
Annales UMCS Informatica AI 2 (2004) 263-268
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Evaluating linear recursive filters on clusters of workstations

Przemysław Stpiczyński∗

Department of Computer Science, Maria Curie-Skłodowska University,

pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract
The aim of this paper is to show that the recently developed high performance algorithm for

solving linear recurrence systems with constant coefficients together with the new BLAS-based
algorithm for narrow-banded triangular Toeplitz matrix-vector multiplication allow to evaluate
linear recursive filters efficiently, even on clusters of workstations. The results of experiments
performed on a cluster of twelve Linux workstations are also presented. The performance of the
algorithm is comparable with the performance of two processors of Cray SV-1 for such kind of
recursive problems.

1. Introduction
Let us consider the following problem of evaluating linear recursive filters

which is very popular in signal processing [1]. For a given sequence of real
numbers x1,x2,…,xn called input signals, we have to evaluate an output sequence
y1,y2,…,yn, satisfying

1 0

m m

k j k j j
j j

y b y a xk j− −
= =

= +∑ ∑ , (1)

where xk = 0, zk = 0 for k ≤ 0 and coefficients aj, bj are calculated using z-
transforms [1]. Unfortunately, the problem has “recursive” nature and simple
routines based on (1) do not fully utilize the underlying hardware, i.e. memory
hierarchies and multiple processors, and they achieve poor performance. On the
other hand, our problem is a typical example of how the speed of the slowest
parts of programs influences the overall performance (so called Amdahl’s law
[2]). Thus, it is clear that efficient high performance algorithms for solving our
problem should be designed.

It is well known that reducing costs of memory access is essential for
achieving good performance of numerical software [3]. Usually, codes based on
Level 2 and 3 BLAS (Basic Linear Algebra Subprograms [2]) routines achieve

∗ E-mail address: przem@hektor.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

br
ou

gh
t t

o
yo

u
by

CORE

View
 m

et
ad

at
a,

 ci
ta

tio
n

an
d

sim
ila

r p
ap

er
s a

t c
or

e.
ac

.u
k

https://core.ac.uk/display/235272332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Przemysław Stpiczyński 264

good performance because they allow to reuse the data stored in cache memory
[4]. The use of higher levels BLAS routines is the simplest way to utilize the
processor’s hardware. Moreover, such programs can be easily parallelized.
Following this observation we can conclude that our problem can be efficiently
solved on modern computer architectures, including clusters of workstations, if
we rewrite it in terms of BLAS routines. To do it, let us split (1) into the
following two equations:

0

m

k j
j

k jf a x −
=

=∑ (2)

and

1

m

k k j k
j

y f b y j−
=

= +∑ . (3)

In our recent paper [5] we introduced a new algorithm based on Level 2 and 3
BLAS routines for solving (3), which can be efficiently implemented on various
shared-memory [6] and distributed-memory [7] parallel computers. The aim of
this paper is to present the new high performance, BLAS-based algorithm for
evaluating (2), which together with the algorithm for solving (3) allows to
evaluate (1) efficiently, even on clusters of workstations with relatively slow
connection speed.

2. Algorithm

The algorithm for evaluating (1) comprises two stages. First we compute all
coefficients fk and then we solve the recurrence system (3) using the BLAS-
based parallel algorithm [5,7]. For the sake of simplicity, let us introduce the
following notation. Let m nM ×∈ . Then Mi:j,k:l denotes the submatrix of M
formed by intersection of rows i to j and columns k to l. Moreover, let
Mi:j,* = Mi:j,1:n, M*,k:l = M1:m,k:l and Mi:j,k = Mi:j,k:k, Mi,k:l = Mi:i,k:l.

Let us observe that equation (2) can be rewritten in the following matrix-
vector form.

1 0

2 1

1 1

1 0

m

n n

n m

1

2

n

f a x
f a x

a
f x
f a a a x
− −

⎛ ⎞ ⎛ ⎞⎛
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜

=⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜
⎜ ⎟ ⎜ ⎟⎜⎜ ⎟ ⎜ ⎟⎜
⎝ ⎠ ⎝ ⎠⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

 (4)

Note that the matrix is of the Toeplitz form which means that entries are
constant along each diagonal. Now let us choose two positive integers r and s
such that rs ≤ n and for j=1,…,r define vectors

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

 Evaluating linear recursive filters on clusters of workstations 265

 ()()1 1,...,x
T

j jsj sx x− += () and ()1 1,...,f
T

s
j jsj sf f− += ∈

and matrices

 ,

0

0

m

m

a

L a

a a

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1

0

m

s s

m

a a

U
a

×

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∈ .

Then all vectors fj satisfy

 (5) 1 1

1

 for 2,..., .
f x
f x xj j j

L
U L j r−

=⎧
⎨ = + =⎩

Note that we can use (5) to compute f1,…,frs and (2) to find frs+1,…,fn. When we
define matrices
 () ()1 1,..., , ,...,f f x x s r

r rF X ×= = ∈
and

1 1

20

0 0

m m

m m m

m

a a a
a a

G

a

−

×

⎛ ⎞
⎜ ⎟
⎜=
⎜
⎜ ⎟
⎝ ⎠

⎟∈
⎟

,

we can find vectors fj as follows. First we perform the operation F LX← and
next we update first m entries of each vector f2 ,…,fr using GXs-m+1:s,j, j=1,…,r-1,
respectively. Thus the algorithm comprises the following two steps:
Step A1:
 { }() { },* 1 0min 1, max 1: : ,*,..., , , for 1,...,k k m m k kF a a a X k− −← ⋅ r= . (6)

Step A2:
 1: ,2: 1: ,2: 1: ,1: 1m r m r s m s rF F GX − + −← + . (7)
Note that Step A1 can be implemented as a sequence of calls to the Level 2
BLAS operation _GEMV, i.e. matrix-vector multiplication, while Step A2 as the
Level 3 BLAS operation _TRMM, i.e. triangular matrix - general matrix
multiplication. The second stage of the algorithm for finding (1) can be done
using the divide and conquer algorithm for solving (3), which is based on Level
2 and 3 BLAS routines _GEMV, _TRMV and _GEMM} [5].

3. Implementation
The algorithm can be easily implemented on distributed-memory parallel

computers and clusters of workstations using MPI [8]. Generally speaking, each
processor is responsible for computing a block of output signals yi. We assume

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

Przemysław Stpiczyński 266

that each processor holds (or calculates) coefficients a0,…,am and b1,…,bm. Also,
each processor holds r/p columns of the matrix X, where p is the number of
available processors. The first stage of the algorithm requires communication,
namely each processor (except for the last one) sends m last entries of its last
column of the block of X to its “left” neighbour. The details of the second stage
of the algorithm can be found in [7].

It is obvious that the performance of the algorithm depends on the choice of
the parameters s and r. The second stage is more complicated thus it is clear that
the parameters should be chosen to minimize the cost of that stage. To predict
the behaviour of the algorithm for solving (3), we have observed [7] that its
complexity can be expressed in terms of Bulk Synchronous Parallel Architecture
(BSP for short [9]). In this model, a parallel program consists of a number of
supersteps. Each superstep comprises local computations, global data exchange
and the barrier synchronization (see Figure 1).

Fig. 1. BSP architecture

The BSP model is characterized by the following parameters: p, the number

of available processors, g, the time (in flop time units) it takes to communicate
(send or receive) a data element and l, the time (in flop time units) it takes all
processors to synchronize. The complexity of a superstep is defined as
 max maxw gh l+ +
where wmax is the maximum number of flops performed, and hmax is the number
of messages sent or received by any one processor during this superstep.

To find the optimal value of s, we minimize the BSP cost of the “most time
consuming” steps of the algorithm, namely

 ()212 1 3
2

m n nm s m mg p lp
sp s

⎛ ⎞+⎛ ⎞ 1− + + + − +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (8)

and because the value of s should be integer, we get

 ()* 3
2

n mp m
s

p
1⎢ ⎥− −

= ⎢ ⎥
⎢ ⎥⎣ ⎦

. (9)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

 Evaluating linear recursive filters on clusters of workstations 267

Thus we can conclude that for the algorithm, the optimal choice of the value of
the parameter s does not depend on the BSP parameters. So we can expect that
the choice (9) will be good for a wide variety of BSP architectures and the
formula (9) can be included in the source code of the algorithm.

4. Results of experiments
The algorithm has been tested on a cluster of twelve 667 MHz Pentium III

workstations running under Linux operating system for various problem sizes (n,
m) and the number of processors (p). The results of experiments can be
summarized as follows.

Fig. 2. The performance of the algorithm

1. The algorithm achieves the best performance for the values of s=0.5s*. The

performance of the algorithm depends strictly on the performance of the
BLAS routines (which is not taken into account in BSP) and for such
values of s we achieve “the perfect balance” between the BSP cost and the

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

Przemysław Stpiczyński 268

efficiency of the BLAS routines. When s=s*, then the matrices are too
narrow.

2. The performance of the algorithm (in Mflops) grows when the problem
sizes (n, m) and the number of processors grow. However the performance
of simple serial algorithm based on (1) also grows when m grows. Thus we
can observe that the speedup is almost constant when m grows. For p=12,
the speedup of the algorithm is up to 15.

3. When p=12, then the performance of the algorithm (in Mflops) is up to
2200 Mflops, which is comparable with the performance of two processors
of Cray SV-1 [6] for solving such a kind of recursive problems.

Acknowledgments

The work has been developed within task WP14 of 6 T11 2003 C/06098
“CLUSTERIX - The national Linux Cluster”.

References

[1] Smith S.W., The Scientist and Engineer’s Guide to Digital Signal Processing, California
Technical Publishing, San Diego, CA, (1997).

[2] Dongarra J., Duff I., Sorensen D., Van der Vorst H,. Solving Linear Systems on Vector and
Shared Memory Computers, SIAM, Philadelphia, (1991).

[3] Dongarra J., Hammarling S., Sorensen D., Block reduction of matrices to condensed form for
eigenvalue computations, J. Comp. Appl. Math, 27 (1989) 215.

[4] Baker A., Dennis J., Jessup E.R., Toward memory-efficient linear solvers, Lecture Notes in
Computer Science, 2565 (2003) 315.

[5] Stpiczyński P., Solving linear recurrence systems using level 2 and 3 BLAS routines, Lecture
Notes in Computer Science, 3019 (2004) 1059.

[6] Stpiczyński P., Numerical evaluation of linear recurrences on various parallel computers. In
M.Kovacova, editor, Proceedings of Aplimat 2004, 3rd International Conference, Bratislava,
Slovakia, (2004) 889.

[7] Stpiczyński P., Numerical evaluation of linear recurrences on high performance computers
and clusters of workstations, In Proceedings of PARELEC 2004, International Conference on
Parallel Computing in Electrical Engineering. IEEE Computer Society Press, (2004).

[8] Pacheco P., Parallel Programming with MPI, Morgan Kaufmann, San Francisco, (1996).
[9] Hill J., Donaldson S., Skillicorn D., Portability of Performance with the BSPlib

Communications Library, In Programming Models for Massively Parallel Computers,
(MPPM’97), London, IEEE Computer Society Press, (1997).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 04/08/2020 20:49:01

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

