JAN KUREK and WŁODZIMIERZ M. MIKULSKI

On canonical constructions on connections

> AbSTRACT. We study how a projectable general connection Γ in a 2-fibred manifold $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ and a general vertical connection Θ in $Y^{2} \rightarrow Y^{1} \rightarrow$ Y^{0} induce a general connection $A(\Gamma, \Theta)$ in $Y^{2} \rightarrow Y^{1}$.

Introduction. In Section 1, we introduce the concepts of projectable general connections Γ and general vertical connections Θ in a 2-fibred manifold $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$. In Section 2, we construct a general connection $\Sigma(\Gamma, \Theta)$ in $Y^{2} \rightarrow Y^{1}$ from a projectable general connection Γ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ by means of a general vertical connection Θ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$. In Section 3 we observe the canonical character of the construction $\Sigma(\Gamma, \Theta)$. In Section 4 , we cite the concepts of natural operators. In Section 5, we describe completely the natural operators A transforming tuples (Γ, Θ) as above into general connections $A(\Gamma, \Theta)$ in $Y^{2} \rightarrow Y^{1}$. In Section 6, we prove that there is no natural operator C producing general connections $C(\Gamma)$ in $Y^{2} \rightarrow Y^{1}$ from projectable general connections Γ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$. In Section 7, we present a construction of a general connection $\Sigma(\Gamma, \Theta)$ in $Y^{2} \rightarrow Y^{1}$ from a system $\Gamma=\left(\Gamma^{2}, \Gamma^{1}\right)$ of a general connection Γ^{2} in $Y^{2} \rightarrow Y^{0}$ and a general connection Γ^{1} in $Y^{1} \rightarrow Y^{0}$ by means of a general vertical connection Θ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$. In Section 8, we present an application of the obtained result in prolongation of general connections to bundle functors.

[^0]All manifolds considered in the note is Hausdorff, second countable, without boundaries, finite dimensional and smooth (of class C^{∞}). Maps between manifolds are smooth (infinitely differentiable).

1. Connections. A fibred manifold is a surjective submersion $p: Y \rightarrow M$ between manifolds. By [1], an r-th order holonomic connection in $p: Y \rightarrow$ M is a section

$$
\Gamma: Y \rightarrow J^{r} Y
$$

of the holonomic r-jet prolongation $\pi_{0}^{r}: J^{r} Y \rightarrow Y$ of $Y \rightarrow M$. If $Y \rightarrow M$ is a vector bundle and $\Gamma: Y \rightarrow J^{r} Y$ is a vector bundle map, Γ is called a linear r-th order holonomic connection in $Y \rightarrow M$. A linear r-th order holonomic connection in the tangent bundle $Y=T M \rightarrow M$ of M is called an r-th order linear connection on M. A first order linear connection on M is in fact a classical linear connection on M.

A 1-order holonomic connection $\Gamma: Y \rightarrow J^{1} Y$ in a fibred manifold $Y \rightarrow$ M is called a general connection in $Y \rightarrow M$.

We have the following equivalent definitions of general connections in $Y \rightarrow M$, see [1].

A general connection in $p: Y \rightarrow M$ is a lifting map

$$
\Gamma: Y \times_{M} T M \rightarrow T Y,
$$

i.e. a vector bundle map covering the identity map $i d_{Y}: Y \rightarrow Y$ such that

$$
T p \circ \Gamma(y, w)=w
$$

for any $y \in Y_{x}, w \in T_{x} M, x \in M$. (More precisely, $\Gamma(y, w)=T_{x} \sigma(w)$, where $\Gamma(y)=j_{x}^{1} \sigma$.)

A general connection in $Y \rightarrow M$ is a vector bundle decomposition

$$
T Y=V Y \oplus_{Y} H^{\Gamma}
$$

of the tangent bundle $T Y$ of Y, where $V Y$ is the vertical bundle of Y. (More precisely, $H_{y}^{\Gamma}=\operatorname{im} T_{x} \sigma$, where $\Gamma(y)=j_{x}^{1} \sigma$.)

A general connection in $Y \rightarrow M$ is a vector bundle projection (in direction H^{Γ})

$$
p r^{\Gamma}: T Y \rightarrow V Y
$$

covering $i d_{Y}$.
A 2-fibred manifold is a system $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ of two fibred manifolds $Y^{2} \rightarrow Y^{1}$ and $Y^{1} \rightarrow Y^{0}$.

Let $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ be 2-fibred manifold and

$$
p^{i j}: Y^{i} \rightarrow Y^{j}, 0 \leq j<i \leq 2
$$

be its projections. Of course, $p^{20}=p^{10} \circ p^{21}$. Let

$$
V^{i j} Y^{i}:=k e r\left(T p^{i j}: T Y^{i} \rightarrow T Y^{j}\right)
$$

be the vertical bundle of $p^{i j}: Y^{i} \rightarrow Y^{j}, 0 \leq j<i \leq 2$.

We introduce the following concepts of projectable general connections and of general vertical connections in 2-fibred manifolds $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$.

A projectable general connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ is a general connection

$$
\Gamma: Y^{2} \times_{Y^{0}} T Y^{0} \rightarrow T Y^{2}
$$

in $p^{20}: Y^{2} \rightarrow Y^{0}$ such that there is a (unique) general connection

$$
\underline{\Gamma}: Y^{1} \times_{Y^{0}} T Y^{0} \rightarrow T Y^{1}
$$

in $p^{10}: Y^{1} \rightarrow Y^{0}$ satisfying

$$
T p^{21} \circ \Gamma=\underline{\Gamma} \circ\left(p^{21} \times i d_{T Y^{0}}\right)
$$

Connection $\underline{\Gamma}$ is called the underlying connection of Γ.
A general vertical connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ is a vector bundle map

$$
\Theta: Y^{2} \times_{Y^{1}} V^{10} Y^{1} \rightarrow V^{20} Y^{2}
$$

covering the identity map $i d_{Y^{2}}: Y^{2} \rightarrow Y^{2}$ such that

$$
T p^{21} \circ \Theta\left(y^{2}, v^{1}\right)=v^{1}
$$

for any $y^{2} \in Y_{y^{1}}^{2}, y^{1} \in Y^{1}$ and $v^{1} \in V_{y^{1}}^{10} Y^{1}$.
Equivalently, a general vertical connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ is a smoothly parametrized system $\Theta=\left(\Theta_{x}\right)$ of general connections

$$
\Theta_{x}: Y_{x}^{2} \times_{Y_{x}^{1}} T Y_{x}^{1} \rightarrow T Y_{x}^{2}
$$

in the fibred manifolds $Y_{x}^{2} \rightarrow Y_{x}^{1}$ for any $x \in Y^{0}$, where Y_{x}^{2} is the fibre of $p^{20}: Y^{2} \rightarrow Y^{0}$ over x and Y_{x}^{1} is the fibre of $p^{10}: Y^{1} \rightarrow Y^{0}$ over x and $Y_{x}^{2} \rightarrow Y_{x}^{1}$ is the restriction of the projection $p^{21}: Y^{2} \rightarrow Y^{1}$.
2. A construction. Let Γ be a projectable general connection in $Y^{2} \rightarrow$ $Y^{1} \rightarrow Y^{0}$ with the underlying connection $\underline{\Gamma}$ and Θ be a general vertical connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$.

We define a map $\Sigma(\Gamma, \Theta)=\Sigma: Y^{2} \times_{Y^{1}} T Y^{1} \rightarrow T Y^{2}$ by

$$
\Sigma\left(y^{2}, w^{1}\right):=\Theta\left(y^{2}, p r^{\Gamma}\left(w^{1}\right)\right)+\Gamma\left(y^{2}, T p^{10}\left(w^{1}\right)\right)
$$

$y^{2} \in Y_{y^{1}}^{2}, y^{1} \in Y^{1}, w^{1} \in T_{y^{1}} Y^{1}$, where $p r=T Y^{\Gamma} \rightarrow V^{10} Y^{1}$ is the Γ-projection.
Lemma 1. Σ is a general connection in $p^{21}: Y^{2} \rightarrow Y^{1}$.
Proof. It is sufficient to verify that $T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right)=w^{1}$. We consider two cases.
(a) Let $w^{1} \in V_{y^{1}}^{10} Y^{1}$. Then $\Sigma\left(y^{2}, w^{1}\right)=\Theta\left(y^{2}, w^{1}\right)$, and then

$$
T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right)=T p^{21} \circ \Theta\left(y^{2}, w^{1}\right)=w^{1}
$$

as Θ is a general vertical connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$.
(b) Let $w^{1} \in H \frac{\Gamma}{y^{1}} Y^{1}$, the $\underline{\Gamma}$-horizontal space. Denote $w^{0}=T p^{10}\left(w^{1}\right)$. Then $\Sigma\left(y^{2}, w^{1}\right)=\Gamma\left(y^{2}, w^{0}\right)$, and then

$$
T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right)=T p^{21} \circ \Gamma\left(y^{2}, w^{0}\right)=\underline{\Gamma}\left(p^{21}\left(y^{2}\right), w^{0}\right)=\underline{\Gamma}\left(y^{1}, w^{0}\right) .
$$

Then $w^{\prime}:=T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right) \in H_{y^{1}}^{\Gamma} Y^{1}, w^{1} \in H_{y^{1}}^{\Gamma} Y^{1}$ and

$$
T p^{10}\left(w^{\prime}\right)=T p^{10} \circ T p^{21} \circ \Gamma\left(y^{2}, w^{0}\right)=T p^{20} \circ \Gamma\left(y^{2}, w^{0}\right)=w^{0}=T p^{10}\left(w^{1}\right)
$$

and consequently $w^{\prime}=w^{1}$.
3. Invariance. Let $\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}$ be another 2-fibred manifold with projections $\tilde{p}^{i j}: \tilde{V}^{i} \rightarrow \tilde{V}^{j}, 0 \leq j<i \leq 2$. Let $\tilde{\Gamma}$ be a projectable general connection in $\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}$ and $\tilde{\Theta}$ be a general vertical connection in $\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}$. Let $f=\left(f^{2}, f^{1}, f^{0}\right):\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \rightarrow\left(\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow\right.$ \tilde{Y}^{0}) be a 2 -fibred map, i.e. $f^{i}: Y^{i} \rightarrow \tilde{Y}^{i}$ for $i=0,1,2$ and $\tilde{p}^{i j} \circ f^{i}=f^{j} \circ p^{i j}$ for $0 \leq j<i \leq 2$.
Lemma 2. If Γ is f-related with $\tilde{\Gamma}$, (i.e. $T f^{2} \circ \Gamma=\tilde{\Gamma} \circ\left(f^{2} \times_{f^{0}} T f^{0}\right)$ and then $\left.T f^{1} \circ \underline{\Gamma}=\underline{\tilde{\Gamma}} \circ\left(f^{1} \times_{f^{0}} T f^{0}\right)\right)$ and Θ is f-related with $\tilde{\Theta}$ (i.e. $V^{20} f^{2} \circ \Theta=$ $\tilde{\Theta} \circ\left(f^{2} \times_{f^{1}} V^{10} f^{1}\right)$), then $\Sigma=\Sigma(\Gamma, \Theta)$ is f-related with $\tilde{\Sigma}=\Sigma(\tilde{\Gamma}, \tilde{\Theta})$ (i.e. $\left.T f^{2} \circ \Sigma=\tilde{\Sigma} \circ\left(f^{2} \times_{f^{1}} T f^{1}\right)\right)$.
Proof. If $w \in H^{\underline{\Gamma}} Y^{1}$, then $w=\underline{\Gamma}\left(y^{1}, w^{0}\right)$ for some $y^{1} \in Y_{y^{0}}^{1}$ and $w^{0} \in Y_{y^{0}}^{0}$, and then $T f^{1}(w)=\underline{\tilde{\Gamma}}\left(f^{1}\left(y^{1}\right), T f^{0}\left(w^{0}\right)\right) \in H^{\tilde{\Gamma}}$. Then

$$
T f^{1}\left(H^{\underline{\Gamma}} Y^{1}\right) \subset H^{\tilde{\Gamma}} \tilde{Y}^{1} \text { and (obviously) } T f^{1}\left(V^{10} Y^{1}\right) \subset V^{10} \tilde{Y}^{1}
$$

Consequently, $V^{10} f^{1} \circ p r^{\Gamma}=p r r^{\tilde{\Gamma}} \circ T f^{1}$. Using this formula and the assumption of the lemma and the formula defining Σ, one can easily verify that

$$
T f^{2} \circ \Sigma\left(y^{2}, w^{1}\right)=\tilde{\Sigma} \circ\left(f^{2}\left(y^{2}\right), T f^{1}\left(w^{1}\right)\right)
$$

for $y^{2} \in Y_{y^{1}}^{2}, w^{1} \in T_{y^{1}} Y^{1}, y^{1} \in Y^{1}$.
4. Natural operators. The general concept of natural operators can be found in [1]. We need the following partial cases of this general concept.

Let $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$ be the category of 2 -fibred manifolds $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ with $\operatorname{dim}\left(Y^{0}\right)=m_{0}, \operatorname{dim}\left(Y^{1}\right)=m_{0}+m_{1}, \operatorname{dim}\left(Y^{2}\right)=m_{0}+m_{1}+m_{2}$ and their 2 -fibred local diffeomorphisms.
Definition 1. An $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-natural operator transforming projectable general connections Γ and general vertical connections Θ in $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}-}$ objects $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ into general connections $A(\Gamma, \Theta)$ in $Y^{2} \rightarrow Y^{1}$ is an $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-invariant system A of regular operators (functions)
$A: \operatorname{Con}_{\text {proj }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \times \operatorname{Con}_{\text {vert }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \rightarrow \operatorname{Con}\left(Y^{2} \rightarrow Y^{1}\right)$
 Y^{0}) is the set of projectable general connections in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$, $\operatorname{Con}_{\text {vert }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right)$ is the set of general vertical connections in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ and $\operatorname{Con}\left(Y^{2} \rightarrow Y^{1}\right)$ is the set of general connections in $Y^{2} \rightarrow Y^{1}$.

The invariance of A means that if $\Gamma \in \operatorname{Con}_{\text {proj }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right)$ is f related with $\tilde{\Gamma} \in \operatorname{Con}_{\text {proj }}\left(\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}\right)$ and $\left.\Theta \in \tilde{\tilde{Y}}^{0}\right) \operatorname{Con}_{\text {vert }}\left(Y^{2} \rightarrow Y^{1} \rightarrow\right.$ $\left.Y^{0}\right)$ is f-related with $\tilde{\Theta} \in \operatorname{Con}_{\text {vert }}\left(\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}\right)$ for an $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}{ }^{-}$ morphism $f=\left(f^{2}, f^{1}, f^{0}\right):\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \rightarrow\left(\tilde{Y}^{2} \rightarrow \tilde{Y}^{1} \rightarrow \tilde{Y}^{0}\right)$, then $A(\Gamma, \Theta)$ is f-related with $A(\tilde{\Gamma}, \tilde{\Theta})$.

The regularity of A means that A transforms smoothly parametrized families into smoothly parametrized families.

Because of Lemma 2, the construction $\Sigma(\Gamma, \Theta)$ defines an $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}-}$ natural operator in the sense of Definition 1. So, to describe all natural operators A in the sense of Definition 1 it is sufficient to describe all natural operators in the sense of the following definition.

Definition 2. An $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-natural operator transforming projectable general connections Γ and general vertical connections Θ in $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}-}$ objects $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ into sections $B(\Gamma, \Theta): Y^{2} \rightarrow T^{*} Y^{1} \otimes V^{21} Y^{2}$ of $T^{*} Y^{1} \otimes V^{21} Y^{2} \rightarrow Y^{2}$ is an $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-invariant system A of regular operators
$B: \operatorname{Con}_{\text {proj }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \times \operatorname{Con}_{\text {vert }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \rightarrow C_{Y^{2}}^{\infty}\left(T^{*} Y^{1} \otimes V^{21} Y^{2}\right)$
for any $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2} \text {-object } Y^{2} \rightarrow Y^{1} \rightarrow Y^{0} \text {, where } C_{Y^{2}}^{\infty}\left(T^{*} Y^{1} \otimes V^{21} Y^{2}\right) ~}^{\text {a }}$ is the space of sections of the vector bundle $T^{*} Y^{1} \otimes V^{21} Y^{2}$ over Y^{2} (with respect to the clear projection).

It is obvious that any natural operator A in the sense of Definition 1 is of the form

$$
A(\Gamma, \Theta)=\Sigma(\Gamma, \Theta)+B(\Gamma, \Theta)
$$

for a uniquely determined (by A) natural operator B in the sense of Definition 2.

A simple example of a natural operator in the sense of Definition 2 is the one B^{o} defined by

$$
B^{o}(\Gamma, \Theta)\left(y^{2}\right)\left(w^{1}\right)=p r^{\Sigma(\Gamma, \Theta)} \circ \Theta\left(y^{2}, p r^{\Gamma}\left(w^{1}\right)\right) \in V_{y^{2}}^{21} Y^{2}
$$

 $\Theta \in \operatorname{Con}_{\text {vert }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right), y^{2} \in Y_{y^{1}}^{2}, y^{1} \in Y^{1}, w^{1} \in T_{y^{1}} Y^{1}$, where $p r^{\Sigma(\Gamma, \Theta)}: T Y^{2} \rightarrow V^{21} Y^{2}$ is the $\Sigma(\Gamma, \Theta)$-projection.
5. A classification. Let $\mathbf{R}^{m_{0}, m_{1}, m_{2}}$ be the trivial $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-object $\mathbf{R}^{m_{0}} \times \mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}} \rightarrow \mathbf{R}^{m_{0}} \times \mathbf{R}^{m_{1}} \rightarrow \mathbf{R}^{m_{0}}$ with the usual projections. Let $x^{1}, \ldots, x^{m_{0}}, y^{1}, \ldots, y^{m_{1}}, z^{1}, \ldots, z^{m_{2}}$ be the usual coordinates on $\mathbf{R}^{m_{0}, m_{1}, m_{2}}$.

Consider a natural operator B in the sense of Definition 2. Because of the invariance of B with respect to 2 -fibred manifold charts, B is determined by the linear maps

$$
B(\Gamma, \Theta)(0,0,0): T_{(0,0)}\left(\mathbf{R}^{m_{0}} \times \mathbf{R}^{m_{1}}\right) \rightarrow V_{(0,0,0)}^{21}\left(\mathbf{R}^{m_{0}} \times \mathbf{R}^{m_{1}} \times \mathbf{R}^{m_{2}}\right)
$$

for all $\Gamma \in \operatorname{Con}_{\text {proj }}\left(\mathbf{R}^{m_{0}, m_{1}, m_{2}}\right)$ and all $\Theta \in \operatorname{Con}_{\text {vert }}\left(\mathbf{R}^{m_{0}, m_{1}, m_{2}}\right)$ of the forms

$$
\begin{gathered}
\Gamma=\Gamma^{o}+\sum \Gamma_{i}^{p}(x, y) d x^{i} \otimes \frac{\partial}{\partial y^{p}}+\sum \Gamma_{i}^{q}(x, y, z) d x^{i} \otimes \frac{\partial}{\partial z^{q}}, \\
\Theta=\Theta^{o}+\sum \Theta_{p}^{q}(x, y, z) d y^{p} \otimes \frac{\partial}{\partial z^{q}},
\end{gathered}
$$

where the sums are over $i=1, \ldots, m_{0}, p=1, \ldots, m_{1}, q=1, \ldots, m_{2}$, and where Γ^{o} denotes the trivial projectable general connection in $\mathbf{R}^{m_{0}, m_{1}, m_{2}}$ and $\Theta^{o}=\sum d y^{p} \otimes \frac{\partial}{\partial y^{p}}$ denotes the trivial general vertical connection in $\mathbf{R}^{m_{0}, m_{1}, m_{2}}$.
Eventually, using a new 2-fibred manifold chart one can additionally assume $\Gamma_{i}^{p}(0,0)=0$ and $\Gamma_{i}^{q}(0,0,0)=0$. (More precisely, denote $j_{0}^{1} \sigma:=$ $\Gamma(0,0,0)$ and $\sigma(x)=:(x, \tilde{\sigma}(x), \bar{\sigma}(x))$. We consider the 2 -fibred coordinate system $(x, y-\tilde{\sigma}(x), z-\bar{\sigma}(x))$. In the coordinate system $\Gamma(0,0,0)=$ $\left.\Gamma^{o}(0,0,0).\right)$

Then using the invariance of B with respect to $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-map $\frac{1}{t}$ id for $t>0$ and then putting $t \rightarrow 0$, we can assume $\Gamma=\Gamma^{o}$ and $\Theta_{p}^{q}(x, y, z)=$ $\Theta_{p}^{q}(0,0,0)=$ const. Consequently, B is determined by the maps

$$
B\left(\Gamma^{o}, \Theta^{o}+\sum \Theta_{p}^{q} d y^{p} \otimes \frac{\partial}{\partial z^{q}}\right)(0,0,0): \mathbf{R}^{m_{0}} \times \mathbf{R}^{m_{1}} \rightarrow \mathbf{R}^{m_{2}}
$$

for all $\Theta_{p}^{q} \in \mathbf{R}, p=1, \ldots, m_{1}, q=1, \ldots, m_{2}$.
Using the invariance of B with respect to $t i d_{\mathbf{R}^{m_{0}}} \times i d_{\mathbf{R}^{m_{1}}} \times i d_{\mathbf{R}^{m_{2}}}$ and then putting $t \rightarrow 0$, we deduce that $B\left(\Gamma^{o}, \Theta^{o}+\sum \Theta_{p}^{q} d y^{p} \otimes \frac{\partial}{\partial z^{q}}\right)(0,0,0)$ do not depend on elements from $\mathbf{R}^{m_{0}}$. Consequently, B is determined by the map $\Phi: \mathbf{R}^{m_{1}^{*}} \otimes \mathbf{R}^{m_{2}} \rightarrow \mathbf{R}^{m_{1}^{*}} \otimes \mathbf{R}^{m_{2}}$ given by

$$
\Phi\left(\left(\Theta_{p}^{q}\right)\right)=B\left(\Gamma^{o}, \Theta^{o}+\sum \Theta_{p}^{q} d y^{p} \otimes \frac{\partial}{\partial z^{q}}\right)(0,0,0) \in \mathbf{R}^{m_{1}^{*}} \otimes \mathbf{R}^{m_{2}}
$$

Using the invariance of B with respect to linear isomorphisms from $\left\{i d_{\mathbf{R}^{m_{0}}}\right\} \times G L\left(m_{1}\right) \times G L\left(m_{2}\right)$, we deduce that Φ is $G L\left(m_{1}\right) \times G L\left(m_{2}\right)$ invariant. Consequently, Φ is the constant multiple of the identity. Then the space of all $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-natural operators B in the sense of Definition 2 is 1 -dimensional. So, any natural operator B in the sense of Definition 2 is the constant multiple of B^{o}.

Thus we proved the following classification theorem.

Theorem 1. Any $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-natural operator A in the sense of Definition 1 is of the form

$$
A(\Gamma, \Theta)=\Sigma(\Gamma, \Theta)+\tau B^{o}(\Gamma, \Theta)
$$

for a uniquely (by A) real number τ.
6. Why do we use auxiliary a general vertical connection? We prove the following theorem.
Theorem 2. There is no $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2} \text {-natural operator }}$

$$
C: \operatorname{Con}_{\text {proj }}\left(Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}\right) \rightarrow \operatorname{Con}\left(Y^{2} \rightarrow Y^{1}\right)
$$

transforming projectable general connections Γ in $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-objects $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ into general connections $C(\Gamma)$ in $Y^{2} \rightarrow Y^{1}$.

Proof. Suppose that such C exists. Let Γ^{o} be the trivial projectable general connection in the 2 -fibred manifold $\mathbf{R}^{m_{0}, m_{1}, m_{2}}$. Then $C\left(\Gamma^{o}\right)$ is φ-invariant by any $\mathcal{F} \mathcal{M}_{m_{0}, m_{1}, m_{2}}$-map φ of the form $\varphi\left(x_{0}, x_{1}, x_{2}\right)=\left(x_{0}, \varphi_{1}\left(x_{1}\right), \varphi_{2}\left(x_{1}, x_{2}\right)\right)$, $x_{0} \in \mathbf{R}^{m_{0}}, x_{1} \in \mathbf{R}^{m_{1}}, x_{2} \in \mathbf{R}^{m_{2}}$ (as Γ^{o} is). Then $j_{(0,0)}^{1} \sigma:=C\left(\Gamma^{o}\right)(0,0,0)$ is φ-invariant for any φ as above with $\varphi(0,0,0)=(0,0,0)$. Then for $\varphi_{1}\left(x_{1}\right)=$ x_{1} and $\varphi_{2}\left(x_{1}, x_{2}\right)=x_{2}+\left(x_{1}^{1}, 0, \ldots, 0\right)$ we get $j_{(0,0)}^{1}(\varphi \circ \sigma)=j_{(0,0)}^{1} \sigma$, i.e. $j_{(0,0)}^{1} \eta=0$, where $\eta\left(x_{0}, x_{1}\right)=\left(x_{0}, x_{1}, x_{1}^{1}, 0, \ldots, 0\right)$. Contradiction.

So, to construct canonically a general connection in $Y^{2} \rightarrow Y^{1}$ from a projectable general connection in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ the using of auxiliary objects is unavoidable. In the present note we have used general vertical connections as such auxiliary ones.
7. A generalization. Let $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ be a 2 -fibred manifold.

A projectable general connection Γ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ is in fact a system $\Gamma=(\Gamma, \underline{\Gamma})$ of two general connections in $p^{20}: Y^{2} \rightarrow Y^{0}$ and $p^{10}: Y^{1} \rightarrow Y^{0}$ (respectively), and $\underline{\Gamma}$ is determined by Γ.

In this section, we present how to extend the construction of $\Sigma(\Gamma, \Theta)$ for $\Gamma=(\Gamma, \underline{\Gamma})$ into a construction $\Sigma(\Gamma, \Theta)$ for $\Gamma=\left(\Gamma^{2}, \Gamma^{1}\right)$, where Γ^{2} : $Y^{2} \times_{Y^{0}} T Y^{0} \rightarrow T Y^{2}$ is a general connection in $p^{20}: Y^{2} \rightarrow Y^{0}$ and $\Gamma^{1}:$ $Y^{1} \times{ }_{Y^{0}} T Y^{0} \rightarrow T Y^{1}$ is a general connection in $p^{10}: Y^{1} \rightarrow Y^{0}$.

Let $\Gamma=\left(\Gamma^{2}, \Gamma^{1}\right)$ and Θ be in question. We define a map $\Sigma(\Gamma, \Theta)=\Sigma$: $Y^{2} \times_{Y^{1}} T Y^{1} \rightarrow T Y^{2}$ by
$\Sigma\left(y^{2}, w^{1}\right):=\Theta\left(y^{2}, p r^{\Gamma^{1}}\left(w^{1}\right)\right)+\Gamma^{2}\left(y^{2}, w^{0}\right)-\Theta\left(y^{2}, p r^{\Gamma^{1}} \circ T p^{21} \circ \Gamma^{2}\left(y^{2}, w^{0}\right)\right)$, $y^{2} \in Y_{y^{1}}^{2}, y^{1} \in Y^{1}, w^{1} \in T_{y^{1}} Y^{1}, w^{0}=T p^{10}\left(w^{1}\right)$.
Lemma 3. Σ is a general connection in $p^{21}: Y^{2} \rightarrow Y^{1}$.
Proof. We are going to prove that $T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right)=w^{1}$. We consider two cases.
(a) Let $w^{1} \in V_{y^{1}}^{10} Y^{1}$. Then $\Sigma\left(y^{2}, w^{1}\right)=\Theta\left(y^{2}, w^{1}\right)$, and next we proceed as in the part (a) of the proof of Lemma 1 .
(b) Let $w^{1} \in H_{y^{1}}^{\Gamma^{1}} Y^{1}$. Then

$$
\Sigma\left(y^{2}, w^{1}\right)=\Gamma^{2}\left(y^{2}, w^{0}\right)-\Theta\left(y^{2}, p r^{\Gamma^{1}} \circ T p^{21} \circ \Gamma^{2}\left(y^{2}, w^{0}\right)\right),
$$

and then

$$
T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right)=T p^{21} \circ \Gamma^{2}\left(y^{2}, w^{0}\right)-p r^{\Gamma^{1}} \circ T p^{21} \circ \Gamma^{2}\left(y^{2}, w^{0}\right) .
$$

So, $w^{\prime}:=T p^{21} \circ \Sigma\left(y^{2}, w^{1}\right) \in H_{y^{1}}^{\Gamma^{1}} Y^{1}$ and $w^{1} \in H_{y^{1}}^{\Gamma^{1}} Y^{1} \in H_{y^{1}}^{\Gamma^{1}} Y^{1}$ and

$$
T p^{10}\left(w^{\prime}\right)=T p^{20} \circ \Gamma^{2}\left(y^{2}, w^{0}\right)-0=w^{0}=T p^{10}\left(w^{1}\right),
$$

and consequently $w^{\prime}=w^{1}$.
8. An application. We can use the construction $\Sigma(\Gamma, \Theta)$ from the previous section in prolongation of connections to bundle functors.

Namely, let $F: \mathcal{F M} \mathcal{M}_{m, n} \rightarrow \mathcal{F M}$ be a bundle functor in the sense of [1] of order r, where $\mathcal{F M}$ is the category of fibred manifolds and fibred maps and $\mathcal{F} \mathcal{M}_{m, n}$ is the category of fibred manifolds with m-dimensional bases and n-dimensional fibres and their local fibred diffeomorphisms. Let $p: Y \rightarrow M$ be an $\mathcal{F} \mathcal{M}_{m, n}$-object. Let $\boldsymbol{\Xi}$ be a general connection in $p: Y \rightarrow M$ and λ be an r-th order linear connection on M (i.e. r-th order linear connection in $T M \rightarrow M$). Thus we have the F-prolongation $\mathcal{F}(\Xi, \lambda)$ (of Ξ with respect to λ) in the sense of [1, Def. 45.4]. $\mathcal{F}(\Xi, \lambda)$ is a general connection in $F Y \rightarrow M$. Let λ^{1} be an r-th order linear connection in $V Y \rightarrow Y$. Using the construction $\Sigma(\Gamma, \Theta)$ from the previous section, we can construct a general connection $\mathcal{F}\left(\Xi, \lambda_{1}, \lambda\right)$ in $F Y \rightarrow Y$ as follows.

Let $Y^{2}=F Y \rightarrow Y^{1}=Y \rightarrow Y^{0}=M$ be the 2-fibred manifold. We have a general vertical connection $\Theta=\Theta\left(\lambda^{1}\right): Y^{2} \times_{Y^{1}} V^{10} Y^{1} \rightarrow V^{20} Y^{2}$ in $Y^{2} \rightarrow Y^{1} \rightarrow Y^{0}$ by

$$
\Theta\left(\lambda^{1}\right)\left(y^{2}, v^{1}\right):=\mathcal{F} X\left(y^{2}\right), j_{y^{1}}^{r}(X):=\lambda^{1}\left(v^{1}\right),
$$

$y^{2} \in Y_{y^{1}}^{2}, y^{1} \in Y^{1}, v^{1} \in V_{y^{1}}^{10} Y^{1}$, where $\mathcal{F} X$ is the flow lift of X with respect to F. Denote $\Gamma=(\mathcal{F}(\Xi, \lambda), \Xi)$. Consequently, we have a general connection $\mathcal{F}\left(\Xi, \lambda, \lambda^{1}\right)$ in $F Y \rightarrow Y$ by

$$
\mathcal{F}\left(\Xi, \lambda, \lambda^{1}\right):=\Sigma\left(\Gamma, \Theta\left(\lambda^{1}\right)\right)
$$

Let Ξ and λ be as above and Λ be an r-th order linear connection on Y (i.e. r-th order linear connection in $T Y \rightarrow Y$). Using the above construction $\mathcal{F}\left(\Xi, \lambda, \lambda^{1}\right)$, we can construct a general connection $\mathcal{F}(\Xi, \lambda, \Lambda)$ in $F Y \rightarrow Y$ as follows.

We have an r-th order linear connection $\lambda^{1}=\lambda^{1}(\Lambda, \Xi)$ in $V Y \rightarrow Y$ by

$$
\lambda^{1}(v)=j_{y}^{r}\left(p r^{\Xi} \circ X\right), j_{y}^{r} X:=\Lambda(v), v \in V_{y} Y, y \in Y,
$$

where $p r^{\Xi}: T Y \rightarrow V Y$ is the Ξ-projection. Then we have a general connection $\mathcal{F}(\Xi, \lambda, \Lambda)$ in $F Y \rightarrow Y$ by

$$
\mathcal{F}(\Xi, \lambda, \Lambda):=\mathcal{F}\left(\Xi, \lambda, \lambda^{1}(\Lambda, \Xi)\right)
$$

References

[1] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

Jan Kurek
Institute of Mathematics
Maria Curie-Skłodowska University
pl. M. Curie-Skłodowskiej 1
Lublin
Poland
e-mail: kurek@hektor.umcs.lublin.pl
Włodzimierz M. Mikulski
Institute of Mathematics
Jagiellonian University
ul. S. Łojasiewicza 6
Cracow
Poland
e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl
Received November 9, 2015

[^0]: 2010 Mathematics Subject Classification. 53C05, 58A32.
 Key words and phrases. General connection, projectable general connection, general vertical connection, 2 -fibred manifold, natural operator.

