVD500 = Centroid vectors (direct access file version): 8*nc + 8*tc,500 = 1,520,232
CM = Cluster membership information: 8*nc + 4*m = 54536

Table II. Characteristics of the Centroids

(m= 12,684, n= 14,573, t= 41 2,255, tc,250= 112,618, tc,fioo= 189,554, nc= 475)
Figure 3. Storage requirements of the data structures (in terms of bytes).

Table Ill. Storaae Cost of Different A~oroaches

%D
27
46

Maximum
Length

250
500

Average
Length
237.09
399.06

(% increasgof CBR over IIS is indlbded)
Centro.
Length

250

500

Avg. No. of
CentJTerm

12.96
14.74

% of Used
Clus. Terms

51
86

% change
w.r.t. IIS

0
30
27
-21
-23
48
45
-3
-5

Method
llS

lCllS
CVllS
ICDV
CVDV
lCllS

CVllS
ICDV
CVDV

Total No. of
Distnict Terms

8,689
12,857

Cost Components
DV+IID

DV+llD+llC250+CVD250 +CM
DV+ llD+CV250+CVD250 +CM

llC250+CDV+CVD250 +CM
CV250+CDV+CVD250 +CM

DV+llD+llC500+CVD500 +CM
DV+llD+CV500+CVD500 +CM

llC500+CDV+CVD500 +CM
CVrtnn+CDv+cVD~;nn +CM

Total Cost
6,872,428
8,907,528
8,736,452
5,440,312
5,269,236
10,138,504
9,967,428
6,671,288
6.500.21 2

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

expected value of- nc is (nlxd) [3]. Therefore, the internal storage requirement of the cluster

headers is negligible.

The 110 time of each query is determined independently of the others. The time needed to

retrieve the text is ignored. However, it should be noticed that in an operational environment the

text I10 in a clustered environment would require considerably less time than that of an

unclustered environment [5].

In the experiments no paging strategy is assumed. Since pages are consumed in the order

they brought to main memory. For instance, a page containing term lists is used only once for the

current query. The term headers may contain information for more than one query term. Then we

may assume that the needed term information is saved in the working storage area immediately

after reading a term header page into main memory. Therefore, the I/O time is determined by the

distinct number of pages accessed for the query. Then in IIS, the I/O cost of each query term is

one or zero page access for the header information. The number of page accesses for the term

list is determined by the generality of the term. The term generality of tj, tgj, is defined as the

number of documents containing tj. Accordingly number of page accesses for the term list Of tj is

determined as follows.

[(8 * tgj) / page size1

In the experiments we assume that the I/O time of each page is the same. Actually this is

impossible. Since the I/O time is mainly determined by the seek time and the rotational latency

time. Therefore, a page which is very close to the previously accessed page requires significantly

less I10 time. It is assumed that the I/O time of a page is 30 milli second independent of its size.

Since the data transfer time is a very small portion of the page 110 time (typically less than five

percent) the effect of this assumption on the results is negligible.

5.2 Measurement of CPU Time

The CPU time measurement is done in terms of the number of idealized instructions. For this

purpose each array indexing, pointer update, comparison, and floating point addition and

multiplication is considered as one idealized instruction. It is assumed that each idealized

instruction requires one micro second. The time needed for the initialization of the variables is

ignored.

In query processing there are two ways of similarity calculation: using the inverted indexes IIS

and IC; and using the clustered document vectors, CDV, and centroid vectors, CV. The

algorithms of similarity calculations are provided in Figure 4. The same figure also shows the

number of idealized instruction(s) to be executed for each statement. These algorithms and the

assumptions are equivalent to the ones defined in [I 8, 191.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 13

for (each query term) do
begin

if (at end of list) then (1 inst.)
go to next list

else
begin

sim[current vec id]:=sim[current vec idltq, term wgt*vec term wgt; (3 inst.)
increase list pointer to point to the next vec id in list (1 inst.)

end
end

Figure 4.a. Inverted index (IlS, IC) similarrty calculation.

sim:= 0;
while (true) do

begin
if (q. term no > vector term no) then (1 inst.)

begin
increase vector pointer; (1 inst.)
if (at end of vector) then exit loop (1 inst.)

end
else if (q. term no c vector term no) then (1 inst.)

begin
increase query pointer; (1 inst.)
if (at end of query) then exit loop (1 inst.)

end
else {there is a match)

begin
sim:= sim + (q. term wgt *vector term wgt); (2 inst.)
increase query pointer; (1 inst.)
if (at end of query) then exit loop; (1 inst.)
increase vector pointer; (1 inst.)
if (at end of vector) then exit loop (1 inst.)

end
end

4.b. Vector (document, centroid) similarity calculation.
Figure 4, Implementation of similarity calculations using inverted index and vectors.

5.3 Experimental Results

In this section the effect of various search parameters (number of selected clusters, page size,

centroid length, and matching function) on efficiency is presented. In these analyses the number

of page accesses is used, since as it is shown later it is the major component of the query

processing time. At the end the overall evaluation and a comparison with the results of [I91 are

provided. In this section, unless otherwise specified, the results are given for the TW2 matching

function, the centroid length of 250, and for the first fifty best matching clusters. This is because

TW2 is the most effective function of our experiments and the centroid length of 250 is also used

in the experiments of [19].

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

5.3.1 Effect of umber of Selected Clusters (ns)

As we defined before in our experiments the best-match CBR policy is used. That is, we first

select the best-matching ns number of clusters, then choose the best-matching ds documents

from the selected clusters. Figure 5 shows the effect of ns on the average number of page

accesses for the page size of 4K. The CBR search strategies CVllS and ICllS are independent of

ns. However, the number of page accesses for ICDV and CVDV increases with the increase of ns.

Because, each selected cluster brings new document vectors to match with the query vector.

The ICIIS technique is the most efficient CBR for ns > 20. (Notice that the average query vector of

the experiments is 15-82!) For lower values of ns, ICDV is the most efficient CBR strategy.

However, we know that for the INSPEC database to obtain effective results we have to open

about fifty clusters [3, Figure 61. The observations indicate that for long query vectors ICDV has

the potential of being most effective strategy. Since for the selection of documents, ICllS must

access one or more pages of IID for each query term. However, ICDV only accesses the

document vectors of the selected clusters. For a very large database expected value of ns is

much larger than expected length of a query vector. Therefore, for most cases ICllS will remain

the most efficient strategy for CBR. The effect of ns in connection with the other experiment

parameters is defined in the following sections.

-+ ICDV
+- CVDV
-0- CVllS

ns

Figure 5. The effect of ns on average no. of page accesses (page size= 4K)

5.3.2 Effect of Page Size

The effect of page size on average number of page accesses is shown in Table IV. The

experiments indicate that the increase in page size decreases the 110 time. This is an expected

behavior. However, it should be noticed that we cannot increase the page size indefinitely since

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 15

larger page sizes would imply more internal page fragmentation. Table IV indicates that for ail page

sizes IlS is the most efficient method. It is followed by ICIIS. The least efficient method is CVDV.

The comparison of CVllS and ICDV shows that CVllS is more efficient for smaller page sizes;

however, for larger page sizes the reverse is true. In CVllS and ICDV the heavy 110 components

are, respectively, centroid vectors (CV) and clustered document vectors (CDV). CV and CDV are

more influential in determining the overall efficiency of the methods. The decrease in I/O for ICDV

is much more than the decrease in I/O for CVllS due to the increase in page size. This is because

the size of the selected cluster documents is much smaller than that of centroid vectors. For the

page size of 0.5 K, lCllS is much more efficient than ICDV. Since in ICDV, for each selected

cluster, several document vector pages are accessed due to small page sizes.

By definition the number of page accesses for lCllS and CVllS is independent of ns.

However, the change in ns affects ICDV and CVDV. Clearly for smaller ns values the average

number of page accesses for ICDV and CVDV is less, In most of the cases lCllS becomes the

most efficient method even for ns values smaller than the average query length. This is especially

true for smaller page sizes. For ns values greater than the average query length ICllS is the most

efficient method for all page sizes.

5.3.3 Effect of Centroid Length

The effect of centroid length on paging, specifically percentage increase in paging with the

centroid length of 500 with respect to the centroid length of 250 is depicted in Table V. The

effect of centroid length on ICllS IS mlnor (zero to three percent). This is because, in general the

terms brought by a longer centroid are not necessarily the query terms which have not been

selected by using a shorter centroid length or shorter centroids may contain all of the query terms.

The lCllS with 4K pages results In 77.58 and 77.53 number of page accesses, respectively,

for centroid length of 250 and 500 The lower number of page accesses of lCIlS with centroid

Table IV (cont.). (Centroid length= 500)
Page Size
(K bytes)

.5
1
2

1 4 I 77.53 I 420.82 I 159.34 I 502.62 I

CVDV
7052.83
2623.49
1096.1 4

ICllS
31 2.04
1 78.82
1 12.04

CVllS
3206.38
161 4.29
81 8.86

ICDV
41 58.49
1 188.03
389.32

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 16

length 500 is due to arbitrary selection of terms which appear in only one cluster number. In the

experiments this policy eliminated very few of the query terms from the longer centroids. That is,

due to this arbitrariness, centroid length 500 is not necessarily a superset of centroid length 250

for all centroids.

The effect of the centroid length length is more noticeable on CVllS and CVDV. Since both

of these techniques use the data structure CV (compact centroid vectors) and an increase in

centroid length directly affects the cost figures coming from CV. The increase in ICDV is

moderately low (since newly added terms are not query terms) with respect to CVllS and CVDV

and it ranges between five to fifteen percent.

The centroid length experiments indicate that after a threshold centroid length lCllS remains

the same and becomes the most efficient CBR strategy. The same is untrue for the other CBR

strategies since they incur more paging cost with the increased centroid length.

Table V. The Effect of Centroid Lenath on Paging

5.3.4 Effect of Matching Function

The effect of the matching function (TW1 through TW7) on the experiments was negligible (for all

cases always less than one percent). This is natural for llS and lCllS since their efficiency is

independent of the matching function. The other cases can be explained as follows: different

matching functions select not necessarily the same but similar set of clusters, or clusters with

compatible sizes, or both. More importantly, C ~ M provides a uniform distribution of documents

among clusters. Therefore, choosing this set or that set does not make much difference.

We must state that the same cannot be said for an agglomerative hierarchical clustering

environment. Since such an environment contains numerous clusters with considerable

differences in size [18, p. 1441. Therefore, a top-down search policy using different matching

functions may choose considerably different search paths with considerably different efficiency

results. Furthermore, it would be difficult to replicate CBR experiments in a hierarchical clustering

environment. Since the agglomerative hierarchical clustering algorithms do not necessarily define

a unique hierarchy for a given data set. Since decision ties are broken arbitrarily. Furthermore

small changes in the similarities between documents may result in considerable differences in the

clustering structure [I 8, pp. 27-28].

(% increase in paging with cent. len. of 500 &.r.t. cent.-le6. of 250)
Page size (K)

.5
1
2

IClIS
3
3
2

CVDV
33
39
45

CVllS
60
59
58

1

ICDV
15
13
11

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches

5.3.5 Overall ÿ valuation
The efficiency figures of all search strategies in terms of mean number of pages, mean number of

instructions, and mean number of seconds for page size of 4K are given in Table VI. The overall

evaluation is done using this page size, since it is common. The same information for hierarchical

(complete link) CBR for centroid lengths of 75, 100, and 250 are depicted in Table VII [I 91.

The experimental results indicate that CPU time constitutes a small portion of the total query

processing time. For example, for 11s it is less than five percent. For ICIIS, it is less than four

percent for both centroid sizes. The same is also true for the other CBR strategies.

Among all CBR strategies, lCllS is the most efficient strategy in terms of both paging and CPU

time. For example, for the centroid length of 250, CVIIS, ICDV, and CVDV, respectively, require

253 percent, 100 percent, and 353 percent more mean processing time with respect to ICIIS. For

the centroid length 500 the percentage increases are (in the same order) 450, 110, and 559.

Table VI. Efficiency Performance for IIS and CBR (page size= 4K)

Table VII. Efficiencv Performance for Hierarchical CBR

Table VI, (continued)

(tak6n from [I 9, Table 61)
Max centroid length

7 5 I 100 1 250

Mean
pages
Mean
instr.
Mean
secs.

Mean
pages
Mean
instr.
Mean
secs.

218.1 257.2 41 8.3

instr,

secs. 13.07

IIS

48.82

67,893

1.53

Max centroid length = 250

The efficiency performance of hierarchical CBR given in Table VII indicates that the centroid

length is influential in efficiency. For the centroid length 250 the efficiency of CVDV is compatible

with that of hierarchical CBR. This may be coincidental or may be due to the fact that the

Max centroid length = 500

CVDV

344.47

589$659

10.92

ICllS

77.58

81,195

2.41

CVDV

502.62

81 2,341

15.89

ICllS

77.53

84,727

2.41

CVllS

269.82

41 4,383

8.51

ICDV

152.23

257,471

4.82

CVllS

420.82

626,732

13.25

ICDV

159.34

270,336

5.05

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 18

technique used in E;19] is somewhat equivalent to the CVDV approach: c e n t r ~ J and document

vectors are matched during query processing.

The comparison of Table VI and Table VII shows that lCllS and ICDV are more efficient than

hierarchical CBR. This is true for all centroid lengths. For the common centroid lengths (250) of

both studies the mean processing time of lCllS and hierarchical cluster searches, respectively, are

2.41 and 13.07 seconds. In other words, hierarchical CBR requires 442 percent more processing

time. The same comparison with respect to ICDV indicates 171 percent more processing time.

Both in ICllS and ICDV, inverted centroid (IC) data structure contributes to the improvement.

Further improvements in lCllS comes from IIS. Similarly, in a hierarchical clustering environment

inverting the top level centroids of the tree and starting the cluster search by using an inverted

search on top level centroids should save time 118, 191. For further improvements one can

incorporate IIS to hierarchical search. This prevents the calculation of similarity values for

documents containing no common term with the query vector.

6. EFFECTIVENESS OF lCllS

In the previous section we showed that lCllS is an efficient CBR strategy. Furthermore, ICllS

provides the results of FS without a cost. In this section we want to show that the combined FS

and CBR has potential benefits in terms of increasing the effectiveness of IR.

Efforts to choose FS or CBR in specific environments have proven fruitless. The Study

reported in [9] considers statistical characteristics of queries to choose between CBR and FS.

The findings of the study indicate that the automatic selection criteria will be unable to choose

between different search mechanisms using the statistical characteristics of queries. The study

reported in [6] investigated the use of learning automata for the selection of search strategies.

However, since the alternative strategies were too similar to each other, the learning automata

approach did not provide any improvement.

Our experiments show that FS and CBR return considerably different sets of documents.

This becomes more noticeable if FS and CBR use different matching functions. For example, for

the centroid length of 250 and after examining twenty best-matching documents of the first fifty

best-matching clusters, the average of the percentage of common entries between FS and CBR

for all matching functions is sixtynine. (The average is found by averaging the individual results of

the queries.) The same average using different matching functions for FS and CBR is fortyfive.

The same figures for the first ten best-matching documents, respectively, are seventyfour and

fourtyfour. This means that the results of FS and CBR can be combined to improve effectiveness.

The "optimum" search using FS and CBR provides considerable effectiveness (precision)

improvements. In an optimum search, FS and CBR both find ds documents. Then the relevant

documents from each search are combined after the elimination of duplicates then other

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 19

documents retrieved by FS or CBR are added until the desired number of documents (ds) have

been retrieved.

The percentage increase in precision with respect to FS using the combined optimum search

for the CBR conditions (ns = 50, ds = 20, centroid length= 250) is provided in Table VIII. The

average increase in this table is twenty-seven percent. The same average for (ns = 50, ds = 10,

centroid length= 250) is twenty-six percent. The table indicates that the optimum search provides

considerable improvement. In Table Vlll the improvement in off-diagonal entries is more

noticeable. They correspond to the combination of different matching functions for FS and CBR.

Of course the implementation of combining different matching functions is more difficult in terms

of space efficiency, since different matching functions require different normalizations for the

document vectors. We are planning to implement methods to combine the available results of FS

and CBR rather than choosing the results of one of them [6, 91. A simple method that may work in

our environment is defined in [8].

7. CONCLUSION

In this study the efficiency of various CBR strategies is analyzed. A new method, ICIIS, for

combining IIS and CBR is proposed and shown to be cost effective in terms of paging and CPU

time. The observations prove that ICllS is much more efficient than conventional CBR strategies

including hierarchical cluster search. The storage overhead of lCllS is moderate and less than that

of the hierarchical clustering environment. Since the clustering structure of the experiments are

created by the cover-coefficient-based clustering methodology (c3M), the results also indicate

that c3M creates not only effective [3] but also efficient IR environment.

For very long query vectors a conventional CBR strategy, ICDV, may be more efficient than

ICIIS. However, lCllS is open to further efficiency improvements. (The same is partly true for

ICDV.) Since inverted index searches can be optimized with a slight effectiveness deterioration

[I]. This may make lCllS more efficient than ICDV both for short and long query vectors. Further

investigation is needed.

Table VIII. Percentage Increase in Precision Using Combined Optimum Search
(for ns = 50, ds = 20, centroid length= 250)

TW1
TW2
TW3
TW4
TW5
TW6
i W 7

I
CBR

TW7
48
21
33
23
16
2 5
22

TW6
38
25
31
31
2 3
19
26

TW5
40
23
34
2 7
18
2 5
21

TW1
22
20
21
2 6
32
3 1
42

TW2
27
15
2 7
20
32
32
2 8

TW3
2 4
19
17
28
38
3 3
36

TW4
32
16
31
16
33
3 6
28

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 20

In the experiments the effects of several parameters (number of selected clusters, centroid

length, page size, and matching function) are examined. By definition the efficiency of lCllS is

independent of the number of selected clusters and the similarity function used in a given

experiment. Therefore, with ICllS retrieving more clusters/documents has the same cost as

retrieving fewer clusters/documents. The experiments also suggest that after a threshold, the

effect of centroid length on the efficiency of ICllS would be negligible. These characteristics are

desirable.

Another advantage of ICllS is the fact that it provides the results of FS without a cost. Another

way of saying the same thing is it provides the results of CBR with a little cost over FS. (For the

INSPEC database the difference is less than one second.) In the paper it is experimentally shown

that the combined FS and CBR has potential benefits in terms of increasing the effectiveness of

IR. This will be investigated in our future research.

REFERENCES

1 . Buckley, C., Lewit, A. F, "Optimization of Inverted Vector Searches." In Proceedings of the
8th Annual International ACM-SIGIR Conference (Montreal, Quebec, June 1985). ACM,
New York, 1985, 97-1 10.

2. Can, F. "Incremental Clustering for Dynamic lnformation Processing." (Submitted for
publication.)

3. Can, F., Ozkarahan, E. A. "Concepts and Effectiveness of the Cover-Coefficient-Based
Clustering Methodology for Text Databases." ACM Transactions on Database Systems. 15,
4 (Dec. 1990), 483-51 7.

4. Can, F., Ozkarahan, E. A. "Dynamic Cluster Maintenance." lnformation Processing and
Management. 25, 3 (1 989), 275-291.

5 . Can, F. "Validation of Clustering Structures in lnformation Retrieval." In Proceedings of the
Canadian Conference on Electrical and Computer Engineering (Montreal, Quebec,
September 1989). EIC, Montreal, 1989, 572-575.

6. Croft, W. B., Thompson, R. "The Use of Adaptive Mechanisms for Selection of Search
Strategies in Document Retrieval Systems." In Research and Development in lnformation
Retrieval, C. J . VanRijsbergen, Ed. Cambridge University Press, Cambridge, 1984, 95-1 10.

7 . El-Hamdouchi, A., Willett, P. "Comparison of Hierarchical Agglomerative Clustering
Methods for Document Retrieval." The Computer Journal. 32, 3 (June 1989), 220-227.

8. Griffiths, A., Luckhurst, C., Willett, I? "Using Interdocument Similarity lnformation in
Document Retrieval Systems." Journal of the American Society for lnformation Science.
37, 1 (1986), 3-1 1,

9. McCall, F. M., Willett, F? "Criteria for the Selection of Search Strategies in Best-Match
Document-Retrieval Systems " Int. J. Man-Machine Studies. 25 (1986), 317-326.

10. Salton, G. Dynamic lnformat~on and Library Processing. Prentice Hall, Englewood Cliffs NJ,
1975.

CAN, ANDERSON: Experiments on the Efficiency of Cluster Searches p. 21

Salton, G., Wong, A. "Generation and Search of Clustered Files." ACM Transactions on
Database Systems, 3, 4 (Dec. 1978), 321 -346.

Salton, G., McGill, M. J , Introduction to Modern lnformation Retrieval. McGraw Hill, New York,
1 983.

Salton, G., Buckley, C. "Term-Weighting Approaches in Automatic Text Retrieval."
lnformation Processing and Management. 24, 5 (1 988), 51 3-523.

Salton, G., Buckley, C. "Parallel Text Search Methods." Com. of the ACM. 31, 2 (February
1988), 202-21 5.

Salton, G. Automatic Text Processing: The Tiansformation, Analysis, and Retrieval of
lnformation by Computer. Addison Wesley, Reading, Massachusetts, 1989.

Stanfill, C., Kahle, B. "Parallel Free-Text Search on the Connection Machine System."
Com. of the ACM. 29, 12 (December 1986), 1229-1 239.

Van Rijsbergen, C. J, lnformation Retrieval, 2nd ed. Butterworths, London, 1979.

Voorhees, E. M. The Effectiveness and Effkiency of Agglomerative Hierarchical Clustering
in Document Retrieval. PhD Thesis, Cornell University, Ithaca, NY, 1986.

Voorhees, E. M. "The Efficiency of Inverted Index and Cluster Searches." In Proceedings
of the 9th Annual International ACM-SIGIR Conference (Pisa, Italy, September, 1986).
ACM, New York, 1986, 164-1 74.

Willett, F? "Recent Trends in Hierarchical Document Clustering: A Critical Review."
lnformation Processing and Management. 24, 5 (1 989), 577-597.

