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Abstract 
The aim of this paper is to show that the recently developed high performance algorithm for 

solving linear recurrence systems with constant coefficients together with the new BLAS-based 
algorithm for narrow-banded triangular Toeplitz matrix-vector multiplication allow to evaluate 
linear recursive filters efficiently, even on clusters of workstations. The results of experiments 
performed on a cluster of twelve Linux workstations are also presented. The performance of the 
algorithm is comparable with the performance of two processors of Cray SV-1 for such kind of 
recursive problems. 
 

1. Introduction 
Let us consider the following problem of evaluating linear recursive filters 

which is very popular in signal processing [1]. For a given sequence of real 
numbers x1,x2,…,xn  called input signals, we have to evaluate an output sequence 
y1,y2,…,yn, satisfying 
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where xk = 0, zk = 0 for k ≤  0 and coefficients aj, bj are calculated using z-
transforms [1]. Unfortunately, the problem has “recursive” nature and simple 
routines based on (1) do not fully utilize the underlying hardware, i.e. memory 
hierarchies and multiple processors, and they achieve poor performance. On the 
other hand, our problem is a typical example of how the speed of the slowest 
parts of programs influences the overall performance (so called Amdahl’s law 
[2]). Thus, it is clear that efficient high performance algorithms for solving our 
problem should be designed. 

It is well known that reducing costs of memory access is essential for 
achieving good performance of numerical software [3]. Usually, codes based on 
Level 2 and 3 BLAS (Basic Linear Algebra Subprograms [2]) routines achieve 
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good performance because they allow to reuse the data stored in cache memory 
[4]. The use of higher levels BLAS routines is the simplest way to utilize the 
processor’s hardware. Moreover, such programs can be easily parallelized. 
Following this observation we can conclude that our problem can be efficiently 
solved on modern computer architectures, including clusters of workstations, if 
we rewrite it in terms of BLAS routines. To do it, let us split (1) into the 
following two equations: 
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and 
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In our recent paper [5] we introduced a new algorithm based on Level 2 and 3 
BLAS routines for solving (3), which can be efficiently implemented on various 
shared-memory [6] and distributed-memory [7] parallel computers. The aim of 
this paper is to present the new high performance, BLAS-based algorithm for 
evaluating (2), which together with the algorithm for solving (3) allows to 
evaluate (1) efficiently, even on clusters of workstations with relatively slow 
connection speed. 

 
2. Algorithm 

The algorithm for evaluating (1) comprises two stages. First we compute all 
coefficients fk and then we solve the recurrence system (3) using the BLAS-
based parallel algorithm [5,7]. For the sake of simplicity, let us introduce the 
following notation. Let m nM ×∈ . Then Mi:j,k:l denotes the submatrix of M 
formed by intersection of rows i to j and columns k to l. Moreover, let 
Mi:j,* = Mi:j,1:n, M*,k:l = M1:m,k:l and Mi:j,k = Mi:j,k:k, Mi,k:l = Mi:i,k:l. 

Let us observe that equation (2) can be rewritten in the following matrix-
vector form. 
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 (4) 

Note that the matrix is of the Toeplitz form which means that entries are 
constant along each diagonal. Now let us choose two positive integers r and s 
such that rs ≤  n and for j=1,…,r define vectors 
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Then all vectors fj satisfy 
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Note that we can use (5) to compute f1,…,frs and (2) to find frs+1,…,fn. When we 
define matrices 
 ( ) ( )1 1,..., ,    ,...,f f x x s r

r rF X ×= = ∈   
and 
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we can find vectors fj as follows. First we perform the operation F LX←  and 
next we update first m entries of each vector f2 ,…,fr using GXs-m+1:s,j, j=1,…,r-1, 
respectively. Thus the algorithm comprises the following two steps: 
Step A1: 
 { }( ) { },* 1 0min 1, max 1: : ,*,..., , ,   for  1,...,k k m m k kF a a a X k− −← ⋅ r= . (6) 

Step A2: 
 1: ,2: 1: ,2: 1: ,1: 1m r m r s m s rF F GX − + −← + . (7) 
Note that Step A1 can be implemented as a sequence of calls to the Level 2 
BLAS operation _GEMV, i.e. matrix-vector multiplication, while Step A2 as the 
Level 3 BLAS operation _TRMM, i.e. triangular matrix - general matrix 
multiplication. The second stage of the algorithm for finding (1) can be done 
using the divide and conquer algorithm for solving (3), which is based on Level 
2 and 3 BLAS routines _GEMV, _TRMV and _GEMM} [5]. 
 

3. Implementation 
The algorithm can be easily implemented on distributed-memory parallel 

computers and clusters of workstations using MPI [8]. Generally speaking, each 
processor is responsible for computing a block of output signals yi. We assume 
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that each processor holds (or calculates) coefficients a0,…,am and b1,…,bm. Also, 
each processor holds r/p columns of the matrix X, where p is the number of 
available processors. The first stage of the algorithm requires communication, 
namely each processor (except for the last one) sends m last entries of its last 
column of the block of X to its “left” neighbour. The details of the second stage 
of the algorithm can be found in [7]. 

It is obvious that the performance of the algorithm depends on the choice of 
the parameters s and r. The second stage is more complicated thus it is clear that 
the parameters should be chosen to minimize the cost of that stage. To predict 
the behaviour of the algorithm for solving (3), we have observed [7] that its 
complexity can be expressed in terms of Bulk Synchronous Parallel Architecture 
(BSP for short [9]). In this model, a parallel program consists of a number of 
supersteps. Each superstep comprises local computations, global data exchange 
and the barrier synchronization (see Figure 1). 

 
Fig. 1. BSP architecture 

 
The BSP model is characterized by the following parameters: p, the number 

of available processors, g, the time (in flop time units) it takes to communicate 
(send or receive) a data element and l, the time (in flop time units) it takes all 
processors to synchronize. The complexity of a superstep is defined as 
 max maxw gh l+ +   
where wmax is the maximum number of flops performed, and hmax is the number 
of messages sent or received by any one processor during this superstep. 

To find the optimal value of s, we minimize the BSP cost of the “most time 
consuming” steps of the algorithm, namely 
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and because the value of s should be integer, we get 
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Thus we can conclude that for the algorithm, the optimal choice of the value of 
the parameter s does not depend on the BSP parameters. So we can expect that 
the choice (9) will be good for a wide variety of BSP architectures and the 
formula (9) can be included in the source code of the algorithm. 
 

4. Results of experiments 
The algorithm has been tested on a cluster of twelve 667 MHz Pentium III 

workstations running under Linux operating system for various problem sizes (n, 
m) and the number of processors (p). The results of experiments can be 
summarized as follows. 

 
Fig. 2. The performance of the algorithm 

 
1. The algorithm achieves the best performance for the values of s=0.5s*. The 

performance of the algorithm depends strictly on the performance of the 
BLAS routines (which is not taken into account in BSP) and for such 
values of s we achieve “the perfect balance” between the BSP cost and the 
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efficiency of the BLAS routines. When s=s*, then the matrices are too 
narrow. 

2. The performance of the algorithm (in Mflops) grows when the problem 
sizes (n, m) and the number of processors grow. However the performance 
of simple serial algorithm based on (1) also grows when m grows. Thus we 
can observe that the speedup is almost constant when m grows. For p=12, 
the speedup of the algorithm is up to 15. 

3. When p=12, then the performance of the algorithm (in Mflops) is up to 
2200 Mflops, which is comparable with the performance of two processors 
of Cray SV-1 [6] for solving such a kind of recursive problems. 
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