doi: 10.17951/a.2016.70.1.27

ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXX, NO. 1, 2016 SECTIO A

27 - 35

JAN KUREK and WŁODZIMIERZ M. MIKULSKI

On canonical constructions on connections

ABSTRACT. We study how a projectable general connection Γ in a 2-fibred manifold $Y^2 \to Y^1 \to Y^0$ and a general vertical connection Θ in $Y^2 \to Y^1 \to Y^0$ induce a general connection $A(\Gamma, \Theta)$ in $Y^2 \to Y^1$.

Introduction. In Section 1, we introduce the concepts of projectable general connections Γ and general vertical connections Θ in a 2-fibred manifold $Y^2 \to Y^1 \to Y^0$. In Section 2, we construct a general connection $\Sigma(\Gamma, \Theta)$ in $Y^2 \to Y^1$ from a projectable general connection Γ in $Y^2 \to Y^1 \to Y^0$ by means of a general vertical connection Θ in $Y^2 \to Y^1 \to Y^0$. In Section 3 we observe the canonical character of the construction $\Sigma(\Gamma, \Theta)$. In Section 4, we cite the concepts of natural operators. In Section 5, we describe completely the natural operators A transforming tuples (Γ, Θ) as above into general connections $A(\Gamma, \Theta)$ in $Y^2 \to Y^1$. In Section 6, we prove that there is no natural operator C producing general connections $C(\Gamma)$ in $Y^2 \to Y^1$ from projectable general connections Γ in $Y^2 \to Y^1 \to Y^0$. In Section 7, we present a construction of a general connection $\Sigma(\Gamma, \Theta)$ in $Y^2 \to Y^1$ from a system $\Gamma = (\Gamma^2, \Gamma^1)$ of a general connection Γ^2 in $Y^2 \to Y^0$ and a general connection Γ^1 in $Y^1 \to Y^0$ by means of a general vertical connection Θ in $Y^2 \to Y^1 \to Y^0$. In Section 8, we present an application of the obtained result in prolongation of general connections to bundle functors.

²⁰¹⁰ Mathematics Subject Classification. 53C05, 58A32.

Key words and phrases. General connection, projectable general connection, general vertical connection, 2-fibred manifold, natural operator.

All manifolds considered in the note is Hausdorff, second countable, without boundaries, finite dimensional and smooth (of class C^{∞}). Maps between manifolds are smooth (infinitely differentiable).

1. Connections. A fibred manifold is a surjective submersion $p: Y \to M$ between manifolds. By [1], an *r*-th order holonomic connection in $p: Y \to M$ is a section

$$\Gamma: Y \to J^r Y$$

of the holonomic r-jet prolongation $\pi_0^r: J^r Y \to Y$ of $Y \to M$. If $Y \to M$ is a vector bundle and $\Gamma: Y \to J^r Y$ is a vector bundle map, Γ is called a linear r-th order holonomic connection in $Y \to M$. A linear r-th order holonomic connection in the tangent bundle $Y = TM \to M$ of M is called an r-th order linear connection on M. A first order linear connection on Mis in fact a classical linear connection on M.

A 1-order holonomic connection $\Gamma: Y \to J^1 Y$ in a fibred manifold $Y \to M$ is called a general connection in $Y \to M$.

We have the following equivalent definitions of general connections in $Y \to M$, see [1].

A general connection in $p:Y\to M$ is a lifting map

$$\Gamma: Y \times_M TM \to TY ,$$

i.e. a vector bundle map covering the identity map $id_Y: Y \to Y$ such that

$$Tp \circ \Gamma(y, w) = w$$

for any $y \in Y_x$, $w \in T_x M$, $x \in M$. (More precisely, $\Gamma(y, w) = T_x \sigma(w)$, where $\Gamma(y) = j_x^1 \sigma$.)

A general connection in $Y \to M$ is a vector bundle decomposition

$$TY = VY \oplus_Y H^1$$

of the tangent bundle TY of Y, where VY is the vertical bundle of Y. (More precisely, $H_y^{\Gamma} = \operatorname{im} T_x \sigma$, where $\Gamma(y) = j_x^1 \sigma$.)

A general connection in $Y \to M$ is a vector bundle projection (in direction H^{Γ})

$$pr^{\Gamma}: TY \to VY$$

covering id_Y .

A 2-fibred manifold is a system $Y^2 \to Y^1 \to Y^0$ of two fibred manifolds $Y^2 \to Y^1$ and $Y^1 \to Y^0$.

Let $Y^2 \to Y^1 \to Y^0$ be 2-fibred manifold and

$$p^{ij}: Y^i \to Y^j \ , \ 0 \leq j < i \leq 2$$

be its projections. Of course, $p^{20} = p^{10} \circ p^{21}$. Let

$$V^{ij}Y^i \coloneqq ker(Tp^{ij}:TY^i \to TY^j)$$

be the vertical bundle of $p^{ij}: Y^i \to Y^j, 0 \le j < i \le 2$.

We introduce the following concepts of projectable general connections and of general vertical connections in 2-fibred manifolds $Y^2 \to Y^1 \to Y^0$.

A projectable general connection in $Y^2 \to Y^1 \to Y^0$ is a general connection

$$\Gamma: Y^2 \times_{Y^0} TY^0 \to TY^2$$

in $p^{20}:Y^2\to Y^0$ such that there is a (unique) general connection

$$\underline{\Gamma}: Y^1 \times_{Y^0} TY^0 \to TY^1$$

in $p^{10}: Y^1 \to Y^0$ satisfying

$$Tp^{21} \circ \Gamma = \underline{\Gamma} \circ (p^{21} \times id_{TY^0})$$

Connection Γ is called the underlying connection of Γ .

A general vertical connection in $Y^2 \to Y^1 \to Y^0$ is a vector bundle map

 $\Theta: Y^2 \times_{V^1} V^{10} Y^1 \to V^{20} Y^2$

covering the identity map $id_{Y^2}: Y^2 \to Y^2$ such that

$$Tp^{21} \circ \Theta(y^2, v^1) = v^1$$

for any $y^2 \in Y_{y^1}^2$, $y^1 \in Y^1$ and $v^1 \in V_{y^1}^{10}Y^1$.

Equivalently, a general vertical connection in $Y^2 \to Y^1 \to Y^0$ is a smoothly parametrized system $\Theta = (\Theta_x)$ of general connections

$$\Theta_x: Y^2_x \times_{Y^1_x} TY^1_x \to TY^2_x$$

in the fibred manifolds $Y_x^2 \to Y_x^1$ for any $x \in Y^0$, where Y_x^2 is the fibre of $p^{20}: Y^2 \to Y^0$ over x and Y_x^1 is the fibre of $p^{10}: Y^1 \to Y^0$ over x and $Y_x^2 \to Y_x^1$ is the restriction of the projection $p^{21}: Y^2 \to Y^1$.

2. A construction. Let Γ be a projectable general connection in $Y^2 \rightarrow$ $Y^1 \to Y^0$ with the underlying connection Γ and Θ be a general vertical connection in $Y^2 \to Y^1 \to Y^0$.

We define a map $\Sigma(\Gamma, \Theta) = \Sigma : Y^2 \times_{Y^1} TY^1 \to TY^2$ by

$$\Sigma(y^2, w^1) \coloneqq \Theta(y^2, pr\underline{\Gamma}(w^1)) + \Gamma(y^2, Tp^{10}(w^1))$$

 $y^2 \in Y^2_{y^1}$, $y^1 \in Y^1$, $w^1 \in T_{y^1}Y^1,$ where $pr\underline{\Gamma}:TY^1 \to V^{10}Y^1$ is the $\underline{\Gamma}\text{-projection.}$

Lemma 1. Σ is a general connection in $p^{21}: Y^2 \to Y^1$.

Proof. It is sufficient to verify that $Tp^{21} \circ \Sigma(y^2, w^1) = w^1$. We consider two cases.

(a) Let $w^1 \in V_{y^1}^{10}Y^1$. Then $\Sigma(y^2, w^1) = \Theta(y^2, w^1)$, and then

$$Tp^{21} \circ \Sigma(y^2, w^1) = Tp^{21} \circ \Theta(y^2, w^1) = w^1$$

as Θ is a general vertical connection in $Y^2 \to Y^1 \to Y^0$.

(b) Let $w^1 \in H_{y^1}^{\underline{\Gamma}} Y^1$, the $\underline{\Gamma}$ -horizontal space. Denote $w^0 = Tp^{10}(w^1)$. Then $\Sigma(y^2, w^1) = \Gamma(y^2, w^0)$, and then

$$\begin{split} Tp^{21} \circ \Sigma(y^2, w^1) &= Tp^{21} \circ \Gamma(y^2, w^0) = \underline{\Gamma}(p^{21}(y^2), w^0) = \underline{\Gamma}(y^1, w^0) \ . \end{split}$$

Then $w' \coloneqq Tp^{21} \circ \Sigma(y^2, w^1) \in H_{y^1}^{\underline{\Gamma}} Y^1, \, w^1 \in H_{y^1}^{\underline{\Gamma}} Y^1 \text{ and}$
 $Tp^{10}(w') &= Tp^{10} \circ Tp^{21} \circ \Gamma(y^2, w^0) = Tp^{20} \circ \Gamma(y^2, w^0) = w^0 = Tp^{10}(w^1) \ ,$
and consequently $w' = w^1.$

3. Invariance. Let $\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0$ be another 2-fibred manifold with projections $\tilde{p}^{ij}: \tilde{V}^i \to \tilde{V}^j, 0 \leq j < i \leq 2$. Let $\tilde{\Gamma}$ be a projectable general connection in $\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0$ and $\tilde{\Theta}$ be a general vertical connection in $\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0$. Let $f = (f^2, f^1, f^0): (Y^2 \to Y^1 \to Y^0) \to (\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0)$ be a 2-fibred map, i.e. $f^i: Y^i \to \tilde{Y}^i$ for i = 0, 1, 2 and $\tilde{p}^{ij} \circ f^i = f^j \circ p^{ij}$ for $0 \leq j < i \leq 2$.

Lemma 2. If Γ is f-related with $\tilde{\Gamma}$, (i.e. $Tf^2 \circ \Gamma = \tilde{\Gamma} \circ (f^2 \times_{f^0} Tf^0)$ and then $Tf^1 \circ \underline{\Gamma} = \underline{\tilde{\Gamma}} \circ (f^1 \times_{f^0} Tf^0))$ and Θ is f-related with $\tilde{\Theta}$ (i.e. $V^{20}f^2 \circ \Theta = \tilde{\Theta} \circ (f^2 \times_{f^1} V^{10}f^1))$, then $\Sigma = \Sigma(\Gamma, \Theta)$ is f-related with $\tilde{\Sigma} = \Sigma(\tilde{\Gamma}, \tilde{\Theta})$ (i.e. $Tf^2 \circ \Sigma = \tilde{\Sigma} \circ (f^2 \times_{f^1} Tf^1))$.

Proof. If $w \in H^{\underline{\Gamma}}Y^1$, then $w = \underline{\Gamma}(y^1, w^0)$ for some $y^1 \in Y_{y^0}^1$ and $w^0 \in Y_{y^0}^0$, and then $Tf^1(w) = \underline{\widetilde{\Gamma}}(f^1(y^1), Tf^0(w^0)) \in H^{\underline{\widetilde{\Gamma}}}$. Then

$$Tf^1(H^{\underline{\Gamma}}Y^1) \subset H^{\underline{\widetilde{\Gamma}}}\tilde{Y}^1$$
 and (obviously) $Tf^1(V^{10}Y^1) \subset V^{10}\tilde{Y}^1$.

Consequently, $V^{10}f^1 \circ pr\underline{\Gamma} = pr\underline{\Gamma} \circ Tf^1$. Using this formula and the assumption of the lemma and the formula defining Σ , one can easily verify that

$$Tf^{2} \circ \Sigma(y^{2}, w^{1}) = \tilde{\Sigma} \circ (f^{2}(y^{2}), Tf^{1}(w^{1}))$$
for $y^{2} \in Y_{y^{1}}^{2}, w^{1} \in T_{y^{1}}Y^{1}, y^{1} \in Y^{1}.$

4. Natural operators. The general concept of natural operators can be found in [1]. We need the following partial cases of this general concept.

Let $\mathcal{FM}_{m_0,m_1,m_2}$ be the category of 2-fibred manifolds $Y^2 \to Y^1 \to Y^0$ with dim $(Y^0) = m_0$, dim $(Y^1) = m_0 + m_1$, dim $(Y^2) = m_0 + m_1 + m_2$ and their 2-fibred local diffeomorphisms.

Definition 1. An $\mathcal{FM}_{m_0,m_1,m_2}$ -natural operator transforming projectable general connections Γ and general vertical connections Θ in $\mathcal{FM}_{m_0,m_1,m_2}$ objects $Y^2 \to Y^1 \to Y^0$ into general connections $A(\Gamma, \Theta)$ in $Y^2 \to Y^1$ is an $\mathcal{FM}_{m_0,m_1,m_2}$ -invariant system A of regular operators (functions)

$$A: Con_{proj}(Y^2 \to Y^1 \to Y^0) \times Con_{vert}(Y^2 \to Y^1 \to Y^0) \to Con(Y^2 \to Y^1)$$

for any $\mathcal{FM}_{m_0,m_1,m_2}$ -objects $Y^2 \to Y^1 \to Y^0$, where $Con_{proj}(Y^2 \to Y^1 \to Y^0)$ is the set of projectable general connections in $Y^2 \to Y^1 \to Y^0$, $Con_{vert}(Y^2 \to Y^1 \to Y^0)$ is the set of general vertical connections in $Y^2 \to Y^1 \to Y^0$, and $Con(Y^2 \to Y^1)$ is the set of general connections in $Y^2 \to Y^1$.

The invariance of A means that if $\Gamma \in Con_{proj}(Y^2 \to Y^1 \to Y^0)$ is f-related with $\tilde{\Gamma} \in Con_{proj}(\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0)$ and $\Theta \in Con_{vert}(Y^2 \to Y^1 \to Y^0)$ is f-related with $\tilde{\Theta} \in Con_{vert}(\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0)$ for an $\mathcal{FM}_{m_0,m_1,m_2}$ -morphism $f = (f^2, f^1, f^0) : (Y^2 \to Y^1 \to Y^0) \to (\tilde{Y}^2 \to \tilde{Y}^1 \to \tilde{Y}^0)$, then $A(\Gamma, \Theta)$ is f-related with $A(\tilde{\Gamma}, \tilde{\Theta})$.

The regularity of A means that A transforms smoothly parametrized families into smoothly parametrized families.

Because of Lemma 2, the construction $\Sigma(\Gamma, \Theta)$ defines an $\mathcal{FM}_{m_0,m_1,m_2}$ natural operator in the sense of Definition 1. So, to describe all natural operators A in the sense of Definition 1 it is sufficient to describe all natural operators in the sense of the following definition.

Definition 2. An $\mathcal{FM}_{m_0,m_1,m_2}$ -natural operator transforming projectable general connections Γ and general vertical connections Θ in $\mathcal{FM}_{m_0,m_1,m_2}$ objects $Y^2 \to Y^1 \to Y^0$ into sections $B(\Gamma,\Theta) : Y^2 \to T^*Y^1 \otimes V^{21}Y^2$ of $T^*Y^1 \otimes V^{21}Y^2 \to Y^2$ is an $\mathcal{FM}_{m_0,m_1,m_2}$ -invariant system A of regular operators

$$B: Con_{proj}(Y^2 \to Y^1 \to Y^0) \times Con_{vert}(Y^2 \to Y^1 \to Y^0) \to C^{\infty}_{Y^2}(T^*Y^1 \otimes V^{21}Y^2)$$

for any $\mathcal{FM}_{m_0,m_1,m_2}$ -object $Y^2 \to Y^1 \to Y^0$, where $C^{\infty}_{Y^2}(T^*Y^1 \otimes V^{21}Y^2)$ is the space of sections of the vector bundle $T^*Y^1 \otimes V^{21}Y^2$ over Y^2 (with respect to the clear projection).

It is obvious that any natural operator A in the sense of Definition 1 is of the form

$$A(\Gamma, \Theta) = \Sigma(\Gamma, \Theta) + B(\Gamma, \Theta)$$

for a uniquely determined (by A) natural operator B in the sense of Definition 2.

A simple example of a natural operator in the sense of Definition 2 is the one B^o defined by

$$B^o(\Gamma,\Theta)(y^2)(w^1) = pr^{\Sigma(\Gamma,\Theta)} \circ \Theta(y^2, pr\underline{}^{\underline{\Gamma}}(w^1)) \in V^{21}_{y^2}Y^2$$

for any $\mathcal{FM}_{m_0,m_1,m_2}$ -object $Y^2 \to Y^1 \to Y^0$, $\Gamma \in Con_{proj}(Y^2 \to Y^1 \to Y^0)$, $\Theta \in Con_{vert}(Y^2 \to Y^1 \to Y^0)$, $y^2 \in Y^2_{y^1}$, $y^1 \in Y^1$, $w^1 \in T_{y^1}Y^1$, where $pr^{\Sigma(\Gamma,\Theta)}: TY^2 \to V^{21}Y^2$ is the $\Sigma(\Gamma,\Theta)$ -projection. **5.** A classification. Let \mathbf{R}^{m_0,m_1,m_2} be the trivial $\mathcal{FM}_{m_0,m_1,m_2}$ -object $\mathbf{R}^{m_0} \times \mathbf{R}^{m_1} \times \mathbf{R}^{m_2} \to \mathbf{R}^{m_0} \times \mathbf{R}^{m_1} \to \mathbf{R}^{m_0}$ with the usual projections. Let $x^1, ..., x^{m_0}, y^1, ..., y^{m_1}, z^1, ..., z^{m_2}$ be the usual coordinates on \mathbf{R}^{m_0,m_1,m_2} .

Consider a natural operator B in the sense of Definition 2. Because of the invariance of B with respect to 2-fibred manifold charts, B is determined by the linear maps

$$B(\Gamma,\Theta)(0,0,0): T_{(0,0)}(\mathbf{R}^{m_0} \times \mathbf{R}^{m_1}) \to V^{21}_{(0,0,0)}(\mathbf{R}^{m_0} \times \mathbf{R}^{m_1} \times \mathbf{R}^{m_2})$$

for all $\Gamma \in Con_{proj}(\mathbf{R}^{m_0,m_1,m_2})$ and all $\Theta \in Con_{vert}(\mathbf{R}^{m_0,m_1,m_2})$ of the forms

$$\begin{split} \Gamma &= \Gamma^o + \sum \Gamma^p_i(x,y) dx^i \otimes \frac{\partial}{\partial y^p} + \sum \Gamma^q_i(x,y,z) dx^i \otimes \frac{\partial}{\partial z^q} \ , \\ \Theta &= \Theta^o + \sum \Theta^q_p(x,y,z) dy^p \otimes \frac{\partial}{\partial z^q} \ , \end{split}$$

where the sums are over $i = 1, ..., m_0, p = 1, ..., m_1, q = 1, ..., m_2$, and where Γ^o denotes the trivial projectable general connection in \mathbf{R}^{m_0,m_1,m_2} and $\Theta^o = \sum dy^p \otimes \frac{\partial}{\partial y^p}$ denotes the trivial general vertical connection in \mathbf{R}^{m_0,m_1,m_2} .

Eventually, using a new 2-fibred manifold chart one can additionally assume $\Gamma_i^p(0,0) = 0$ and $\Gamma_i^q(0,0,0) = 0$. (More precisely, denote $j_0^1 \sigma :=$ $\Gamma(0,0,0)$ and $\sigma(x) =: (x, \tilde{\sigma}(x), \overline{\sigma}(x))$). We consider the 2-fibred coordinate system $(x, y - \tilde{\sigma}(x), z - \overline{\sigma}(x))$. In the coordinate system $\Gamma(0,0,0) =$ $\Gamma^o(0,0,0)$.)

Then using the invariance of B with respect to $\mathcal{FM}_{m_0,m_1,m_2}$ -map $\frac{1}{t}$ id for t > 0 and then putting $t \to 0$, we can assume $\Gamma = \Gamma^o$ and $\Theta_p^q(x, y, z) = \Theta_p^q(0,0,0) = const$. Consequently, B is determined by the maps

$$B\Big(\Gamma^{o},\Theta^{o}+\sum\Theta^{q}_{p}dy^{p}\otimes\frac{\partial}{\partial z^{q}}\Big)(0,0,0):\mathbf{R}^{m_{0}}\times\mathbf{R}^{m_{1}}\rightarrow\mathbf{R}^{m_{2}}$$

for all $\Theta_p^q \in \mathbf{R}, \, p = 1, ..., m_1, \, q = 1, ..., m_2.$

Using the invariance of B with respect to $t id_{\mathbf{R}^{m_0}} \times id_{\mathbf{R}^{m_1}} \times id_{\mathbf{R}^{m_2}}$ and then putting $t \to 0$, we deduce that $B(\Gamma^o, \Theta^o + \sum \Theta^q_p dy^p \otimes \frac{\partial}{\partial z^q})(0, 0, 0)$ do not depend on elements from \mathbf{R}^{m_0} . Consequently, B is determined by the map $\Phi : \mathbf{R}^{m_1^*} \otimes \mathbf{R}^{m_2} \to \mathbf{R}^{m_1^*} \otimes \mathbf{R}^{m_2}$ given by

$$\Phi((\Theta_p^q)) = B\Big(\Gamma^o, \Theta^o + \sum \Theta_p^q dy^p \otimes \frac{\partial}{\partial z^q}\Big)(0, 0, 0) \in \mathbf{R}^{m_1^*} \otimes \mathbf{R}^{m_2} .$$

Using the invariance of B with respect to linear isomorphisms from $\{id_{\mathbf{R}^{m_0}}\} \times GL(m_1) \times GL(m_2)$, we deduce that Φ is $GL(m_1) \times GL(m_2)$ invariant. Consequently, Φ is the constant multiple of the identity. Then the space of all $\mathcal{FM}_{m_0,m_1,m_2}$ -natural operators B in the sense of Definition 2 is 1-dimensional. So, any natural operator B in the sense of Definition 2 is the constant multiple of B^o .

Thus we proved the following classification theorem.

Theorem 1. Any $\mathcal{FM}_{m_0,m_1,m_2}$ -natural operator A in the sense of Definition 1 is of the form

$$A(\Gamma, \Theta) = \Sigma(\Gamma, \Theta) + \tau B^o(\Gamma, \Theta)$$

for a uniquely (by A) real number τ .

6. Why do we use auxiliary a general vertical connection? We prove the following theorem.

Theorem 2. There is no $\mathcal{FM}_{m_0,m_1,m_2}$ -natural operator

$$C: Con_{proj}(Y^2 \to Y^1 \to Y^0) \to Con(Y^2 \to Y^1)$$

transforming projectable general connections Γ in $\mathcal{FM}_{m_0,m_1,m_2}$ -objects $Y^2 \to Y^1 \to Y^0$ into general connections $C(\Gamma)$ in $Y^2 \to Y^1$.

Proof. Suppose that such C exists. Let Γ^o be the trivial projectable general connection in the 2-fibred manifold \mathbf{R}^{m_0,m_1,m_2} . Then $C(\Gamma^o)$ is φ -invariant by any $\mathcal{FM}_{m_0,m_1,m_2}$ -map φ of the form $\varphi(x_0, x_1, x_2) = (x_0, \varphi_1(x_1), \varphi_2(x_1, x_2))$, $x_0 \in \mathbf{R}^{m_0}, x_1 \in \mathbf{R}^{m_1}, x_2 \in \mathbf{R}^{m_2}$ (as Γ^o is). Then $j_{(0,0)}^1 \sigma \coloneqq C(\Gamma^o)(0,0,0)$ is φ -invariant for any φ as above with $\varphi(0,0,0) = (0,0,0)$. Then for $\varphi_1(x_1) = x_1$ and $\varphi_2(x_1, x_2) = x_2 + (x_1^1, 0, ..., 0)$ we get $j_{(0,0)}^1(\varphi \circ \sigma) = j_{(0,0)}^1\sigma$, i.e. $j_{(0,0)}^1 \eta = 0$, where $\eta(x_0, x_1) = (x_0, x_1, x_1^1, 0, ..., 0)$. Contradiction.

So, to construct canonically a general connection in $Y^2 \to Y^1$ from a projectable general connection in $Y^2 \to Y^1 \to Y^0$ the using of auxiliary objects is unavoidable. In the present note we have used general vertical connections as such auxiliary ones.

7. A generalization. Let $Y^2 \to Y^1 \to Y^0$ be a 2-fibred manifold.

A projectable general connection Γ in $Y^2 \to Y^1 \to Y^0$ is in fact a system $\Gamma = (\Gamma, \underline{\Gamma})$ of two general connections in $p^{20} : Y^2 \to Y^0$ and $p^{10} : Y^1 \to Y^0$ (respectively), and $\underline{\Gamma}$ is determined by Γ .

In this section, we present how to extend the construction of $\Sigma(\Gamma, \Theta)$ for $\Gamma = (\Gamma, \underline{\Gamma})$ into a construction $\Sigma(\Gamma, \Theta)$ for $\Gamma = (\Gamma^2, \Gamma^1)$, where Γ^2 : $Y^2 \times_{Y^0} TY^0 \to TY^2$ is a general connection in $p^{20} : Y^2 \to Y^0$ and $\Gamma^1 :$ $Y^1 \times_{Y^0} TY^0 \to TY^1$ is a general connection in $p^{10} : Y^1 \to Y^0$.

Let $\Gamma = (\Gamma^2, \Gamma^1)$ and Θ be in question. We define a map $\Sigma(\Gamma, \Theta) = \Sigma$: $Y^2 \times_{Y^1} TY^1 \to TY^2$ by

$$\begin{split} \Sigma(y^2,w^1) &\coloneqq \Theta(y^2, pr^{\Gamma^1}(w^1)) + \Gamma^2(y^2,w^0) - \Theta(y^2, pr^{\Gamma^1} \circ Tp^{21} \circ \Gamma^2(y^2,w^0)) \ , \\ y^2 &\in Y_{y^1}^2, \, y^1 \in Y^1, \, w^1 \in T_{y^1}Y^1, \, w^0 = Tp^{10}(w^1) \ . \end{split}$$

Lemma 3. Σ is a general connection in $p^{21}: Y^2 \to Y^1$.

Proof. We are going to prove that $Tp^{21} \circ \Sigma(y^2, w^1) = w^1$. We consider two cases.

(a) Let $w^1 \in V_{y^1}^{10}Y^1$. Then $\Sigma(y^2, w^1) = \Theta(y^2, w^1)$, and next we proceed as in the part (a) of the proof of Lemma 1.

(b) Let $w^1 \in H_{y^1}^{\Gamma^1} Y^1$. Then

$$\Sigma(y^2, w^1) = \Gamma^2(y^2, w^0) - \Theta(y^2, pr^{\Gamma^1} \circ Tp^{21} \circ \Gamma^2(y^2, w^0)) ,$$

and then

$$Tp^{21} \circ \Sigma(y^2, w^1) = Tp^{21} \circ \Gamma^2(y^2, w^0) - pr^{\Gamma^1} \circ Tp^{21} \circ \Gamma^2(y^2, w^0) .$$

So, $w' \coloneqq Tp^{21} \circ \Sigma(y^2, w^1) \in H_{y^1}^{\Gamma^1}Y^1$ and $w^1 \in H_{y^1}^{\Gamma^1}Y^1 \in H_{y^1}^{\Gamma^1}Y^1$ and
$$Tp^{10}(w') = Tp^{20} \circ \Gamma^2(y^2, w^0) - 0 = w^0 = Tp^{10}(w^1) ,$$

and consequently $w' = w^1$.

8. An application. We can use the construction $\Sigma(\Gamma, \Theta)$ from the previous section in prolongation of connections to bundle functors.

Namely, let $F : \mathcal{FM}_{m,n} \to \mathcal{FM}$ be a bundle functor in the sense of [1] of order r, where \mathcal{FM} is the category of fibred manifolds and fibred maps and $\mathcal{FM}_{m,n}$ is the category of fibred manifolds with *m*-dimensional bases and *n*-dimensional fibres and their local fibred diffeomorphisms. Let $p: Y \to M$ be an $\mathcal{FM}_{m,n}$ -object. Let Ξ be a general connection in $p: Y \to M$ and λ be an r-th order linear connection on M (i.e. r-th order linear connection in $TM \to M$). Thus we have the F-prolongation $\mathcal{F}(\Xi, \lambda)$ (of Ξ with respect to λ) in the sense of [1, Def. 45.4]. $\mathcal{F}(\Xi, \lambda)$ is a general connection in $FY \to M$. Let λ^1 be an r-th order linear connection in $VY \to Y$. Using the construction $\Sigma(\Gamma, \Theta)$ from the previous section, we can construct a general connection $\mathcal{F}(\Xi, \lambda_1, \lambda)$ in $FY \to Y$ as follows. Let $Y^2 = FY \to Y^1 = Y \to Y^0 = M$ be the 2-fibred manifold. We

have a general vertical connection $\Theta = \Theta(\lambda^1) : Y^2 \times_{Y^1} V^{10} Y^1 \to V^{20} Y^2$ in $Y^2 \to Y^1 \to Y^0$ by

$$\Theta(\lambda^1)(y^2,v^1) \coloneqq \mathcal{F}X(y^2) \ , \ j_{y^1}^r(X) \coloneqq \lambda^1(v^1) \ ,$$

 $y^2 \in Y_{y^1}^2$, $y^1 \in Y^1$, $v^1 \in V_{y^1}^{10}Y^1$, where $\mathcal{F}X$ is the flow lift of X with respect to F. Denote $\Gamma = (\mathcal{F}(\Xi, \lambda), \Xi)$. Consequently, we have a general connection $\mathcal{F}(\Xi, \lambda, \lambda^1)$ in $FY \to Y$ by

$$\mathcal{F}(\Xi,\lambda,\lambda^1) \coloneqq \Sigma(\Gamma,\Theta(\lambda^1))$$
.

Let Ξ and λ be as above and Λ be an r-th order linear connection on Y (i.e. r-th order linear connection in $TY \to Y$). Using the above construction $\mathcal{F}(\Xi,\lambda,\lambda^1)$, we can construct a general connection $\mathcal{F}(\Xi,\lambda,\Lambda)$ in $FY \to Y$ as follows.

We have an r-th order linear connection $\lambda^1 = \lambda^1(\Lambda, \Xi)$ in $VY \to Y$ by

$$\lambda^{1}(v) = j_{y}^{r}(pr^{\Xi} \circ X) , \ j_{y}^{r}X \coloneqq \Lambda(v) , \ v \in V_{y}Y , \ y \in Y$$

where $pr^{\Xi}: TY \to VY$ is the Ξ -projection. Then we have a general connection $\mathcal{F}(\Xi, \lambda, \Lambda)$ in $FY \to Y$ by

$$\mathcal{F}(\Xi,\lambda,\Lambda) \coloneqq \mathcal{F}(\Xi,\lambda,\lambda^1(\Lambda,\Xi))$$
.

References

 Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Jan Kurek Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 Lublin Poland e-mail: kurek@hektor.umcs.lublin.pl

Włodzimierz M. Mikulski Institute of Mathematics Jagiellonian University ul. S. Łojasiewicza 6 Cracow Poland e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received November 9, 2015